1
|
Recio-Aldavero J, Parra-Gutiérrez L, Muñoz-Moreno L, Román ID, Arenas MI, Bajo AM. Characterisation of Castration-Resistant Cell-Derived Exosomes and Their Effect on the Metastatic Phenotype. Cancers (Basel) 2025; 17:141. [PMID: 39796768 PMCID: PMC11719961 DOI: 10.3390/cancers17010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PCa) is characterised by its progression to a metastatic and castration-resistant phase. Prostate tumour cells release small extracellular vesicles or exosomes which are taken up by target cells and can potentially facilitate tumour growth and metastasis. The present work studies the effect of exosomes from cell lines that are representative of the different stages of the disease on the tumoral phenotype of PC3 cells. METHODS Exosomes were isolated by ultracentrifugation from human prostate epithelial cells (RWPE-1) and androgen-dependent PCa cells (LNCaP) and castration-resistant PCa cells (CRPC) with moderate (DU145) or high (PC3) metastatic capacity. The biophysical and biochemical properties of the exosomes were characterised as well as their effects on PC3 cell viability and migration. RESULTS The study of the exosomes of prostate cell lines shows heterogeneity in their size, presenting in some of them two types of populations; in both populations, a larger size in those derived from PC3 cells and a smaller size in those derived from non-tumourigenic prostate cells were detected. Differences were found in the physical properties of those derived from healthy and PCa cells, as well as between cells representative of the most aggressive stages of the disease. The highest gamma-glutamyl transferase (GGT) activity was observed in androgen-dependent cells and differences in the pro-metalloproteinases (MMP) activity were detected in healthy cells and in castration-resistant cells with moderate metastatic capacity with respect to PC3 cells. The treatment of PC3 cells with their own exosomes increased PC3 cell viability and migration. CONCLUSION Exosomes represent a promising field of research in the diagnosis, prognosis, and treatment of prostate cancer.
Collapse
Affiliation(s)
- Jorge Recio-Aldavero
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Lorena Parra-Gutiérrez
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Laura Muñoz-Moreno
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Irene D. Román
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - María Isabel Arenas
- Unidad de Biología Celular, Departamento de Biomedicina y Biotecnología, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Ana M. Bajo
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| |
Collapse
|
2
|
Bakht MK, Beltran H. Biological determinants of PSMA expression, regulation and heterogeneity in prostate cancer. Nat Rev Urol 2025; 22:26-45. [PMID: 38977769 DOI: 10.1038/s41585-024-00900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/10/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is an important cell-surface imaging biomarker and therapeutic target in prostate cancer. The PSMA-targeted theranostic 177Lu-PSMA-617 was approved in 2022 for men with PSMA-PET-positive metastatic castration-resistant prostate cancer. However, not all patients respond to PSMA-radioligand therapy, in part owing to the heterogeneity of PSMA expression in the tumour. The PSMA regulatory network is composed of a PSMA transcription complex, an upstream enhancer that loops to the FOLH1 (PSMA) gene promoter, intergenic enhancers and differentially methylated regions. Our understanding of the PSMA regulatory network and the mechanisms underlying PSMA suppression is evolving. Clinically, molecular imaging provides a unique window into PSMA dynamics that occur on therapy and with disease progression, although challenges arise owing to the limited resolution of PET. PSMA regulation and heterogeneity - including intertumoural and inter-patient heterogeneity, temporal changes, lineage dynamics and the tumour microenvironment - affect PSMA theranostics. PSMA response and resistance to radioligand therapy are mediated by a number of potential mechanisms, and complementary biomarkers beyond PSMA are under development. Understanding the biological determinants of cell surface target regulation and heterogeneity can inform precision medicine approaches to PSMA theranostics as well as other emerging therapies.
Collapse
Affiliation(s)
- Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Rupp NJ, Freiberger SN, Ferraro DA, Laudicella R, Heimer J, Muehlematter UJ, Poyet C, Moch H, Eberli D, Rüschoff JH, Burger IA. Immunohistochemical ERG positivity is associated with decreased PSMA expression and lower visibility in corresponding [ 68Ga]Ga-PSMA-11 PET scans of primary prostate cancer. Eur J Nucl Med Mol Imaging 2024; 52:305-313. [PMID: 39083067 PMCID: PMC11599624 DOI: 10.1007/s00259-024-06856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/17/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE TMPRSS2:ERG gene fusion negatively regulates PSMA expression in prostate adenocarcinoma (PCa) cell lines. Therefore, immunohistochemical (IHC) ERG expression, a surrogate for an underlying ERG rearrangement, and PSMA expression patterns in radical prostatectomy (RPE) specimens of primary PCa, including corresponding PSMA-PET scans were investigated. METHODS Two cohorts of RPE samples (total n=148): In cohort #1 (n=62 patients) with available RPE and preoperative [68Ga]Ga-PSMA-11 PET, WHO/ISUP grade groups, IHC-ERG (positive vs. negative) and IHC-PSMA expression (% PSMA-negative tumour area, PSMA%neg) were correlated with the corresponding SUVmax. In the second cohort #2 (n=86 patients) including RPE only, same histopathological parameters were evaluated. RESULTS Cohort #1: PCa with IHC-ERG expression (35.5%) showed significantly lower IHC-PSMA expression and lower SUVmax values on the corresponding PET scans. Eight of 9 PCa with negative PSMA-PET scans had IHC-ERG positivity, and confirmed TMPRSS2::ERG rearrangement. In IHC-PSMA positive PCa, IHC-ERG positivity was significantly associated with lower SUVmax values. In cohort #2, findings of higher IHC-PSMA%neg and IHC-ERG expression was confirmed with only 0-10% PSMA%neg tumour areas in IHC-ERG-negative PCa. CONCLUSION IHC-ERG expression is significantly associated with more heterogeneous and lower IHC-PSMA tissue expression in two independent RPE cohorts. There is a strong association of ERG positivity in RPE tissue with lower [68Ga]Ga-PSMA-11 uptake on corresponding PET scans. Results may serve as a base for future biomarker development to enable tumour-tailored, individualized imaging approaches.
Collapse
Affiliation(s)
- Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zürich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| | - Sandra N Freiberger
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zürich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Daniela A Ferraro
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Riccardo Laudicella
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
| | - Jakob Heimer
- Seminar for Statistics, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Urs J Muehlematter
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zürich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Daniel Eberli
- University of Zurich, Zurich, Switzerland
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan H Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zürich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, Cantonal Hospital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland
| |
Collapse
|
4
|
Pabst KM, Mei R, Lückerath K, Hadaschik BA, Kesch C, Rawitzer J, Kessler L, Bodensieck LS, Hamacher R, Pomykala KL, Fanti S, Herrmann K, Fendler WP. Detection of tumour heterogeneity in patients with advanced, metastatic castration-resistant prostate cancer on [ 68Ga]Ga-/[ 18F]F-PSMA-11/-1007, [ 68Ga]Ga-FAPI-46 and 2-[ 18F]FDG PET/CT: a pilot study. Eur J Nucl Med Mol Imaging 2024; 52:342-353. [PMID: 39207485 PMCID: PMC11599349 DOI: 10.1007/s00259-024-06891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE In metastatic castration-resistant prostate cancer (mCRPC), some patients show low/absent PSMA expression in tumour lesions on positron emission tomography (PET) scans, indicating heterogeneity and heightened risk of non-response to PSMA-RLT (radioligand therapy). Imaging cancer-associated fibroblasts and glucose uptake may further characterise tumour heterogeneity in mCRPC patients. Here, we aimed to evaluate tumour heterogeneity and its potential implications for management in mCRPC patients assessed for PSMA-RLT using [68Ga]Ga-FAPI-46, 2-[18F]FDG and [68Ga]Ga-/[18F]F-PSMA-11/-1007 PET. MATERIAL AND METHODS Patients with advanced, progressive mCRPC underwent clinical [68Ga]Ga-/[18F]F-PSMA-11/-1007, 2-[18F]FDG and [68Ga]Ga-FAPI-46 PET/CT to evaluate treatment with PSMA-directed RLT. Tumour detection/semiquantitative parameters were compared on a per-lesion/-region basis. Two phenotypes were defined: Criteria for the mixed phenotype were: (a) PSMA-negative findings for lymph node metastases ≥ 2.5 cm, any solid organ metastases ≥ 1.0 cm, or bone metastases with soft tissue component ≥ 1.0 cm, (b) low [68Ga]Ga-/[18F]F-PSMA-11/-1007 uptake and/or (c) balanced tumour uptake of all radioligands. The PSMA-dominant phenotype was assigned if the criteria were not met. RESULTS In ten patients, 472 lesions were detected on all imaging modalities (miTNM regions: M1b: 327 (69.3%), M1a: 95 (20.1%), N1: 26 (5.5%), M1c: 18 (3.8%), T: 5 (1.1%) and Tr: 1 (0.2%). [68Ga]Ga-/[18F]F-PSMA-11/-1007 (n = 453 (96.0%)) demonstrates the highest detection rate, followed by [68Ga]Ga-FAPI-46 (n = 268 (56.8%))/2-[18F]FDG (n = 241 (51.1%)). Semiquantitative uptake was highest for [68Ga]Ga-/[18F]F-PSMA-11/-1007 (mean SUVmax (interquartile range): 22.7 (22.5), vs. [68Ga]Ga-FAPI-46 (7.7 (3.7)) and 2-[18F]FDG (6.8 (4.7)). Seven/three patients were retrospectively assigned to the PSMA-dominant/mixed phenotype. Median overall survival was significantly longer for patients who underwent [177Lu]Lu-PSMA-617 RLT and were retrospectively assigned to the PSMA-dominant phenotype (19.7 vs. 9.3 months). CONCLUSION Through whole-body imaging, we identify considerable inter- and intra-patient heterogeneity of mCRPC and potential imaging phenotypes. Regarding uptake and tumour detection, [68Ga]Ga-/[18F]F-PSMA-11/-1007 was superior to [68Ga]Ga-FAPI-46 and 2-[18F]FDG, while the latter two were comparable. Patients who underwent [177Lu]Lu-PSMA-617 RLT based on clinical-decision making had a longer overall survival and could be assigned to the PSMA-dominant phenotype.
Collapse
Affiliation(s)
- Kim M Pabst
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany.
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Riccardo Mei
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Katharina Lückerath
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Boris A Hadaschik
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Department of Urology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Claudia Kesch
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Department of Urology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Josefine Rawitzer
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lukas Kessler
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Department of Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Luisa S Bodensieck
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Rainer Hamacher
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Kelsey L Pomykala
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- Institute for AI in Medicine (IKIM), University Medicine Essen, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany
| | - Stefano Fanti
- Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
5
|
Benitez CM, Sahlstedt H, Sonni I, Brynolfsson J, Berenji GR, Juarez JE, Kane N, Tsai S, Rettig M, Nickols NG, Duriseti S. Treatment Response Assessment According to Updated PROMISE Criteria in Patients with Metastatic Prostate Cancer Using an Automated Imaging Platform for Identification, Measurement, and Temporal Tracking of Disease. Eur Urol Oncol 2024:S2588-9311(24)00240-2. [PMID: 39521638 DOI: 10.1016/j.euo.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Prostate-specific membrane antigen (PSMA) molecular imaging is widely used for disease assessment in prostate cancer (PC). Artificial intelligence (AI) platforms such as automated Prostate Cancer Molecular Imaging Standardized Evaluation (aPROMISE) identify and quantify locoregional and distant disease, thereby expediting lesion identification and standardizing reporting. Our aim was to evaluate the ability of the updated aPROMISE platform to assess treatment responses based on integration of the RECIP (Response Evaluation Criteria in PSMA positron emission tomography-computed tomography [PET/CT]) 1.0 classification. METHODS The study included 33 patients with castration-sensitive PC (CSPC) and 34 with castration-resistant PC (CRPC) who underwent PSMA-targeted molecular imaging before and ≥2 mo after completion of treatment. Tracer-avid lesions were identified using aPROMISE for pretreatment and post-treatment PET/CT scans. Detected lesions were manually approved by an experienced nuclear medicine physician, and total tumor volume (TTV) was calculated. Response was assessed according to RECIP 1.0 as CR (complete response), PR (partial response), PD (progressive disease), or SD (stable disease). KEY FINDINGS AND LIMITATIONS: aPROMISE identified 1576 lesions on baseline scans and 1631 lesions on follow-up imaging, 618 (35%) of which were new. Of the 67 patients, aPROMISE classified four as CR, 16 as PR, 34 as SD, and 13 as PD; five cases were misclassified. The agreement between aPROMISE and clinician validation was 89.6% (κ = 0.79). CONCLUSIONS AND CLINICAL IMPLICATIONS aPROMISE may serve as a novel assessment tool for treatment response that integrates PSMA PET/CT results and RECIP imaging criteria. The precision and accuracy of this automated process should be validated in prospective clinical studies. PATIENT SUMMARY We used an artificial intelligence (AI) tool to analyze scans for prostate cancer before and after treatment to see if we could track how cancer spots respond to treatment. We found that the AI approach was successful in tracking individual tumor changes, showing which tumors disappeared, and identifying new tumors in response to prostate cancer treatment.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, USA
| | | | - Ida Sonni
- VA Greater Los Angeles Healthcare System, Department of Nuclear Medicine, Los Angeles, CA, USA; Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA, USA
| | | | - Gholam Reza Berenji
- VA Greater Los Angeles Healthcare System, Department of Nuclear Medicine, Los Angeles, CA, USA
| | - Jesus Eduardo Juarez
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Nathanael Kane
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, USA; Department of Radiation Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Sonny Tsai
- Department of Radiation Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Matthew Rettig
- Department of Hematology-Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Medicine, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Nicholas George Nickols
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, USA; Department of Radiation Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Sai Duriseti
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, USA; Department of Radiation Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Flippot R, Telli T, Velev M, Fléchon A, De Vries-Brilland M, Turpin L, Bergman A, Turco F, Mahammedi H, Fendler WP, Giraudet AL, Josset Q, Montravers F, Vogel W, Gillessen S, Berardi Vilei S, Herrmann K, Kryza D, Paone G, Hadaschik B, Merlin C, Dufour PA, Bernard-Tessier A, Naoun N, Patrikidou A, Garcia C, Foulon S, Pagès A, Fizazi K. Activity of Lutetium-177 Prostate-specific Membrane Antigen and Determinants of Outcomes in Patients with Metastatic Castration-resistant Prostate Cancer Previously Treated with Cabazitaxel: The PACAP Study. Eur Urol Oncol 2024; 7:1132-1140. [PMID: 38664139 DOI: 10.1016/j.euo.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 03/26/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Both cabazitaxel and lutetium-177 prostate-specific membrane antigen (Lu-PSMA) improve survival in metastatic castration-resistant prostate cancer (mCRPC) after an androgen receptor pathway inhibitor and docetaxel, but there are limited data regarding Lu-PSMA activity after cabazitaxel. OBJECTIVE To assess the activity of Lu-PSMA and determinants of outcomes after cabazitaxel in mCRPC. DESIGN, SETTING, AND PARTICIPANTS A retrospective analysis was conducted of consecutive mCRPC patients from eight European centers treated with Lu-PSMA after cabazitaxel. INTERVENTION Lu-PSMA every 6-8 wk at a dose of 6-7.6 GBq. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was radiographic progression-free survival (rPFS). The secondary endpoints included time to prostate-specific antigen (PSA) progression (TTPSA), overall survival (OS), PSA decline, objective response rate (ORR), clinical benefit, and safety. RESULTS AND LIMITATIONS Of 126 patients, 68% had International Society of Urological Pathology (ISUP) grade 4-5 disease, 21% had visceral metastases, and 7% had lymph node disease only. DNA damage repair (DDR) alterations were detected in 11/50 (22%) patients with available testing. Patients received a median number of 3 Lu-PSMA cycles (interquartile range 2-4). With a median follow-up of 12.0 mo, the median rPFS was 4.4 mo (95% confidence interval [CI] 3.2-5.4), TTPSA 3.5 mo (95% CI 3.0-4.6), and OS 8.9 mo (95% CI 6.5-12.7). The ORR was 35%, and 55 patients (44%) experienced a PSA decline of ≥50%. The time to castration resistance of <12 mo was associated with shorter rPFS (p = 0.01). A similar trend was observed for ISUP grade 4-5 (p = 0.08), and baseline positron-emission tomography parameters including PSMA mean standardized uptake value (SUV) and maximum SUV (respectively, p = 0.06 and 0.05). The duration of previous cabazitaxel or DDR status did not impact outcomes. Patients experiencing a PSA decline of ≥ 50% on therapy demonstrated longer rPFS, TTPSA, and OS (all p < 0.0001). Limitations include retrospective data collection and investigator-based rPFS assessment. CONCLUSIONS Lu-PSMA demonstrated a substantial PSA decline but limited rPFS after cabazitaxel in a real-life setting. Adverse baseline characteristics, baseline positron-emission tomography parameters, and quality of PSA response may help identify patients less likely to benefit from Lu-PSMA. PATIENT SUMMARY Lutetium-177 prostate-specific membrane antigen (Lu-PSMA) improved outcomes in patients with castration-resistant prostate cancer, but there are limited data about its activity after cabazitaxel, a chemotherapy that is also the standard of care in this setting. We conducted a study across eight European centers and showed substantial responses on Lu-PSMA after cabazitaxel, although activity was short lived in a heavily pretreated population. Our findings prompt for real-life evaluation of Lu-PSMA in earlier settings to define the best therapeutic sequence.
Collapse
Affiliation(s)
- Ronan Flippot
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France.
| | - Tugce Telli
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Maud Velev
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Aude Fléchon
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | | | - Léa Turpin
- Department of Nuclear Medicine, Tenon University Hospital, Paris, France
| | - Andries Bergman
- Division of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fabio Turco
- Istituto Oncologico della Svizzera Italiana, EOC, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Department of Oncology, at Division of Medical Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Hakim Mahammedi
- Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | | | - Quentin Josset
- Department of Medical Oncology, Institut de Cancérologie de l'Ouest, Angers, France
| | | | - Wouter Vogel
- Division of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Silke Gillessen
- Istituto Oncologico della Svizzera Italiana, EOC, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Simona Berardi Vilei
- Istituto Oncologico della Svizzera Italiana, EOC, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - David Kryza
- Department of Nuclear Medicine, Centre Leon Bérard, Lyon, France
| | - Gaetano Paone
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Clinic of Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Boris Hadaschik
- German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; Department of Urology, University of Duisburg-Essen, Essen, Germany
| | - Charles Merlin
- Department of Nuclear Medicine, Centre Jean Perrin, Clermont-Ferrand, France
| | - Pierre-Alban Dufour
- Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest, Angers, France
| | - Alice Bernard-Tessier
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Natacha Naoun
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Anna Patrikidou
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Camilo Garcia
- Department of Nuclear Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Stéphanie Foulon
- Department of Biostatistics and Epidemiology, INSERM UMR 1018 "Oncostat", Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Arnaud Pagès
- Department of Biostatistics and Epidemiology, INSERM UMR 1018 "Oncostat", Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Karim Fizazi
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| |
Collapse
|
7
|
Ajkunic A, Sayar E, Roudier MP, Patel RA, Coleman IM, De Sarkar N, Hanratty B, Adil M, Zhao J, Zaidi S, True LD, Sperger JM, Cheng HH, Yu EY, Montgomery RB, Hawley JE, Ha G, Persse T, Galipeau P, Lee JK, Harmon SA, Corey E, Lang JM, Sawyers CL, Morrissey C, Schweizer MT, Gulati R, Nelson PS, Haffner MC. Assessment of TROP2, CEACAM5 and DLL3 in metastatic prostate cancer: Expression landscape and molecular correlates. NPJ Precis Oncol 2024; 8:104. [PMID: 38760413 PMCID: PMC11101486 DOI: 10.1038/s41698-024-00599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors. The identification of additional cell surface targets is necessary to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression heterogeneity and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We further demonstrated that AR alterations were associated with higher expression of PSMA and TROP2. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we show a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide insights into patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with implications for the clinical development of cell surface targeting agents in CRPC.
Collapse
Affiliation(s)
- Azra Ajkunic
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Navonil De Sarkar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mohamed Adil
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jimmy Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Heather H Cheng
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Evan Y Yu
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Robert B Montgomery
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jessica E Hawley
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gavin Ha
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Thomas Persse
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Patricia Galipeau
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stephanie A Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, NCI, NIH, Bethesda, MD, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | | | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Michael T Schweizer
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Roman Gulati
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
8
|
Arbuznikova D, Klotsotyra A, Uhlmann L, Domogalla LC, Steinacker N, Mix M, Niedermann G, Spohn SK, Freitag MT, Grosu AL, Meyer PT, Gratzke C, Eder M, Zamboglou C, Eder AC. Exploring the role of combined external beam radiotherapy and targeted radioligand therapy with [ 177Lu]Lu-PSMA-617 for prostate cancer - from bench to bedside. Theranostics 2024; 14:2560-2572. [PMID: 38646643 PMCID: PMC11024848 DOI: 10.7150/thno.93249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/02/2024] [Indexed: 04/23/2024] Open
Abstract
Management of prostate cancer (PC) might be improved by combining external beam radiotherapy (EBRT) and prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) with lutetium-177 (177Lu)-labeled PSMA inhibitors. We hypothesized a higher efficacy of the combination due to augmentation of the radiation dose to the tumor and interactions of EBRT with PSMA expression potentially increasing radiopharmaceutical uptake. Therefore, this study analyzed the influence of radiation on PSMA expression levels in vitro. The results were translated to evaluate the efficacy of the combination of photon EBRT and [177Lu]Lu-PSMA-617 in a murine PC xenograft model. Finally, a clinical case report on a combined elective field EBRT with RLT dose escalation illustrates a proof-of-concept. Methods: PSMA gene and protein expression were assessed in human PSMA-overexpressing LNCaP cells after irradiation using reverse transcription quantitative polymerase chain reaction (RT-qPCR), flow cytometry and On-Cell Western assays. In the in vivo therapy study, LNCaP tumor-bearing BALB/c nu/nu mice were irradiated once with 2 Gy X-ray EBRT and injected with 40 MBq [177Lu]Lu-PSMA-617 after 4 h or received single or no treatment (n = 10 each). Tumor-absorbed doses by [177Lu]Lu-PSMA-617 were calculated according to the Medical Internal Radiation Dosimetry (MIRD) formalism after deriving time-activity curves using a gamma probe. An exemplified patient case is demonstrated where fractionated EBRT (54 Gy to prostate; 45 Gy to pelvic lymphatics) and three cycles of [177Lu]Lu-PSMA-617 (3.4-6.0 GBq per cycle) were sequentially combined under concurrent androgen deprivation for treating locally advanced PC. Results: At 4 h following irradiation with 2-8 Gy, LNCaP cells displayed a PSMA protein upregulation by around 18% relative to non-irradiated cells, and a stronger upregulation on mRNA level (up to 2.6-fold). This effect was reversed by 24 h when PSMA protein levels were downregulated by up to 22%. Mice treated with the combination therapy showed significantly improved outcomes regarding tumor control and median survival (p < 0.0001) as compared to single or no treatment. Relative to monotherapy with PSMA-RLT or EBRT, the tumor doubling time was prolonged 1.7- or 2.7-fold and the median survival was extended by 24% or 60% with the combination, respectively. Additionally, tumors treated with EBRT exhibited a 14% higher uptake of the radiopharmaceutical as evident from the calculated tumor-absorbed dose, albeit with high variability in the data. Concerning the patient case, the tri-modality treatment was well tolerated and the patient responded with a long-lasting complete biochemical remission for five years following end of PSMA-RLT. The patient then developed a biochemical relapse with oligo-recurrent disease on follow-up imaging. Conclusion: The present preclinical and clinical data demonstrate that the combination of EBRT with dose escalation by PSMA-RLT improves tumor control and potentially prolongs survival. This may pave the way for further clinical investigations of this approach to explore the curative potential of the combination therapy.
Collapse
Affiliation(s)
- Daria Arbuznikova
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aikaterini Klotsotyra
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Uhlmann
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Lisa-Charlotte Domogalla
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Nils Steinacker
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the German Cancer Research Center and Medical Center - University of Freiburg, Freiburg, Germany
| | - Simon K.B. Spohn
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the German Cancer Research Center and Medical Center - University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin T. Freitag
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T. Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Ann-Christin Eder
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
9
|
Corpetti M, Müller C, Beltran H, de Bono J, Theurillat JP. Prostate-Specific Membrane Antigen-Targeted Therapies for Prostate Cancer: Towards Improving Therapeutic Outcomes. Eur Urol 2024; 85:193-204. [PMID: 38104015 DOI: 10.1016/j.eururo.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
CONTEXT Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein overexpressed in most prostate cancers and exploited as a target for PSMA-targeted therapies. Different approaches to target PSMA-expressing cancer cells have been developed, showing promising results in clinical trials. OBJECTIVE To discuss the regulation of PSMA expression and the main PSMA-targeted therapeutic concepts illustrating their clinical development and rationalizing combination approaches with examples. EVIDENCE ACQUISITION We performed a detailed literature search using PubMed and reviewed the American Society of Clinical Oncology and European Society of Medical Oncology annual meeting abstracts up to September 2023. EVIDENCE SYNTHESIS We present an overarching description of the different strategies to target PSMA. The outcomes of PSMA-targeted therapies strongly rely on surface-bound PSMA expression. However, PSMA heterogeneity at different levels (interpatient and inter/intratumoral) limits the efficacy of PSMA-targeted therapies. We highlight the molecular mechanisms governing PSMA regulation, the understanding of which is crucial to designing therapeutic strategies aimed at upregulating PSMA expression. Thus far, homeobox B13 (HOXB13) and androgen receptor (AR) have emerged as critical transcription factors positively and negatively regulating PSMA expression, respectively. Furthermore, epigenetic regulation of PSMA has been also reported recently. In addition, many established therapeutic approaches harbor the potential to upregulate PSMA levels as well as potentiate DNA damage mediated by current radioligands. CONCLUSIONS PSMA-targeted therapies are rapidly advancing, but their efficacy is strongly limited by the heterogeneous expression of the target. A thorough comprehension of how PSMA is regulated will help improve the outcomes through increasing PSMA expression and will provide the basis for synergistic combination therapies. PATIENT SUMMARY Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate cancers. PSMA-targeted therapies have shown promising results, but the heterogeneous expression of PSMA limits their efficacy. We propose to better elucidate the regulation of PSMA expression to increase the levels of the target and improve the therapeutic outcomes.
Collapse
Affiliation(s)
- Matteo Corpetti
- Institute of Oncology Research, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Cristina Müller
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Johann de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | - Jean-Philippe Theurillat
- Institute of Oncology Research, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.
| |
Collapse
|
10
|
Ajkunic A, Sayar E, Roudier MP, Patel RA, Coleman IM, De Sarkar N, Hanratty B, Adil M, Zhao J, Zaidi S, True LD, Sperger JM, Cheng HH, Yu EY, Montgomery RB, Hawley JE, Ha G, Lee JK, Harmon SA, Corey E, Lang JM, Sawyers CL, Morrissey C, Schweizer MT, Gulati R, Nelson PS, Haffner MC. ASSESSMENT OF CELL SURFACE TARGETS IN METASTATIC PROSTATE CANCER: EXPRESSION LANDSCAPE AND MOLECULAR CORRELATES. RESEARCH SQUARE 2023:rs.3.rs-3745991. [PMID: 38196594 PMCID: PMC10775381 DOI: 10.21203/rs.3.rs-3745991/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To fully capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors, and the identification of additional cell surface targets is necessary in order to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We observed variable intra-tumoral and inter-tumoral heterogeneity and no dominant metastatic site predilections for TROP2, DLL3, and CEACAM5. We further show that AR amplifications were associated with higher expression of PSMA and TROP2 but lower DLL3 and CEACAM5 levels. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we demonstrate a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide novel insights into the patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with important implications for the clinical development of cell surface targeting agents in CRPC.
Collapse
Affiliation(s)
- Azra Ajkunic
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Navonil De Sarkar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, WI, USA
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mohamed Adil
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jimmy Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Heather H Cheng
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Evan Y Yu
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Robert B Montgomery
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jessica E Hawley
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gavin Ha
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stephanie A Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, NCI, NIH, Bethesda, MD, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | | | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Michael T Schweizer
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Roman Gulati
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
11
|
Chen J, Liu J, Cao D. Urine metabolomics for assessing fertility-sparing treatment efficacy in endometrial cancer: a non-invasive approach using ultra-performance liquid chromatography mass spectrometry. BMC Womens Health 2023; 23:583. [PMID: 37940929 PMCID: PMC10634093 DOI: 10.1186/s12905-023-02730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE This study aimed to reveal the urine metabolic change of endometrial cancer (EC) patients during fertility-sparing treatment and establish non-invasive predictive models to identify patients with complete remission (CR). METHOD This study enrolled 20 EC patients prior to treatment (PT) and 22 patients with CR, aged 25-40 years. Eligibility criteria consisted of stage IA high-grade EC, lesions confined to endometrium, normal hepatic and renal function, normal urine test, no contraindication for fertility-sparing treatment and no prior therapy. Urine samples were analyzed using ultraperformance liquid chromatography mass spectrometry (UPLC-MS), a technique chosen for its high sensitivity and resolution, allows for rapid, accurate identification and quantification of metabolites, providing a comprehensive metabolic profile and facilitating the discovery of potential biomarkers. Analytical techniques were employed to determine distinct metabolites and altered metabolic pathways. The statistical analyses were performed using univariate and multivariate analyses, logistic regression and receiver operating characteristic (ROC) curves to discover and validate the potential biomarker models. RESULTS A total of 108 different urine metabolomes were identified between CR and PT groups. These metabolites were enriched in ascorbate and aldarate metabolism, one carbon pool by folate, and some amino acid metabolisms pathways. A panel consisting of Baicalin, 5beta-1,3,7 (11)-Eudesmatrien-8-one, Indolylacryloylglycine, Edulitine, and Physapubenolide were selected as biomarkers, which demonstrated the best predictive ability with the AUC values of 0.982/0.851 in training/10-fold-cross-validation group, achieving a sensitivity of 0.975 and specificity of 0.967, respectively. CONCLUSION The urine metabolic analysis revealed the metabolic changes in EC patients during the fertility-sparing treatment. The predictive biomarkers present great potential diagnostic value in fertility-sparing treatments for EC patients, offering a less invasive means of monitoring treatment efficacy. Further research should explore the mechanistic underpinnings of these metabolic changes and validate the biomarker panel in larger, diverse populations due to the small sample size and single-institution nature of our study.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jiale Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
12
|
Arbuznikova D, Eder M, Grosu AL, Meyer PT, Gratzke C, Zamboglou C, Eder AC. Towards Improving the Efficacy of PSMA-Targeting Radionuclide Therapy for Late-Stage Prostate Cancer-Combination Strategies. Curr Oncol Rep 2023; 25:1363-1374. [PMID: 37861915 PMCID: PMC10640479 DOI: 10.1007/s11912-023-01458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW [177Lu]Lu-PSMA-617 is a radiopharmaceutical that emits beta-minus radiation and targets prostate-specific membrane antigen (PSMA)-positive prostate cancer. Despite its clinical success, there are still patients not showing sufficient response rates. This review compiles latest studies aiming at therapy improvement in [177Lu]Lu-PSMA-617-naïve and -resistant patients by alternative or combination treatments. RECENT FINDINGS A variety of agents to combine with [177Lu]Lu-PSMA-617 are currently under investigation including alpha radiation-emitting pharmaceuticals, radiosensitizers, taxane chemotherapeutics, androgen receptor pathway inhibitors, immune checkpoint inhibitors, and external beam radiation. Actinium-225 (225Ac)-labeled PSMA-targeting inhibitors are the most studied pharmaceuticals for combination therapy or as an alternative for treatment after progression under [177Lu]Lu-PSMA-617 therapy. Alpha emitters seem to have a potential of achieving a response to PSMA-targeting radionuclide therapy in both initial non-responders or responders to [177Lu]Lu-PSMA-617 later developing treatment resistance. Emerging evidence for immunostimulatory effects of radiopharmaceuticals and first prospective studies support the combination of [177Lu]Lu-PSMA-617 and immune checkpoint inhibition for late-stage prostate cancer.
Collapse
Affiliation(s)
- Daria Arbuznikova
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany.
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
13
|
de Jong AC, Segbers M, Ling SW, Graven LH, Mehra N, Hamberg P, Brabander T, de Wit R, van der Veldt AAM. 68Ga-PSMA PET/CT for Response Evaluation of 223Ra Treatment in Metastatic Prostate Cancer. J Nucl Med 2023; 64:1556-1562. [PMID: 37536738 DOI: 10.2967/jnumed.123.265489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/31/2023] [Indexed: 08/05/2023] Open
Abstract
CT and bone scintigraphy are not useful for response evaluation of bone metastases to 223Ra treatment in metastatic castration-resistant prostate cancer (mCRPC). PET using 68Ga prostate-specific membrane antigen 11 (68Ga-PSMA) is a promising tool for response evaluation of mCRPC. The aim of this study was to determine the utility of 68Ga-PSMA PET/CT for response evaluation of 223Ra treatment in patients with mCRPC. Methods: Within this prospective, multicenter, imaging discovery study, 28 patients with mCRPC, eligible for 223Ra treatment, were included between 2019 and 2022. Patients received 223Ra according to the standard of care. Study procedures included CT, bone scintigraphy, and 68Ga-PSMA PET/CT at baseline, after 3 and 6 cycles of 223Ra treatment, and on treatment failure. Response to 223Ra treatment was visually assessed on all 3 imaging modalities. Total tumor volume within bone (TTVbone) was determined on 68Ga-PSMA PET/CT. Intrapatient heterogeneity in response was studied using a newly developed image-registration tool for sequential images of PET/CT. Results were compared with failure-free survival (good responders vs. poor responders; cutoff, 24 wk) and alkaline phosphatase (ALP) response after 3 cycles. Results: Visual response assessment criteria could not distinguish good responders from poor responders on 68Ga-PSMA PET/CT and bone scintigraphy. For 68Ga-PSMA PET/CT, TTVbone at baseline was lower in good responders than in poor responders, whereas TTVbone increased in both groups during treatment. TTVbone was higher in patients with new extraosseous metastases during 223Ra treatment. Although TTVbone and ALP correlated at baseline, changes in TTVbone and ALP on treatment did not. 68Ga-PSMA response of TTVbone showed intrapatient heterogeneity in most patients. Conclusion: mCRPC patients with lower TTVbone on 68Ga-PSMA PET/CT have the best clinical outcome after 223Ra treatment. Response is highly heterogeneous in most patients. A decrease in ALP, which occurred in most patients, was not correlated with a decrease in TTVbone, which might make one question the value of ALP for disease monitoring during 223Ra treatment in clinical practice.
Collapse
Affiliation(s)
- Anouk C de Jong
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marcel Segbers
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Sui Wai Ling
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Laura H Graven
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud UMC, Nijmegen, The Netherlands; and
| | - Paul Hamberg
- Department of Internal Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands;
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14:1265751. [PMID: 37795091 PMCID: PMC10545965 DOI: 10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
Affiliation(s)
- Mingze He
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Changliang Chi
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Jiang Zhao
- Department of Urology, Xi’an First Hospital, Xi’an, China
| | - Eunice Chong
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ke Xin Casey Chin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nicole Zian Vi Tan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Korolev Dmitry
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Guodong Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Kebang Hu
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
15
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
|
16
|
Alati S, Singh R, Pomper MG, Rowe SP, Banerjee SR. Preclinical Development in Radiopharmaceutical Therapy for Prostate Cancer. Semin Nucl Med 2023; 53:663-686. [PMID: 37468417 DOI: 10.1053/j.semnuclmed.2023.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Prostate cancer is a leading cause of cancer death in men worldwide. Among the various treatment options, radiopharmaceutical therapy has shown notable success in metastatic, castration-resistant disease. Radiopharmaceutical therapy is a systemic approach that delivers cytotoxic radiation doses precisely to the malignant tumors and/or tumor microenvironment. Therapeutic radiopharmaceuticals are composed of a therapeutic radionuclide and a high-affinity, tumor-targeting carrier molecule. Therapeutic radionuclides used in preclinical prostate cancer studies are primarily α-, β--, or Auger-electron-emitting radiometals or radiohalogens. Monoclonal antibodies, antibody-derived fragments, peptides, and small molecules are frequently used as tumor-targeting molecules. Over the years, several important membrane-associated proteases and receptors have been identified, validated, and subsequently used for preclinical radiotherapeutic development for prostate cancer. Prostate-specific membrane antigen (PSMA) is the most well-studied prostate cancer-associated protease in preclinical literature. PSMA-targeting radiotherapeutic agents are being investigated using high-affinity antibody- and small-molecule-based agents for safety and efficacy. Early generations of such agents were developed simply by replacing radionuclides of the imaging agents with therapeutic ones. Later, extensive structure-activity relationship studies were conducted to address the safety and efficacy issues obtained from initial patient data. Recent regulatory approval of the 177Lu-labeled low-molecular-weight agent, 177Lu-PSMA-617, is a significant accomplishment. Current preclinical experiments are focused on the structural modification of 177Lu-PSMA-617 and relevant investigational agents to increase tumor targeting and reduce off-target binding and toxicity in healthy organs. While lutetium-177 (177Lu) remains the most widely used radionuclide, radiolabeled analogs with iodine-131 (128I), yttrium-90 (89Y), copper-67 (67Cu), and terbium-161 (161Tb) have been evaluated as potential alternatives in recent years. In addition, agents carrying the α-particle-emitting radiohalogen, astatine-211 (211At), or radiometals, actinium-225 (225Ac), lead-212 (212Pb), radium-223 (223Ra), and thorium-227 (227Th), have been increasingly investigated in preclinical research. Besides PSMA-based radiotherapeutics, other prominent prostate cancer-related proteases, for example, human kallikrein peptidases (HK2 and HK3), have been explored using monoclonal-antibody-(mAb)-based targeting platforms. Several promising mAbs targeting receptors overexpressed on the different stages of prostate cancer have also been developed for radiopharmaceutical therapy, for example, Delta-like ligand 3 (DLL-3), CD46, and CUB domain-containing protein 1 (CDCP1). Progress is also being made using peptide-based targeting platforms for the gastrin-releasing peptide receptor (GRPR), a well-established membrane-associated receptor expressed in localized and metastatic prostate cancers. Furthermore, mechanism-driven combination therapies appear to be a burgeoning area in the context of preclinical prostate cancer radiotherapeutics. Here, we review the current developments related to the preclinical radiopharmaceutical therapy of prostate cancer. These are summarized in two major topics: (1) therapeutic radionuclides and (2) tumor-targeting approaches using monoclonal antibodies, small molecules, and peptides.
Collapse
Affiliation(s)
- Suresh Alati
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Rajan Singh
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD.
| |
Collapse
|
17
|
Tufail M. DNA repair pathways in breast cancer: from mechanisms to clinical applications. Breast Cancer Res Treat 2023:10.1007/s10549-023-06995-z. [PMID: 37289340 DOI: 10.1007/s10549-023-06995-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Breast cancer (BC) is a complex disease with various subtypes and genetic alterations that impact DNA repair pathways. Understanding these pathways is essential for developing effective treatments and improving patient outcomes. AREA COVERED This study investigates the significance of DNA repair pathways in breast cancer, specifically focusing on various pathways such as nucleotide excision repair, base excision repair, mismatch repair, homologous recombination repair, non-homologous end joining, fanconi anemia pathway, translesion synthesis, direct repair, and DNA damage tolerance. The study also examines the role of these pathways in breast cancer resistance and explores their potential as targets for cancer treatment. CONCLUSION Recent advances in targeted therapies have shown promise in exploiting DNA repair pathways for BC treatment. However, much research is needed to improve the efficacy of these therapies and identify new targets. Additionally, personalized treatments that target specific DNA repair pathways based on tumor subtype or genetic profile are being developed. Advances in genomics and imaging technologies can potentially improve patient stratification and identify biomarkers of treatment response. However, many challenges remain, including toxicity, resistance, and the need for more personalized treatments. Continued research and development in this field could significantly improve BC treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
18
|
Gourdin T, Velayati A. Treatments and challenges in advanced prostate cancer. Curr Opin Oncol 2023; 35:200-205. [PMID: 36966494 DOI: 10.1097/cco.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
PURPOSE OF REVIEW This review is designed to highlight recent research examining treatment progress in advanced prostate cancer while identifying ongoing challenges to clinical outcomes. RECENT FINDINGS Recent randomized trials suggest an overall survival advantage to treating some men with newly identified metastatic prostate cancer with a "triplet" of androgen deprivation therapy, docetaxel, and an androgen receptor axis-targeted agent. Questions remain about which men are best served by these combinations. Additional treatment success is being identified with prostate-specific membrane antigen positron emission tomography (PSMA)-radiopharmaceuticals, combinations involving targeted therapies, and novel manipulations of the androgen receptor axis. Challenges remain in selecting between available therapies, harnessing immune therapies, and treating tumors with emergent neuroendocrine differentiation. SUMMARY An expanding number of therapeutics are becoming available for men with advanced prostate cancer improving outcomes but at the same time making treatment selection more demanding. Ongoing research will be required to continue to hone treatment paradigms.
Collapse
Affiliation(s)
- Theodore Gourdin
- Department of Medicine - Division of Hematology Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | |
Collapse
|
19
|
Gillessen S, Bossi A, Davis ID, de Bono J, Fizazi K, James ND, Mottet N, Shore N, Small E, Smith M, Sweeney C, Tombal B, Antonarakis ES, Aparicio AM, Armstrong AJ, Attard G, Beer TM, Beltran H, Bjartell A, Blanchard P, Briganti A, Bristow RG, Bulbul M, Caffo O, Castellano D, Castro E, Cheng HH, Chi KN, Chowdhury S, Clarke CS, Clarke N, Daugaard G, De Santis M, Duran I, Eeles R, Efstathiou E, Efstathiou J, Ngozi Ekeke O, Evans CP, Fanti S, Feng FY, Fonteyne V, Fossati N, Frydenberg M, George D, Gleave M, Gravis G, Halabi S, Heinrich D, Herrmann K, Higano C, Hofman MS, Horvath LG, Hussain M, Jereczek-Fossa BA, Jones R, Kanesvaran R, Kellokumpu-Lehtinen PL, Khauli RB, Klotz L, Kramer G, Leibowitz R, Logothetis CJ, Mahal BA, Maluf F, Mateo J, Matheson D, Mehra N, Merseburger A, Morgans AK, Morris MJ, Mrabti H, Mukherji D, Murphy DG, Murthy V, Nguyen PL, Oh WK, Ost P, O'Sullivan JM, Padhani AR, Pezaro C, Poon DMC, Pritchard CC, Rabah DM, Rathkopf D, Reiter RE, Rubin MA, Ryan CJ, Saad F, Pablo Sade J, Sartor OA, Scher HI, Sharifi N, Skoneczna I, Soule H, Spratt DE, Srinivas S, Sternberg CN, Steuber T, Suzuki H, Sydes MR, Taplin ME, Tilki D, Türkeri L, Turco F, Uemura H, Uemura H, Ürün Y, Vale CL, van Oort I, Vapiwala N, Walz J, Yamoah K, Ye D, Yu EY, Zapatero A, Zilli T, Omlin A. Management of Patients with Advanced Prostate Cancer. Part I: Intermediate-/High-risk and Locally Advanced Disease, Biochemical Relapse, and Side Effects of Hormonal Treatment: Report of the Advanced Prostate Cancer Consensus Conference 2022. Eur Urol 2023; 83:267-293. [PMID: 36494221 PMCID: PMC7614721 DOI: 10.1016/j.eururo.2022.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Innovations in imaging and molecular characterisation and the evolution of new therapies have improved outcomes in advanced prostate cancer. Nonetheless, we continue to lack high-level evidence on a variety of clinical topics that greatly impact daily practice. To supplement evidence-based guidelines, the 2022 Advanced Prostate Cancer Consensus Conference (APCCC 2022) surveyed experts about key dilemmas in clinical management. OBJECTIVE To present consensus voting results for select questions from APCCC 2022. DESIGN, SETTING, AND PARTICIPANTS Before the conference, a panel of 117 international prostate cancer experts used a modified Delphi process to develop 198 multiple-choice consensus questions on (1) intermediate- and high-risk and locally advanced prostate cancer, (2) biochemical recurrence after local treatment, (3) side effects from hormonal therapies, (4) metastatic hormone-sensitive prostate cancer, (5) nonmetastatic castration-resistant prostate cancer, (6) metastatic castration-resistant prostate cancer, and (7) oligometastatic and oligoprogressive prostate cancer. Before the conference, these questions were administered via a web-based survey to the 105 physician panel members ("panellists") who directly engage in prostate cancer treatment decision-making. Herein, we present results for the 82 questions on topics 1-3. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Consensus was defined as ≥75% agreement, with strong consensus defined as ≥90% agreement. RESULTS AND LIMITATIONS The voting results reveal varying degrees of consensus, as is discussed in this article and shown in the detailed results in the Supplementary material. The findings reflect the opinions of an international panel of experts and did not incorporate a formal literature review and meta-analysis. CONCLUSIONS These voting results by a panel of international experts in advanced prostate cancer can help physicians and patients navigate controversial areas of clinical management for which high-level evidence is scant or conflicting. The findings can also help funders and policymakers prioritise areas for future research. Diagnostic and treatment decisions should always be individualised based on patient and cancer characteristics (disease extent and location, treatment history, comorbidities, and patient preferences) and should incorporate current and emerging clinical evidence, therapeutic guidelines, and logistic and economic factors. Enrolment in clinical trials is always strongly encouraged. Importantly, APCCC 2022 once again identified important gaps (areas of nonconsensus) that merit evaluation in specifically designed trials. PATIENT SUMMARY The Advanced Prostate Cancer Consensus Conference (APCCC) provides a forum to discuss and debate current diagnostic and treatment options for patients with advanced prostate cancer. The conference aims to share the knowledge of international experts in prostate cancer with health care providers and patients worldwide. At each APCCC, a panel of physician experts vote in response to multiple-choice questions about their clinical opinions and approaches to managing advanced prostate cancer. This report presents voting results for the subset of questions pertaining to intermediate- and high-risk and locally advanced prostate cancer, biochemical relapse after definitive treatment, advanced (next-generation) imaging, and management of side effects caused by hormonal therapies. The results provide a practical guide to help clinicians and patients discuss treatment options as part of shared multidisciplinary decision-making. The findings may be especially useful when there is little or no high-level evidence to guide treatment decisions.
Collapse
Affiliation(s)
- Silke Gillessen
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland.
| | - Alberto Bossi
- Genitourinary Oncology, Prostate Brachytherapy Unit, Gustave Roussy, Paris, France
| | - Ian D Davis
- Monash University and Eastern Health, Victoria, Australia
| | - Johann de Bono
- The Institute of Cancer Research, London, UK; Royal Marsden Hospital, London, UK
| | - Karim Fizazi
- Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| | | | | | - Neal Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA; Urology/Surgical Oncology, GenesisCare, Myrtle Beach, SC, USA
| | - Eric Small
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Mathew Smith
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christopher Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Ana M Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA
| | | | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Himisha Beltran
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Pierre Blanchard
- Département de Radiothérapie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Alberto Briganti
- Unit of Urology/Division of Oncology, URI, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Rob G Bristow
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Christie NHS Trust and CRUK Manchester Institute and Cancer Centre, Manchester, UK
| | - Muhammad Bulbul
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, Trento, Italy
| | - Daniel Castellano
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Elena Castro
- Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain
| | - Heather H Cheng
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Kim N Chi
- BC Cancer, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Caroline S Clarke
- Research Department of Primary Care & Population Health, Royal Free Campus, University College London, London, UK
| | - Noel Clarke
- The Christie and Salford Royal Hospitals, Manchester, UK
| | - Gedske Daugaard
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maria De Santis
- Department of Urology, Charité Universitätsmedizin, Berlin, Germany; Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Ignacio Duran
- Department of Medical Oncology, Hospital Universitario Marques de Valdecilla, IDIVAL, Santander, Cantabria, Spain
| | - Ros Eeles
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | | | - Jason Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Onyeanunam Ngozi Ekeke
- Department of Surgery, University of Port Harcourt Teaching Hospital, Alakahia, Port Harcourt, Nigeria
| | | | - Stefano Fanti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Felix Y Feng
- University of California San Francisco, San Francisco, CA, USA
| | - Valerie Fonteyne
- Department of Radiation-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Nicola Fossati
- Department of Urology, Ospedale Regionale di Lugano, Civico USI - Università della Svizzera Italiana, Lugano, Switzerland
| | - Mark Frydenberg
- Department of Surgery, Prostate Cancer Research Program, Monash University, Melbourne, Australia; Department of Anatomy & Developmental Biology, Faculty of Nursing, Medicine & Health Sciences, Monash University, Melbourne, Australia
| | - Daniel George
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA; Department of Surgery, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Martin Gleave
- Urological Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Gwenaelle Gravis
- Department of Medical Oncology, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Daniel Heinrich
- Department of Oncology and Radiotherapy, Innlandet Hospital Trust, Gjøvik, Norway
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Celestia Higano
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Lisa G Horvath
- Chris O'Brien Lifehouse, Camperdown, NSW, Australia; Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Maha Hussain
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Department of Radiotherapy, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Robert Jones
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Pirkko-Liisa Kellokumpu-Lehtinen
- Faculty of Medicine and Health Technology, Tampere University and Tampere Cancer Center, Tampere, Finland; Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Raja B Khauli
- Department of Urology and the Naef K. Basile Cancer Institute (NKBCI), American University of Beirut Medical Center, Beirut, Lebanon
| | - Laurence Klotz
- Division of Urology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Raya Leibowitz
- Oncology Institute, Shamir Medical Center, Be'er Ya'akov, Israel; Faculty of Medicine, Tel-Aviv University, Israel
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; University of Athens Alexandra Hospital, Athens, Greece
| | - Brandon A Mahal
- Department of Radiation Oncology, University of Miami Sylvester Cancer Center, Miami, FL, USA
| | - Fernando Maluf
- Beneficiência Portuguesa de São Paulo, São Paulo, SP, Brasil; Departamento de Oncologia, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Joaquin Mateo
- Department of Medical Oncology and Prostate Cancer Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Matheson
- Faculty of Education, Health and Wellbeing, Walsall Campus, Walsall, UK
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Axel Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Alicia K Morgans
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hind Mrabti
- National Institute of Oncology, Mohamed V University, Rabat, Morocco
| | - Deborah Mukherji
- Clemenceau Medical Center, Dubai, United Arab Emirates; Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Declan G Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | | | - Paul L Nguyen
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - William K Oh
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Joe M O'Sullivan
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, Northern Ireland
| | - Anwar R Padhani
- Mount Vernon Cancer Centre and Institute of Cancer Research, London, UK
| | - Carmel Pezaro
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Hong Kong; The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Danny M Rabah
- Cancer Research Chair and Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Urology, KFSHRC, Riyadh, Saudi Arabia
| | - Dana Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Mark A Rubin
- Bern Center for Precision Medicine and Department for Biomedical Research, Bern, Switzerland
| | - Charles J Ryan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Fred Saad
- Centre Hospitalier de Université de Montréal, Montreal, Quebec, Canada
| | | | | | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nima Sharifi
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA; Department of Cancer Biology, GU Malignancies Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Iwona Skoneczna
- Rafal Masztak Grochowski Hospital, Maria Sklodowska Curie National Research Institute of Oncology, Warsaw, Poland
| | - Howard Soule
- Prostate Cancer Foundation, Santa Monica, CA, USA
| | - Daniel E Spratt
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Sandy Srinivas
- Division of Medical Oncology, Stanford University Medical Center, Stanford, CA, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, Division of Hematology and Oncology, Meyer Cancer Center, New York Presbyterian Hospital, New York, NY, USA
| | - Thomas Steuber
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Matthew R Sydes
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, Koc University Hospital, Istanbul, Turkey
| | - Levent Türkeri
- Department of Urology, M.A. Aydınlar Acıbadem University, Altunizade Hospital, Istanbul, Turkey
| | - Fabio Turco
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Hiroji Uemura
- Yokohama City University Medical Center, Yokohama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yüksel Ürün
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey; Ankara University Cancer Research Institute, Ankara, Turkey
| | - Claire L Vale
- University College London, MRC Clinical Trials Unit at UCL, London, UK
| | - Inge van Oort
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Neha Vapiwala
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jochen Walz
- Department of Urology, Institut Paoli-Calmettes Cancer Centre, Marseille, France
| | - Kosj Yamoah
- Department of Radiation Oncology & Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, FL, USA
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Evan Y Yu
- Department of Medicine, Division of Oncology, University of Washington and Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Almudena Zapatero
- Department of Radiation Oncology, Hospital Universitario de La Princesa, Health Research Institute, Madrid, Spain
| | - Thomas Zilli
- Radiation Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurelius Omlin
- Onkozentrum Zurich, University of Zurich and Tumorzentrum Hirslanden Zurich, Switzerland
| |
Collapse
|
20
|
DNA Damage Repair Defects and Targeted Radionuclide Therapies for Prostate Cancer: Does Mutation Really Matter? A Systematic Review. Life (Basel) 2022; 13:life13010055. [PMID: 36676004 PMCID: PMC9860912 DOI: 10.3390/life13010055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The aim of the present review was to assess the impact of DNA damage repair (DDR) mutations on response and outcome of patients (pts) affected by advanced prostate cancer (PCa) submitted to radionuclide therapies with [223Ra]RaCl2 (223Ra-therapy) or prostate specific membrane antigen (PSMA) ligands. A systematic literature search according to PRISMA criteria was made by using two main databases. Only studies published up until to October 2022 in the English language with ≥10 enrolled patients were selected. Seven studies including 326 pts, of whom 201 (61.6%) harboring DDR defects, were selected. The majority of selected papers were retrospective and four out of seven (57.1%) had small sample size (<50 pts). Three out of seven (42.8%) studies reported a more favorable outcome (overall or progression free survival) after therapy with alpha emitters (223Ra-therapy or [225Ac]Ac-PSMA-617) in subjects with DDR defects with respect to those without mutations. In two studies employing alpha or beta emitters ([177Lu]/[225Ac]-PMSA), no significant benefit was registered in pts harboring DDR defects. In all but one paper, no significant difference in response rate was reported among pts with or without DDR mutations. Although preliminary and biased by the retrospective design, preliminary data suggest a trend towards a longer survival in PCa pts harboring DDR defects submitted to radionuclide targeted therapy with alpha emitters.
Collapse
|
21
|
Zhang Z, Wu L, Li J, Chen J, Yu Q, Yao H, Xu Y, Liu L. Identification of ZBTB9 as a potential therapeutic target against dysregulation of tumor cells proliferation and a novel biomarker in Liver Hepatocellular Carcinoma. J Transl Med 2022; 20:602. [PMID: 36522647 PMCID: PMC9756481 DOI: 10.1186/s12967-022-03790-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Zinc finger and bric-a-brac/tramtrack/broad (ZBTB) domain-containing proteins have been reported to be associated with many tumors' development. However, in tumor initiation and progression, the role of ZBTB9, one of the protein family, and its prognostic value were yet to be elucidated in Liver Hepatocellular Carcinoma (LIHC). METHODS We used R software and online bioinformatics analysis tools such as GEPIA2, cBioPortal, TIMER2, Metascape, UALCAN, STRING, TISIDB, and COSMIC to investigate ZBTB9's characteristics and function in LIHC, including abnormal expression, carcinogenic role, related signaling pathways and prognostic value. Furthermore, cell experiments (such as formation, wound healing, and transwell assays) and analyses based on clinical samples (such as immunohistochemistry (IHC) and promoter methylation analysis) were conducted to verify pivotal conclusions. RESULTS ZBTB9 was overexpressed in LIHC samples compared to adjacent normal tissues. Through the analysis of genomic alteration and promoter hypomethylation, the clinical value and etiology of abnormal expression of ZBTB9 were preliminarily exlpored. Subsequent evidence showed that it could result in tumor progression and poor prognosis via activating cell cycle, DNA repair, MYC, and KRAS-associated signaling pathways as well as rendering immune dysregulation. After the knockdown of ZBTB9, evidently inhibited capacities of tumor cells proliferation and migration were observed. These results together indicated that ZBTB9 could be a promising prognostic biomarker and had the potential value to offer novel therapeutic targets for LIHC treatment. CONCLUSIONS ZBTB9 was identified as a novel biomarker to predict the prognosis and tumor progression in LIHC, and a promising therapeutic target to invert tumor development.
Collapse
Affiliation(s)
- Zhenshan Zhang
- grid.412532.3Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China ,grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 People’s Republic of China ,grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Leilei Wu
- grid.412532.3Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Li
- grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 People’s Republic of China
| | - Jiayan Chen
- grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 People’s Republic of China
| | - Qi Yu
- grid.412532.3Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China ,Shanghai Concord Cancer Center, Shanghai, 200240 China
| | - Hui Yao
- grid.490481.0Department of Radiation Oncology, Shanghai International Medical Center, Shanghai, China
| | - Yaping Xu
- grid.412532.3Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Liu
- grid.412532.3Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China ,grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 People’s Republic of China ,grid.490481.0Department of Radiation Oncology, Shanghai International Medical Center, Shanghai, China
| |
Collapse
|