1
|
Xie Y, Zhang X. A risk prediction stratification for non-mass breast lesions, combining clinical characteristics and imaging features on ultrasound, mammography, and MRI. Front Oncol 2024; 14:1337265. [PMID: 39484042 PMCID: PMC11524993 DOI: 10.3389/fonc.2024.1337265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 09/16/2024] [Indexed: 11/03/2024] Open
Abstract
Objectives Given the inevitable trend of domestic imaging center mergers and the current lack of comprehensive imaging evaluation guidelines for non-mass breast lesions, we have developed a novel BI-RADS risk prediction and stratification system for non-mass breast lesions that integrates clinical characteristics with imaging features from ultrasound, mammography, and MRI, with the aim of assisting clinicians in interpreting imaging reports. Methods This study enrolled 350 patients with non-mass breast lesions (NMLs), randomly assigning them to a training set of 245 cases (70%) and a test set of 105 cases (30%). Radiologists conducted comprehensive evaluations of the lesions using ultrasound, mammography, and MRI. Independent predictors were identified using LASSO logistic regression, and a predictive risk model was constructed using a nomogram generated with R software, with subsequent validation in both sets. Results LASSO logistic regression identified a set of independent predictors, encompassing age, clinical palpation hardness, distribution and morphology of calcifications, peripheral blood supply as depicted by color Doppler imaging, maximum lesion diameter, patterns of internal enhancement, distribution of non-mass lesions, time-intensity curve (TIC), and apparent diffusion coefficient (ADC) values. The predictive model achieved area under the curve (AUC) values of 0.873 for the training group and 0.877 for the testing group. The model's positive predictive values were as follows: BI-RADS 2 = 0%, BI-RADS 3 = 0%, BI-RADS 4A = 6.25%, BI-RADS 4B = 26.13%, BI-RADS 4C = 80.84%, and BI-RADS 5 = 97.33%. Conclusion The creation of a risk-predictive BI-RADS stratification, specifically designed for non-mass breast lesions and integrating clinical and imaging data from multiple modalities, significantly enhances the precision of diagnostic categorization for these lesions.
Collapse
Affiliation(s)
- YaMie Xie
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaoxiao Zhang
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Johnson A, Sarawagi R, Malik R, Sharma J, Bhagat A. Utility of diffusion-weighted imaging in differentiating benign and malignant breast lesions. SA J Radiol 2024; 28:2952. [PMID: 39506986 PMCID: PMC11538155 DOI: 10.4102/sajr.v28i1.2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/28/2024] [Indexed: 11/08/2024] Open
Abstract
Background Breast cancer presents a significant global health burden. An accurate differentiation between benign and malignant lesions is imperative for timely intervention. While dynamic contrast enhanced MRI (DCE-MRI) is highly sensitive, its specificity is limited. This has led to the exploration of diffusion-weighted imaging (DWI) in distinguishing between benign and malignant breast lesions. Objectives The study aimed to explore the diagnostic utility of DWI in distinguishing between benign and malignant breast lesions. Method Assessment of 38 breast lesions using DWI with a b value of 800 s/mm2, performed with 3 Tesla MRI. The diagnostic performance of two different region of Interest (ROI) placement approaches was compared to obtain a feasible cut-off value of apparent diffusion coefficient (ADC) to differentiate between malignant and benign lesions. The histopathological reports were used as the gold standard. Results ADC values of malignant lesions were significantly lower than those of benign lesions (0.84 × 10-3 mm2/s vs. 1.54 × 10-3 mm2/s). The average ADC measured using a small-sized 2D ROI including the darkest part in the ADC map, performed better than the large 2D ROI covering the entire lesion. Conclusion Using a cut-off value of 0.98 × 10-3 mm2/s, ADC obtained high sensitivity (90%) and specificity (88.9%) in distinguishing between benign and malignant breast lesions. Contribution Utilising quantitative analysis of DWI with ADC value measurement, reliably distinguished between benign and malignant breast lesions in this cohort, especially when employing a higher b value of 800 s/mm2.
Collapse
Affiliation(s)
- Allen Johnson
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Radha Sarawagi
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Sciences, Bhopal, India
| | - Rajesh Malik
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Sciences, Bhopal, India
| | - Jitendra Sharma
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Sciences, Bhopal, India
| | - Abhinav Bhagat
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
3
|
Varga R, Fueger BJ, Ferrara F, Kapetas P, Pötsch N, Helbich TH, Clauser P, Baltzer PAT. Evaluation of apparent diffuse coefficient (ADC) with regards to reproducibility and diagnostic accuracy as well as possible significance of pre - and post - contrast acquisition and employment of different b values. Eur J Radiol 2024; 181:111730. [PMID: 39303393 DOI: 10.1016/j.ejrad.2024.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Ongoing efforts are focusing on optimizing diffusion-weighted imaging (DWI) as an essential part of breast MRI protocol. Our study aimed to evaluate the effect of contrast media (CM) on the apparent diffusion coefficients (ADC) acquired following current recommendations. PATIENT AND METHODS Patients who underwent 3 T breast MRI with a histologically verified suspicious lesion were included in this IRB-approved, single-center, cross-sectional retrospective study. Breast MRI protocol included a DWI sequence with multiple b-values, which was acquired before and after CM administration. ADC maps were calculated by in-line monoexponential fitting with b-values 0 /800 and 50/800. Two independent readers (R1, R2) reviewed the images in separate sessions for b values 0/800 and 50/800, pre- and post-CM. Bland Altmann plots as well as intraclass correlation coefficients (ICCs) for inter-reader agreement, different b-values, and pre- and post-CM were calculated. Diagnostic accuracy was evaluated and compared by calculating the area under the receiver operating characteristics curve (AUC). RESULTS 91 lesions in 89 patients were examined (mean age 50.7 years, standard deviation 13.9). ADC values were significantly (P<0.05) lower post-CM (mean ranging from 1.28 x10-3 mm2/s to 1.30 x10-3 mm2/s) compared to pre-CM (mean ranging from 1.32 x10-3 mm2/s to 1.37 x10-3 mm2/s) for both b-values combinations (0/800 and 50/800 s/mm2). We found an almost perfect inter-reader agreement pre-/post-CM with b values 0/800 and 50/800 (ICC ranging from 0.853 to 0.939). Bland Altman plot demonstrated no systematic difference between readers. ROC analysis revealed good diagnostic performance without significant differences (P>0.05) between b values 0/800 and 50/800 s/mm2 as well as pre- and post-CM with areas under the ROC curve between 0.834 and 0.877. CONCLUSION ADC values are slightly lower when acquiring b values 0/800 and post-CM. This effect does not reduce the diagnostic performance but may be relevant in case of definite cut-offs in medical decision making.
Collapse
Affiliation(s)
- Raoul Varga
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Barbara J Fueger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Francesca Ferrara
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Panagiotis Kapetas
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Nina Pötsch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Paola Clauser
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Pascal A T Baltzer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Wenkel E, Wunderlich P, Fallenberg EM, Platz Batista da Silva N, Preibsch H, Sauer S, Siegmann-Luz K, Weigel S, Wessling D, Wilpert C, Baltzer PAT. Recommendations of the German Radiological Society's breast imaging working group regarding breast MRI. ROFO-FORTSCHR RONTG 2024; 196:939-944. [PMID: 38237631 DOI: 10.1055/a-2216-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
· Breast MRI is an essential part of breast imaging. · The recommendations for performing breast MRI have been updated. · A table provides a compact and quick overview. More detailed comments supplement the table.. · The "classic" breast MRI can be performed based on the recommendations. Tips for special clinical questions, such as implant rupture, mammary duct pathology or local lymph node status, are included.. CITATION FORMAT: · Wenkel E, Wunderlich P, Fallenberg E et al. Aktualisierung der Empfehlungen der AG Mammadiagnostik der Deutschen Röntgengesellschaft zur Durchführung der Mamma-MRT. Fortschr Röntgenstr 2024; 196: 939 - 944.
Collapse
Affiliation(s)
- Evelyn Wenkel
- Radiology, Radiology München, München, Germany
- Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Petra Wunderlich
- Radiologische Gemeinschaftspraxis Radebeul, Elblandklinikum Radebeul, Germany
| | | | | | - Heike Preibsch
- Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
| | - Stephanie Sauer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany
| | - Katja Siegmann-Luz
- Referenzzentrum Mammographie Berlin, German Breast Cancer Screening Program, Berlin, Germany
| | - Stefanie Weigel
- Clinic for Radiology and Reference Center for Mammography, University of Münster Faculty of Medicine, Münster, Germany
| | - Daniel Wessling
- Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
| | - Caroline Wilpert
- Diagnostic and Interventional Radiology, University Hospital Freiburg Department of Radiology, Freiburg, Germany
| | - Pascal Andreas Thomas Baltzer
- Unit of General Radiology and Paediatric Radiology, Medical University of Vienna Department of Biomedical Imaging and Image-guided Therapy, Vienna, Austria
| |
Collapse
|
5
|
Mohamed RM, Panthi B, Adrada BE, Boge M, Candelaria RP, Chen H, Guirguis MS, Hunt KK, Huo L, Hwang KP, Korkut A, Litton JK, Moseley TW, Pashapoor S, Patel MM, Reed B, Scoggins ME, Son JB, Thompson A, Tripathy D, Valero V, Wei P, White J, Whitman GJ, Xu Z, Yang W, Yam C, Ma J, Rauch GM. Multiparametric MRI-based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer. Sci Rep 2024; 14:16073. [PMID: 38992094 PMCID: PMC11239818 DOI: 10.1038/s41598-024-66220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is often treated with neoadjuvant systemic therapy (NAST). We investigated if radiomic models based on multiparametric Magnetic Resonance Imaging (MRI) obtained early during NAST predict pathologic complete response (pCR). We included 163 patients with stage I-III TNBC with multiparametric MRI at baseline and after 2 (C2) and 4 cycles of NAST. Seventy-eight patients (48%) had pCR, and 85 (52%) had non-pCR. Thirty-six multivariate models combining radiomic features from dynamic contrast-enhanced MRI and diffusion-weighted imaging had an area under the receiver operating characteristics curve (AUC) > 0.7. The top-performing model combined 35 radiomic features of relative difference between C2 and baseline; had an AUC = 0.905 in the training and AUC = 0.802 in the testing set. There was high inter-reader agreement and very similar AUC values of the pCR prediction models for the 2 readers. Our data supports multiparametric MRI-based radiomic models for early prediction of NAST response in TNBC.
Collapse
Affiliation(s)
- Rania M Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bikash Panthi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beatriz E Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Medine Boge
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
- Koc University Hospital, Istanbul, Turkey
| | - Rosalind P Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary S Guirguis
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tanya W Moseley
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanaz Pashapoor
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Miral M Patel
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Brandy Reed
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marion E Scoggins
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary J Whitman
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Yang
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gaiane M Rauch
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA.
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Iima M, Kataoka M, Honda M, Le Bihan D. Diffusion-Weighted MRI for the Assessment of Molecular Prognostic Biomarkers in Breast Cancer. Korean J Radiol 2024; 25:623-633. [PMID: 38942456 PMCID: PMC11214919 DOI: 10.3348/kjr.2023.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 06/30/2024] Open
Abstract
This study systematically reviewed the role of diffusion-weighted imaging (DWI) in the assessment of molecular prognostic biomarkers in breast cancer, focusing on the correlation of apparent diffusion coefficient (ADC) with hormone receptor status and prognostic biomarkers. Our meta-analysis includes data from 52 studies examining ADC values in relation to estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki-67 status. The results indicated significant differences in ADC values among different receptor statuses, with ER-positive, PgR-positive, HER2-negative, and Ki-67-positive tumors having lower ADC values compared to their negative counterparts. This study also highlights the potential of advanced DWI techniques such as intravoxel incoherent motion and non-Gaussian DWI to provide additional insights beyond ADC. Despite these promising findings, the high heterogeneity among the studies underscores the need for standardized DWI protocols to improve their clinical utility in breast cancer management.
Collapse
Affiliation(s)
- Mami Iima
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maya Honda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Japan
| | - Denis Le Bihan
- NeuroSpin, Joliot Institute, Department of Fundamental Research, Commissariat à l'Energie Atomique (CEA)-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Kim JY, Partridge SC. Non-contrast Breast MR Imaging. Radiol Clin North Am 2024; 62:661-678. [PMID: 38777541 PMCID: PMC11116814 DOI: 10.1016/j.rcl.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Considering the high cost of dynamic contrast-enhanced MR imaging and various contraindications and health concerns related to administration of intravenous gadolinium-based contrast agents, there is emerging interest in non-contrast-enhanced breast MR imaging. Diffusion-weighted MR imaging (DWI) is a fast, unenhanced technique that has wide clinical applications in breast cancer detection, characterization, prognosis, and predicting treatment response. It also has the potential to serve as a non-contrast MR imaging screening method. Standardized protocols and interpretation strategies can help to enhance the clinical utility of breast DWI. A variety of other promising non-contrast MR imaging techniques are in development, but currently, DWI is closest to clinical integration, while others are still mostly used in the research setting.
Collapse
Affiliation(s)
- Jin You Kim
- Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Savannah C Partridge
- Department of Radiology, University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
8
|
Kataoka M, Iima M. Potential of the Diffusion-based Noncontrast Protocol for Breast Imaging: Current Status and Hints for Improvements. Radiology 2024; 311:e241058. [PMID: 38771178 DOI: 10.1148/radiol.241058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Masako Kataoka
- From the Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho Sakyo-ku, Kyoto 606-8507, Japan (M.K.); and Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Aichi, Japan (M.I.)
| | - Mami Iima
- From the Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho Sakyo-ku, Kyoto 606-8507, Japan (M.K.); and Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Aichi, Japan (M.I.)
| |
Collapse
|
9
|
Zuiani C, Mansutti I, Caronia G, Linda A, Londero V, Girometti R. Added value of the EUSOBI diffusion levels in breast MRI. Eur Radiol 2024; 34:3352-3363. [PMID: 37932389 PMCID: PMC11126436 DOI: 10.1007/s00330-023-10418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVES To investigate whether using the diffusion levels (DLs) proposed by the European Society of Breast Imaging (EUSOBI) improves the diagnostic accuracy of breast MRI. MATERIALS AND METHODS This retrospective study included 145 women who, between September 2019 and June 2020, underwent breast 1.5-T MRI with DWI. Reader 1 and reader 2 (R1-R2) independently assessed breast lesions using the BI-RADS on dynamic contrast-enhanced imaging and T2-weighted imaging. DWI was subsequently disclosed, allowing readers able to measure lesions ADC and subjectively express the overall risk of malignancy on a 1-5 Likert scale. ADCs were interpreted as a range of values corresponding to the EUSOBI DLs. The analysis evaluated the inter-reader agreement in measuring ADC and DLs, the per-DL malignancy rate, and accuracy for malignancy using ROC analysis against histological examination or a 3-year follow-up. RESULTS Lesions were malignant and showed non-mass enhancement in 67.7% and 76.1% of cases, respectively. ADC was measurable in 63.2%/66.7% of lesions (R1/R2), with a minimal discrepancy on Bland-Altman analysis and 0.948 (95%CI 0.925-0.965)/0.989 (95%CI 0.988-0.991) intraclass correlation coefficient in measuring ADC/DLs. The malignancy rate (R1/R2) increased from 0.5/0.5% ("very high" DL) to 96.0/96.8% ("very low" DL), as expected. Likert categorization showed larger areas under the curve than the BI-RADS for both R1 (0.91 versus 0.87; p = 0.0208) and R2 (0.91 versus 0.89; p = 0.1171), with improved specificity (81.5% versus 78.5% for R1 and 84.4% versus 81.2% for R2). CONCLUSION Though ADC was not measurable in about one-third of lesions, DLs were categorized with excellent inter-reader agreement, improving the specificity for malignancy. CLINICAL RELEVANCE STATEMENT DLs proposed by the EUSOBI are a reproducible tool to interpret the ADC of breast lesions and, in turn, to improve the specificity of breast MRI and reduce unnecessary breast biopsies. KEY POINTS • The European Society of Breast Imaging proposed diffusion levels for the interpretation of the apparent diffusion coefficient in diffusion-weighted imaging of the breast. • Adding diffusion levels to the interpretation of magnetic resonance imaging improved the diagnostic accuracy for breast cancer, especially in terms of specificity. • Diffusion levels can favor a more widespread and standardized use of diffusion-weighted imaging of the breast.
Collapse
Affiliation(s)
- Chiara Zuiani
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria Della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Iris Mansutti
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria Della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Guido Caronia
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria Della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Anna Linda
- Institute of Radiology, University Hospital S. Maria Della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Viviana Londero
- Institute of Radiology, University Hospital S. Maria Della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Rossano Girometti
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria Della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy.
| |
Collapse
|
10
|
Dietzel M, Laun FB, Heiß R, Wenkel E, Bickelhaupt S, Hack C, Uder M, Ohlmeyer S. Initial experience with a next-generation low-field MRI scanner: Potential for breast imaging? Eur J Radiol 2024; 173:111352. [PMID: 38330534 DOI: 10.1016/j.ejrad.2024.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Broader clinical adoption of breast magnetic resonance imaging (MRI) faces challenges such as limited availability and high procedural costs. Low-field technology has shown promise in addressing these challenges. We report our initial experience using a next-generation scanner for low-field breast MRI at 0.55T. METHODS This initial cases series was part of an institutional review board-approved prospective study using a 0.55T scanner (MAGNETOM Free.Max, Siemens Healthcare, Erlangen/Germany: height < 2 m, weight < 3.2 tons, no quench pipe) equipped with a seven-channel breast coil (Noras, Höchberg/Germany). A multiparametric breast MRI protocol consisting of dynamic T1-weighted, T2-weighted, and diffusion-weighted sequences was optimized for 0.55T. Two radiologists with 12 and 20 years of experience in breast MRI evaluated the examinations. RESULTS Twelve participants (mean age: 55.3 years, range: 36-78 years) were examined. The image quality was diagnostic in all examinations and not impaired by relevant artifacts. Typical imaging phenotypes were visualized. The scan time for a complete, non-abbreviated breast MRI protocol ranged from 10:30 to 18:40 min. CONCLUSION This initial case series suggests that low-field breast MRI is feasible at diagnostic image quality within an acceptable examination time.
Collapse
Affiliation(s)
- Matthias Dietzel
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany.
| | - Frederik B Laun
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany.
| | - Rafael Heiß
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany.
| | - Evelyn Wenkel
- Radiologie München, Burgstrasse 7, 80331 München, Germany.
| | - Sebastian Bickelhaupt
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany.
| | - Carolin Hack
- Department of Gynecology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitätsstraße 21/23, 91054 Erlangen, Germany.
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany.
| | - Sabine Ohlmeyer
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany.
| |
Collapse
|
11
|
Kim JH, Kim SY, Cui C, Ji H, Yoen H, Cho N, Kim DH. Problem Solving MRI to Reduce False-Positive Biopsy Related to Breast US: Conductivity vs. DWI vs. Abbreviated Contrast-Enhanced MRI. J Magn Reson Imaging 2024; 59:1218-1228. [PMID: 37477575 DOI: 10.1002/jmri.28884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND While breast ultrasound (US) is a useful tool for diagnosing breast masses, it can entail false-positive biopsy results because of some overlapping features between benign and malignant breast masses and subjective interpretation. PURPOSE To evaluate the performance of conductivity imaging for reducing false-positive biopsy results related to breast US, as compared to diffusion-weighted imaging (DWI) and abbreviated MRI consisting of one pre- and one post-contrast T1-weighted imaging. STUDY TYPE Prospective. SUBJECTS Seventy-nine women (median age, 44 years) with 86 Breast Imaging Reporting and Data System (BI-RADS) category 4 masses as detected by breast US. FIELD STRENGTH/SEQUENCE 3-T, T2-weighted turbo spin echo sequence, DWI, and abbreviated contrast-enhanced MRI (T1-weighted gradient echo sequence). ASSESSMENT US-guided biopsy (reference standard) was obtained on the same day as MRI. The maximum and mean conductivity parameters from whole and single regions of interest (ROIs) were measured. Apparent diffusion coefficient (ADC) values were obtained from an area with the lowest signal within a lesion on the ADC map. The performance of conductivity, ADC, and abbreviated MRI for reducing false-positive biopsies was evaluated using the following criteria: lowest conductivity and highest ADC values among malignant breast lesions and BI-RADS categories 2 or 3 on abbreviated MRI. STATISTICAL TESTS One conductivity parameter with the maximum area under the curve (AUC) from receiver operating characteristics was selected. A P-value <0.05 was considered statistically significant. RESULTS US-guided biopsy revealed 65 benign lesions and 21 malignant lesions. The mean conductivity parameter of the single ROI method was selected (AUC = 0.74). Considering conductivity (≤0.10 S/m), ADC (≥1.60 × 10-3 mm2 /sec), and BI-RADS categories 2 or 3 reduced false-positive biopsies by 23% (15 of 65), 38% (25 of 65), and 43% (28 of 65), respectively, without missing malignant lesions. DATA CONCLUSION Conductivity imaging may show lower performance than DWI and abbreviated MRI in reducing unnecessary biopsies. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jun-Hyeong Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Chuanjiang Cui
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hye Ji
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heera Yoen
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nariya Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Christner SA, Grunz JP, Schlaiß T, Curtaz C, Kunz AS, Huflage H, Patzer TS, Bley TA, Sauer ST. Breast lesion morphology assessment with high and standard b values in diffusion-weighted imaging at 3 Tesla. Magn Reson Imaging 2024; 107:100-110. [PMID: 38246517 DOI: 10.1016/j.mri.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION With increasing spatial resolution, diffusion-weighted imaging (DWI) may be suitable for morphologic lesion characterization in breast MRI - an area that has traditionally been occupied by dynamic contrast-enhanced imaging (DCE). This investigation compared DWI with b values of 800 and 1600 s/mm2 to DCE for lesion morphology assessment in high-resolution breast MRI at 3 Tesla. MATERIAL AND METHODS Multiparametric breast MRI was performed in 91 patients with 93 histopathologically proven lesions (31 benign, 62 malignant). Two radiologists independently evaluated three datasets per patient (DWIb800; DWIb1600; DCE) and assessed lesion visibility and BIRADS morphology criteria. Diagnostic accuracy was compared among readers and datasets using Cochran's Q test and pairwise post-hoc McNemar tests. Bland-Altman analyses were conducted for lesion size comparisons. RESULTS Discrimination of carcinomas was superior compared to benign findings in both DWIb800 and DWIb1600 (p < 0.001) with no b value-dependent difference. Similarly, assessability of mass lesions was better than of non-mass lesions, irrespective of b value (p < 0.001). Intra-reader reliability for the analysis of morphologic BIRADS criteria among DCE and DWI datasets was at least moderate (Fleiss κ≥0.557), while at least substantial inter-reader agreement was ascertained over all assessed categories (κ≥0.776). In pairwise Bland-Altman analyses, the measurement bias between DCE and DWIb800 was 0.7 mm, whereas the difference between DCE and DWIb1600 was 2.8 mm. DWIb1600 allowed for higher specificity than DCE (p = 0.007/0.062). CONCLUSIONS DWI can be employed for reliable morphologic lesion characterization in high-resolution breast MRI. High b values increase diagnostic specificity, while lesion size assessment is more precise with standard 800 s/mm2 images.
Collapse
Affiliation(s)
- Sara Aniki Christner
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - Tanja Schlaiß
- Department of Obstetrics and Gynecology, University Hospital Würzburg, Josef-Schneider-Str. 4, 97080 Würzburg, Germany.
| | - Carolin Curtaz
- Department of Obstetrics and Gynecology, University Hospital Würzburg, Josef-Schneider-Str. 4, 97080 Würzburg, Germany.
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - Stephanie Tina Sauer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| |
Collapse
|
13
|
Kwon MR, Youn I, Ko ES, Choi SH. Correlation of shear-wave elastography stiffness and apparent diffusion coefficient values with tumor characteristics in breast cancer. Sci Rep 2024; 14:7180. [PMID: 38531932 DOI: 10.1038/s41598-024-57832-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
We aimed to investigate the correlation between shear-wave elastography (SWE) and apparent diffusion coefficient (ADC) values in breast cancer and to identify the associated characteristics. We included 91 breast cancer patients who underwent SWE and breast MRI prior to surgery between January 2016 and November 2017. We measured the lesion's mean (Emean) and maximum (Emax) elasticities of SWE and ADC values. We evaluated the correlation between SWE, ADC values and tumor size. The mean SWE and ADC values were compared for categorical variable of the pathological/imaging characteristics. ADC values showed negative correlation with Emean (r = - 0.315, p = 0.002) and Emax (r = - 0.326, p = 0.002). SWE was positively correlated with tumor size (r = 0.343-0.366, p < 0.001). A higher SWE value indicated a tendency towards a higher T stage (p < 0.001). Triple-negative breast cancer showed the highest SWE values (p = 0.02). SWE were significantly higher in breast cancers with posterior enhancement, vascularity, and washout kinetics (p < 0.02). SWE stiffness and ADC values were negatively correlated in breast cancer. SWE values correlated significantly with tumor size, and were higher in triple-negative subtype and aggressive imaging characteristics.
Collapse
Affiliation(s)
- Mi-Ri Kwon
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Inyoung Youn
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun Sook Ko
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Seon-Hyeong Choi
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Queen's U Clinic, Seoul, South Korea
| |
Collapse
|
14
|
Yılmaz E, Güldoğan N, Ulus S, Türk EB, Mısır ME, Arslan A, Arıbal ME. Diagnostic value of synthetic diffusion-weighted imaging on breast magnetic resonance imaging assessment: comparison with conventional diffusion-weighted imaging. Diagn Interv Radiol 2024; 30:91-98. [PMID: 37888786 PMCID: PMC10916533 DOI: 10.4274/dir.2023.232466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE To compare images generated by synthetic diffusion-weighted imaging (sDWI) with those from conventional DWI in terms of their diagnostic performance in detecting breast lesions when performing breast magnetic resonance imaging (MRI). METHODS A total of 128 consecutive patients with 135 enhanced lesions who underwent dynamic MRI between 2018 and 2021 were included. The sDWI and DWI signals were compared by three radiologists with at least 10 years of experience in breast radiology. RESULTS Of the 82 malignant lesions, 91.5% were hyperintense on sDWI and 73.2% were hyperintense on DWI. Of the 53 benign lesions, 71.7% were isointense on sDWI and 37.7% were isointense on DWI. sDWI provides accurate signal intensity data with statistical significance compared with DWI (P < 0.05). The diagnostic performance of DWI and sDWI to differentiate malignant breast masses from benign masses was as follows: sensitivity 73.1% [95% confidence interval (CI): 62-82], specificity 37.7% (95% CI: 24-52); sensitivity 91.5% (95% CI: 83-96), specificity 71.7% (95% CI: 57-83), respectively. The diagnostic accuracy of DWI and sDWI was 59.2% and 83.7%, respectively. However, when the DWI images were evaluated with apparent diffusion coefficient mapping and compared with the sDWI images, the sensitivity was 92.68% (95% CI: 84-97) and the specificity was 79.25% (95% CI: 65-89) with no statistically significant difference. The inter-reader agreement was almost perfect (P < 0.001). CONCLUSION Synthetic DWI is superior to DWI for lesion visibility with no additional acquisition time and should be taken into consideration when conducting breast MRI scans. The evaluation of sDWI in routine MRI reporting will increase diagnostic accuracy.
Collapse
Affiliation(s)
- Ebru Yılmaz
- Acıbadem Altunizade Hospital Breast Center, Department of Radiology, İstanbul, Türkiye
| | - Nilgün Güldoğan
- Acıbadem Altunizade Hospital Breast Center, Department of Radiology, İstanbul, Türkiye
| | - Sıla Ulus
- Acıbadem Ataşehir Hospital, Department of Radiology, İstanbul, Türkiye
| | - Ebru Banu Türk
- Acıbadem Altunizade Hospital Breast Center, Department of Radiology, İstanbul, Türkiye
| | - Mustafa Enes Mısır
- Acıbadem Mehmet Ali Aydınlar University, Department of Radiology, İstanbul, Türkiye
| | - Aydan Arslan
- University of Health Sciences Türkiye, Ümraniye Training and Research Hospital, Clinic of Radiology, İstanbul, Türkiye
| | - Mustafa Erkin Arıbal
- Acıbadem Mehmet Ali Aydınlar University, Department of Radiology, İstanbul, Türkiye
| |
Collapse
|
15
|
Youn I, Biswas D, Hippe DS, Winter AM, Kazerouni AS, Javid SH, Lee JM, Rahbar H, Partridge SC. Diagnostic Performance of Point-of-Care Apparent Diffusion Coefficient Measures to Reduce Biopsy in Breast Lesions at MRI: Clinical Validation. Radiology 2024; 310:e232313. [PMID: 38349238 PMCID: PMC10902596 DOI: 10.1148/radiol.232313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024]
Abstract
Background The Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group multicenter A6702 trial identified an optimal apparent diffusion coefficient (ADC) cutoff to potentially reduce biopsies by 21% without affecting sensitivity. Whether this performance can be achieved in clinical settings has not yet been established. Purpose To validate the performance of point-of-care ADC measurements with the A6702 trial ADC cutoff for reducing unnecessary biopsies in lesions detected at breast MRI. Materials and Methods Consecutive breast MRI examinations performed from May 2015 to January 2019 at a single medical center and showing biopsy-confirmed Breast Imaging Reporting and Data System category 4 or 5 lesions, without ipsilateral cancer, were identified. Point-of-care lesion ADC measurements collected at clinical interpretation were retrospectively evaluated. MRI examinations included axial T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences. Sensitivity and biopsy reduction rates were calculated by applying the A6702 optimal (ADC, 1.53 × 10-3 mm2/sec) and alternate conservative (1.68 × 10-3 mm2/sec) cutoffs. Lesion pathologic outcomes were the reference standard. To assess reproducibility, one radiologist repeated ADC measurements, and agreement was summarized using the intraclass correlation coefficient. Results A total of 240 lesions in 201 women (mean age, 49 years ± 13 [SD]) with pathologic outcomes (63 malignant and 177 benign) were included. Applying the optimal ADC cutoff produced an overall biopsy reduction rate of 15.8% (38 of 240 lesions [95% CI: 11.2, 20.9]), with a sensitivity of 92.1% (58 of 63 lesions [95% CI: 82.4, 97.4]; sensitivity was 97.2% [35 of 36 lesions] [95% CI: 82.7, 99.6] for invasive cancers). Results were similar for screening versus diagnostic examinations (P = .92 and .40, respectively). Sensitivity was higher for masses than for nonmass enhancements (NMEs) (100% vs 85.3%; P = .009). Applying the conservative ADC cutoff achieved a sensitivity of 95.2% (60 of 63 lesions [95% CI: 86.7, 99.0]), with a biopsy reduction rate of 10.4% (25 of 240 lesions [95% CI: 6.7, 14.5]). Repeated single-reader measurements showed good agreement with clinical ADCs (intraclass correlation coefficient, 0.72 [95% CI: 0.58, 0.81]). Conclusion This study validated the clinical use of ADC cutoffs to reduce MRI-prompted biopsies by up to 16%, with a suggested tradeoff of lowered sensitivity for in situ and microinvasive disease manifesting as NME. Clinical trial registration no. NCT02022579 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Honda and Iima in this issue.
Collapse
Affiliation(s)
| | - Debosmita Biswas
- From the Departments of Radiology (I.Y., D.B., A.M.W., A.S.K.,
J.M.L., H.R., S.C.P.) and Surgery (S.H.J.), University of Washington School of
Medicine, 1144 Eastlake Ave E, LG2-200, Seattle, WA 98109; and Clinical Research
Division, Fred Hutchinson Cancer Center (D.S.H.)
| | - Daniel S. Hippe
- From the Departments of Radiology (I.Y., D.B., A.M.W., A.S.K.,
J.M.L., H.R., S.C.P.) and Surgery (S.H.J.), University of Washington School of
Medicine, 1144 Eastlake Ave E, LG2-200, Seattle, WA 98109; and Clinical Research
Division, Fred Hutchinson Cancer Center (D.S.H.)
| | - Andrea M. Winter
- From the Departments of Radiology (I.Y., D.B., A.M.W., A.S.K.,
J.M.L., H.R., S.C.P.) and Surgery (S.H.J.), University of Washington School of
Medicine, 1144 Eastlake Ave E, LG2-200, Seattle, WA 98109; and Clinical Research
Division, Fred Hutchinson Cancer Center (D.S.H.)
| | - Anum S. Kazerouni
- From the Departments of Radiology (I.Y., D.B., A.M.W., A.S.K.,
J.M.L., H.R., S.C.P.) and Surgery (S.H.J.), University of Washington School of
Medicine, 1144 Eastlake Ave E, LG2-200, Seattle, WA 98109; and Clinical Research
Division, Fred Hutchinson Cancer Center (D.S.H.)
| | - Sara H. Javid
- From the Departments of Radiology (I.Y., D.B., A.M.W., A.S.K.,
J.M.L., H.R., S.C.P.) and Surgery (S.H.J.), University of Washington School of
Medicine, 1144 Eastlake Ave E, LG2-200, Seattle, WA 98109; and Clinical Research
Division, Fred Hutchinson Cancer Center (D.S.H.)
| | - Janie M. Lee
- From the Departments of Radiology (I.Y., D.B., A.M.W., A.S.K.,
J.M.L., H.R., S.C.P.) and Surgery (S.H.J.), University of Washington School of
Medicine, 1144 Eastlake Ave E, LG2-200, Seattle, WA 98109; and Clinical Research
Division, Fred Hutchinson Cancer Center (D.S.H.)
| | - Habib Rahbar
- From the Departments of Radiology (I.Y., D.B., A.M.W., A.S.K.,
J.M.L., H.R., S.C.P.) and Surgery (S.H.J.), University of Washington School of
Medicine, 1144 Eastlake Ave E, LG2-200, Seattle, WA 98109; and Clinical Research
Division, Fred Hutchinson Cancer Center (D.S.H.)
| | - Savannah C. Partridge
- From the Departments of Radiology (I.Y., D.B., A.M.W., A.S.K.,
J.M.L., H.R., S.C.P.) and Surgery (S.H.J.), University of Washington School of
Medicine, 1144 Eastlake Ave E, LG2-200, Seattle, WA 98109; and Clinical Research
Division, Fred Hutchinson Cancer Center (D.S.H.)
| |
Collapse
|
16
|
Honda M, Iima M. It Is Time to Use Apparent Diffusion Coefficient in Breast MRI Diagnostics. Radiology 2024; 310:e240125. [PMID: 38349245 DOI: 10.1148/radiol.240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Affiliation(s)
- Maya Honda
- From the Department of Diagnostic Radiology, Kansai Electric Power Hospital, 2-1-7 Fukushima, Fukushima-ku, Osaka 553-0003, Japan (M.H.); Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan (M.H., M.I.); and Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan (M.I.)
| | - Mami Iima
- From the Department of Diagnostic Radiology, Kansai Electric Power Hospital, 2-1-7 Fukushima, Fukushima-ku, Osaka 553-0003, Japan (M.H.); Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan (M.H., M.I.); and Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan (M.I.)
| |
Collapse
|
17
|
Kim YS, Lee SH, Kim SY, Kim ES, Park AR, Chang JM, Park VY, Yoon JH, Kang BJ, Yun BL, Kim TH, Ko ES, Chu AJ, Kim JY, Youn I, Chae EY, Choi WJ, Kim HJ, Kang SH, Ha SM, Moon WK. Unenhanced Breast MRI With Diffusion-Weighted Imaging for Breast Cancer Detection: Effects of Training on Performance and Agreement of Subspecialty Radiologists. Korean J Radiol 2024; 25:11-23. [PMID: 38184765 PMCID: PMC10788600 DOI: 10.3348/kjr.2023.0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE To investigate whether reader training improves the performance and agreement of radiologists in interpreting unenhanced breast magnetic resonance imaging (MRI) scans using diffusion-weighted imaging (DWI). MATERIALS AND METHODS A study of 96 breasts (35 cancers, 24 benign, and 37 negative) in 48 asymptomatic women was performed between June 2019 and October 2020. High-resolution DWI with b-values of 0, 800, and 1200 sec/mm² was performed using a 3.0-T system. Sixteen breast radiologists independently reviewed the DWI, apparent diffusion coefficient maps, and T1-weighted MRI scans and recorded the Breast Imaging Reporting and Data System (BI-RADS) category for each breast. After a 2-h training session and a 5-month washout period, they re-evaluated the BI-RADS categories. A BI-RADS category of 4 (lesions with at least two suspicious criteria) or 5 (more than two suspicious criteria) was considered positive. The per-breast diagnostic performance of each reader was compared between the first and second reviews. Inter-reader agreement was evaluated using a multi-rater κ analysis and intraclass correlation coefficient (ICC). RESULTS Before training, the mean sensitivity, specificity, and accuracy of the 16 readers were 70.7% (95% confidence interval [CI]: 59.4-79.9), 90.8% (95% CI: 85.6-94.2), and 83.5% (95% CI: 78.6-87.4), respectively. After training, significant improvements in specificity (95.2%; 95% CI: 90.8-97.5; P = 0.001) and accuracy (85.9%; 95% CI: 80.9-89.8; P = 0.01) were observed, but no difference in sensitivity (69.8%; 95% CI: 58.1-79.4; P = 0.58) was observed. Regarding inter-reader agreement, the κ values were 0.57 (95% CI: 0.52-0.63) before training and 0.68 (95% CI: 0.62-0.74) after training, with a difference of 0.11 (95% CI: 0.02-0.18; P = 0.01). The ICC was 0.73 (95% CI: 0.69-0.74) before training and 0.79 (95% CI: 0.76-0.80) after training (P = 0.002). CONCLUSION Brief reader training improved the performance and agreement of interpretations by breast radiologists using unenhanced MRI with DWI.
Collapse
Affiliation(s)
- Yeon Soo Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Hyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Sil Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ah Reum Park
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Min Chang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Vivian Youngjean Park
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Hyun Yoon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bong Joo Kang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo La Yun
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Tae Hee Kim
- Department of Radiology, Ajou University Medical Center, Suwon, Republic of Korea
| | - Eun Sook Ko
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul, Republic of Korea
| | - A Jung Chu
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jin You Kim
- Department of Radiology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Inyoung Youn
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Young Chae
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Jung Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Jeong Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo Hee Kang
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Su Min Ha
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
18
|
Gullo RL, Partridge SC, Shin HJ, Thakur SB, Pinker K. Update on DWI for Breast Cancer Diagnosis and Treatment Monitoring. AJR Am J Roentgenol 2024; 222:e2329933. [PMID: 37850579 PMCID: PMC11196747 DOI: 10.2214/ajr.23.29933] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
DWI is a noncontrast MRI technique that measures the diffusion of water molecules within biologic tissue. DWI is increasingly incorporated into routine breast MRI examinations. Currently, the main applications of DWI are breast cancer detection and characterization, prognostication, and prediction of treatment response to neoadjuvant chemotherapy. In addition, DWI is promising as a noncontrast MRI alternative for breast cancer screening. Problems with suboptimal resolution and image quality have restricted the mainstream use of DWI for breast imaging, but these shortcomings are being addressed through several technologic advancements. In this review, we present an up-to-date assessment of the use of DWI for breast cancer imaging, including a summary of the clinical literature and recommendations for future use.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Savannah C Partridge
- Department of Radiology, University of Washington School of Medicine, University of Washington, Seattle, WA, USA 98109, USA
| | - Hee Jung Shin
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Sunitha B Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
19
|
Fukudome Y, Nagata Y, Yamada Y, Saeki T, Fujikawa T. Two resected cases of benign adenomyoepithelioma. Surg Case Rep 2023; 9:214. [PMID: 38123876 PMCID: PMC10733238 DOI: 10.1186/s40792-023-01793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Adenomyoepithelioma (AME) of the breast is an uncommon tumor characterized by the proliferation of ductal epithelial and myoepithelial cells with the heterogeneity. Although benign AME is relatively easy to differentiate from breast cancer by core needle biopsy (CNB) alone, a definitive diagnosis is often difficult. The imaging findings of AME are also variable, and there are particularly few reports about radiological features, including contrast-enhanced magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) values in AME. CASE PRESENTATION We present two cases of benign AME. Case 1 is a 30-year-old woman with a history of asthma. The cystic tumor shows smooth borders, and the intracystic solid component is irregular in shape and high vascularity. The pathological findings of the tumor were benign on CNB. The MRI scan showed a decreased ADC value. Case 2 is a 60-year-old woman with only a history of arrhythmia. The tumor shows a lobulated mass with cystic space and coarse calcifications. The pathological findings of the tumor were found to be benign by CNB. Dynamic MRI scan showed a fast washout pattern with a decreased ADC value. Both patients underwent excisional biopsy to confirm the diagnosis, and the pathological diagnosis was benign AME in both cases. CONCLUSIONS The AME of the breast has little specific imaging information, so it can be difficult to diagnose based on pathological findings of biopsy specimen. In our case, the ADC values were exceptionally low, contrary to previous reports. It is essential to carefully diagnose AME, considering the discrepancies in imaging findings observed in this case.
Collapse
Affiliation(s)
- Yurika Fukudome
- Department of Surgery, Kokura Memorial Hospital, 3-2-1 Asano, Kokurakita-Ku, Kitakyushu City, Fukuoka, 802-8555, Japan
| | - Yoshika Nagata
- Department of Surgery, Kokura Memorial Hospital, 3-2-1 Asano, Kokurakita-Ku, Kitakyushu City, Fukuoka, 802-8555, Japan.
| | - Yui Yamada
- Department of Pathology, Kokura Memorial Hospital, 3-2-1 Asano, Kokurakita-Ku, Kitakyushu City, Fukuoka, 802-8555, Japan
| | - Toshihiro Saeki
- Department of Surgery, Kokura Memorial Hospital, 3-2-1 Asano, Kokurakita-Ku, Kitakyushu City, Fukuoka, 802-8555, Japan
| | - Takahisa Fujikawa
- Department of Surgery, Kokura Memorial Hospital, 3-2-1 Asano, Kokurakita-Ku, Kitakyushu City, Fukuoka, 802-8555, Japan
| |
Collapse
|
20
|
Nie T, Feng M, Yang K, Guo X, Yuan Z, Zhang Z, Yan G. Correlation between dynamic contrast-enhanced MRI characteristics and apparent diffusion coefficient with Ki-67-positive expression in non-mass enhancement of breast cancer. Sci Rep 2023; 13:21451. [PMID: 38052920 PMCID: PMC10698184 DOI: 10.1038/s41598-023-48445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
As a remarkably specific characteristic of breast cancer observed on magnetic resonance imaging (MRI), the association between the NME type breast cancer and prognosis, including Ki-67, necessitates comprehensive exploration. To investigate the correlation between dynamic contrast-enhanced MRI (DCE-MRI) characteristics and apparent diffusion coefficient (ADC) values with Ki-67-positive expression in NME type breast cancer. A total of 63 NME type breast cancer patients were retrospectively reviewed. Malignancies were confirmed by surgical pathology. All patients underwent DCE and diffusion-weighted imaging (DWI) before surgery. DCE-MRI characteristics, including tumor distribution, internal enhancement pattern, axillary adenopathy, and time-intensity curve types were observed. ADC values and lesion sizes were also measured. The correlation between these features and Ki-67 expression were assessed using Chi-square test, Fisher's exact test, and Spearman rank analysis. The receiver operating characteristic curve and area under the curve (AUC) was used to evaluate the diagnostic performance of Ki-67-positive expression. Regional distribution, TIC type, and ipsilateral axillary lymph node enlargement were correlated with Ki-67-positive expression (χ2 = 0.397, 0.357, and 0.357, respectively; P < 0.01). ADC value and lesion size were positively correlated with Ki-67-positive expression (rs = 0.295, 0.392; P < 0.05). The optimal threshold values for lesion size and ADC value to assess Ki-67 expression were determined to be 5.05 (AUC = 0.759) cm and 0.403 × 10-3 s/mm2 (AUC = 0.695), respectively. The best diagnosis performance was the ADC combined with lesion size (AUC = 0.791). The ADC value, lesion size, regional distribution, and TIC type in NME type breast cancer were correlated with Ki-67-positive expression. These features will aid diagnosis and treatment of NME type breast cancer.
Collapse
Affiliation(s)
- Tingting Nie
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 116 Zhuodaoquan South Load, Hongshan District, Wuhan, 430079, Hubei, China
| | - Mengwei Feng
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 116 Zhuodaoquan South Load, Hongshan District, Wuhan, 430079, Hubei, China
| | - Kai Yang
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 116 Zhuodaoquan South Load, Hongshan District, Wuhan, 430079, Hubei, China
| | - Xiaofang Guo
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 116 Zhuodaoquan South Load, Hongshan District, Wuhan, 430079, Hubei, China
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 116 Zhuodaoquan South Load, Hongshan District, Wuhan, 430079, Hubei, China
| | - Zhaoxi Zhang
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 116 Zhuodaoquan South Load, Hongshan District, Wuhan, 430079, Hubei, China.
| | - Gen Yan
- Department of Radiology, the Second Affiliated Hospital of Xiamen Medical College, No 566 Shengguang Road, Jimei District, Xiamen, 361000, Fujian, China.
| |
Collapse
|
21
|
Wilpert C, Neubauer C, Rau A, Schneider H, Benkert T, Weiland E, Strecker R, Reisert M, Benndorf M, Weiss J, Bamberg F, Windfuhr-Blum M, Neubauer J. Accelerated Diffusion-Weighted Imaging in 3 T Breast MRI Using a Deep Learning Reconstruction Algorithm With Superresolution Processing: A Prospective Comparative Study. Invest Radiol 2023; 58:842-852. [PMID: 37428618 DOI: 10.1097/rli.0000000000000997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
OBJECTIVES Diffusion-weighted imaging (DWI) enhances specificity in multiparametric breast MRI but is associated with longer acquisition time. Deep learning (DL) reconstruction may significantly shorten acquisition time and improve spatial resolution. In this prospective study, we evaluated acquisition time and image quality of a DL-accelerated DWI sequence with superresolution processing (DWI DL ) in comparison to standard imaging including analysis of lesion conspicuity and contrast of invasive breast cancers (IBCs), benign lesions (BEs), and cysts. MATERIALS AND METHODS This institutional review board-approved prospective monocentric study enrolled participants who underwent 3 T breast MRI between August and December 2022. Standard DWI (DWI STD ; single-shot echo-planar DWI combined with reduced field-of-view excitation; b-values: 50 and 800 s/mm 2 ) was followed by DWI DL with similar acquisition parameters and reduced averages. Quantitative image quality was analyzed for region of interest-based signal-to-noise ratio (SNR) on breast tissue. Apparent diffusion coefficient (ADC), SNR, contrast-to-noise ratio, and contrast (C) values were calculated for biopsy-proven IBCs, BEs, and for cysts. Two radiologists independently assessed image quality, artifacts, and lesion conspicuity in a blinded independent manner. Univariate analysis was performed to test differences and interrater reliability. RESULTS Among 65 participants (54 ± 13 years, 64 women) enrolled in the study, the prevalence of breast cancer was 23%. Average acquisition time was 5:02 minutes for DWI STD and 2:44 minutes for DWI DL ( P < 0.001). Signal-to-noise ratio measured in breast tissue was higher for DWI STD ( P < 0.001). The mean ADC values for IBC were 0.77 × 10 -3 ± 0.13 mm 2 /s in DWI STD and 0.75 × 10 -3 ± 0.12 mm 2 /s in DWI DL without significant difference when sequences were compared ( P = 0.32). Benign lesions presented with mean ADC values of 1.32 × 10 -3 ± 0.48 mm 2 /s in DWI STD and 1.39 × 10 -3 ± 0.54 mm 2 /s in DWI DL ( P = 0.12), and cysts presented with 2.18 × 10 -3 ± 0.49 mm 2 /s in DWI STD and 2.31 × 10 -3 ± 0.43 mm 2 /s in DWI DL . All lesions presented with significantly higher contrast in the DWI DL ( P < 0.001), whereas SNR and contrast-to-noise ratio did not differ significantly between DWI STD and DWI DL regardless of lesion type. Both sequences demonstrated a high subjective image quality (29/65 for DWI STD vs 20/65 for DWI DL ; P < 0.001). The highest lesion conspicuity score was observed more often for DWI DL ( P < 0.001) for all lesion types. Artifacts were scored higher for DWI DL ( P < 0.001). In general, no additional artifacts were noted in DWI DL . Interrater reliability was substantial to excellent (k = 0.68 to 1.0). CONCLUSIONS DWI DL in breast MRI significantly reduced scan time by nearly one half while improving lesion conspicuity and maintaining overall image quality in a prospective clinical cohort.
Collapse
Affiliation(s)
- Caroline Wilpert
- From the Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany (C.W., C.N., A.R., H.S., M.B., JW, F.B., M.W.-B., J.N.); MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany (T.B., E.W.); EMEA Scientific Partnerships, Siemens Healthcare GmbH, Erlangen, Germany (R.S.); Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany (M.R.); and Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany (M.R.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
van der Hoogt KJJ, Schipper RJ, Wessels R, Ter Beek LC, Beets-Tan RGH, Mann RM. Breast DWI Analyzed Before and After Gadolinium Contrast Administration-An Intrapatient Analysis on 1.5 T and 3.0 T. Invest Radiol 2023; 58:832-841. [PMID: 37389456 DOI: 10.1097/rli.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
OBJECTIVES Diffusion-weighted magnetic resonance imaging (MRI) is gaining popularity as an addition to standard dynamic contrast-enhanced breast MRI. Although adding diffusion-weighted imaging (DWI) to the standard protocol design would require increased scanning-time, implementation during the contrast-enhanced phase could offer a multiparametric MRI protocol without any additional scanning time. However, gadolinium within a region of interest (ROI) might affect assessments of DWI. This study aims to determine if acquiring DWI postcontrast, incorporated in an abbreviated MRI protocol, would statistically significantly affect lesion classification. In addition, the effect of postcontrast DWI on breast parenchyma was studied. MATERIALS AND METHODS Screening or preoperative MRIs (1.5 T/3 T) were included for this study. Diffusion-weighted imaging was acquired with single-shot spin echo-echo planar imaging before and at approximately 2 minutes after gadoterate meglumine injection. Apparent diffusion coefficients (ADCs) based on 2-dimensional ROIs of fibroglandular tissue, as well as benign and malignant lesions at 1.5 T/3.0 T, were compared with a Wilcoxon signed rank test. Diffusivity levels were compared between precontrast and postcontrast DWI with weighted κ. An overall P ≤ 0.05 was considered statistically significant. RESULTS No significant changes were observed in ADC mean after contrast administration in 21 patients with 37 ROI of healthy fibroglandular tissue and in the 93 patients with 93 (malignant and benign) lesions. This effect remained after stratification on B 0 . In 18% of all lesions, a diffusion level shift was observed, with an overall weighted κ of 0.75. CONCLUSIONS This study supports incorporating DWI at 2 minutes postcontrast when ADC is calculated based on b150-b800 with 15 mL 0.5 M gadoterate meglumine in an abbreviated multiparametric MRI protocol without requiring extra scan time.
Collapse
Affiliation(s)
- Kay J J van der Hoogt
- From the Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.J.J.H., R.-J.S., R.W., R.G.H.B., R.M.M.); GROW School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands (K.J.J.H., R.G.H.B.); Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, the Netherlands (R.-J.S.); Department of Medical Physics, the Netherlands Cancer Institute, Amsterdam, the Netherlands (L.C.B.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (R.M.M.); and Danish Colorectal Cancer Unit South, Vejle University Hospital, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark (R.G.H.B.)
| | | | | | | | | | | |
Collapse
|
23
|
Sassi A, Salminen A, Jukkola A, Tervo M, Mäenpää N, Turtiainen S, Tiainen L, Liimatainen T, Tolonen T, Huhtala H, Rinta-Kiikka I, Arponen O. Breast density and the likelihood of malignant MRI-detected lesions in women diagnosed with breast cancer. Eur Radiol 2023; 33:8080-8088. [PMID: 37646814 PMCID: PMC10598189 DOI: 10.1007/s00330-023-10072-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/04/2023] [Accepted: 06/30/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVES To assess whether mammographic breast density in women diagnosed with breast cancer correlates with the total number of incidental magnetic resonance imaging (MRI)-detected lesions and the likelihood of the lesions being malignant. METHODS Patients diagnosed with breast cancer meeting the EUSOBI and EUSOMA criteria for preoperative breast MRI routinely undergo mammography and ultrasound before MRI at our institution. Incidental suspicious breast lesions detected in MRI are biopsied. We included patients diagnosed with invasive breast cancers between 2014 and 2019 who underwent preoperative breast MRI. One reader retrospectively determined breast density categories according to the 5th edition of the BI-RADS lexicon. RESULTS Of 946 patients with 973 malignant primary breast tumors, 166 (17.5%) had a total of 175 (18.0%) incidental MRI-detected lesions (82 (46.9%) malignant and 93 (53.1%) benign). High breast density according to BI-RADS was associated with higher incidence of all incidental enhancing lesions in preoperative breast MRIs: 2.66 (95% confidence interval: 1.03-6.86) higher for BI-RADS density category B, 2.68 (1.04-6.92) for category C, and 3.67 (1.36-9.93) for category D compared to category A (p < 0.05). However, high breast density did not predict higher incidence of malignant incidental lesions (p = 0.741). Incidental MRI-detected lesions in the contralateral breast were more likely benign (p < 0.001): 18 (27.3%)/48 (72.7%) vs. 64 (58.7%)/45 (41.3%) malignant/benign incidental lesions in contralateral vs. ipsilateral breasts. CONCLUSION Women diagnosed with breast cancer who have dense breasts have more incidental MRI-detected lesions, but higher breast density does not translate to increased likelihood of malignant incidental lesions. CLINICAL RELEVANCE STATEMENT Dense breasts should not be considered as an indication for preoperative breast MRI in women diagnosed with breast cancer. KEY POINTS • The role of preoperative MRI of patients with dense breasts diagnosed with breast cancer is under debate. • Women with denser breasts have a higher incidence of all MRI-detected incidental breast lesions, but the incidence of malignant MRI-detected incidental lesions is not higher than in women with fatty breasts. • High breast density alone should not indicate preoperative breast MRI.
Collapse
Affiliation(s)
- Antti Sassi
- Department of Radiology, Tampere University Hospital, Elämänaukio 1, 33520, Tampere, Finland.
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Annukka Salminen
- Department of Radiology, Tampere University Hospital, Elämänaukio 1, 33520, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Arja Jukkola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Oncology, Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Maija Tervo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Niina Mäenpää
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Oncology, Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Saara Turtiainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Leena Tiainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Oncology, Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Timo Liimatainen
- Research Unit of Medical Imaging Physics and Technology, University of Oulu, Oulu, Finland
- Department of Radiology, Oulu University Hospital, Oulu, Finland
| | - Teemu Tolonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Irina Rinta-Kiikka
- Department of Radiology, Tampere University Hospital, Elämänaukio 1, 33520, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Otso Arponen
- Department of Radiology, Tampere University Hospital, Elämänaukio 1, 33520, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
24
|
Zhang F, Wang J, Jin L, Jia C, Shi Q, Wu R. Comparison of the diagnostic value of contrast-enhanced ultrasound combined with conventional ultrasound versus magnetic resonance imaging in malignant non-mass breast lesions. Br J Radiol 2023; 96:20220880. [PMID: 37393540 PMCID: PMC10546433 DOI: 10.1259/bjr.20220880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/12/2023] [Accepted: 06/03/2023] [Indexed: 07/03/2023] Open
Abstract
OBJECTIVE To compare the diagnostic value of contrast-enhanced ultrasound (CEUS)+conventional ultrasound vs MRI for malignant non-mass breast lesions (NMLs). METHODS A total of 109 NMLs detected by conventional ultrasound and examined by both CEUS and MRI were retrospectively analysed. The characteristics of NMLs in CEUS and MRI were noted, and agreement between the two modalities was analysed. Sensitivity, specificity, positive-predictive value (PPV), negative-predictive value (NPV), and area under the curve (AUC) of the two methods for diagnosing malignant NMLs were calculated in the overall sample and subgroups of different sizes(<10 mm, 10-20 mm, >20 mm). RESULTS A total of 66 NMLs detected by conventional ultrasound showed non-mass enhancement in MRI. Agreement between ultrasound and MRI was 60.6%. Probability of malignancy was higher when there was agreement between the two modalities. In the overall group, the sensitivity, specificity, PPV, and NPV of the two methods were 91.3%, 71.4%, 60%, 93.4% and 100%, 50.4%, 59.7%, 100%, respectively. The diagnostic performance of CEUS+conventional ultrasound was better than that of MRI (AUC: 0.825 vs 0.762, p = 0.043). The specificity of both methods decreased as lesion size increased, but sensitivity did not change. There was no significant difference between the AUCs of the two methods in the size subgroups (p > 0.05). CONCLUSION The diagnostic performance of CEUS+conventional ultrasound may be better than that of MRI for NMLs detected by conventional ultrasound. However, the specificity of both methods decrease significantly as lesion size increases. ADVANCES IN KNOWLEDGE This is the first study to compare the diagnostic performance of CEUS+conventional ultrasound vs that of MRI for malignant NMLs detected by conventional ultrasound. While CEUS+conventional ultrasound appears to be superior to MRI, subgroup analysis suggests that diagnostic performance is poorer for larger NMLs.
Collapse
Affiliation(s)
- Fan Zhang
- Departmentof Ultrasound, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jing Wang
- Departmentof Ultrasound, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lifang Jin
- Departmentof Ultrasound, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chao Jia
- Departmentof Ultrasound, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qiusheng Shi
- Departmentof Ultrasound, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Rong Wu
- Departmentof Ultrasound, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Tsarouchi MI, Hoxhaj A, Mann RM. New Approaches and Recommendations for Risk-Adapted Breast Cancer Screening. J Magn Reson Imaging 2023; 58:987-1010. [PMID: 37040474 DOI: 10.1002/jmri.28731] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Population-based breast cancer screening using mammography as the gold standard imaging modality has been in clinical practice for over 40 years. However, the limitations of mammography in terms of sensitivity and high false-positive rates, particularly in high-risk women, challenge the indiscriminate nature of population-based screening. Additionally, in light of expanding research on new breast cancer risk factors, there is a growing consensus that breast cancer screening should move toward a risk-adapted approach. Recent advancements in breast imaging technology, including contrast material-enhanced mammography (CEM), ultrasound (US) (automated-breast US, Doppler, elastography US), and especially magnetic resonance imaging (MRI) (abbreviated, ultrafast, and contrast-agent free), may provide new opportunities for risk-adapted personalized screening strategies. Moreover, the integration of artificial intelligence and radiomics techniques has the potential to enhance the performance of risk-adapted screening. This review article summarizes the current evidence and challenges in breast cancer screening and highlights potential future perspectives for various imaging techniques in a risk-adapted breast cancer screening approach. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Marialena I Tsarouchi
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alma Hoxhaj
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ritse M Mann
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Huang Z, Chen X, Jiang N, Hu S, Hu C. A clinical radiomics nomogram preoperatively to predict ductal carcinoma in situ with microinvasion in women with biopsy-confirmed ductal carcinoma in situ: a preliminary study. BMC Med Imaging 2023; 23:118. [PMID: 37679713 PMCID: PMC10483851 DOI: 10.1186/s12880-023-01092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
PURPOSE To predict ductal carcinoma in situ with microinvasion (DCISMI) based on clinicopathologic, conventional breast magnetic resonance imaging (MRI), and dynamic contrast enhanced MRI (DCE-MRI) radiomics signatures in women with biopsy-confirmed ductal carcinoma in situ (DCIS). METHODS Eighty-six women with eighty-seven biopsy-proven DCIS who underwent preoperative MRI and underwent surgery were retrospectively identified. Clinicopathologic, conventional MRI, DCE-MRI radiomics, combine (based on conventional MRI and DCE-MRI radiomics), traditional (based on clinicopathologic and conventional MRI) and mixed (based on clinicopathologic, conventional MRI and DCE-MRI radiomics) models were constructed by logistic regression (LR) with a 3-fold cross-validation, all evaluated using receiver operating characteristic (ROC) curve analysis. A clinical radiomics nomogram was then built by incorporating the Radiomics score, significant clinicopathologic and conventional MRI features of mixed model. RESULTS The area under the curves (AUCs) of clinicopathologic, conventional MRI, DCE-MRI radiomics, traditional, combine, and mixed model were 0.76 (95% confidence interval [CI] 0.59-0.94), 0.77 (95%CI 0.59-0.95), 0.74 (95%CI 0.55-0.93), 0.87 (95%CI 0.73-1), 0.8 (95%CI 0.63-0.96), and 0.93 (95%CI 0.84-1) in the validation cohort, respectively. The clinical radiomics nomogram based on mixed model showed higher AUCs than both clinicopathologic and DCE-MRI radiomics models in training/test (all P < 0.05) set and showed the greatest overall net benefit for upstaging according to decision curve analysis (DCA). CONCLUSION A nomogram constructed by combining clinicopathologic, conventional MRI features and DCE-MRI radiomics signatures may be useful in predicting DCISMI from DICS preoperatively.
Collapse
Affiliation(s)
- Zhou Huang
- Department of Radiology, the First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, Suzhou City, Jiangsu Province, 215006, PR China
| | - Xue Chen
- Department of Radiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou City, Jiangsu Province, 215002, PR China
| | - Nan Jiang
- Department of Radiology, the First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, Suzhou City, Jiangsu Province, 215006, PR China
| | - Su Hu
- Department of Radiology, the First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, Suzhou City, Jiangsu Province, 215006, PR China
| | - Chunhong Hu
- Department of Radiology, the First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, Suzhou City, Jiangsu Province, 215006, PR China.
| |
Collapse
|
27
|
Saccenti L, Mellon CDM, Scholer M, Jolibois Z, Stemmer A, Weiland E, de Bazelaire C. Combining b2500 diffusion-weighted imaging with BI-RADS improves the specificity of breast MRI. Diagn Interv Imaging 2023; 104:410-418. [PMID: 37208291 DOI: 10.1016/j.diii.2023.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the diagnostic performance of visual assessment of diffusion-weighted images (DWI) obtained with a b value of 2500 s/mm2 in addition to a conventional magnetic resonance imaging (MRI) protocol to characterize breast lesions. MATERIALS AND METHODS This single-institution retrospective study included participants who underwent clinically indicated breast MRI and breast biopsy from May 2017 to February 2020. The examination included a conventional MRI protocol including DWI obtained with a b value of 50 s/mm2 (b50DWI) and a b value of 800 s/mm2 (b800DWI) and DWI obtained with a b value of 2500 s/mm2 (b2500DWI). Lesions were classified using Breast Imaging Reporting and Data Systems (BI-RADS) categories. Three independent radiologists assessed qualitatively the signal intensity within the breast lesions relative to breast parenchyma on b2500DW and b800DWI and measured the b50-b800-derived apparent diffusion coefficient (ADC) value. The diagnostic performances of BI-RADS, b2500DWI, b800DWI, ADC and of a model combining b2500DWI and BI-RADS were evaluated using receiver operating characteristic (ROC) curves analysis. RESULTS A total of 260 patients with 212 malignant and 100 benign breast lesions were included. There were 259 women and one man with a median age of 53 years (Q1, Q3: 48, 66 years). b2500DWI was assessable in 97% of the lesions. Interobserver agreement for b2500DWI was substantial (Fleiss kappa = 0.77). b2500DWI yielded larger area under the ROC curve (AUC, 0.81) than ADC with a 1 × 10-3 mm2/s threshold (AUC, 0.58; P = 0.005) and than b800DWI (AUC, 0.57; P = 0.02). The AUC of the model combining b2500DWI and BI-RADS was 0.84 (95% CI: 0.79-0.88). Adding b2500DWI to BI-RADS resulted in a significant increase in specificity from 25% (95% CI: 17-35) to 73% (95% CI: 63-81) (P < 0.001) with a decrease in sensitivity from 100% (95% CI: 97-100) to 94% (95% CI: 90-97), (P < 0.001). CONCLUSION Visual assessment of b2500DWI has substantial interobserver agreement. Visual assessment of b2500DWI offers better diagnostic performance than ADC and b800DWI. Adding visual assessment of b2500DWI to BI-RADS improves the specificity of breast MRI and could avoid unnecessary biopsies.
Collapse
Affiliation(s)
- Laetitia Saccenti
- Department of Radiology, Senopole, Hopital Saint-Louis, Assistance Publique Hôpitaux de Paris, 75010 Paris, France.
| | - Constance de Margerie Mellon
- Department of Radiology, Senopole, Hopital Saint-Louis, Assistance Publique Hôpitaux de Paris, 75010 Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Margaux Scholer
- Department of Radiology, Senopole, Hopital Saint-Louis, Assistance Publique Hôpitaux de Paris, 75010 Paris, France
| | - Zoe Jolibois
- Department of Radiology, Senopole, Hopital Saint-Louis, Assistance Publique Hôpitaux de Paris, 75010 Paris, France
| | - Alto Stemmer
- Siemens Healthineers GMBH, 91052 Erlanger, Germany
| | | | - Cedric de Bazelaire
- Department of Radiology, Senopole, Hopital Saint-Louis, Assistance Publique Hôpitaux de Paris, 75010 Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France
| |
Collapse
|
28
|
Moran CJ, Middione MJ, Mazzoli V, McKay-Nault JA, Guidon A, Waheed U, Rosen EL, Poplack SP, Rosenberg J, Ennis DB, Hargreaves BA, Daniel BL. Multishot Diffusion-Weighted MRI of the Breasts in the Supine vs. Prone Position. J Magn Reson Imaging 2023; 58:951-962. [PMID: 36583628 PMCID: PMC10310889 DOI: 10.1002/jmri.28582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) may allow for breast cancer screening MRI without a contrast injection. Multishot methods improve prone DWI of the breasts but face different challenges in the supine position. PURPOSE To establish a multishot DWI (msDWI) protocol for supine breast MRI and to evaluate the performance of supine vs. prone msDWI. STUDY TYPE Prospective. POPULATION Protocol optimization: 10 healthy women (ages 22-56), supine vs. prone: 24 healthy women (ages 22-62) and five women (ages 29-61) with breast tumors. FIELD STRENGTH/SEQUENCE 3-T, protocol optimization msDWI: free-breathing (FB) 2-shots, FB 4-shots, respiratory-triggered (RT) 2-shots, RT 4-shots, supine vs. prone: RT 4-shot msDWI, T2-weighted fast-spin echo. ASSESSMENT Protocol optimization and supine vs. prone: three observers performed an image quality assessment of sharpness, aliasing, distortion (vs. T2), perceived SNR, and overall image quality (scale of 1-5). Apparent diffusion coefficients (ADCs) in fibroglandular tissue (FGT) and breast tumors were measured. STATISTICAL TESTS Effect of study variables on dichotomized ratings (4/5 vs. 1/2/3) and FGT ADCs were assessed with mixed-effects logistic regression. Interobserver agreement utilized Gwet's agreement coefficient (AC). Lesion ADCs were assessed by Bland-Altman analysis and concordance correlation (ρc ). P value <0.05 was considered statistically significant. RESULTS Protocol optimization: 4-shots significantly improved sharpness and distortion; RT significantly improved sharpness, aliasing, perceived SNR, and overall image quality. FGT ADCs were not significantly different between shots (P = 0.812), FB vs. RT (P = 0.591), or side (P = 0.574). Supine vs. prone: supine images were rated significantly higher for sharpness, aliasing, and overall image quality. FGT ADCs were significantly higher supine; lesion ADCs were highly correlated (ρc = 0.92). DATA CONCLUSION Based on image quality, supine msDWI outperformed prone msDWI. Lesion ADCs were highly correlated between the two positions, while FGT ADCs were higher in the supine position. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 1.
Collapse
Affiliation(s)
| | | | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Arnaud Guidon
- Global MR Application and Workflow, GE Healthcare, Boston, Massachusetts, USA
| | - Uzma Waheed
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Eric L. Rosen
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Steven P. Poplack
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Daniel B. Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Brian A. Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Bruce L. Daniel
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
29
|
Meng L, Zhao X, Guo J, Lu L, Cheng M, Xing Q, Shang H, Zhang B, Chen Y, Zhang P, Zhang X. Improved Differential Diagnosis Based on BI-RADS Descriptors and Apparent Diffusion Coefficient for Breast Lesions: A Multiparametric MRI Analysis as Compared to Kaiser Score. Acad Radiol 2023; 30 Suppl 2:S93-S103. [PMID: 37236897 DOI: 10.1016/j.acra.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 05/28/2023]
Abstract
RATIONALE AND OBJECTIVES To develop the nomogram utilizing the American College of Radiology BI-RADS descriptors, clinical features, and apparent diffusion coefficient (ADC) to differentiate benign from malignant breast lesions. MATERIALS AND METHODS A total of 341 lesions (161 malignant and 180 benign) were included. Clinical data and imaging features were reviewed. Univariable and multivariable logistic regression analyses were performed to determine the independent variables. ADC as a continuous or classified into binary form with a cutoff value of 1.30 × 10-3 mm2/s, incorporated other independent predictors to construct two nomograms, respectively. Receiver operating curve and calibration plot was employed to test the models' discriminative ability. The diagnostic performance between the developed model and the Kaiser score (KS) was also compared. RESULTS In both models, high patient age, the presence of root sign, time-intensity curves (TICs) types (plateau and washout), heterogenous internal enhancement, the presence of peritumoral edema, and ADC were independently associated with malignancy. The AUCs of two multivariable models (AUC, 0.957; 95% CI: 0.929-0.976 and AUC, 0.958; 95% CI: 0.931-0.976) were significantly higher than that of the KS (AUC, 0.919, 95% CI: 0.885-0.946; both P < 0.001). At the same sensitivity of 95.7%, our models showed an increase in specificity by 5.56% (P = 0.076) and 6.11% (P = 0.035), respectively, as compared to the KS. CONCLUSION The models incorporating MRI features (root sign, TIC, margins, internal enhancement, and presence of edema), quantitative ADC value, and patient age showed improved diagnostic performance and might have avoided more unnecessary biopsies in comparison with the KS, although further external validation is required.
Collapse
Affiliation(s)
- Lingsong Meng
- Department of Radiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.M., X.Z., L.L., M.C., Q.X., H.S., Y.C., P.Z., X.Z.); Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (L.M., P.Z.).
| | - Xin Zhao
- Department of Radiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.M., X.Z., L.L., M.C., Q.X., H.S., Y.C., P.Z., X.Z.).
| | - Jinxia Guo
- General Electric (GE) Healthcare, Beijing, China (J.G.).
| | - Lin Lu
- Department of Radiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.M., X.Z., L.L., M.C., Q.X., H.S., Y.C., P.Z., X.Z.).
| | - Meiying Cheng
- Department of Radiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.M., X.Z., L.L., M.C., Q.X., H.S., Y.C., P.Z., X.Z.).
| | - Qingna Xing
- Department of Radiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.M., X.Z., L.L., M.C., Q.X., H.S., Y.C., P.Z., X.Z.).
| | - Honglei Shang
- Department of Radiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.M., X.Z., L.L., M.C., Q.X., H.S., Y.C., P.Z., X.Z.).
| | - Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China (B.Z.).
| | - Yan Chen
- Department of Radiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.M., X.Z., L.L., M.C., Q.X., H.S., Y.C., P.Z., X.Z.).
| | - Penghua Zhang
- Department of Radiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.M., X.Z., L.L., M.C., Q.X., H.S., Y.C., P.Z., X.Z.); Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (L.M., P.Z.).
| | - Xiaoan Zhang
- Department of Radiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.M., X.Z., L.L., M.C., Q.X., H.S., Y.C., P.Z., X.Z.).
| |
Collapse
|
30
|
Kennedy LC, Kazerouni AS, Chau B, Biswas D, Alvarez R, Durenberger G, Dintzis SM, Stanton SE, Partridge SC, Gadi V. Associations of Multiparametric Breast MRI Features, Tumor-Infiltrating Lymphocytes, and Immune Gene Signature Scores Following a Single Dose of Trastuzumab in HER2-Positive Early-Stage Breast Cancer. Cancers (Basel) 2023; 15:4337. [PMID: 37686613 PMCID: PMC10486523 DOI: 10.3390/cancers15174337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Dynamic biomarkers that permit the real-time monitoring of the tumor microenvironment response to therapy are an unmet need in breast cancer. Breast magnetic resonance imaging (MRI) has demonstrated value as a predictor of pathologic complete response and may reflect immune cell changes in the tumor microenvironment. The purpose of this pilot study was to investigate the value of breast MRI features as early markers of treatment-induced immune response. Fourteen patients with early HER2+ breast cancer were enrolled in a window-of-opportunity study where a single dose of trastuzumab was administered and both tissue and MRIs were obtained at the pre- and post-treatment stages. Functional diffusion-weighted and dynamic contrast-enhanced MRI tumor measures were compared with tumor-infiltrating lymphocytes (TILs) and RNA immune signature scores. Both the pre-treatment apparent diffusion coefficient (ADC) and the change in peak percent enhancement (DPE) were associated with increased tumor-infiltrating lymphocytes with trastuzumab therapy (r = -0.67 and -0.69, p < 0.01 and p < 0.01, respectively). Low pre-treatment ADC and a greater decrease in PE in response to treatment were also associated with immune-activated tumor microenvironments as defined by RNA immune signatures. Breast MRI features hold promise as biomarkers of early immune response to treatment in HER2+ breast cancer.
Collapse
Affiliation(s)
- Laura C. Kennedy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Anum S. Kazerouni
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Bonny Chau
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Debosmita Biswas
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Rebeca Alvarez
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Suzanne M. Dintzis
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sasha E. Stanton
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Cancer Immunoprevention Laboratory, Earle A. Chiles Research Institute, Portland, OR 97213, USA
| | - Savannah C. Partridge
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Vijayakrishna Gadi
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
31
|
Ecanow JS, Ecanow DB, Hack B, Leloudas N, Prasad PV. Feasibility of Diffusion Tensor Imaging for Decreasing Biopsy Rates in Breast Imaging: Interim Analysis of a Prospective Study. Diagnostics (Basel) 2023; 13:2226. [PMID: 37443620 DOI: 10.3390/diagnostics13132226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Because of the limited specificity of diagnostic imaging, many breast lesions referred for biopsy turn out to be benign. The objective of this study was to evaluate whether diffusion tensor MRI (DTI) parametric maps can be used to safely avoid biopsy of breast lesions. Individuals referred for breast biopsy based on mammogram (MG), ultrasound (US), and/or contrast enhanced (CE)-MRI were recruited. Scans consisting of T2-weighted and DTI sequences were performed. Multiple DTI-derived parametric color maps were evaluated semi-quantitatively to characterize lesions as "definitely benign," "not definitely benign," or "suspicious." All patients subsequently underwent biopsy. In this moderately-sized prospective study, 21 out of 47 pathologically proven benign lesions were characterized by both readers as "definitely benign," which would have precluded the need for biopsy. Biopsy was recommended for 11 out of 13 cancers that were characterized as "suspicious." In the remaining two cancers and 26 of 47 benign lesions, the scans were characterized as "not definitely benign" and hence required biopsy. The main causes for "not definitely benign" scans were small lesion sizes and noise. The results suggest that in appropriately selected patients, DTI may be used to safely reduce the number of unnecessary breast biopsies.
Collapse
Affiliation(s)
- Jacob S Ecanow
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - David B Ecanow
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Bradley Hack
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Nondas Leloudas
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Pottumarthi V Prasad
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| |
Collapse
|
32
|
Rotili A, Pesapane F, Signorelli G, Penco S, Nicosia L, Bozzini A, Meneghetti L, Zanzottera C, Mannucci S, Bonanni B, Cassano E. An Unenhanced Breast MRI Protocol Based on Diffusion-Weighted Imaging: A Retrospective Single-Center Study on High-Risk Population for Breast Cancer. Diagnostics (Basel) 2023; 13:1996. [PMID: 37370892 DOI: 10.3390/diagnostics13121996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
PURPOSE This study aimed to investigate the use of contrast-free magnetic resonance imaging (MRI) as an innovative screening method for detecting breast cancer in high-risk asymptomatic women. Specifically, the researchers evaluated the diagnostic performance of diffusion-weighted imaging (DWI) in this population. METHODS MR images from asymptomatic women, carriers of a germline mutation in either the BRCA1 or BRCA2 gene, collected in a single center from January 2019 to December 2021 were retrospectively evaluated. A radiologist with experience in breast imaging (R1) and a radiology resident (R2) independently evaluated DWI/ADC maps and, in case of doubts, T2-WI. The standard of reference was the pathological diagnosis through biopsy or surgery, or ≥1 year of clinical and radiological follow-up. Diagnostic performances were calculated for both readers with a 95% confidence interval (CI). The agreement was assessed using Cohen's kappa (κ) statistics. RESULTS Out of 313 women, 145 women were included (49.5 ± 12 years), totaling 344 breast MRIs with DWI/ADC maps. The per-exam cancer prevalence was 11/344 (3.2%). The sensitivity was 8/11 (73%; 95% CI: 46-99%) for R1 and 7/11 (64%; 95% CI: 35-92%) for R2. The specificity was 301/333 (90%; 95% CI: 87-94%) for both readers. The diagnostic accuracy was 90% for both readers. R1 recalled 40/344 exams (11.6%) and R2 recalled 39/344 exams (11.3%). Inter-reader reproducibility between readers was in moderate agreement (κ = 0.43). CONCLUSIONS In female carriers of a BRCA1/2 mutation, breast DWI supplemented with T2-WI allowed breast cancer detection with high sensitivity and specificity by a radiologist with extensive experience in breast imaging, which is comparable to other screening tests. The findings suggest that DWI and T2-WI have the potential to serve as a stand-alone method for unenhanced breast MRI screening in a selected population, opening up new perspectives for prospective trials.
Collapse
Affiliation(s)
- Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giulia Signorelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Cristina Zanzottera
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Sara Mannucci
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
33
|
Xie Z, Xu W, Zhang H, Li L, An Y, Mao G. The value of MRI for downgrading of breast suspicious lesions detected on ultrasound. BMC Med Imaging 2023; 23:72. [PMID: 37271827 DOI: 10.1186/s12880-023-01021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Most of suspicious lesions classified as breast imaging reporting and data system (BI-RADS) 4A and 4B categories on ultrasound (US) were benign, resulting in unnecessary biopsies. MRI has a high sensitivity to detect breast cancer and high negative predictive value (NPV) to exclude malignancy. The purpose of this study was to investigate the value of breast MRI for downgrading of suspicious lesions with BI-RADS 4A and 4B categories on US. METHODS Patients who underwent breast MRI for suspicious lesions classified as 4A and 4B categories were included in this retrospective study. Two radiologists were aware of the details of suspicious lesions detected on US and evaluated MR images. MRI BI-RADS categories were given by consensus on the basis on dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI). Pathological results and imaging follow-up at least 12 months were used as a reference standard. Sensitivity, specificity, positive predictive value (PPV), NPV and their 95% confidence interval (CI) were calculated for MRI findings. RESULTS One sixty seven patients with 186 lesions (US 4A category: 145, US 4B category: 41) consisted of the study cohort. The malignancy rate was 34.9% (65/186). On MRI, all malignancies showed true-positive results and 92.6% (112/121) benign lesions were correctly diagnosed. MRI increased PPV from 34.9% (65/186) to 87.8% (65/74) and reduced the false-positive biopsies by 92.6% (112/121). The sensitivity, specificity, PPV and NPV of MRI were 100% (95% CI: 94.5%-100%), 92.6% (95% CI: 86.3%-96.5%), 87.8% (95% CI: 78.2%-94.3%) and 100% (95% CI: 96.8%-100%), respectively. 2.2% (4/186) of suspicious lesions were additionally detected on MRI, 75% (3/4) of which were malignant. CONCLUSION MRI could downgrade suspicious lesions classified as BI-RADS 4A and 4B categories on US and avoided unnecessary benign biopsies without missing malignancy. Additional suspicious lesions detected on MRI needed further work-up.
Collapse
Affiliation(s)
- Zongyu Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui Province, China
| | - Wenjie Xu
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, China
| | - Hongxia Zhang
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Li Li
- Department of Ultrasonography, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Yongyu An
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 310006, Hangzhou, China.
| | - Guoqun Mao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China.
| |
Collapse
|
34
|
An Y. Comment on the value of multiparametric MRI in breast non-mass lesions. Eur J Radiol 2023; 163:110806. [PMID: 37015156 DOI: 10.1016/j.ejrad.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Yongyu An
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No. 54, Youdian Road, Hangzhou 310006, Zhejiang Province, China.
| |
Collapse
|
35
|
Park VY, Shin HJ, Kang BJ, Kim MJ, Moon WK, Song SE, Ha SM. Diffusion-Weighted Magnetic Resonance Imaging for Preoperative Evaluation of Patients With Breast Cancer: Protocol of a Prospective, Multicenter, Observational Cohort Study. J Breast Cancer 2023; 26:292-301. [PMID: 37272245 PMCID: PMC10315329 DOI: 10.4048/jbc.2023.26.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 06/06/2023] Open
Abstract
PURPOSE Detection of multifocal, multicentric, and contralateral breast cancers in patients affects surgical management. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can identify additional foci that were initially undetected by conventional imaging. However, its use is limited owing to low specificity and high false-positive rate. Multiparametric MRI (DCE-MRI + diffusion-weighted [DW] MRI) can increase the specificity. We aimed to describe the protocols of our prospective, multicenter, observational cohort studies designed to compare the diagnostic performance of DCE-MRI and multiparametric MRI for the diagnosis of multifocal, multicentric cancer and contralateral breast cancer in patients with newly diagnosed breast cancer. METHODS Two studies comparing the performance of DCE-MRI and multiparametric MRI for the diagnosis of multifocal, multicentric cancer (NCT04656639) and contralateral breast cancer (NCT05307757) will be conducted. For trial NCT04656639, 580 females with invasive breast cancer candidates for breast conservation surgery whose DCE-MRI showed additional suspicious lesions (breast imaging reporting and data system [BI-RADS] category ≥ 4) on DCE-MRI in the ipsilateral breast will be enrolled. For trial NCT05307757, 1098 females with invasive breast cancer whose DCE-MRI showed contralateral lesions (BI-RADS category ≥ 3 or higher on DCE-MRI) will be enrolled. Participants will undergo 3.0-T DCE-MRI and DW-MRI. The diagnostic performance of DCE-MRI and multiparametric MRI will be compared. The receiver operating characteristic curve, sensitivity, specificity, positive predictive value, and characteristics of the detected cancers will be analyzed. The primary outcome is the difference in the receiver operating characteristic curve between DCE-MRI and multiparametric MRI interpretation. Enrollment completion is expected in 2024, and study results are expected to be presented in 2026. DISCUSSION This prospective, multicenter study will compare the performance of DCE-MRI versus multiparametric MRI for the preoperative evaluation of multifocal, multicentric, and contralateral breast cancer and is currently in the patient enrollment phase. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04656639, NCT05307757. Registered on April 1 2022.
Collapse
Affiliation(s)
- Vivian Youngjean Park
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Jung Shin
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bong Joo Kang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Jung Kim
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Sung Eun Song
- Department of Radiology, Korea University Hospital, Korea University College of Medicine, Seoul, Korea.
| | - Su Min Ha
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
36
|
Yao FF, Zhang Y. A review of quantitative diffusion-weighted MR imaging for breast cancer: Towards noninvasive biomarker. Clin Imaging 2023; 98:36-58. [PMID: 36996598 DOI: 10.1016/j.clinimag.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Quantitative diffusion-weighted imaging (DWI) is an important adjunct to conventional breast MRI and shows promise as a noninvasive biomarker of breast cancer in multiple clinical scenarios, from the discrimination of benign and malignant lesions, prediction, and evaluation of treatment response to a prognostic assessment of breast cancer. Various quantitative parameters are derived from different DWI models based on special prior knowledge and assumptions, have different meanings, and are easy to confuse. In this review, we describe the quantitative parameters derived from conventional and advanced DWI models commonly used in breast cancer and summarize the promising clinical applications of these quantitative parameters. Although promising, it is still challenging for these quantitative parameters to become clinically useful noninvasive biomarkers in breast cancer, as multiple factors may result in variations in quantitative parameter measurements. Finally, we briefly describe some considerations regarding the factors that cause variations.
Collapse
Affiliation(s)
- Fei-Fei Yao
- Department of MRI in the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| | - Yan Zhang
- Department of MRI in the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Milon A, Flament V, Gueniche Y, Kermarrec E, Chabbert-Buffet N, Darai É, Touboul C, Razakamanantsoa L, Thomassin-Naggara I. How to optimize MRI breast protocol? The value of combined analysis of ultrafast and diffusion-weighted MRI sequences. Diagn Interv Imaging 2023; 104:284-291. [PMID: 36801096 DOI: 10.1016/j.diii.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE The purpose of this retrospective study was to demonstrate the validity of early enhancement criteria on ultrafast magnetic resonance imaging (MRI) sequence to predict malignancy in a large population, and the benefit of diffusion-weighted imaging (DWI) to improve the performance of breast MRI. MATERIAL AND METHODS Women who underwent breast MRI examination between April 2018 and September 2020 and further breast biopsy were retrospectively included. Two readers quoted the different conventional features and classified the lesion according to the BI-RADS classification based on the conventional protocol. Then, the readers checked for the presence of early enhancement (≤ 30 s) on ultrafast sequence and the presence of an apparent diffusion coefficient (ADC) ≥ 1.5 × 10-3 mm2/s to classify the lesions based on morphology and these two functional criteria only. RESULTS Two hundred fifty-seven women (median age: 51 years; range: 16-92 years) with 436 lesions (157 benign, 11 borderline and 268 malignant) were included. A MRI protocol plus two simple functional features, early enhancement (≤ 30 s) and an ADC value ≥ 1.5 × 10-3 mm2/s, had a greater accuracy than the conventional protocol to distinguish benign from malignant breast lesions with or without ADC value (P = 0.01 and P = 0.001, respectively) on MRI, mainly due to better classification of benign lesions (increased specificity) with increasing diagnostic confidence of 3.7% and 7.8% respectively. CONCLUSION BI-RADS analysis based on a simple short MRI protocol plus early enhancement on ultrafast sequence and ADC value has a greaterr diagnostic accuracy than a conventional protocol and may avoid unnecessary biopsy.
Collapse
Affiliation(s)
- Audrey Milon
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France.
| | - Vincent Flament
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France
| | - Yoram Gueniche
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France
| | - Edith Kermarrec
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France
| | - Nathalie Chabbert-Buffet
- Sorbonne Université, Institut Universitaire de Cancérologie, 75005, Paris, France; Department of Gynecology and Obstetrics, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France
| | - Émile Darai
- Sorbonne Université, Institut Universitaire de Cancérologie, 75005, Paris, France; Department of Gynecology and Obstetrics, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France
| | - Cyril Touboul
- Sorbonne Université, Institut Universitaire de Cancérologie, 75005, Paris, France; Department of Gynecology and Obstetrics, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France
| | - Leo Razakamanantsoa
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France
| | - Isabelle Thomassin-Naggara
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France; Sorbonne Université, Institut Universitaire de Cancérologie, 75005, Paris, France
| |
Collapse
|
38
|
Kazerouni AS, Rahbar H, Partridge SC. Is NME the enemy of breast DWI? Eur J Radiol 2023; 159:110648. [PMID: 36571925 PMCID: PMC10601596 DOI: 10.1016/j.ejrad.2022.110648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Anum S Kazerouni
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Habib Rahbar
- Department of Radiology, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
39
|
Jones LI, Klimczak K, Geach R. Breast MRI: an illustration of benign findings. Br J Radiol 2023; 96:20220280. [PMID: 36488196 PMCID: PMC9975519 DOI: 10.1259/bjr.20220280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 12/13/2022] Open
Abstract
Despite its unparalleled sensitivity for aggressive breast cancer, breast MRI continually excites criticism for a specificity that lags behind that of modern mammographic techniques. Radiologists reporting breast MRI need to recognise the range of benign appearances on breast MRI to avoid unnecessary biopsy. This review summarises the reported diagnostic accuracy of breast MRI with particular attention to the technique's specificity, provides a referenced reporting strategy and discusses factors that compromise diagnostic confidence. We then present a pictorial review of benign findings on breast MRI. Enhancing radiological skills to discriminate malignant from benign findings will minimise false positive biopsies, enabling optimal use of multiparametric breast MRI for the benefit of screening clients and breast cancer patients.
Collapse
Affiliation(s)
- Lyn Isobel Jones
- Bristol Breast Care Centre, North Bristol NHS Trust, Bristol, United Kingdom
| | - Katherine Klimczak
- Bristol Breast Care Centre, North Bristol NHS Trust, Bristol, United Kingdom
| | - Rebecca Geach
- Bristol Breast Care Centre, North Bristol NHS Trust, Bristol, United Kingdom
| |
Collapse
|
40
|
Wang C, Wang G, Zhang Y, Dai Y, Yang D, Wang C, Li J. Differentiation of benign and malignant breast lesions using diffusion-weighted imaging with a fractional-order calculus model. Eur J Radiol 2023; 159:110646. [PMID: 36577184 DOI: 10.1016/j.ejrad.2022.110646] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess the feasibility of using three diffusion parameters (D, β, and μ) derived from fractional-order calculus (FROC) diffusion model for improving the differentiation between benign and malignant breast lesions. METHOD In this prospective study, 103 patients with breast lesions were enrolled. All subjects underwent diffusion-weighted imaging (DWI) with 12b values. Inter-observer agreement with respect to quantification of parameters by two radiologists was assessed using intraclass coefficient. Conventional apparent diffusion coefficient (ADC) and three FROC model parameters D, β, and μ were compared between the benign lesion and malignant lesion groups using the Mann-Whitney U test. Then, a comprehensive prediction model was created by using binary logistic regression. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of the parameters using histopathological diagnosis as the reference standard. RESULTS The FROC parameters and ADC all exhibited significant differences between benign lesions and malignant lesions (P<0.001). Among the individual parameters, the sensitivity of μ was higher than ADC (95.92% for μ vs 91.84% for ADC), and the specificity of β was higher than ADC (72.22% for β vs 70.37% for ADC). The combination of ADC and FROC parameters (D and β) generated the largest area under the ROC curve (0.841) when compared with individual parameters, indicating an improved performance for differentiating benign lesions from malignant lesions. CONCLUSIONS This study demonstrated the feasibility of using the FROC diffusion model to improve the accuracy of identifying malignant breast lesions.
Collapse
Affiliation(s)
- Chunhong Wang
- Department of Radiology, Xinyang Central Hospital, No. 01 Xinyang Siyi Road, Xinyang 464000, Henan, China
| | - Guanying Wang
- Department of Radiology, Xinyang Central Hospital, No. 01 Xinyang Siyi Road, Xinyang 464000, Henan, China
| | - Yunfei Zhang
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Yongming Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Dan Yang
- Department of Radiology, Xinyang Central Hospital, No. 01 Xinyang Siyi Road, Xinyang 464000, Henan, China
| | - Changfu Wang
- Imaging department, Huaihe Hospital, Henan University, Kaifeng, 475000, Henan, China
| | - Jianhong Li
- Department of Radiology, Xinyang Central Hospital, No. 01 Xinyang Siyi Road, Xinyang 464000, Henan, China.
| |
Collapse
|
41
|
Breast density is strongly associated with multiparametric magnetic resonance imaging biomarkers and pro-tumorigenic proteins in situ. Br J Cancer 2022; 127:2025-2033. [PMID: 36138072 PMCID: PMC9681775 DOI: 10.1038/s41416-022-01976-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND High mammographic density is an independent risk factor for breast cancer by poorly understood molecular mechanisms. Women with dense breasts often undergo conventional magnetic resonance imaging (MRI) despite its limited specificity, which may be increased by diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) and contrast. How these modalities are affected by breast density per se and their association with the local microenvironment are undetermined. METHODS Healthy postmenopausal women attending mammography screen with extremely dense or entirely fatty breasts underwent multiparametric MRI for analyses of lean tissue fraction (LTF), ADC and perfusion dynamics. Microdialysis was used for extracellular proteomics in situ. RESULTS Significantly increased LTF and ADC and delayed perfusion were detected in dense breasts. In total, 270 proteins were quantified, whereof 124 related to inflammation, angiogenesis, and cellular growth were significantly upregulated in dense breasts. Most of these correlated significantly with LTF, ADC and the perfusion data. CONCLUSIONS ADC and perfusion characteristics depend on breast density, which should be considered during the implementation of thresholds for malignant lesions. Dense and nondense breasts are two essentially different biological entities, with a pro-tumorigenic microenvironment in dense breasts. Our data reveal several novel pathways that may be explored for breast cancer prevention strategies.
Collapse
|
42
|
Ji Lee E, Chang YW, Kon Sung J, Thomas B. Feasibility of deep learning k-space-to-image reconstruction for diffusion weighted imaging in patients with breast cancers: focus on image quality and reduced scan time. Eur J Radiol 2022; 157:110608. [DOI: 10.1016/j.ejrad.2022.110608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
|
43
|
Marino MA, Avendano D, Sevilimedu V, Thakur S, Martinez D, Lo Gullo R, Horvat JV, Helbich TH, Baltzer PAT, Pinker K. Limited value of multiparametric MRI with dynamic contrast-enhanced and diffusion-weighted imaging in non-mass enhancing breast tumors. Eur J Radiol 2022; 156:110523. [PMID: 36122521 PMCID: PMC10014485 DOI: 10.1016/j.ejrad.2022.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE To investigate the diagnostic value of multiparametric MRI (mpMRI) including dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) in non-mass enhancing breast tumors. METHOD Patients who underwent mpMRI, who were diagnosed with a suspicious non-mass enhancement (NME) on DCE-MRI (BI-RADS 4/5), and who subsequently underwent image-guided biopsy were retrospectively included. Two radiologists independently evaluated all NMEs, on both DCE-MR images and high-b-value DW images. Different mpMRI reading approaches were evaluated: 1) with a fixed apparent diffusion coefficient (ADC) threshold (<1.3 malignant, ≥1.3 benign) based on the recommendation by the European Society of Breast Imaging (EUSOBI); 2) with a fixed ADC threshold (<1.5 malignant, ≥1.5 benign) based on recently published trial data; 3) with an ADC threshold adapted to the assigned BI-RADS classification using a previously published reading method; and 4) with individually determined best thresholds for each reader. RESULTS The final study sample consisted of 66 lesions in 66 patients. DCE-MRI alone had the highest sensitivity for breast cancer detection (94.8-100 %), outperforming all mpMRI reading approaches (R1 74.4-87.1 %, R2 71.7-94.8 %) and DWI alone (R1 74.4 %, R2 79.4 %). The adapted approach achieved the best specificity for both readers (85.1 %), resulting in the best diagnostic accuracy for R1 (86.5 %) but a moderate diagnostic accuracy for R2 (77.2 %). CONCLUSION mpMRI has limited added diagnostic value to DCE-MRI in the assessment of NME.
Collapse
Affiliation(s)
- Maria Adele Marino
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY, USA; Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| | - Daly Avendano
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY, USA; Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Nuevo Leon, Mexico
| | - Varadan Sevilimedu
- Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY, USA
| | - Sunitha Thakur
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Danny Martinez
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY, USA
| | - Roberto Lo Gullo
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY, USA
| | - Joao V Horvat
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY, USA
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Pascal A T Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Katja Pinker
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY, USA.
| |
Collapse
|
44
|
Rahmat K, Mumin NA, Hamid MTR, Hamid SA, Ng WL. MRI Breast: Current Imaging Trends, Clinical Applications, and Future Research Directions. Curr Med Imaging 2022; 18:1347-1361. [PMID: 35430976 DOI: 10.2174/1573405618666220415130131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023]
Abstract
Magnetic Resonance Imaging (MRI) is the most sensitive and advanced imaging technique in diagnosing breast cancer and is essential in improving cancer detection, lesion characterization, and determining therapy response. In addition to the dynamic contrast-enhanced (DCE) technique, functional techniques such as magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), diffusion kurtosis imaging (DKI), and intravoxel incoherent motion (IVIM) further characterize and differentiate benign and malignant lesions thus, improving diagnostic accuracy. There is now an increasing clinical usage of MRI breast, including screening in high risk and supplementary screening tools in average-risk patients. MRI is becoming imperative in assisting breast surgeons in planning breast-conserving surgery for preoperative local staging and evaluation of neoadjuvant chemotherapy response. Other clinical applications for MRI breast include occult breast cancer detection, investigation of nipple discharge, and breast implant assessment. There is now an abundance of research publications on MRI Breast with several areas that still remain to be explored. This review gives a comprehensive overview of the clinical trends of MRI breast with emphasis on imaging features and interpretation using conventional and advanced techniques. In addition, future research areas in MRI breast include developing techniques to make MRI more accessible and costeffective for screening. The abbreviated MRI breast procedure and an area of focused research in the enhancement of radiologists' work with artificial intelligence have high impact for the future in MRI Breast.
Collapse
Affiliation(s)
- Kartini Rahmat
- Department of Biomedical Imaging, University Malaya Research Imaging Centre, Faculty of Medicine, Kuala Lumpur, Malaysia
| | - Nazimah Ab Mumin
- Department of Radiology, Faculty of Medicine, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Marlina Tanty Ramli Hamid
- Department of Radiology, Faculty of Medicine, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Shamsiah Abdul Hamid
- Department of Radiology, Faculty of Medicine, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Wei Lin Ng
- Department of Biomedical Imaging, University Malaya Research Imaging Centre, Faculty of Medicine, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Lo Gullo R, Sevilimedu V, Baltzer P, Le Bihan D, Camps-Herrero J, Clauser P, Gilbert FJ, Iima M, Mann RM, Partridge SC, Patterson A, Sigmund EE, Thakur S, Thibault FE, Martincich L, Pinker K. A survey by the European Society of Breast Imaging on the implementation of breast diffusion-weighted imaging in clinical practice. Eur Radiol 2022; 32:6588-6597. [PMID: 35507050 PMCID: PMC9064723 DOI: 10.1007/s00330-022-08833-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To perform a survey among all European Society of Breast Imaging (EUSOBI) radiologist members to gather representative data regarding the clinical use of breast DWI. METHODS An online questionnaire was developed by two board-certified radiologists, reviewed by the EUSOBI board and committees, and finally distributed among EUSOBI active and associated (not based in Europe) radiologist members. The questionnaire included 20 questions pertaining to technical preferences (acquisition time, magnet strength, breast coils, number of b values), clinical indications, imaging evaluation, and reporting. Data were analyzed using descriptive statistics, the Chi-square test of independence, and Fisher's exact test. RESULTS Of 1411 EUSOBI radiologist members, 275/1411 (19.5%) responded. Most (222/275, 81%) reported using DWI as part of their routine protocol. Common indications for DWI include lesion characterization (using an ADC threshold of 1.2-1.3 × 10-3 mm2/s) and prediction of response to chemotherapy. Members most commonly acquire two separate b values (114/217, 53%), with b value = 800 s/mm2 being the preferred value for appraisal among those acquiring more than two b values (71/171, 42%). Most did not use synthetic b values (169/217, 78%). While most mention hindered diffusion in the MRI report (161/213, 76%), only 142/217 (57%) report ADC values. CONCLUSION The utilization of DWI in clinical practice among EUSOBI radiologists who responded to the survey is generally in line with international recommendations, with the main application being the differentiation of benign and malignant enhancing lesions, treatment response assessment, and prediction of response to chemotherapy. Report integration of qualitative and quantitative DWI data is not uniform. KEY POINTS • Clinical performance of breast DWI is in good agreement with the current recommendations of the EUSOBI International Breast DWI working group. • Breast DWI applications in clinical practice include the differentiation of benign and malignant enhancing, treatment response assessment, and prediction of response to chemotherapy. • Report integration of DWI results is not uniform.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, New York, NY, 10065, USA
| | - Varadan Sevilimedu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Ave, NY, New York, 10017, USA
| | - Pascal Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna/Vienna General Hospital, Wien, Austria
| | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Paris-Saclay University, Gif-sur-Yvette, France
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- National Institute for Physiological Sciences, Okazaki, Japan
| | | | - Paola Clauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna/Vienna General Hospital, Wien, Austria
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Ritse M Mann
- Department of Diagnostic Imaging, Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Savannah C Partridge
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew Patterson
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Eric E Sigmund
- Department of Radiology, NYU Langone Health, 6, 60 1st Avenue, New York, NY, 10016, USA
| | - Sunitha Thakur
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, New York, NY, 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, New York, NY, 10065, USA
| | - Fabienne E Thibault
- Department of Medical Imaging, Institut Curie, 26 Rue d'Ulm, F-75005, Paris, France
| | - Laura Martincich
- Unit of Radiodiagnostics, Ospedale Cardinal G. Massaia -ASL AT, Via Conte Verde 125, 14100, Asti, Italy
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, New York, NY, 10065, USA.
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna/Vienna General Hospital, Wien, Austria.
| |
Collapse
|
46
|
Penn A, Medved M, Abe H, Dialani V, Karczmar GS, Brousseau D. Safely reducing unnecessary benign breast biopsies by applying non-mass and DWI directional variance filters to ADC thresholding. BMC Med Imaging 2022; 22:171. [PMID: 36175878 PMCID: PMC9524062 DOI: 10.1186/s12880-022-00897-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Thresholding apparent diffusion coefficient (ADC) maps obtained from Diffusion-Weighted-Imaging (DWI) has been proposed for identifying benign lesions that can safely avoid biopsy. The presence of malignancies with high ADC values leads to high thresholds, limiting numbers of avoidable biopsies.
Purpose We evaluate two previously reported methods for identifying avoidable biopsies: using case-set dependent ADC thresholds that assure 100% sensitivity and using negative likelihood ratio (LR-) with a fixed ADC threshold of 1.50 × 10–3 mm2/s. We evaluated improvements in efficacy obtained by excluding non-mass lesions and lesions with anisotropic intra-lesion morphologic characteristics. Study type Prospective. Population 55 adult females with dense breasts with 69 BI-RADS 4 or 5 lesions (38 malignant, 31 benign) identified on ultrasound and mammography and imaged with MRI prior to biopsy. Field strength/sequence 1.5 T and 3.0 T. DWI. Assessment Analysis of DWI, including directional images was done on an ROI basis. ROIs were drawn on DWI images acquired prior to biopsy, referencing all available images including DCE, and mean ADC was measured. Anisotropy was quantified via variation in ADC values in the lesion core across directional DWI images. Statistical tests Improvement in specificity at 100% sensitivity was evaluated with exact McNemar test with 1-sided p-value < 0.05 indicating statistical significance. Results Using ADC thresholding that assures 100% sensitivity, non-mass and directional variance filtering improved the percent of avoidable biopsies to 42% from baseline of 10% achieved with ADC thresholding alone. Using LR-, filtering improved outcome to 0.06 from baseline 0.25 with ADC thresholding alone. ADC thresholding showed a lower percentage of avoidable biopsies in our cohort than reported in prior studies. When ADC thresholding was supplemented with filtering, the percentage of avoidable biopsies exceeded those of prior studies. Data conclusion Supplementing ADC thresholding with filters excluding non-mass lesions and lesions with anisotropic characteristics on DWI can result in an increased number of avoidable biopsies.
Collapse
Affiliation(s)
- Alan Penn
- Alan Penn and Associates, Inc., Rockville, MD, 20850, USA.
| | | | | | - Vandana Dialani
- Beth Israel Deaconess Medical Center, Boston, MA, 02467, USA
| | | | | |
Collapse
|
47
|
Can DWI provide additional value to Kaiser score in evaluation of breast lesions. Eur Radiol 2022; 32:5964-5973. [PMID: 35357535 DOI: 10.1007/s00330-022-08674-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To explore added value of diffusion-weighted imaging (DWI) as an adjunct to Kaiser score (KS) for differentiation of benign from malignant lesions on breast magnetic resonance imaging (MRI). METHODS Two hundred forty-six patients with 273 lesions (155 malignancies) were included in this retrospective study from January 2015 to December 2019. All lesions were proved by pathology. Two radiologists blind to pathological results evaluated lesions according to KS. Lesions with score > 4 were considered malignant. Four thresholds of ADC values -1.3 × 10-3mm2/s, 1.4 × 10-3mm2/s, 1.53 × 10-3mm2/s, and 1.6 × 10-3mm2/s were used to distinguish benign from malignant lesions. For combined diagnosis, a lesion with KS > 4 and ADC values below the preset cutoffs was considered as malignant; otherwise, it was benign. Sensitivity, specificity, and area under the curve (AUC) were compared between KS, DWI, and combined diagnosis. RESULTS The AUC of KS was significantly higher than that of DWI alone (0.941 vs 0.901, p = 0.04). The sensitivity of KS (96.8%) and DWI (97.4 - 99.4%) was comparable (p > 0.05) while the specificity of KS (83.9%) was significantly higher than that of DWI (19.5-56.8%) (p < 0.05). Adding DWI as an adjunct to KS resulted in a 0-2.5% increase of specificity and a 0.1-1.3% decrease of sensitivity; however, the difference did not reach statistical significance (p > 0.05). CONCLUSION KS showed higher diagnostic performance than DWI alone for discrimination of breast benign and malignant lesions. DWI showed no additional value to KS for characterizing breast lesions. KEY POINTS • KS showed higher diagnostic performance than DWI alone for differentiation of benign from breast malignant lesions. • DWI alone showed a high sensitivity but a low specificity for characterizing breast lesions. • Diagnostic performance did not improve using DWI as an adjunct to KS.
Collapse
|
48
|
Gelardi F, Ragaini EM, Sollini M, Bernardi D, Chiti A. Contrast-Enhanced Mammography versus Breast Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:1890. [PMID: 36010240 PMCID: PMC9406751 DOI: 10.3390/diagnostics12081890] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Contrast-enhanced mammography (CEM) and contrast-enhanced magnetic resonance imaging (CE-MRI) are commonly used in the screening of breast cancer. The present systematic review aimed to summarize, critically analyse, and meta-analyse the available evidence regarding the role of CE-MRI and CEM in the early detection, diagnosis, and preoperative assessment of breast cancer. METHODS The search was performed on PubMed, Google Scholar, and Web of Science on 28 July 2021 using the following terms "breast cancer", "preoperative staging", "contrast-enhanced mammography", "contrast-enhanced spectral mammography", "contrast enhanced digital mammography", "contrast-enhanced breast magnetic resonance imaging" "CEM", "CESM", "CEDM", and "CE-MRI". We selected only those papers comparing the clinical efficacy of CEM and CE-MRI. The study quality was assessed using the QUADAS-2 criteria. The pooled sensitivities and specificity of CEM and CE-MRI were computed using a random-effects model directly from the STATA "metaprop" command. The between-study statistical heterogeneity was tested (I2-statistics). RESULTS Nineteen studies were selected for this systematic review. Fifteen studies (1315 patients) were included in the metanalysis. Both CEM and CE-MRI detect breast lesions with a high sensitivity, without a significant difference in performance (97% and 96%, respectively). CONCLUSIONS Our findings confirm the potential of CEM as a supplemental screening imaging modality, even for intermediate-risk women, including females with dense breasts and a history of breast cancer.
Collapse
Affiliation(s)
- Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Elisa Maria Ragaini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Daniela Bernardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
49
|
Lee SA, Lee Y, Ryu HS, Jang MJ, Moon WK, Moon HG, Lee SH. Diffusion-weighted Breast MRI in Prediction of Upstaging in Women with Biopsy-proven Ductal Carcinoma in Situ. Radiology 2022; 305:307-316. [PMID: 35787199 DOI: 10.1148/radiol.213174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Accurate preoperative prediction of upstaging in women with biopsy-proven ductal carcinoma in situ (DCIS) is important for surgical planning, but published models using predictive MRI features remain lacking. Purpose To develop and validate a predictive model based on preoperative breast MRI to predict upstaging in women with biopsy-proven DCIS and to select high-risk women who may benefit from sentinel lymph node biopsy at initial surgery. Materials and methods Consecutive women with biopsy-proven DCIS who underwent preoperative 3.0-T breast MRI including dynamic contrast-enhanced (DCE) MRI and diffusion-weighted imaging (DWI) and who underwent surgery between June 2019 and March 2020 were retrospectively identified (development set) from an academic medical center. The apparent diffusion coefficients of lesions from DWI, lesion size and morphologic features on DCE MRI scans, mammographic findings, age, symptoms, biopsy method, and DCIS grade at biopsy were collected. The presence of invasive cancer and axillary metastases was determined with surgical pathology. A predictive model for upstaging was developed by using multivariable logistic regression and validated in a subsequent prospective internal validation set recruited between July 2020 and April 2021. Results Fifty-seven (41%) of 140 women (mean age, 53 years ± 11 [SD]) in the development set and 43 (41%) of 105 women (mean age, 53 years ± 10) in the validation set were upstaged after surgery. The predictive model combining DWI and clinical-pathologic factors showed the areas under the receiver operating characteristic curve at 0.87 (95% CI: 0.80, 0.92) in the development set and 0.76 (95% CI: 0.67, 0.84) in the validation set. The predicted probability of invasive cancer showed good interobserver agreement (intraclass correlation coefficient, 0.79); the positive predictive value was 85% (28 of 33), and the negative predictive value was 92% (22 of 24). Conclusion A predictive model based on diffusion-weighted breast MRI identified women at high risk of upstaging. © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Baltzer in this issue.
Collapse
Affiliation(s)
- Shin Ae Lee
- From the Departments of Surgery (S.A.L., H.G.M.), Radiology (Y.L., W.K.M., S.H.L.), and Pathology (H.S.R.), Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; and Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea (M.J.J.)
| | - Youkyoung Lee
- From the Departments of Surgery (S.A.L., H.G.M.), Radiology (Y.L., W.K.M., S.H.L.), and Pathology (H.S.R.), Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; and Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea (M.J.J.)
| | - Han Suk Ryu
- From the Departments of Surgery (S.A.L., H.G.M.), Radiology (Y.L., W.K.M., S.H.L.), and Pathology (H.S.R.), Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; and Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea (M.J.J.)
| | - Myoung-Jin Jang
- From the Departments of Surgery (S.A.L., H.G.M.), Radiology (Y.L., W.K.M., S.H.L.), and Pathology (H.S.R.), Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; and Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea (M.J.J.)
| | - Woo Kyung Moon
- From the Departments of Surgery (S.A.L., H.G.M.), Radiology (Y.L., W.K.M., S.H.L.), and Pathology (H.S.R.), Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; and Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea (M.J.J.)
| | - Hyeong-Gon Moon
- From the Departments of Surgery (S.A.L., H.G.M.), Radiology (Y.L., W.K.M., S.H.L.), and Pathology (H.S.R.), Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; and Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea (M.J.J.)
| | - Su Hyun Lee
- From the Departments of Surgery (S.A.L., H.G.M.), Radiology (Y.L., W.K.M., S.H.L.), and Pathology (H.S.R.), Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; and Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea (M.J.J.)
| |
Collapse
|
50
|
Besser AH, Fang LK, Tong MW, Sjaastad Andreassen MM, Ojeda-Fournier H, Conlin CC, Loubrie S, Seibert TM, Hahn ME, Kuperman JM, Wallace AM, Dale AM, Rodríguez-Soto AE, Rakow-Penner RA. Tri-Compartmental Restriction Spectrum Imaging Breast Model Distinguishes Malignant Lesions from Benign Lesions and Healthy Tissue on Diffusion-Weighted Imaging. Cancers (Basel) 2022; 14:cancers14133200. [PMID: 35804972 PMCID: PMC9264763 DOI: 10.3390/cancers14133200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/02/2023] Open
Abstract
Diffusion-weighted MRI (DW-MRI) offers a potential adjunct to dynamic contrast-enhanced MRI to discriminate benign from malignant breast lesions by yielding quantitative information about tissue microstructure. Multi-component modeling of the DW-MRI signal over an extended b-value range (up to 3000 s/mm2) theoretically isolates the slowly diffusing (restricted) water component in tissues. Previously, a three-component restriction spectrum imaging (RSI) model demonstrated the ability to distinguish malignant lesions from healthy breast tissue. We further evaluated the utility of this three-component model to differentiate malignant from benign lesions and healthy tissue in 12 patients with known malignancy and synchronous pathology-proven benign lesions. The signal contributions from three distinct diffusion compartments were measured to generate parametric maps corresponding to diffusivity on a voxel-wise basis. The three-component model discriminated malignant from benign and healthy tissue, particularly using the restricted diffusion C1 compartment and product of the restricted and intermediate diffusion compartments (C1 and C2). However, benign lesions and healthy tissue did not significantly differ in diffusion characteristics. Quantitative discrimination of these three tissue types (malignant, benign, and healthy) in non-pre-defined lesions may enhance the clinical utility of DW-MRI in reducing excessive biopsies and aiding in surveillance and surgical evaluation without repeated exposure to gadolinium contrast.
Collapse
Affiliation(s)
- Alexandra H. Besser
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
| | - Lauren K. Fang
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
| | - Michelle W. Tong
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
| | - Maren M. Sjaastad Andreassen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Postboks 8905, 7491 Trondheim, Norway;
| | - Haydee Ojeda-Fournier
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
| | - Christopher C. Conlin
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
| | - Stéphane Loubrie
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
| | - Tyler M. Seibert
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Michael E. Hahn
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
| | - Joshua M. Kuperman
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
| | - Anne M. Wallace
- Department of Surgery, University of California-San Diego, La Jolla, CA 92093, USA;
| | - Anders M. Dale
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
- Department of Neuroscience, University of California-San Diego, La Jolla, CA 92093, USA
| | - Ana E. Rodríguez-Soto
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
| | - Rebecca A. Rakow-Penner
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.B.); (L.K.F.); (M.W.T.); (H.O.-F.); (C.C.C.); (S.L.); (T.M.S.); (M.E.H.); (J.M.K.); (A.M.D.); (A.E.R.-S.)
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
- Correspondence:
| |
Collapse
|