1
|
Liao J, Duan Y, Xu X, Liu Y, Zhan C, Xiao G. Circadian rhythm related genes signature in glioma for drug resistance prediction: a comprehensive analysis integrating transcriptomics and machine learning. Discov Oncol 2025; 16:119. [PMID: 39909964 PMCID: PMC11799505 DOI: 10.1007/s12672-025-01863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Gliomas, 24% of all primary brain tumors, have diverse histology and poor survival rates, with about 70% recurring due to acquired or de novo resistance. Insomnia in patients is correlated strongly with circadian rhythm disruptions. The correlation between circadian rhythm disorders and drug resistance of some tumors has been proved. However, the precise mechanism underlying the relationship between glioma and circadian rhythm disorders has not been elucidated. METHODS Circadian rhythm-related genes (CRRGs) were identified using the least absolute shrinkage and selection operator (LASSO) regression, and stochastic gradient descent (SGD) was performed to form a circadian rhythm-related score (CRRS) model. The studies of immune cell infiltration, genetic variations, differential gene expression pattern, and single cell analysis were performed for exploring the mechanisms of chemotherapy resistance in glioma. The relationship between CRRGs and chemosensitivity was also confirmed by IC 50 (half maximal inhibitory concentration) analysis. RESULT Signatures of 16 CRRGs were screened out and identified. Based on the CRRS model, an optimal comprehensive nomogram was created, exhibiting a favorable potential for predicting drug resistance in samples. Immune infiltration, cell-cell communication, and single cell analysis all indicated that high CRRS group was closely related to innate immune cells. IC50 analysis showed that CRRG knockdown enhanced the chemosensitivity of glioma. CONCLUSION A significant correlation between CRRGs, drug resistance of glioma, and innate immune cells was found, which might hold a significant role in the drug resistance of glioma.
Collapse
Affiliation(s)
- Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxing Duan
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xiangwang Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaxue Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaohong Zhan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Del Baldo G, Carai A, Mastronuzzi A. Chimeric antigen receptor adoptive immunotherapy in central nervous system tumors: state of the art on clinical trials, challenges, and emerging strategies to addressing them. Curr Opin Oncol 2024; 36:545-553. [PMID: 38989708 PMCID: PMC11460750 DOI: 10.1097/cco.0000000000001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW Central nervous system (CNS) tumors represent a significant unmet medical need due to their enduring burden of high mortality and morbidity. Chimeric antigen receptor (CAR) T-cell therapy emerges as a groundbreaking approach, offering hope for improved treatment outcomes. However, despite its successes in hematological malignancies, its efficacy in solid tumors, including CNS tumors, remains limited. Challenges such as the intricate tumor microenvironment (TME), antigenic heterogeneity, and CAR T-cell exhaustion hinder its effectiveness. This review aims to explore the current landscape of CAR T-cell therapy for CNS tumors, highlighting recent advancements and addressing challenges in achieving therapeutic efficacy. RECENT FINDINGS Innovative strategies aim to overcome the barriers posed by the TME and antigen diversity, prevent CAR T-cell exhaustion through engineering approaches and combination therapies with immune checkpoint inhibitors to improving treatment outcomes. SUMMARY Researchers have been actively working to address these challenges. Moreover, addressing the unique challenges associated with neurotoxicity in CNS tumors requires specialized management strategies. These may include the development of grading systems, monitoring devices, alternative cell platforms and incorporation of suicide genes. Continued research efforts and clinical advancements are paramount to overcoming the existing challenges and realizing the full potential of CAR T-cell therapy in treating CNS tumors.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
- Department of Experimental Medicine, Sapienza University of Rome
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
| |
Collapse
|
3
|
Chen W, Xian N, Zhao N, Zhang Q, Xu Y. PD1CD28 chimeric molecule enhances EGFRvⅢ specific CAR-T cells in xenograft experiments in mouse models. PLoS One 2024; 19:e0310430. [PMID: 39352918 PMCID: PMC11444390 DOI: 10.1371/journal.pone.0310430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Over the years, CAR-T cell therapy has achieved remarkable success in treating hematological malignancies. However, this efficacy has not been replicated in the context of glioblastoma (GBM). In this study, a PD1CD28 chimeric molecule was introduced into EGFRvⅢ-directed CAR-T cells, generating EGFRvⅢ-P2A-PD1CD28 CAR-T cells. Notably, this modification significantly increased IL-2 secretion and enhanced antigen-dependent activation of CAR-T cells, especially when programmed cell death ligand 1 (PD-L1) was present in vitro. In addition, the in vivo xenograft experiments revealed that the PD1CD28 chimeric molecule played a pivotal role in reducing recurrence rates, effectively controlling recurrent tumor volume, and ultimately prolonging the survival of mice. Collectively, these findings suggest that EGFRvⅢ-directed CAR-T cells co-expressing the PD1CD28 chimeric molecule have the potential to significantly enhance the treatment efficacy against GBM.
Collapse
Affiliation(s)
- Wanqiong Chen
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Na Xian
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
- Tcelltech Biological Science and Technology Inc., Fuzhou, Fujian, China
| | - Ningning Zhao
- Laboratory Animal Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiong Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yunlu Xu
- Laboratory of Snake Venom, The Center of Translational Hematology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Vandecandelaere G, Ramapriyan R, Gaffey M, Richardson LG, Steuart SJ, Tazhibi M, Kalaw A, Grewal EP, Sun J, Curry WT, Choi BD. Pre-Clinical Models for CAR T-Cell Therapy for Glioma. Cells 2024; 13:1480. [PMID: 39273050 PMCID: PMC11394304 DOI: 10.3390/cells13171480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Immunotherapy represents a transformative shift in cancer treatment. Among myriad immune-based approaches, chimeric antigen receptor (CAR) T-cell therapy has shown promising results in treating hematological malignancies. Despite aggressive treatment options, the prognosis for patients with malignant brain tumors remains poor. Research leveraging CAR T-cell therapy for brain tumors has surged in recent years. Pre-clinical models are crucial in evaluating the safety and efficacy of these therapies before they advance to clinical trials. However, current models recapitulate the human tumor environment to varying degrees. Novel in vitro and in vivo techniques offer the opportunity to validate CAR T-cell therapies but also have limitations. By evaluating the strengths and weaknesses of various pre-clinical glioma models, this review aims to provide a roadmap for the development and pre-clinical testing of CAR T-cell therapies for brain tumors.
Collapse
Affiliation(s)
- Gust Vandecandelaere
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
- Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Rishab Ramapriyan
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Matthew Gaffey
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Leland Geoffrey Richardson
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Samuel Jeffrey Steuart
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Masih Tazhibi
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Adrian Kalaw
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Eric P. Grewal
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Jing Sun
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - William T. Curry
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Bryan D. Choi
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| |
Collapse
|
5
|
Lv K, Du X, Chen C, Yu Y. Research hotspots and trend of glioblastoma immunotherapy: a bibliometric and visual analysis. Front Oncol 2024; 14:1361530. [PMID: 39175478 PMCID: PMC11339877 DOI: 10.3389/fonc.2024.1361530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
Background Glioblastoma (GBM) is one of the common malignant tumors of the central nervous system (CNS), characterized by rapid proliferation, heterogeneity, aggressiveness, proneness to recurrence after surgery, and poor prognosis. There is increasing evidence that tumorigenesis is inextricably linked to immune escape, and immunotherapy is undoubtedly an important complement to clinical treatment options for GBM, and will be a focus and hot topic in GBM treatment research. The purpose of this study was to visualize and analyze the scientific results and research trends of immunotherapy for GBM. Methods Publications concerning immunotherapy for GBM were retrieved from the Web of Science Core Collection (WOScc) database. Bibliometric and visual analysis was performed mainly using CiteSpace and R software, and the Online Analysis Platform of Literature Metrology (https://bibliometric.com/app) for countries/regions, authors, journals, references and keywords related to publications in the field. Results Among totally 3491 publications retrieved in this field, 1613 publications were finally obtained according to the screening criteria, including 1007 articles (62.43%) and 606 reviews (37.57%). The number of publications increased year by year, with an average growth rate (AGR) of 17.41%. Such a number was the largest in the USA (717, 44.45%), followed by China (283, 17.55%), and the USA showed the strongest international collaboration. Among the research institutions, Duke Univ (94, 5.83%) was the largest publisher in the field, followed by Harvard Med Sch (70, 4.34%). In addition, the most prolific authors in this field were OHN H SAMPSON (51) and MICHAEL LIM (43), and the degree of collaboration (DC) between authors was 98.26%. Among the co-cited authors, STUPP R (805) was the most cited author, followed by REARDON DA (448). The journal with the most published publications was FRONTIERS IN IMMUNOLOGY (75), and the most cited journal in terms of co-citation was CLIN CANCER RES (1322), followed by CANCER RES (1230). The high-frequency keyword included glioblastoma (672) and immunotherapy (377). Cluster analysis was performed on the basis of keyword co-occurrence analysis, yielding 17 clusters, based on which the current research status and future trends in the field of immunotherapy for GBM were identified. Conclusion Immunotherapy is currently a novel treatment strategy for GBM that has attracted much attention. In the future, it is necessary to strengthen cooperation and exchanges between countries and institutions towards relevant research to promote the development of this field. Immunotherapy is expected to be an important part of the future treatment strategy for GBM, and it has already become a hot spot of current research and will be the key focus of future research.
Collapse
Affiliation(s)
- Keren Lv
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xue Du
- Yaan People’s Hospital, Sichuan University West China Hospital Yaan Hospital, Yaan, Sichuan, China
| | - Chunbao Chen
- Chengdu Pidu District People's Hospital, the 3rd Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yina Yu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Feldman L. Hypoxia within the glioblastoma tumor microenvironment: a master saboteur of novel treatments. Front Immunol 2024; 15:1384249. [PMID: 38994360 PMCID: PMC11238147 DOI: 10.3389/fimmu.2024.1384249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Glioblastoma (GBM) tumors are the most aggressive primary brain tumors in adults that, despite maximum treatment, carry a dismal prognosis. GBM tumors exhibit tissue hypoxia, which promotes tumor aggressiveness and maintenance of glioma stem cells and creates an overall immunosuppressive landscape. This article reviews how hypoxic conditions overlap with inflammatory responses, favoring the proliferation of immunosuppressive cells and inhibiting cytotoxic T cell development. Immunotherapies, including vaccines, immune checkpoint inhibitors, and CAR-T cell therapy, represent promising avenues for GBM treatment. However, challenges such as tumor heterogeneity, immunosuppressive TME, and BBB restrictiveness hinder their effectiveness. Strategies to address these challenges, including combination therapies and targeting hypoxia, are actively being explored to improve outcomes for GBM patients. Targeting hypoxia in combination with immunotherapy represents a potential strategy to enhance treatment efficacy.
Collapse
Affiliation(s)
- Lisa Feldman
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
7
|
Sweeney EE, Sekhri P, Muniraj N, Chen J, Feng S, Terao J, Chin SJ, Schmidt DE, Bollard CM, Cruz CRY, Fernandes R. Photothermal Prussian blue nanoparticles generate potent multi-targeted tumor-specific T cells as an adoptive cell therapy. Bioeng Transl Med 2024; 9:e10639. [PMID: 38818122 PMCID: PMC11135148 DOI: 10.1002/btm2.10639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) is an effective tumor treatment capable of eliciting an antitumor immune response. Motivated by the ability of PBNP-PTT to potentiate endogenous immune responses, we recently demonstrated that PBNP-PTT could be used ex vivo to generate tumor-specific T cells against glioblastoma (GBM) cell lines as an adoptive T cell therapy (ATCT). In this study, we further developed this promising T cell development platform. First, we assessed the phenotype and function of T cells generated using PBNP-PTT. We observed that PBNP-PTT facilitated CD8+ T cell expansion from healthy donor PBMCs that secreted IFNγ and TNFα and upregulated CD107a in response to engagement with target U87 cells, suggesting specific antitumor T cell activation and degranulation. Further, CD8+ effector and effector memory T cell populations significantly expanded after co-culture with U87 cells, consistent with tumor-specific effector responses. In orthotopically implanted U87 GBM tumors in vivo, PBNP-PTT-derived T cells effectively reduced U87 tumor growth and generated long-term survival in >80% of tumor-bearing mice by Day 100, compared to 0% of mice treated with PBS, non-specific T cells, or T cells expanded from lysed U87 cells, demonstrating an enhanced antitumor efficacy of this ATCT platform. Finally, we tested the generalizability of our approach by generating T cells targeting medulloblastoma (D556), breast cancer (MDA-MB-231), neuroblastoma (SH-SY5Y), and acute monocytic leukemia (THP-1) cell lines. The resulting T cells secreted IFNγ and exerted increased tumor-specific cytolytic function relative to controls, demonstrating the versatility of PBNP-PTT in generating tumor-specific T cells for ATCT.
Collapse
Affiliation(s)
- Elizabeth E. Sweeney
- Department of Biochemistry & Molecular Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Palak Sekhri
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Nethaji Muniraj
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Jie Chen
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Sally Feng
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Joshua Terao
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Samantha J. Chin
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Danielle E. Schmidt
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Catherine M. Bollard
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Conrad Russell Y. Cruz
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Rohan Fernandes
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- Department of Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
8
|
Santillán-Guaján SM, Shahi MH, Castresana JS. Mesenchymal-Stem-Cell-Based Therapy against Gliomas. Cells 2024; 13:617. [PMID: 38607056 PMCID: PMC11011546 DOI: 10.3390/cells13070617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma is the most aggressive, malignant, and lethal brain tumor of the central nervous system. Its poor prognosis lies in its inefficient response to currently available treatments that consist of surgical resection, radiotherapy, and chemotherapy. Recently, the use of mesenchymal stem cells (MSCs) as a possible kind of cell therapy against glioblastoma is gaining great interest due to their immunomodulatory properties, tumor tropism, and differentiation into other cell types. However, MSCs seem to present both antitumor and pro-tumor properties depending on the tissue from which they come. In this work, the possibility of using MSCs to deliver therapeutic genes, oncolytic viruses, and miRNA is presented, as well as strategies that can improve their therapeutic efficacy against glioblastoma, such as CAR-T cells, nanoparticles, and exosomes.
Collapse
Affiliation(s)
- Sisa M. Santillán-Guaján
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain;
| | - Mehdi H. Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, India;
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain;
| |
Collapse
|
9
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
10
|
Santiago-Vicente Y, de Jesús Castillejos-López M, Carmona-Aparicio L, Coballase-Urrutia E, Velasco-Hidalgo L, Niembro-Zúñiga AM, Zapata-Tarrés M, Torres-Espíndola LM. Immunotherapy for Pediatric Gliomas: CAR-T Cells Against B7H3: A Review of the Literature. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:420-430. [PMID: 37038673 DOI: 10.2174/1871527322666230406094257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND B7H3 is a co-stimulatory molecule for immune reactions found on the surface of tumor cells in a wide variety of tumors. Preclinical and clinical studies have reported it as a tumor target towards which various immunotherapy modalities could be directed. So far, good results have been obtained in hematological neoplasms; however, a contrasting situation is evident in solid tumors, including those of the CNS, which show high refractoriness to current treatments. The appearance of cellular immunotherapies has transformed oncology due to the reinforcement of the immune response that is compromised in people with cancer. OBJECTIVE This article aims to review the literature to describe the advancement in knowledge on B7H3 as a target of CAR-T cells in pediatric gliomas to consider them as an alternative in the treatment of these patients. RESULTS Although B7H3 is considered a suitable candidate as a target agent for various immunotherapy techniques, there are still limitations in using CAR-T cells to achieve the desired success. CONCLUSION Results obtained with CAR-T cells can be further improved by the suggested proposals; therefore, more clinical trials are needed to study this new therapy in children with gliomas.
Collapse
Affiliation(s)
- Yolanda Santiago-Vicente
- Iztacala Faculty of Higher Studies, Tlalnepantla, México
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, México
| | | | | | | | | | | | - Marta Zapata-Tarrés
- Head of Research Coordination at Mexican Social Security Institute Foundation, Mexico City, México
| | | |
Collapse
|
11
|
Roth P. Chimeric antigen receptors in the brain: Can we tackle glioblastoma with engineered NK cells? Neuro Oncol 2023; 25:2072-2073. [PMID: 37522296 PMCID: PMC10628930 DOI: 10.1093/neuonc/noad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Patrick Roth
- University Hospital Zurich and University of Zurich, Department of Neurology and Brain Tumor Center, Zurich, Switzerland
| |
Collapse
|
12
|
Tian Z, Yang Z, Jin M, Ding R, Wang Y, Chai Y, Wu J, Yang M, Zhao W. Identification of cytokine-predominant immunosuppressive class and prognostic risk signatures in glioma. J Cancer Res Clin Oncol 2023; 149:13185-13200. [PMID: 37479756 DOI: 10.1007/s00432-023-05173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
PURPOSE The advent of immune checkpoint blockade (ICB) therapies this year has changed the way glioblastoma (GBM) is treated. Meanwhile, some patients with strong PD-L1 expression remain immune checkpoint resistant. To better understand the molecular processes that influence the immune environment, there is an urgent need to characterize the immunosuppressive tumor microenvironment and identify biomarkers to predict patient survival outcomes. PATIENTS AND METHODS Our study analyzed RNA-sequencing data from 178 GBM samples. Their unique gene expression patterns in the tumor microenvironment were analyzed by an unsupervised clustering algorithm. Through these expression patterns, a panel of T-cell exhaustion signatures, immunosuppressive cells, and clinical features correlates with immunotherapy response. The presence or absence of immune status and prognostic signatures was then validated with the test dataset. RESULTS 38.2% of GBM patients showed increased expression of anti-inflammatory cytokines, significant enrichment of T cell exhaustion signals, higher proportion of immunosuppressive cells (macrophages and CD4 regulatory T cells) and nine inhibitory checkpoints (CTLA4, PDCD1, LAG3, BTLA, TIGIT, HAVCR2, IDO1, SIGLEC7, and VISTA). The immunodepleted class (IDC) was used to classify these immunocompromised individuals. Despite the high density of tumor-infiltrating lymphocytes shown by IDC, such patients have a poor prognosis. Although PD-L1 was highly expressed in IDC, it suggested that there might be ICB resistance. There are many IDC predictive signatures to discover. CONCLUSION PD-1 is strongly expressed in a novel immunosuppressive class of GBM, but this cluster may be resistant to ICB therapy. A comprehensive description of this drug-resistant tumor microenvironment could provide new insights into drug resistance mechanisms and improved immunotherapy techniques.
Collapse
Affiliation(s)
- Ziyue Tian
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhongyi Yang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Meng Jin
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ran Ding
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China
| | - Yuhan Wang
- School of Medical Informatics Engineering, Changchun University of Chinese Medicine, Changchun, 130118, Jilin, China
| | - Yuying Chai
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jinpu Wu
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Miao Yang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Weimin Zhao
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
13
|
He S, Ji Z, Zhang Q, Zhang X, Chen J, Hu J, Wang R, Ding Y. Investigation of LGALS2 expression in the TCGA database reveals its clinical relevance in breast cancer immunotherapy and drug resistance. Sci Rep 2023; 13:17445. [PMID: 37838802 PMCID: PMC10576795 DOI: 10.1038/s41598-023-44777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
Breast cancer (BRCA) is known as the leading cause of death in women worldwide and has a poor prognosis. Traditional therapeutic strategies such as surgical resection, radiotherapy and chemotherapy can cause adverse reactions such as drug resistance. Immunotherapy, a new treatment approach with fewer side effects and stronger universality, can prolong the survival of BRCA patients and even achieve clinical cure. However, due to population heterogeneity and other reasons, there are still certain factors that limit the efficacy of immunotherapy. Therefore, the importance of finding new tumor immune biomarker cannot be emphasized enough. Studies have reported that LGALS2 was closely related to immunotherapy efficacy, however, it is unclear whether it can act as an immune checkpoint for BRCA immunotherapy. In the current study, changes in LGALS2 expression were analyzed in public datasets such as TCGA-BRCA. We found that LGALS2 expression was associated with immune infiltration, drug resistance and other characteristics of BRCA. Moreover, high LGALS2 expression was closely related to immunotherapy response, and was associated with methylation modifications and clinical resistance for the first time. These findings may help to elucidate the role of LGALS2 in BRCA for the development and clinical application of future immunotherapy strategies against BRCA.
Collapse
Affiliation(s)
- Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
- Department of Basic Medicine, Changzhi Medical College, Changzhi, 046000, Shanxi, People's Republic of China
| | - Qing Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Xiwen Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jinping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Ruiqing Wang
- The Eye Center in the Second Hospital of Jilin University, Ziqiang Street 218#, Nanguan District, Changchun, Jilin, 130041, People's Republic of China.
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
14
|
Sun Z, Sun X, Yuan Y, Li H, Li X, Yao Z. FCGR2B as a prognostic and immune microenvironmental marker for gliomas based on transcriptomic analysis. Medicine (Baltimore) 2023; 102:e35084. [PMID: 37713871 PMCID: PMC10508392 DOI: 10.1097/md.0000000000035084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023] Open
Abstract
To explore the expression and prognosis of Fc fragment of IgG low affinity IIb receptor (FCGR2B) in glioma and its relationship with immune microenvironment, so as to provide potential molecular targets for the treatment of glioma. We analyzed the gene expression of FCGR2B using the Cancer Genome Atlas database, Chinese Glioma Genome Atlas, Gene Expression Omnibus database and other glioma related databases. Moreover, we generated survival receiver operating characteristic curve, carried out univariate and multivariate Cox analysis and nomograph construction, and analyzed the relationship between FCGR2B and prognosis. According to the median of FCGR2B gene expression value, the differential expression analysis was carried out by high and low grouping method, and the gene ontology, Kyoto encyclopedia of genes and genomes, and gene set enrichment analysis enrichment analysis were carried out to explore the possible mechanism. Then, the correlation between immune score of glioma and prognosis, World Health Organization grade and FCGR2B expression was analyzed. Finally, the correlation between FCGR2B expression and the proportion of tumor infiltrating immune cells, immune checkpoints, tumor mutation load and immune function was analyzed. The expression of FCGR2B in gliomas was higher than that in normal tissues and was associated with poor prognosis. Independent prognostic analysis showed that FCGR2B was an independent prognostic factor for glioma. The analysis of gene ontology and gene set enrichment analysis showed that FCGR2B was closely related to immune-related functions. The analysis of immune scores and prognosis, World Health Organization grade and FCGR2B expression in gliomas indicated that patients with high immune scores had significantly poorer overall survival and higher tumor pathological grade. In addition, immune scores were significantly positively correlated with the expression of FCGR2B. The analysis of tumor infiltrating immune cells suggested that the expression level of FCGR2B affected the immune activity of TME. In addition, the expression of FCGR2B was positively correlated with almost all immune checkpoint molecules including CD28, CD44, TNFSF14, PDCD1LG2, LAIR1, and CD48 and was significantly positively correlated with tumor mutation load. All immunobiological functions of the high expression group of FCGR2B were significantly inhibited. FCGR2B may play an important role in the occurrence, development and invasion of tumor by influencing the tumor microenvironment of immunosuppression. FCGR2B may be an important target for the treatment of glioma.
Collapse
Affiliation(s)
- Zhimin Sun
- Department of Neurosurgery and Radiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Xiaoli Sun
- Department of Neurosurgery and Radiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Yaqin Yuan
- Department of Neurosurgery and Radiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Hongsheng Li
- Department of Neurology, The People Hospital of Xingtai City, Xingtai, China
| | - Xiaona Li
- Department of Pediatrics, The People Hospital of Linxi County, Xingtai, China
| | - Zhigang Yao
- Department of Neurosurgery and Radiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| |
Collapse
|
15
|
Choi H, Kim TG, Jeun SS, Ahn S. Human gamma-delta (γδ) T cell therapy for glioblastoma: A novel alternative to overcome challenges of adoptive immune cell therapy. Cancer Lett 2023; 571:216335. [PMID: 37544475 DOI: 10.1016/j.canlet.2023.216335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Glioblastoma is the most common brain malignancy with devastating prognosis. Numerous clinical trials using various target therapeutic agents have failed and recent clinical trials using check point inhibitors also failed to provide survival benefits for glioblastoma patients. Adoptive T cell transfer is suggested as a novel therapeutic approach that has exhibited promise in preliminary clinical studies. However, the clinical outcomes are inconsistent, and there are several limitations of current adoptive T cell transfer strategies for glioblastoma treatment. As an alternative cell therapy, gamma-delta (γδ) T cells have been recently introduced for several cancers including glioblastoma. Since the leading role of γδ T cells is immune surveillance by recognizing a broad range of ligands including stress molecules, phosphoantigens, or lipid antigens, recent studies have suggested the potential benefits of γδ T cell transfer against glioblastomas. However, γδ T cells, as a small subset (1-5%) of T cells in human peripheral blood, are relatively unknown compared to conventional alpha-beta (αβ) T cells. In this context, our study introduced γδ T cells as an alternative and novel option to overcome several challenges regarding immune cell therapy in glioblastoma treatment. We described the unique characteristics and advantages of γδ T cells compared to conventional αβ T cells and summarize several recent preclinical studies using human gamma-delta T cell therapy for glioblastomas. Finally, we suggested future direction of human γδ T cell therapy for glioblastomas.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Qi Y, Xiong W, Chen Q, Ye Z, Jiang C, He Y, Ye Q. New trends in brain tumor immunity with the opportunities of lymph nodes targeted drug delivery. J Nanobiotechnology 2023; 21:254. [PMID: 37542241 PMCID: PMC10401854 DOI: 10.1186/s12951-023-02011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
Lymph nodes targeted drug delivery is an attractive approach to improve cancer immunotherapy outcomes. Currently, the depth of understanding of afferent and efferent arms in brain immunity reveals the potential clinical applications of lymph node targeted drug delivery in brain tumors, e.g., glioblastoma. In this work, we systematically reviewed the microenvironment of glioblastoma and its structure as a basis for potential immunotherapy, including the glial-lymphatic pathway for substance exchange, the lymphatic drainage pathway from meningeal lymphatic vessels to deep cervical lymph nodes that communicate intra- and extracranial immunity, and the interaction between the blood-brain barrier and effector T cells. Furthermore, the carriers designed for lymph nodes targeted drug delivery were comprehensively summarized. The challenges and opportunities in developing a lymph nodes targeted delivery strategy for glioblastoma using nanotechnology are included at the end.
Collapse
Affiliation(s)
- Yangzhi Qi
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhifei Ye
- Clinical Research Center, The Second Linhai Renmin Hospital, Linhai, 317000, Zhejiang, China
| | - Cailei Jiang
- Institute of Translational and Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430040, Hubei, China
| | - Yan He
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China.
- Institute of Translational and Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430040, Hubei, China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
17
|
Kringel R, Lamszus K, Mohme M. Chimeric Antigen Receptor T Cells in Glioblastoma-Current Concepts and Promising Future. Cells 2023; 12:1770. [PMID: 37443804 PMCID: PMC10340625 DOI: 10.3390/cells12131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain tumor that is largely refractory to treatment and, therefore, invariably relapses. GBM patients have a median overall survival of 15 months and, given this devastating prognosis, there is a high need for therapy improvement. One of the therapeutic approaches currently tested in GBM is chimeric antigen receptor (CAR)-T cell therapy. CAR-T cells are genetically altered T cells that are redirected to eliminate tumor cells in a highly specific manner. There are several challenges to CAR-T cell therapy in solid tumors such as GBM, including restricted trafficking and penetration of tumor tissue, a highly immunosuppressive tumor microenvironment (TME), as well as heterogeneous antigen expression and antigen loss. In addition, CAR-T cells have limitations concerning safety, toxicity, and the manufacturing process. To date, CAR-T cells directed against several target antigens in GBM including interleukin-13 receptor alpha 2 (IL-13Rα2), epidermal growth factor receptor variant III (EGFRvIII), human epidermal growth factor receptor 2 (HER2), and ephrin type-A receptor 2 (EphA2) have been tested in preclinical and clinical studies. These studies demonstrated that CAR-T cell therapy is a feasible option in GBM with at least transient responses and acceptable adverse effects. Further improvements in CAR-T cells regarding their efficacy, flexibility, and safety could render them a promising therapy option in GBM.
Collapse
Affiliation(s)
| | | | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (K.L.)
| |
Collapse
|
18
|
Gatto L, Ricciotti I, Tosoni A, Di Nunno V, Bartolini S, Ranieri L, Franceschi E. CAR-T cells neurotoxicity from consolidated practice in hematological malignancies to fledgling experience in CNS tumors: fill the gap. Front Oncol 2023; 13:1206983. [PMID: 37397356 PMCID: PMC10312075 DOI: 10.3389/fonc.2023.1206983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) therapy has marked a paradigm shift in the treatment of hematological malignancies and represent a promising growing field also in solid tumors. Neurotoxicity is a well-recognized common complication of CAR-T therapy and is at the forefront of concerns for CAR-based immunotherapy widespread adoption, as it necessitates a cautious approach. The non-specific targeting of the CAR-T cells against normal tissues (on-target off-tumor toxicities) can be life-threatening; likewise, immune-mediate neurological symptoms related to CAR-T cell induced inflammation in central nervous system (CNS) must be precociously identified and recognized and possibly distinguished from non-specific symptoms deriving from the tumor itself. The mechanisms leading to ICANS (Immune effector Cell-Associated Neurotoxicity Syndrome) remain largely unknown, even if blood-brain barrier (BBB) impairment, increased levels of cytokines, as well as endothelial activation are supposed to be involved in neurotoxicity development. Glucocorticoids, anti-IL-6, anti-IL-1 agents and supportive care are frequently used to manage patients with neurotoxicity, but clear therapeutic indications, supported by high-quality evidence do not yet exist. Since CAR-T cells are under investigation in CNS tumors, including glioblastoma (GBM), understanding of the full neurotoxicity profile in brain tumors and expanding strategies aimed at limiting adverse events become imperative. Education of physicians for assessing individualized risk and providing optimal management of neurotoxicity is crucial to make CAR-T therapies safer and adoptable in clinical practice also in brain tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Ranieri
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
19
|
Ai Q, Li F, Zou S, Zhang Z, Jin Y, Jiang L, Chen H, Deng X, Peng C, Mou N, Wen C, Shen B, Zhan Q. Targeting KRAS G12V mutations with HLA class II-restricted TCR for the immunotherapy in solid tumors. Front Immunol 2023; 14:1161538. [PMID: 37287989 PMCID: PMC10243368 DOI: 10.3389/fimmu.2023.1161538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
KRAS mutation is a significant driving factor of tumor, and KRASG12V mutation has the highest incidence in solid tumors such as pancreatic cancer and colorectal cancer. Thus, KRASG12V neoantigen-specific TCR-engineered T cells could be a promising cancer treatment approach for pancreatic cancer. Previous studies had reported that KRASG12V-reactive TCRs originated from patients' TILs could recognized KRASG12V neoantigen presented by specific HLA subtypes and remove tumor persistently in vitro and in vivo. However, TCR drugs are different from antibody drugs in that they are HLA-restricted. The different ethnic distribution of HLA greatly limits the applicability of TCR drugs in Chinese population. In this study, we have identified a KRASG12V-specific TCR which recognized classII MHC from a colorectal cancer patient. Interestingly, we observed that KRASG12V-specific TCR-engineered CD4+ T cells, not CD8+ T cells, demonstrated significant efficacy in vitro and in xenograft mouse model, exhibiting stable expression and targeting specificity of TCR when co-cultured with APCs presenting KRASG12V peptides. TCR-engineered CD4+ T cells were co-cultured with APCs loaded with neoantigen, and then HLA subtypes were identified by the secretion of IFN-γ. Collectively, our data suggest that TCR-engineered CD4+ T cells can be used to target KRASG12V mutation presented by HLA-DPB1*03:01 and DPB1*14:01, which provide a high population coverage and are more suitable for the clinical transformation for Chinese, and mediate tumor killing effect like CD8+ T cells. This TCR hold promise for precision therapy in immunotherapy of solid tumors as an attractive candidate.
Collapse
Affiliation(s)
- Qi Ai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zehui Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangbing Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Mou
- Department of Cell Therapy, Shanghai Genbase Biotechnology Co., Ltd, Shanghai, China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Awada H, Paris F, Pecqueur C. Exploiting radiation immunostimulatory effects to improve glioblastoma outcome. Neuro Oncol 2023; 25:433-446. [PMID: 36239313 PMCID: PMC10013704 DOI: 10.1093/neuonc/noac239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
Cancer treatment protocols depend on tumor type, localization, grade, and patient. Despite aggressive treatments, median survival of patients with Glioblastoma (GBM), the most common primary brain tumor in adults, does not exceed 18 months, and all patients eventually relapse. Thus, novel therapeutic approaches are urgently needed. Radiotherapy (RT) induces a multitude of alterations within the tumor ecosystem, ultimately modifying the degree of tumor immunogenicity at GBM relapse. The present manuscript reviews the diverse effects of RT radiotherapy on tumors, with a special focus on its immunomodulatory impact to finally discuss how RT could be exploited in GBM treatment through immunotherapy targeting. Indeed, while further experimental and clinical studies are definitively required to successfully translate preclinical results in clinical trials, current studies highlight the therapeutic potential of immunotherapy to uncover novel avenues to fight GBM.
Collapse
Affiliation(s)
- Hala Awada
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France.,Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - François Paris
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France.,Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Claire Pecqueur
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France
| |
Collapse
|
21
|
Luksik AS, Yazigi E, Shah P, Jackson CM. CAR T Cell Therapy in Glioblastoma: Overcoming Challenges Related to Antigen Expression. Cancers (Basel) 2023; 15:cancers15051414. [PMID: 36900205 PMCID: PMC10000604 DOI: 10.3390/cancers15051414] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor, yet prognosis remains dismal with current treatment. Immunotherapeutic strategies have had limited effectiveness to date in GBM, but recent advances hold promise. One such immunotherapeutic advance is chimeric antigen receptor (CAR) T cell therapy, where autologous T cells are extracted and engineered to express a specific receptor against a GBM antigen and are then infused back into the patient. There have been numerous preclinical studies showing promising results, and several of these CAR T cell therapies are being tested in clinical trials for GBM and other brain cancers. While results in tumors such as lymphomas and diffuse intrinsic pontine gliomas have been encouraging, early results in GBM have not shown clinical benefit. Potential reasons for this are the limited number of specific antigens in GBM, their heterogenous expression, and their loss after initiating antigen-specific therapy due to immunoediting. Here, we review the current preclinical and clinical experiences with CAR T cell therapy in GBM and potential strategies to develop more effective CAR T cells for this indication.
Collapse
|
22
|
Guzman G, Pellot K, Reed MR, Rodriguez A. CAR T-cells to treat brain tumors. Brain Res Bull 2023; 196:76-98. [PMID: 36841424 DOI: 10.1016/j.brainresbull.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tremendous success using CAR T therapy in hematological malignancies has garnered significant interest in developing such treatments for solid tumors, including brain tumors. This success, however, has yet to be mirrored in solid organ neoplasms. CAR T function has shown limited efficacy against brain tumors due to several factors including the immunosuppressive tumor microenvironment, blood-brain barrier, and tumor-antigen heterogeneity. Despite these considerations, CAR T-cell therapy has the potential to be implemented as a treatment modality for brain tumors. Here, we review adult and pediatric brain tumors, including glioblastoma, diffuse midline gliomas, and medulloblastomas that continue to portend a grim prognosis. We describe insights gained from different preclinical models using CAR T therapy against various brain tumors and results gathered from ongoing clinical trials. Furthermore, we outline the challenges limiting CAR T therapy success against brain tumors and summarize advancements made to overcome these obstacles.
Collapse
Affiliation(s)
- Grace Guzman
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Megan R Reed
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
23
|
Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses 2023; 15:547. [PMID: 36851761 PMCID: PMC9958853 DOI: 10.3390/v15020547] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma is the most aggressive form of malignant brain tumor. Standard treatment protocols and traditional immunotherapy are poorly effective as they do not significantly increase the long-term survival of glioblastoma patients. Oncolytic viruses (OVs) may be an effective alternative approach. Combining OVs with some modern treatment options may also provide significant benefits for glioblastoma patients. Here we review virotherapy for glioblastomas and describe several OVs and their combination with other therapies. The personalized use of OVs and their combination with other treatment options would become a significant area of research aiming to develop the most effective treatment regimens for glioblastomas.
Collapse
Affiliation(s)
- Azzam Hamad
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
24
|
Lepski G, Bergami-Santos PC, Pinho MP, Chauca-Torres NE, Evangelista GCM, Teixeira SF, Flatow E, de Oliveira JV, Fogolin C, Peres N, Arévalo A, Alves VAF, Barbuto JAM. Adjuvant Vaccination with Allogenic Dendritic Cells Significantly Prolongs Overall Survival in High-Grade Gliomas: Results of a Phase II Trial. Cancers (Basel) 2023; 15:cancers15041239. [PMID: 36831580 PMCID: PMC9953909 DOI: 10.3390/cancers15041239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Immunotherapy for cancer treatment has gained increased attention in recent years. Recently, our group reported the case of a patient with glioblastoma who underwent vaccination based on dendritic cells and experienced a strong Th1 immune response together with near-complete tumor remission. Here we report the results of a phase I/II prospective, non-controlled clinical trial with 37 patients harboring glioblastoma or grade 4 astrocytomas. At the time of first recurrence after surgery, patients began receiving monthly intradermal injections of allogenic DC-autologous tumor cell hybridomas. Overall survival, quality of life, and immunological profiles were assessed prospectively. Compared with patients in the Genomic Data Commons data bank, overall survival for vaccinated patients with glioblastoma was 27.6 ± 2.4 months (vs. 16.3 ± 0.7, log-rank p < 0.001, hazard ratio 0.53, 95%CI 0.36-0.78, p < 0.01), and it was 59.5 ± 15.9 for vaccinated astrocytoma grade 4 patients (vs. 19.8 ± 2.5, log-rank p < 0.05, hazard ratio 0.18, 95%CI 0.05-0.62, p < 0.01). Furthermore, seven vaccinated patients (two IDH-1-mutated and five wild type) remain alive at the time of this report (overall survival 47.9 months, SD 21.1, range: 25.4-78.6 months since diagnosis; and 34.2 months since recurrence, range: 17.8 to 40.7, SD 21.3). We believe that the data reported here can foster the improvement of treatment protocols for high-grade gliomas based on cellular immunotherapy.
Collapse
Affiliation(s)
- Guilherme Lepski
- Laboratory of Experimental Surgery (LIM26), Hospital das Clínicas, Medical School, Universidade de São Paulo, São Paulo 01246-903, Brazil
- Department of Neurosurgery, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Patricia C. Bergami-Santos
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Mariana P. Pinho
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Nadia E. Chauca-Torres
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Gabriela C. M. Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Sarah F. Teixeira
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Elizabeth Flatow
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Jaqueline V. de Oliveira
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Carla Fogolin
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Nataly Peres
- Department of Psychiatry, Medical School, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Analía Arévalo
- Laboratory of Experimental Surgery (LIM26), Hospital das Clínicas, Medical School, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Venâncio A. F. Alves
- Department of Pathology, Medical School, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - José A. M. Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas, Medical School, Universidade de São Paulo, São Paulo 05403-010, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
25
|
Rhee JY, Ghannam JY, Choi BD, Gerstner ER. Labeling T Cells to Track Immune Response to Immunotherapy in Glioblastoma. Tomography 2023; 9:274-284. [PMID: 36828374 PMCID: PMC9959194 DOI: 10.3390/tomography9010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
While the advent of immunotherapy has revolutionized cancer treatment, its use in the treatment of glioblastoma (GBM) has been less successful. Most studies using immunotherapy in GBM have been negative and the reasons for this are still being studied. In clinical practice, interpreting response to immunotherapy has been challenging, particularly when trying to differentiate between treatment-related changes (i.e., pseudoprogression) or true tumor progression. T cell tagging is one promising technique to noninvasively monitor treatment efficacy by assessing the migration, expansion, and engagement of T cells and their ability to target tumor cells at the tumor site.
Collapse
Affiliation(s)
- John Y. Rhee
- Department of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Neuro-Oncology, Dana Farber Cancer Institute, Brigham and Women’s Cancer Center, Boston, MA 02215, USA
| | - Jack Y. Ghannam
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Bryan D. Choi
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Elizabeth R. Gerstner
- Department of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| |
Collapse
|
26
|
Activated T cell therapy targeting glioblastoma cancer stem cells. Sci Rep 2023; 13:196. [PMID: 36604465 PMCID: PMC9814949 DOI: 10.1038/s41598-022-27184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Naïve T cells become effector T cells following stimulation by antigen-loaded dendritic cells (DCs) and sequential cytokine activation. We aimed to develop procedures to efficiently activate T cells with tumor-associated antigens (TAAs) to glioblastoma (GBM) stem cells. To remove antigen presentation outside of the immunosuppressive tumor milieu, three different glioma stem cell (GSC) specific antigen sources to load DCs were compared in their ability to stimulate lymphocytes. An activated T cell (ATC) protocol including cytokine activation and expansion in culture to target GSCs was generated and optimized for a planned phase I clinical trial. We compared three different antigen-loading methods on DCs to effectively activate T cells, which were GBM patient-derived GSC-lysate, acid-eluate of GSCs and synthetic peptides derived from proteins expressed in GSCs. DCs derived from HLA-A2 positive blood sample were loaded with TAAs. Autologous T cells were activated by co-culturing with loaded DCs. Efficiency and cytotoxicity of ATCs were evaluated by targeting TAA-pulsed DCs or T2 cells, GSCs, or autologous PHA-blasts. Characteristics of ATCs were evaluated by Flow Cytometry and ELISpot assay, which showed increased number of ATCs secreting IFN-γ targeting GSCs as compared with non-activated T cells and unloaded target cells. Neither GSC-lysate nor acid-eluate loading showed enhancement in response of ATCs but the synthetic peptide pool showed significantly increased IFN-γ secretion and increased cytotoxicity towards target cells. These results demonstrate that ATCs activated using a TAA synthetic peptide pool efficiently enhance cytotoxicity specifically to target cells including GSC.
Collapse
|
27
|
Lorrey SJ, Waibl Polania J, Wachsmuth LP, Hoyt-Miggelbrink A, Tritz ZP, Edwards R, Wolf DM, Johnson AJ, Fecci PE, Ayasoufi K. Systemic immune derangements are shared across various CNS pathologies and reflect novel mechanisms of immune privilege. Neurooncol Adv 2023; 5:vdad035. [PMID: 37207119 PMCID: PMC10191195 DOI: 10.1093/noajnl/vdad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Background The nervous and immune systems interact in a reciprocal manner, both under physiologic and pathologic conditions. Literature spanning various CNS pathologies including brain tumors, stroke, traumatic brain injury and de-myelinating diseases describes a number of associated systemic immunologic changes, particularly in the T-cell compartment. These immunologic changes include severe T-cell lymphopenia, lymphoid organ contraction, and T-cell sequestration within the bone marrow. Methods We performed an in-depth systematic review of the literature and discussed pathologies that involve brain insults and systemic immune derangements. Conclusions In this review, we propose that the same immunologic changes hereafter termed 'systemic immune derangements', are present across CNS pathologies and may represent a novel, systemic mechanism of immune privilege for the CNS. We further demonstrate that systemic immune derangements are transient when associated with isolated insults such as stroke and TBI but persist in the setting of chronic CNS insults such as brain tumors. Systemic immune derangements have vast implications for informed treatment modalities and outcomes of various neurologic pathologies.
Collapse
Affiliation(s)
- Selena J Lorrey
- Department of Immunology, Duke University, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
| | - Jessica Waibl Polania
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | - Lucas P Wachsmuth
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Medical Scientist Training Program, Duke University, Durham, NC, USA
| | - Alexandra Hoyt-Miggelbrink
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | | | - Ryan Edwards
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
| | - Delaney M Wolf
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | - Peter E Fecci
- Department of Immunology, Duke University, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | | |
Collapse
|
28
|
Altinoz MA, Ozpinar A, Hacker E, Ozpinar A. Combining locoregional CAR-T cells, autologous + allogeneic tumor lysate vaccination and levamisole in treatment of glioblastoma. Immunopharmacol Immunotoxicol 2022; 44:797-808. [PMID: 35670420 DOI: 10.1080/08923973.2022.2086136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain malignancy and harbors a microenvironment limiting immune cells activity. CAR-T cells are being tested in the treatment of cancers and there exist reports which demonstrate dramatic regression of multicentric GBMs following intrathecal treatment with CAR-T cells. In this article, a triple approach for immune treatment of GBM is proposed. First, GBM tumor specimens for each patient will be saved and cultured to obtain tumor lysates. Then, levamisole will be applied, which possesses immunostimulating, anti-glycolytic, and anti-angiogenic features. Following priming the immune system, GBM patients will be injected with lysates of their own tumor cells plus lysates from a GBM cell line, U251. After 3 months of this treatment, CAR-T cells (transduced with IL13Rα2-CAR) will be applied via intratumoral approach. As such, genetically-modified and native immunocytes may 'meet' in the vicinity of deeply-invading tumor cells and demonstrate greater efficacy via cell-cell interactions. By this, a self-propagating cyclic process - a cancer-immunity cycle - may be initiated to eradicate cancer cells.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| | - Alp Ozpinar
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Hacker
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aysel Ozpinar
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| |
Collapse
|
29
|
Levite M. Neuro faces of beneficial T cells: essential in brain, impaired in aging and neurological diseases, and activated functionally by neurotransmitters and neuropeptides. Neural Regen Res 2022; 18:1165-1178. [PMID: 36453390 PMCID: PMC9838142 DOI: 10.4103/1673-5374.357903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
T cells are essential for a healthy life, performing continuously: immune surveillance, recognition, protection, activation, suppression, assistance, eradication, secretion, adhesion, migration, homing, communications, and additional tasks. This paper describes five aspects of normal beneficial T cells in the healthy or diseased brain. First, normal beneficial T cells are essential for normal healthy brain functions: cognition, spatial learning, memory, adult neurogenesis, and neuroprotection. T cells decrease secondary neuronal degeneration, increase neuronal survival after central nervous system (CNS) injury, and limit CNS inflammation and damage upon injury and infection. Second, while pathogenic T cells contribute to CNS disorders, recent studies, mostly in animal models, show that specific subpopulations of normal beneficial T cells have protective and regenerative effects in several neuroinflammatory and neurodegenerative diseases. These include Multiple Sclerosis (MS), Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), stroke, CNS trauma, chronic pain, and others. Both T cell-secreted molecules and direct cell-cell contacts deliver T cell neuroprotective, neuroregenerative and immunomodulatory effects. Third, normal beneficial T cells are abnormal, impaired, and dysfunctional in aging and multiple neurological diseases. Different T cell impairments are evident in aging, brain tumors (mainly Glioblastoma), severe viral infections (including COVID-19), chronic stress, major depression, schizophrenia, Parkinson's disease, Alzheimer's disease, ALS, MS, stroke, and other neuro-pathologies. The main detrimental mechanisms that impair T cell function are activation-induced cell death, exhaustion, senescence, and impaired T cell stemness. Fourth, several physiological neurotransmitters and neuropeptides induce by themselves multiple direct, potent, beneficial, and therapeutically-relevant effects on normal human T cells, via their receptors in T cells. This scientific field is called "Nerve-Driven Immunity". The main neurotransmitters and neuropeptides that induce directly activating and beneficial effects on naïve normal human T cells are: dopamine, glutamate, GnRH-II, neuropeptide Y, calcitonin gene-related peptide, and somatostatin. Fifth, "Personalized Adoptive Neuro-Immunotherapy". This is a novel unique cellular immunotherapy, based on the "Nerve-Driven Immunity" findings, which was recently designed and patented for safe and repeated rejuvenation, activation, and improvement of impaired and dysfunctional T cells of any person in need, by ex vivo exposure of the person's T cells to neurotransmitters and neuropeptides. Personalized adoptive neuro-immunotherapy includes an early ex vivo personalized diagnosis, and subsequent ex vivo → in vivo personalized adoptive therapy, tailored according to the diagnosis. The Personalized Adoptive Neuro-Immunotherapy has not yet been tested in humans, pending validation of safety and efficacy in clinical trials, especially in brain tumors, chronic infectious diseases, and aging, in which T cells are exhausted and/or senescent and dysfunctional.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, The Hebrew University of Jerusalem, Campus Ein Karem, Jerusalem, Israel,Institute of Gene Therapy, The Hadassah University Hospital-Ein Karem, Jerusalem, Israel,Correspondence to: Mia Levite, or .
| |
Collapse
|
30
|
Vandghanooni S, Eskandani M, Sanaat Z, Omidi Y. Recent advances in the production, reprogramming, and application of CAR-T cells for treating hematological malignancies. Life Sci 2022; 309:121016. [PMID: 36179813 DOI: 10.1016/j.lfs.2022.121016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
Abstract
As genetically engineered cells, chimeric antigen receptor (CAR)-T cells express specific receptors on their surface to target and eliminate malignant cells. CAR proteins are equipped with elements that enhance the activity and survival of T cells. Once injected, CAR-T cells act as a "living drug" against tumor cells in the body. Up to now, CAR-T cell therapy has been demonstrated as a robust adoptive cell transfer (ACT) immunotherapeutic modality for eliminating tumor cells in refractory hematological malignancies. CAR-T cell therapy modality involves several steps, including the collecting of the blood from patients, the isolation of peripheral blood mononuclear cells (PBMCs), the enrichment of CD4+/CD8+ T cell, the genetic reprogramming, the expansion of modified T cells, and the injection of genetically engineered T cells. The production of CAR-T cells is a multi-step procedure, which needs precise and safety management systems, including good manufacturing practice (GMP), and in-line quality control and assurance. The current study describes the structure of CARs and concentrates on the next generations of CARs that are engaged in enhancing the anti-tumor responses and safety of the engineered T cells. This paper also highlights the important concerns in quality control and nonclinical research of CAR-T cells, as well as general insights into the manufacture, reprogramming, and application of CAR-T cells based on new and enhanced techniques for treating hematological malignancies. Besides, the application of the CRISPR-Cas9 genome editing technology and nanocarrier-based delivery systems containing CAR coding sequences to overcome the limitations of CAR-T cell therapy has also been explained.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
31
|
Huang L, He H, Wang K, Ma X, Chen X, Chen W, Wang X, Jiang X, Feng M. EGFRvⅢ-targeted immunotoxin combined with temozolomide and bispecific antibody for the eradication of established glioblastoma. Biomed Pharmacother 2022; 155:113659. [PMID: 36095959 DOI: 10.1016/j.biopha.2022.113659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
EGFRvⅢ is an established target for immunotherapy of glioblastoma (GBM). Current study aims to explore the efficacy of EGFRvⅢ-targeted immunotoxin combined with temozolomide (TMZ) or T cell-engaged bispecific antibody for the treatment of GBM. We generated three rabbit monoclonal antibodies (R1, R2, and R6) that specifically bound to EGFRvⅢ, but not EGFR, with high affinity. Immunotoxins were made by fusing the scFv of these antibodies with engineered Pseudomonas exotoxin PE24. The in vitro cytotoxicity and specificity of the immunotoxins was rigorously validated by EGFRvⅢ and EGFR-expressed cell lines. The in vivo efficacy of immunotoxin monotherapy and in combination with TMZ or EGFRvⅢ-targeted bispecific antibody was evaluated in orthotopic and subcutaneous xenograft mouse models. EGFRvⅢ immunotoxins potently killed U87, U251 and GL261 cells that were forcefully expressing EGFRvⅢ, with IC50 values bellow 1.2 ng/ml. In a subcutaneous model, multiple intratumoral injections of immunotoxin at a dose of 2 mg/kg resulted in complete tumor regression in 3/5 of mice. In a C57BL/6 orthotopic glioblastoma model transplanted with GL261 cells that expressed a mouse version of EGFRvⅢ, two injections of 10 micrograms of immunotoxin in the lateral ventricles significantly improved the survival, with 2/5 mice being completely cured. Furthermore, in a subcutaneous xenograft model transplanted with EGFRvⅢ-expressed U87 cells, a single intratumoral injection of immuntoxin followed by i.v. injections of TMZ or EGFRvⅢ-targeted bispecific antibody achieved complete regression in mice. Taken together, EGFRvⅢ immunotoxin combined with TMZ or T cell-engaged bispecific antibody offers promise for curative treatment of GBM.
Collapse
Affiliation(s)
- Le Huang
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huixia He
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ke Wang
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuqian Ma
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Chen
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenxin Chen
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuan Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430070, China
| | - Xiaobing Jiang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430070, China.
| | - Mingqian Feng
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
32
|
Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules 2022; 27:molecules27175607. [PMID: 36080373 PMCID: PMC9458026 DOI: 10.3390/molecules27175607] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Messenger RNA (mRNA) is being developed by researchers as a novel drug for the treatment or prevention of many diseases. However, to enable mRNA to fully exploit its effects in vivo, researchers need to develop safer and more effective mRNA delivery systems that improve mRNA stability and enhance the ability of cells to take up and release mRNA. To date, lipid nanoparticles are promising nanodrug carriers for tumor therapy, which can significantly improve the immunotherapeutic effects of conventional drugs by modulating mRNA delivery, and have attracted widespread interest in the biomedical field. This review focuses on the delivery of mRNA by lipid nanoparticles for cancer treatment. We summarize some common tumor immunotherapy and mRNA delivery strategies, describe the clinical advantages of lipid nanoparticles for mRNA delivery, and provide an outlook on the current challenges and future developments of this technology.
Collapse
|
33
|
Bao JH, Lu WC, Duan H, Ye YQ, Li JB, Liao WT, Li YC, Sun YP. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas. Front Immunol 2022; 13:933973. [PMID: 36045691 PMCID: PMC9420977 DOI: 10.3389/fimmu.2022.933973] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cuproptosis is a newly discovered unique non-apoptotic programmed cell death distinguished from known death mechanisms like ferroptosis, pyroptosis, and necroptosis. However, the prognostic value of cuproptosis and the correlation between cuproptosis and the tumor microenvironment (TME) in lower-grade gliomas (LGGs) remain unknown. Methods In this study, we systematically investigated the genetic and transcriptional variation, prognostic value, and expression patterns of cuproptosis-related genes (CRGs). The CRG score was applied to quantify the cuproptosis subtypes. We then evaluated their values in the TME, prognostic prediction, and therapeutic responses in LGG. Lastly, we collected five paired LGG and matched normal adjacent tissue samples from Sun Yat-sen University Cancer Center (SYSUCC) to verify the expression of signature genes by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). Results Two distinct cuproptosis-related clusters were identified using consensus unsupervised clustering analysis. The correlation between multilayer CRG alterations with clinical characteristics, prognosis, and TME cell infiltration were observed. Then, a well-performed cuproptosis-related risk model (CRG score) was developed to predict LGG patients' prognosis, which was evaluated and validated in two external cohorts. We classified patients into high- and low-risk groups according to the CRG score and found that patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P<0.001). A high CRG score implies higher TME scores, more significant TME cell infiltration, and increased mutation burden. Meanwhile, the CRG score was significantly correlated with the cancer stem cell index, chemoradiotherapy sensitivity-related genes and immune checkpoint genes, and chemotherapeutic sensitivity, indicating the association with CRGs and treatment responses. Univariate and multivariate Cox regression analyses revealed that the CRG score was an independent prognostic predictor for LGG patients. Subsequently, a highly accurate predictive model was established for facilitating the clinical application of the CRG score, showing good predictive ability and calibration. Additionally, crucial CRGs were further validated by qRT-PCR and WB. Conclusion Collectively, we demonstrated a comprehensive overview of CRG profiles in LGG and established a novel risk model for LGG patients' therapy status and prognosis. Our findings highlight the potential clinical implications of CRGs, suggesting that cuproptosis may be the potential therapeutic target for patients with LGG.
Collapse
Affiliation(s)
- Jia-hao Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wei-cheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ya-qi Ye
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Jiang-bo Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wen-ting Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yong-chun Li
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yang-peng Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| |
Collapse
|
34
|
He D, Qin Z, Liu Z, Ji X, Gao J, Guo H, Yang F, Fan H, Wei Y, Wang Z, Liu Q, Pang Q. Comprehensive Analysis of the Prognostic Value and Immune Infiltration of Butyrophilin Subfamily 2/3 (BTN2/3) Members in Pan-Glioma. Front Oncol 2022; 12:816760. [PMID: 36033440 PMCID: PMC9399357 DOI: 10.3389/fonc.2022.816760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
The BTN2/3 subfamilies are overexpressed in many cancers, including pan-glioma (low- and high-grade gliomas). However, the expression and prognosis of BTN2/3 subfamilies and tumor-infiltrating lymphocytes in pan-glioma remain unknown. In the present study, we systematically explored and validated the expression and prognostic value of BTN2/3 subfamily members in pan-glioma [The Cancer Genome Atlas–glioblastoma and low-grade glioma (TCGA-GBMLGG) merge cohort] using multiple public databases. We used clinical specimens for high-throughput verification and cell lines for qRT-PCR verification, which confirmed the expression profiles of BTN2/3 subfamilies. In addition, the function of the BTN2/3 subfamily members and the correlations between BTN2/3 subfamily expression and pan-glioma immune infiltration levels were investigated. We found that BTN2/3 subfamily members were rarely mutated. BTN2/3 subfamilies were overexpressed in pan-glioma; high expression of BTN2/3 subfamily members was correlated with poor prognosis. In addition, BTN2/3 subfamilies might positively regulate proliferation, and the overexpression of BTN2/3 subfamilies influenced cell cycle, differentiation, and glioma stemness. In terms of immune infiltrating levels, BTN2/3 subfamily expression was positively associated with CD4+ T-cell, B-cell, neutrophil, macrophage, and dendritic cell infiltrating levels. These findings suggest that BTN2/3 subfamily expression is correlated with prognosis and immune infiltration levels in glioma. Therefore, the BTN2/3 subfamilies can be used as biomarkers for pan-glioma and prognostic biomarkers for determining the prognosis and immune infiltration levels in pan-glioma.
Collapse
Affiliation(s)
- Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Zhen Qin
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Xiaoshuai Ji
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiajia Gao
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Guo
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haitao Fan
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanbang Wei
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Zixiao Wang
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Qian Liu
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
- *Correspondence: Qian Liu, ; Qi Pang,
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Qian Liu, ; Qi Pang,
| |
Collapse
|
35
|
Leone A, Colamaria A, Fochi NP, Sacco M, Landriscina M, Parbonetti G, de Notaris M, Coppola G, De Santis E, Giordano G, Carbone F. Recurrent Glioblastoma Treatment: State of the Art and Future Perspectives in the Precision Medicine Era. Biomedicines 2022; 10:biomedicines10081927. [PMID: 36009473 PMCID: PMC9405902 DOI: 10.3390/biomedicines10081927] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022] Open
Abstract
Current treatment guidelines for the management of recurrent glioblastoma (rGBM) are far from definitive, and the prognosis remains dismal. Despite recent advancements in the pharmacological and surgical fields, numerous doubts persist concerning the optimal strategy that clinicians should adopt for patients who fail the first lines of treatment and present signs of progressive disease. With most recurrences being located within the margins of the previously resected lesion, a comprehensive molecular and genetic profiling of rGBM revealed substantial differences compared with newly diagnosed disease. In the present comprehensive review, we sought to examine the current treatment guidelines and the new perspectives that polarize the field of neuro-oncology, strictly focusing on progressive disease. For this purpose, updated PRISMA guidelines were followed to search for pivotal studies and clinical trials published in the last five years. A total of 125 articles discussing locoregional management, radiotherapy, chemotherapy, and immunotherapy strategies were included in our analysis, and salient findings were critically summarized. In addition, an in-depth description of the molecular profile of rGBM and its distinctive characteristics is provided. Finally, we integrate the above-mentioned evidence with the current guidelines published by international societies, including AANS/CNS, EANO, AIOM, and NCCN.
Collapse
Affiliation(s)
- Augusto Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Nicola Pio Fochi
- Department of Neurosurgery, University of Foggia, 71122 Foggia, Italy
| | - Matteo Sacco
- Department of Neurosurgery, Riuniti Hospital, 71122 Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical
Oncology and Biomolecular Therapy, Department of Medical and Surgical
Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Matteo de Notaris
- Department of Neurosurgery, “Rummo” Hospital, 82100 Benevento, Italy
| | - Giulia Coppola
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Elena De Santis
- Department of Anatomical Histological Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Guido Giordano
- Unit of Medical
Oncology and Biomolecular Therapy, Department of Medical and Surgical
Sciences, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| | - Francesco Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
- Department of Neurosurgery, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
36
|
Site-Specific Considerations on Engineered T Cells for Malignant Gliomas. Biomedicines 2022; 10:biomedicines10071738. [PMID: 35885047 PMCID: PMC9312945 DOI: 10.3390/biomedicines10071738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has revolutionized cancer treatment. Despite the recent advances in immunotherapeutic approaches for several tumor entities, limited response has been observed in malignant gliomas, including glioblastoma (GBM). Conversely, one of the emerging immunotherapeutic modalities is chimeric antigen receptors (CAR) T cell therapy, which demonstrated promising clinical responses in other solid tumors. Current pre-clinical and interventional clinical studies suggest improved efficacy when CAR-T cells are delivered locoregionally, rather than intravenously. In this review, we summarize possible CAR-T cell administration routes including locoregional therapy, systemic administration with and without focused ultrasound, direct intra-arterial drug delivery and nanoparticle-enhanced delivery in glioma. Moreover, we discuss published as well as ongoing and planned clinical trials involving CAR-T cell therapy in malignant glioma. With increasing neoadjuvant and/or adjuvant combinatorial immunotherapeutic concepts and modalities with specific modes of action for malignant glioma, selection of administration routes becomes increasingly important.
Collapse
|
37
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Ahmadi Najafabadi M, Yousefi F, Mirarefin SMJ, Rahbarizadeh F. Recent Advances in Solid Tumor CAR-T Cell Therapy: Driving Tumor Cells From Hero to Zero? Front Immunol 2022; 13:795164. [PMID: 35634281 PMCID: PMC9130586 DOI: 10.3389/fimmu.2022.795164] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor T-cells (CAR-Ts) are known as revolutionary living drugs that have turned the tables of conventional cancer treatments in certain hematologic malignancies such as B-cell acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL) by achieving US Food and Drug Administration (FDA) approval based on their successful clinical outcomes. However, this type of therapy has not seen the light of victory in the fight against solid tumors because of various restricting caveats including heterogeneous tumor antigen expression and the immunosuppressive tumor microenvironments (TME) that negatively affect the tumor-site accessibility, infiltration, stimulation, activation, and persistence of CAR-Ts. In this review, we explore strategic twists including boosting vaccines and designing implementations that can support CAR-T expansion, proliferation, and tumoricidal capacity. We also step further by underscoring novel strategies for triggering endogenous antitumor responses and overcoming the limitation of poor CAR-T tumor-tissue infiltration and the lack of definitive tumor-specific antigens. Ultimately, we highlight how these approaches can address the mentioned arduous hurdles.
Collapse
Affiliation(s)
- Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
38
|
Niedbała M, Malarz K, Sharma G, Kramer-Marek G, Kaspera W. Glioblastoma: Pitfalls and Opportunities of Immunotherapeutic Combinations. Onco Targets Ther 2022; 15:437-468. [PMID: 35509452 PMCID: PMC9060812 DOI: 10.2147/ott.s215997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system tumour in adults. It has extremely poor prognosis since the current standard of care, comprising of gross total resection and temozolomide (TMZ) chemoradiotherapy, prolongs survival, but does not provide a durable response. To a certain extent, this is due to GBM's heterogeneous, hostile and cold tumour microenvironment (TME) and the unique ability of GBM to overcome the host's immune responses. Therefore, there is an urgent need to develop more effective therapeutic approaches. This review provides critical insights from completed and ongoing clinical studies investigating novel immunotherapy strategies for GBM patients, ranging from the use of immune checkpoint inhibitors in different settings of GBM treatment to novel combinatorial therapies. In particular, we discuss how treatment regimens based on single antigen peptide vaccines evolved into fully personalised, polyvalent cell-based vaccines, CAR-T cell, and viral or gene therapies. Furthermore, the results of the most influential clinical trials and a selection of innovative preclinical studies aimed at activating the immunologically cold GBM microenvironment are reviewed.
Collapse
Affiliation(s)
- Marcin Niedbała
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Sosnowiec, Poland
| | - Katarzyna Malarz
- A. Chełkowski Institute of Physics and Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice, Chorzów, Poland
| | - Gitanjali Sharma
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Wojciech Kaspera
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Sosnowiec, Poland
| |
Collapse
|
39
|
Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res 2022; 41:142. [PMID: 35428347 PMCID: PMC9013078 DOI: 10.1186/s13046-022-02349-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/26/2022] [Indexed: 04/15/2023] Open
Abstract
Glioblastoma (GBM) is the most common high-grade primary malignant brain tumor with an extremely poor prognosis. Given the poor survival with currently approved treatments for GBM, new therapeutic strategies are urgently needed. Advances in decades of investment in basic science of glioblastoma are rapidly translated into innovative clinical trials, utilizing improved genetic and epigenetic profiling of glioblastoma as well as the brain microenvironment and immune system interactions. Following these encouraging findings, immunotherapy including immune checkpoint blockade, chimeric antigen receptor T (CAR T) cell therapy, oncolytic virotherapy, and vaccine therapy have offered new hope for improving GBM outcomes; ongoing studies are using combinatorial therapies with the aim of minimizing adverse side-effects and augmenting antitumor immune responses. In addition, techniques to overcome the blood-brain barrier (BBB) for targeted delivery are being tested in clinical trials in patients with recurrent GBM. Here, we set forth the rationales for these promising therapies in treating GBM, review the potential novel agents, the current status of preclinical and clinical trials, and discuss the challenges and future perspectives in glioblastoma immuno-oncology.
Collapse
Affiliation(s)
- Liang Rong
- Institute of Human Virology, Key Laboratory of Tropical Diseases Control Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ni Li
- Institute of Human Virology, Key Laboratory of Tropical Diseases Control Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Zhang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.
| |
Collapse
|
40
|
Feldman L, Brown C, Badie B. Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma. Neuromolecular Med 2022; 24:35-40. [PMID: 34665390 PMCID: PMC11220928 DOI: 10.1007/s12017-021-08689-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
Glioblastoma (GBM) are the most common and aggressive primary brain tumors in adults. Current mainstay treatments include surgery, chemotherapy, and radiation; however, these are ineffective. As a result, immunotherapy treatment strategies are being developed to harness the body's natural defense mechanisms against gliomas. Adoptive cell therapy with chimeric antigen receptor (CAR) T cells uses patients' own T cells that are genetically modified to target tumor-associated antigens. These cells are harvested from patients, engineered to target specific proteins expressed by the tumor and re-injected into the patient with the goal of destroying tumor cells. In this mini review, we outline the history of CAR T cell therapy, describe current antigen targets, and review challenges this treatment faces specifically in targeting GBM.
Collapse
Affiliation(s)
- Lisa Feldman
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA, 91010, USA.
- Division of Neurosurgery, City of Hope National Medical Center, MOB 2001, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| | - Christine Brown
- Departments of Cancer Immunotherapy & Tumor Immunology and Hematology & Hematopoietic Call Transplantation, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Behnam Badie
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA, 91010, USA
| |
Collapse
|
41
|
Grady C, Melnick K, Porche K, Dastmalchi F, Hoh DJ, Rahman M, Ghiaseddin A. Glioma Immunotherapy: Advances and Challenges for Spinal Cord Gliomas. Neurospine 2022; 19:13-29. [PMID: 35130421 PMCID: PMC8987559 DOI: 10.14245/ns.2143210.605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Spinal cord gliomas are rare entities that often have limited surgical options. Immunotherapy has shown promise in intracranial gliomas with some research suggesting benefit for spinal cord gliomas. A focused review of immunotherapies that have been investigated in spinal cord gliomas was performed. The primary methods of immunotherapy investigated in spinal cord gliomas include immune checkpoint inhibitors, adoptive T-cell therapies, and vaccine strategies. There are innumerable challenges that must be overcome to effectively apply immunotherapeutic strategies to the spinal cord gliomas including low incidence, few antigenic targets, the blood spinal cord barrier, the immunosuppressive tumor microenvironment and neurotoxic treatment effects. Nonetheless, research has suggested ways to overcome these challenges and treatments have been effective in case reports for metastatic non-small cell lung cancer, melanoma, midline glioma and glioblastoma. Current therapies for spinal cord gliomas are markedly limited. Further research is needed to determine if the success of immunotherapy for intracranial gliomas can be effectively applied to these unique tumors.
Collapse
Affiliation(s)
- Clare Grady
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Kaitlyn Melnick
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA,Corresponding Author Kaitlyn Melnick https://orcid.org/0000-0002-2657-2176 Department of Neurosurgery, University of Florida, Box 100265, Gainesville, FL, USA
| | - Ken Porche
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Farhad Dastmalchi
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Daniel J. Hoh
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Ashley Ghiaseddin
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
42
|
Maimaiti B, Mijiti S, Jiang T, Xie Y, Zhao W, Cheng Y, Meng H. Case Report: H3K27M-Mutant Glioblastoma Simultaneously Present in the Brain and Long-Segment Spinal Cord Accompanied by Acute Pulmonary Embolism. Front Oncol 2022; 11:763854. [PMID: 35211394 PMCID: PMC8861510 DOI: 10.3389/fonc.2021.763854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/31/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly malignant glioma that rarely presents as an infratentorial tumor. Multicentric (MC) gliomas involve lesions widely separated in space or time, and MC gliomas involving supra- and infratentorial brain regions are rare. In most cases, the infratentorial lesion is seen after surgical manipulation or radiation therapy; it is typically located in the cerebellum or the cervical region, manifesting as metastasis originating from the brain. Besides, venous thromboembolism in brain tumors is usually seen after craniotomy. CASE PRESENTATION We present an uncommon adult case of symptomatic H3K27M-mutant MC glioblastoma simultaneously present in the brain, fourth ventricle, and cervical and lumbar spinal cord regions accompanied by acute pulmonary artery embolism in an adult woman who had not undergone previous therapeutic interventions. We also review the literature on this interesting presentation. CONCLUSION Our report highlights that clinicians should be alert to the potential alarming presentation of GBM. The incidence of spinal metastasis of cerebral GBM is increasing. Patients with a prior diagnosis of GBM with or without any new onset in the spinal cord should undergo an early MRI of the spinal cord to confirm the diagnosis at an early stage. While management of GBM remains controversial, more research is needed to explore molecular features of GBM further and develop novel targeted therapies for these patients.
Collapse
Affiliation(s)
- Buajieerguli Maimaiti
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Salamaitiguli Mijiti
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Ting Jiang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Yinyin Xie
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Weixuan Zhao
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Yu Cheng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Bryukhovetskiy I. Cell‑based immunotherapy of glioblastoma multiforme (Review). Oncol Lett 2022; 23:133. [PMID: 35251352 PMCID: PMC8895466 DOI: 10.3892/ol.2022.13253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal primary glial brain tumor. It has an unfavorable prognosis and relatively ineffective treatment protocols, with the median survival of patients being ~15 months. Tumor resistance to treatment is associated with its cancer stem cells (CSCs). At present, there is no medication or technologies that have the ability to completely eradicate CSCs, and immunotherapy (IT) is only able to prolong the patient's life. The present review aimed to investigate systemic solutions for issues associated with immunosuppression, such as ineffective IT and the creation of optimal conditions for CSCs to fulfill their lethal potential. The present review also investigated the main methods involved in local immunosuppression treatment, and highlighted the associated disadvantages. In addition, novel treatment options and targets for the elimination and regulation of CSCs with adaptive and active IT are discussed. Antagonists of TGF-β inhibitors, immune checkpoints and other targeted medication are also summarized. The role of normal hematopoietic stem cells (HSCs) in the mechanisms underlying systemic immune suppression development in cases of GBM is analyzed, and the potential reprogramming of HSCs during their interaction with cancer cells is discussed. Moreover, the present review emphasizes the importance of the aforementioned interactions in the development of immune tolerance and the inactivation of the immune system in neoplastic processes. The possibility of solving the problem of systemic immunosuppression during transplantation of donor HSCs is discussed.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- Medical Center, School of Medicine, Far Eastern Federal University, Vladivostok 690091, Russia
| |
Collapse
|
44
|
Challenges and Opportunities for Immunotherapeutic Intervention against Myeloid Immunosuppression in Glioblastoma. J Clin Med 2022; 11:jcm11041069. [PMID: 35207340 PMCID: PMC8880446 DOI: 10.3390/jcm11041069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and deadly brain cancer, exemplifies the paradigm that cancers grow with help from an immunosuppressive tumor microenvironment (TME). In general, TME includes a large contribution from various myeloid lineage-derived cell types, including (in the brain) altered pathogenic microglia as well as monocyte-macrophages (Macs), myeloid-derived suppressor cells (MDSC) and dendritic cell (DC) populations. Each can have protective roles, but has, by definition, been coopted by the tumor in patients with progressive disease. However, evidence demonstrates that myeloid immunosuppressive activities can be reversed in different ways, leading to enthusiasm for this therapeutic approach, both alone and in combination with potentially synergistic immunotherapeutic and other strategies. Here, we review the current understanding of myeloid cell immunosuppression of anti-tumor responses as well as potential targets, challenges, and developing means to reverse immunosuppression with various therapeutics and their status. Targets include myeloid cell colony stimulating factors (CSFs), insulin-like growth factor 1 (IGF1), several cytokines and chemokines, as well as CD40 activation and COX2 inhibition. Approaches in clinical development include antibodies, antisense RNA-based drugs, cell-based combinations, polarizing cytokines, and utilizing Macs as a platform for Chimeric Antigen Receptors (CAR)-based tumor targeting, like with CAR-T cells. To date, promising clinical results have been reported with several of these approaches.
Collapse
|
45
|
Identification of an IL-4-Related Gene Risk Signature for Malignancy, Prognosis and Immune Phenotype Prediction in Glioma. Brain Sci 2022; 12:brainsci12020181. [PMID: 35203944 PMCID: PMC8870251 DOI: 10.3390/brainsci12020181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Emerging molecular and genetic biomarkers have been introduced to classify gliomas in the past decades. Here, we introduced a risk signature based on the cellular response to the IL-4 gene set through Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. Methods: In this study, we provide a bioinformatic profiling of our risk signature for the malignancy, prognosis and immune phenotype of glioma. A cohort of 325 patients with whole genome RNA-seq expression data from the Chinese Glioma Genome Atlas (CGGA) dataset was used as the training set, while another cohort of 667 patients from The Cancer Genome Atlas (TCGA) dataset was used as the validating set. The LASSO model identified a 10-gene signature which was considered as the optimal model. Results: The signature was confirmed to be a good predictor of clinical and molecular features involved in the malignancy of gliomas. We also identified that our risk signature could serve as an independently prognostic biomarker in patients with gliomas (p < 0.0001). Correlation analysis showed that our risk signature was strongly correlated with the Tregs, M0 macrophages and NK cells infiltrated in the microenvironment of glioma, which might be a supplement to the existing incomplete innate immune mechanism of glioma phenotypes. Conclusions: Our IL-4-related gene signature was associated with more aggressive and immunosuppressive phenotypes of gliomas. The risk score could predict prognosis independently in glioma, which might provide a new insight for understanding the IL-4 involved mechanism of gliomas.
Collapse
|
46
|
Kasenda B, König D, Manni M, Ritschard R, Duthaler U, Bartoszek E, Bärenwaldt A, Deuster S, Hutter G, Cordier D, Mariani L, Hench J, Frank S, Krähenbühl S, Zippelius A, Rochlitz C, Mamot C, Wicki A, Läubli H. Targeting immunoliposomes to EGFR-positive glioblastoma. ESMO Open 2022; 7:100365. [PMID: 34998092 PMCID: PMC8741448 DOI: 10.1016/j.esmoop.2021.100365] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background We assessed the capacity of epidermal growth factor receptor (EGFR)-targeted immunoliposomes to deliver cargo to brain tumor tissue in patients with relapsed glioblastoma harboring an EGFR amplification. We aimed to assess the tolerability and effectiveness of anti-EGFR immunoliposomes loaded with doxorubicin (anti-EGFR ILs-dox) in glioblastoma multiforme patients. Patients and methods Patients with EGFR-amplified, relapsed glioblastoma were included in this phase I pharmacokinetic trial. Patients received up to four cycles of anti-EGFR ILs-dox. Twenty-four hours later, plasma and cerebrospinal fluid (CSF) samples were obtained. In addition, we also treated three patients with anti-EGFR ILs-dox before resection of their relapsed glioblastoma. Doxorubicin concentrations were measured in plasma, CSF, and tumor tissue. Safety and efficacy parameters were also obtained. Results There were no or negligible levels of doxorubicin found in the CSF demonstrating that anti-EGFR ILs-dox are not able to cross the blood–brain barrier (BBB). However, significant levels were detected in glioblastoma tissue 24 h after the application, indicating that the disruption of BBB integrity present in high-grade gliomas might enable liposome delivery into tumor tissue. No new safety issues were observed. The median progression-free survival was 1.5 months and the median overall survival was 8 months. One patient undergoing surgery had a very long remission suggesting that neoadjuvant administration may have a positive effect on outcome. Conclusions We clearly demonstrate that anti-EGFR-immunoliposomes can be targeted to EGFR-amplified glioblastoma and cargo—in this case doxorubicin—can be delivered, although these immunoliposomes do not cross the intact BBB. (The GBM-LIPO trial was registered as NCT03603379). Human pharmacokinetic and pharmacodynamic data for EGFR-targeted immunoliposomes. Demonstration of delivery of immunoliposomes to glioblastoma tissue. EGFR as a target to deliver drug-containing nanoparticles to glioma tissue.
Collapse
Affiliation(s)
- B Kasenda
- Division of Oncology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - D König
- Division of Oncology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - M Manni
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - R Ritschard
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - U Duthaler
- Division of Clinical Pharmacology, University Hospital Basel, Basel, Switzerland
| | - E Bartoszek
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - A Bärenwaldt
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - S Deuster
- Hospital Pharmacy, University Hospital Basel, Basel, Switzerland
| | - G Hutter
- Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - D Cordier
- Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - L Mariani
- Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - J Hench
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - S Frank
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - S Krähenbühl
- Division of Clinical Pharmacology, University Hospital Basel, Basel, Switzerland
| | - A Zippelius
- Division of Oncology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - C Rochlitz
- Division of Oncology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - C Mamot
- Division of Medical Oncology, Cantonal Hospital, Aarau, Switzerland
| | - A Wicki
- Division of Oncology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - H Läubli
- Division of Oncology, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
47
|
Zhang M, Chen H, Liang B, Wang X, Gu N, Xue F, Yue Q, Zhang Q, Hong J. Prognostic Value of mRNAsi/Corrected mRNAsi Calculated by the One-Class Logistic Regression Machine-Learning Algorithm in Glioblastoma Within Multiple Datasets. Front Mol Biosci 2021; 8:777921. [PMID: 34938774 PMCID: PMC8685528 DOI: 10.3389/fmolb.2021.777921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/19/2021] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is the most common glial tumour and has extremely poor prognosis. GBM stem-like cells drive tumorigenesis and progression. However, a systematic assessment of stemness indices and their association with immunological properties in GBM is lacking. We collected 874 GBM samples from four GBM cohorts (TCGA, CGGA, GSE4412, and GSE13041) and calculated the mRNA expression-based stemness indices (mRNAsi) and corrected mRNAsi (c_mRNAsi, mRNAsi/tumour purity) with OCLR algorithm. Then, mRNAsi/c_mRNAsi were used to quantify the stemness traits that correlated significantly with prognosis. Additionally, confounding variables were identified. We used discrimination, calibration, and model improvement capability to evaluate the established models. Finally, the CIBERSORTx algorithm and ssGSEA were implemented for functional analysis. Patients with high mRNAsi/c_mRNAsi GBM showed better prognosis among the four GBM cohorts. After identifying the confounding variables, c_mRNAsi still maintained its prognostic value. Model evaluation showed that the c_mRNAsi-based model performed well. Patients with high c_mRNAsi exhibited significant immune suppression. Moreover, c_mRNAsi correlated negatively with infiltrating levels of immune-related cells. In addition, ssGSEA revealed that immune-related pathways were generally activated in patients with high c_mRNAsi. We comprehensively evaluated GBM stemness indices based on large cohorts and established a c_mRNAsi-based classifier for prognosis prediction.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hong Chen
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Qiuyuan Yue
- Department of Radiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
48
|
Guo X, Piao H. Research Progress of circRNAs in Glioblastoma. Front Cell Dev Biol 2021; 9:791892. [PMID: 34881248 PMCID: PMC8645988 DOI: 10.3389/fcell.2021.791892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded covalently closed non-coding RNAs without a 5' cap structure or 3' terminal poly (A) tail, which are expressed in a variety of tissues and cells with conserved, stable and specific characteristics. Glioblastoma (GBM) is the most aggressive and lethal tumor in the central nervous system, characterized by high recurrence and mortality rates. The specific expression of circRNAs in GBM has demonstrated their potential to become new biomarkers for the development of GBM. The specific expression of circRNAs in GBM has shown their potential as new biomarkers for GBM cell proliferation, apoptosis, migration and invasion, which provides new ideas for GBM treatment. In this paper, we will review the biological properties and functions of circRNAs and their biological roles and clinical applications in GBM.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
49
|
Zhang P, Meng J, Li Y, Yang C, Hou Y, Tang W, McHugh KJ, Jing L. Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation (N Y) 2021; 2:100174. [PMID: 34766099 PMCID: PMC8571799 DOI: 10.1016/j.xinn.2021.100174] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
A vast majority of cancer deaths occur as a result of metastasis. Unfortunately, effective treatments for metastases are currently lacking due to the difficulty of selectively targeting these small, delocalized tumors distributed across a variety of organs. However, nanotechnology holds tremendous promise for improving immunotherapeutic outcomes in patients with metastatic cancer. In contrast to conventional cancer immunotherapies, rationally designed nanomaterials can trigger specific tumoricidal effects, thereby improving immune cell access to major sites of metastasis such as bone, lungs, and lymph nodes, optimizing antigen presentation, and inducing a persistent immune response. This paper reviews the cutting-edge trends in nano-immunoengineering for metastatic cancers with an emphasis on different nano-immunotherapeutic strategies. Specifically, it discusses directly reversing the immunological status of the primary tumor, harnessing the potential of peripheral immune cells, preventing the formation of a pre-metastatic niche, and inhibiting the tumor recurrence through postoperative immunotherapy. Finally, we describe the challenges facing the integration of nanoscale immunomodulators and provide a forward-looking perspective on the innovative nanotechnology-based tools that may ultimately prove effective at eradicating metastatic diseases.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Junli Meng
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Yingying Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Chen Yang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005, USA
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
50
|
Kim K, Gwak HS, Han N, Hong EK, Choi BK, Lee S, Choi S, Park JH, Seok JH, Jeon Y, Cho H, Lee SJ, Lee Y, Nam KT, Song SW. Chimeric Antigen Receptor T Cells With Modified Interleukin-13 Preferentially Recognize IL13Rα2 and Suppress Malignant Glioma: A Preclinical Study. Front Immunol 2021; 12:715000. [PMID: 34819930 PMCID: PMC8606595 DOI: 10.3389/fimmu.2021.715000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/15/2021] [Indexed: 12/05/2022] Open
Abstract
Background Interleukin-13 receptor α 2 (IL13Rα2) is a promising tumor-directed antigen of malignant glioma (MG). Here, we examine the efficacy and safety of T cells containing a YYB-103 chimeric antigen receptor (CAR) that can preferentially bind to IL13Rα2 on MG cells. Methods IL13 was modified on the extracellular domain by substitution of amino acids with E13K, R66D, S69D, and R109K and stably transfected into human T cells using a retroviral vector. The in vitro efficacy of YYB-103 CAR T cells was tested in cell lines with differing IL13Rα1 and IL13Rα2 expression. The in vivo efficacy of intracerebroventricular (i.c.v.) and intravenous (i.v.) routes of YYB-103 CAR T-cell administration were tested in orthotopic MG mouse models. Immunohistochemical staining of MG was performed using WHO grade 3/4 surgical specimens from 53 patients. IL13Rα2 expression was quantified by H-score calculated from staining intensity and percentage of positive cells. Results Binding affinity assay of YYB-103 verified apparently nil binding to IL13Rα1, which was more selective than previously reported IL13 modification (E13Y). YYB-103 CAR T cells showed selective toxicity toward co-cultured U87MG (IL13Rα1+/IL13Rα2+) cells but not A431 (IL13Rα1+/IL13Rα2-) cells. Consistently, YYB-103 CAR T cells suppressed tumor growth in nude mice receiving orthotopic injection of U87 MG cells. Both i.c.v. and i.v. injections of YYB-103 CAR T cells reduced tumor volume and prolonged overall survival of tumor-bearing mice. The median H-score for IL13Rα2 in patient-derived MG tissue was 5 (mean, 57.5; SD, 87.2; range, 0 to 300). Conclusion This preclinical study demonstrates the efficacy of IL13Rα2-targeted YYB-103 CAR T cells against MG cells. The use of modified IL13 to construct a CAR facilitated the selective targeting of IL13Rα2-expressing MG cells while sparing IL13Rα1-expressing cells. Notably, YYB-103 CAR T cells exhibited effective blood-brain barrier crossing, suggesting compatibility with i.v. administration rather than intracranial injection. Additionally, the high H-score for IL13Rα2 in glioblastoma, especially in conjunction with the poor prognostic markers of wild-type isocitrate dehydrogenase-1 (IDH-1) and unmethylated O6-methyl guanine methyl-transferase (MGMT), could be used to determine the eligibility of patients with recurrent glioblastoma for a future clinical trial of YYB-103 CAR T cells.
Collapse
Affiliation(s)
- Kiwan Kim
- Department of Drug Development I, CellabMED Inc., Seoul, South Korea
| | - Ho-Shin Gwak
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Nayoung Han
- Department of Pathology, Program for Immunotherapy Research, National Cancer Center, Goyang, South Korea
| | - Eun Kyung Hong
- Department of Pathology, Program for Immunotherapy Research, National Cancer Center, Goyang, South Korea
| | - Beom K. Choi
- Biomedicine Production Branch, Program for Immunotherapy Research, National Cancer Center, Goyang, South Korea
| | - Sangeun Lee
- Department of Drug Development I, CellabMED Inc., Seoul, South Korea
| | - Soyoung Choi
- Department of Drug Development I, CellabMED Inc., Seoul, South Korea
| | - Ju-Hwang Park
- Department of Process Development, CellabMED Inc., Seoul, South Korea
| | - Ji-Hye Seok
- Department of Process Development, CellabMED Inc., Seoul, South Korea
| | - Yeongha Jeon
- Department of Drug Development II, CellabMED Inc., Seoul, South Korea
| | - Hyuntae Cho
- Department of Clinical Development, CellabMED Inc., Seoul, South Korea
| | - Song-Jae Lee
- Research Institute, CellabMED Inc., Seoul, South Korea
| | - Yura Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | | |
Collapse
|