1
|
Karabatić Knezović S, Knezović D, Matana A, Puizina Ivić N, Drmić Hofman I. Strong association of TLR2 and TLR3 polymorphisms with keratoacanthoma and common warts: a case-control study. Croat Med J 2024; 65:232-238. [PMID: 38868969 PMCID: PMC11157254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
AIM To determine variations in allele and genotype frequencies between keratoacanthoma (KA) and common warts (CW), compared with the control group, in three single nucleotide polymorphisms (SNPs) within the TLR2, TLR3, and TLR9 genes. METHODS This case-control study involved samples from 161 patients with KA, 152 patients with CW, and 469 controls. DNA was isolated from formalin-fixed paraffin-embedded tissue sections. Three SNPs - rs4696480 in TLR2, rs7657186 in TLR9, and rs35213 in TLR3 - were genotyped with TaqMan Genotyping Assays on the 7500 Real-Time PCR System. RESULTS TLR2 rs4696480 and TLR3 rs7657186 were significantly overrepresented in KA and CW compared with controls (P<0.001). The association was stronger for CW than for KA, as evidenced by higher frequencies of the A allele and AA genotype for rs4696480. Both KA and CW patients had higher frequencies of the G allele and GG genotype for rs7657186 than controls. rs7657186 was moderately associated with KA and CW, with the G allele and GG genotype being more prevalent in CW cases, where no AA homozygotes were found. CONCLUSION Genetic variants in TLR2 (rs4696480) and TLR3 (rs7657186) genes may affect KA and CW development, influencing immune responses and susceptibility to these skin lesions. Further research is required to elucidate TLR expression patterns and their role in KA development.
Collapse
Affiliation(s)
| | | | | | | | - Irena Drmić Hofman
- Irena Drmić Hofman, Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia,
| |
Collapse
|
2
|
Inan Yuksel E, Cicek D, Demir B, Kocaman N, Calik I, Kuloglu T. Role of asprosin and meteorin-like peptide in progression of actinic keratosis to squamous cell carcinoma. Biotech Histochem 2024; 99:61-68. [PMID: 38192243 DOI: 10.1080/10520295.2024.2302016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Squamous cell carcinoma (SCC) often develops from an underlying premalignant lesion. Factors that affect the progression of actinic keratosis (AK) to invasive SCC are not fully known. Asprosin (ASP) and meteorin-like peptide (METRNL) are adipokines that are involved primarily in glucose metabolism. We investigated the expression of ASP and METRNL in AK and SCC to evaluate the role of these adipokines in the development of SCC. We used 15 SCC specimens, 12 AK specimens and 12 healthy control skin specimens. ASP and METRNL protein expression in tumor and surrounding tissue was evaluated using immunohistochemistry. ASP expression in tumor tissue was significantly greater in the SCC group than in the control and AK groups, but it did not differ significantly between the AK and control groups. A positive correlation was observed for both ASP and METRNL expressions between tumor tissue and adjacent epidermis, hair follicles, sebaceous gland, eccrine gland, inflammatory cells and vascular structures. ASP and METRNL may exert pro-tumor effects toward development of invasive SCC. The expression intensity of ASP and METRNL can be used as a biomarker of risk of progression to SCC.
Collapse
Affiliation(s)
- Esma Inan Yuksel
- Department of Dermatology, Biruni University Faculty of Medicine, Istanbul, Turkey
| | - Demet Cicek
- Department of Dermatology, Firat University School of Medicine, Elazig, Turkey
| | - Betul Demir
- Department of Dermatology, Firat University School of Medicine, Elazig, Turkey
| | - Nevin Kocaman
- Department of Histology and Embryology, Firat University School of Medicine, Elazig, Turkey
| | - Ilknur Calik
- Department of Pathology, Firat University School of Medicine, Elazig, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, Firat University School of Medicine, Elazig, Turkey
| |
Collapse
|
3
|
Seçme M, Kocoglu SS. Investigation of the TLR4 and IRF3 signaling pathway-mediated effects of monensin in colorectal cancer cells. Med Oncol 2023; 40:187. [PMID: 37219624 DOI: 10.1007/s12032-023-02055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Monensin is an ionophore antibiotic isolated from Streptomyces cinnamonensis with very strong antibacterial and antiparasitic effects. Although monensin is known to exhibit anticancer activity in different cancer types, there are a very limited number of studies on its anti-inflammatory effects in colorectal cancer (CRC) cells. The aim of this study was to investigate the TLR4/IRF3-mediated antiproliferative and anti-inflammatory effects of monensin in colorectal cancer cells. The dose- and time-dependent antiproliferative activity of monensin in colorectal cancer cells was determined by XTT method and its effects on mRNA expression changes of Toll-like receptors and IRF3 genes were determined by RT-PCR. TLR4 and Interferon Regulatory Factor 3 (IRF3) protein expression was evaluated by immunofluorescence method. TLR4 and type 1 interferon (IRF) levels were also evaluated by ELISA. IC50 value of monensin in HT29 cells was determined as 10.7082 µM at 48 h and 12.6288 µM at 48th for HCT116 cells. Monensin treatment decreased TLR4 and TLR7 and IRF3 mRNA expression in CRC cells. Monensin treatment decreased the expression level of IRF3 induced by LPS. Our study demonstrates for the first time the TLR4/IRF3-mediated anti-inflammatory effects of monensin in colorectal cancer cells. Further studies on the effects of monensin on TLR receptors in colorectal cancer cells are needed.
Collapse
Affiliation(s)
- Mücahit Seçme
- School of Medicine, Department of Medical Biology, Ordu University, Ordu, Turkey.
| | - Sema Serter Kocoglu
- School of Medicine, Department of Histology and Embryology, Balikesir University, Balikesir, Turkey
| |
Collapse
|
4
|
Majewski M, Torres K, Mertowska P, Mertowski S, Korona-Głowniak I, Korulczyk J, Zgodziński W, Grywalska E. Could Toll-like Receptor 2 Serve as Biomarker to Detect Advanced Gastric Cancer? Int J Mol Sci 2023; 24:ijms24065824. [PMID: 36982898 PMCID: PMC10056638 DOI: 10.3390/ijms24065824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Gastric cancer is one of the five most common types of cancer worldwide. Due to the heterogeneous course and the involvement of many risk factors, its treatment and diagnosis is an important challenge for modern medicine. Recent studies have emphasized the i role of Toll-like receptors (TLRs) expressed on selected cells of the immune system in the pathogenesis of gastric cancer. The aim of this study was to determine the prevalence of TLR2 on T lymphocytes, B lymphocytes, monocytes, and dendritic cells in patients diagnosed with gastric cancer, with particular emphasis on the stage of the disease. Based on the obtained results, we have shown that patients with gastric cancer are characterized by a higher percentage of all tested populations of peripheral blood immune cells expressing TLR2 in relation to patients from the control group. Moreover, a detailed analysis of the collected results showed a significant link between TLR2 and the stage of the disease.
Collapse
Affiliation(s)
- Marek Majewski
- 2nd Department of General, Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, 20-081 Lublin, Poland
| | - Kamil Torres
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Korulczyk
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland
| | - Witold Zgodziński
- 1st Department of General and Transplant Surgery and Clinical Nutrition, Medical University of Lublin, 20-090 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Xin J, Fu H, Zhang J, Zou H, Li Q, Yang W, Sun H. Expression of Foxp3 and TLR4 in human papillary thyroid carcinoma and its clinical significance. Histol Histopathol 2023; 38:339-347. [PMID: 36165427 DOI: 10.14670/hh-18-524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
This study aimed to explore the association of Foxp3 and TLR4 with clinical pathological characteristics in papillary thyroid carcinoma (PTC) patients. Methods 78 cases of PTC were used as experimental group and 20 cases of normal thyroid tissue were used as control group. The expression of Foxp3 and TLR4 in thyroid tissue from the two groups was detected by immunohistochemistry, and the experimental group was divided into several groups on the basis of different clinicopathological indicators. The association between Foxp3 and TLR4 expression and clinicopathological parameters was statistically analyzed. Results Foxp3 and TLR4 were expressed in higher levels in PTC than in normal thyroid tissue (P<0.05). Foxp3 was mainly localized in the cytoplasm and nucleus of PTC cells, while TLR4 was found in the cytoplasm and cell membrane of cancer cells. The expression of both proteins associated with lymph node metastasis and TNM clinical stage (P<0.05). The expression of Foxp3 correlated with the expression of TLR4 in tested PTC tissues (P<0.05). In addition, the result of confocal fluorescence microscopy showed that Foxp3 and TLR4 co-localized in PTC cells. Conclusion Foxp3 and TLR4 were upregulated and associated with lymph node metastasis and advanced TNM stage in PTC tissues. Together they may act as valuable factors for the identification of high-risk PTC patients.
Collapse
Affiliation(s)
- Jingwei Xin
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, China
| | - Haiying Fu
- Department of Immunology, Basic college of Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Jiaping Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, China
| | - Hongrui Zou
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, China
| | - Qi Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, China
| | - Wei Yang
- Department of Immunology, Basic college of Medical Sciences, Jilin University, Changchun City, Jilin Province, China.
| | - Hui Sun
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, China.
| |
Collapse
|
6
|
Small Molecules as Toll-like Receptor 4 Modulators Drug and In-House Computational Repurposing. Biomedicines 2022; 10:biomedicines10092326. [PMID: 36140427 PMCID: PMC9496124 DOI: 10.3390/biomedicines10092326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Abstract
The innate immunity toll-like receptor 4 (TLR4) system is a receptor of paramount importance as a therapeutic target. Virtual screening following a “computer-aided drug repurposing” approach was applied to the discovery of novel TLR4 modulators with a non-lipopolysaccharide-like structure. We screened almost 29,000 approved drugs and drug-like molecules from commercial, public, and in-house academia chemical libraries and, after biological assays, identified several compounds with TLR4 antagonist activity. Our computational protocol showed to be a robust approach for the identification of hits with drug-like scaffolds as possible inhibitors of the TLR4 innate immune pathways. Our collaborative work broadens the chemical diversity for inspiration of new classes of TLR4 modulators.
Collapse
|
7
|
Microbial-Derived Toll-like Receptor Agonism in Cancer Treatment and Progression. Cancers (Basel) 2022; 14:cancers14122923. [PMID: 35740589 PMCID: PMC9221178 DOI: 10.3390/cancers14122923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Toll like receptors (TLRs) are a group of transmembrane receptors belonging to the class of pattern recognition receptors (PRR), which are involved in recognition of pathogen associated molecular patterns (PAMPs), inducing immune response. During the past decade, a number of preclinical and clinical breakthroughs in the field of TLR agonists has immerged in cancer research and some of these agents have performed exceptionally well in clinical trials. Based on evidence from scientific studies, we draw attention to several microbial based TLR agonists and discuss their relevance in various cancer and explore various microbial based TLR agonists for developing effective immunotherapeutic strategies against cancer. Abstract Toll-like receptors (TLRs) are typical transmembrane proteins, which are essential pattern recognition receptors in mediating the effects of innate immunity. TLRs recognize structurally conserved molecules derived from microbes and damage-associated molecular pattern molecules that play an important role in inflammation. Since the first discovery of the Toll receptor by the team of J. Hoffmann in 1996, in Drosophila melanogaster, numerous TLRs have been identified across a wide range of invertebrate and vertebrate species. TLR stimulation leads to NF-κB activation and the subsequent production of pro-inflammatory cytokines and chemokines, growth factors and anti-apoptotic proteins. The expression of TLRs has also been observed in many tumors, and their stimulation results in tumor progression or regression, depending on the TLR and tumor type. The anti-tumoral effects can result from the activation of anti-tumoral immune responses and/or the direct induction of tumor cell death. The pro-tumoral effects may be due to inducing tumor cell survival and proliferation or by acting on suppressive or inflammatory immune cells in the tumor microenvironment. The aim of this review is to draw attention to the effects of TLR stimulation in cancer, the activation of various TLRs by microbes in different types of tumors, and, finally, the role of TLRs in anti-cancer immunity and tumor rejection.
Collapse
|
8
|
Xu Y, Chen Y, Niu Z, Xing J, Yang Z, Yin X, Guo L, Zhang Q, Qiu H, Han Y. A Novel Pyroptotic and Inflammatory Gene Signature Predicts the Prognosis of Cutaneous Melanoma and the Effect of Anticancer Therapies. Front Med (Lausanne) 2022; 9:841568. [PMID: 35492358 PMCID: PMC9053829 DOI: 10.3389/fmed.2022.841568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe purpose of this study was to construct a gene signature comprising genes related to both inflammation and pyroptosis (GRIPs) to predict the prognosis of patients with cutaneous melanoma patients and the efficacy of immunotherapy, chemotherapy, and targeted therapy in these patients.MethodsGene expression profiles were collected from The Cancer Genome Atlas. Weighted gene co-expression network analysis was performed to identify GRIPs. Univariable Cox regression and Lasso regression further selected key prognostic genes. Multivariable Cox regression was used to construct a risk score, which stratified patients into high- and low-risk groups. Areas under the ROC curves (AUCs) were calculated, and Kaplan-Meier analyses were performed for the two groups, following validation in an external cohort from Gene Expression Omnibus (GEO). A nomogram including the GRIP signature and clinicopathological characteristics was developed for clinical use. Gene set enrichment analysis illustrated differentially enriched pathways. Differences in the tumor microenvironment (TME) between the two groups were assessed. The efficacies of immune checkpoint inhibitors (ICIs), chemotherapeutic agents, and targeted agents were predicted for both groups. Immunohistochemical analyses of the GRIPs between the normal and CM tissues were performed using the Human Protein Atlas data. The qRT-PCR experiments validated the expression of genes in CM cell lines, Hacat, and PIG1 cell lines.ResultsA total of 185 GRIPs were identified. A novel gene signature comprising eight GRIPs (TLR1, CCL8, EMP3, IFNGR2, CCL25, IL15, RTP4, and NLRP6) was constructed. The signature had AUCs of 0.714 and 0.659 for predicting 3-year overall survival (OS) in the TCGA entire and GEO validation cohorts, respectively. Kaplan-Meier analyses revealed that the high-risk group had a poorer prognosis. Multivariable Cox regression showed that the GRIP signature was an independent predictor of OS with higher accuracy than traditional clinicopathological features. The nomogram showed good accuracy and reliability in predicting 3-year OS (AUC = 0.810). GSEA and TME analyses showed that the high-risk group had lower levels of pyroptosis, inflammation, and immune response, such as lower levels of CD8+ T-cell infiltration, CD4+ memory-activated T-cell infiltration, and ICI. In addition, low-risk patients whose disease expressed PD-1 or CTLA-4 were likely to respond better to ICIs, and several chemotherapeutic and targeted agents. Immunohistochemical analysis confirmed the distinct expression of five out of the eight GRIPs between normal and CM tissues.ConclusionOur novel 8-GRIP signature can accurately predict the prognosis of patients with CM and the efficacies of multiple anticancer therapies. These GRIPs might be potential prognostic biomarkers and therapeutic targets for CM.
Collapse
Affiliation(s)
- Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zehao Niu
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng Yang
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangye Yin
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lingli Guo
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Haixia Qiu
- Department of Laser Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Haixia Qiu
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Yan Han
| |
Collapse
|
9
|
Darbeheshti F. The Immunogenetics of Melanoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:383-396. [DOI: 10.1007/978-3-030-92616-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Mallick R, Duttaroy AK. Can interruption of innate immune recognition-mediated emergency myelopoiesis impede tumor progression? Med Hypotheses 2021; 155:110663. [PMID: 34403869 DOI: 10.1016/j.mehy.2021.110663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023]
Abstract
Cancer cells survive and grow despite various advanced anti-cancer therapy. To overcome this antineoplastic resistance, adjuvant therapy is often required to prevent cancer cells' immunoescape capacity. Established tumors build a stressful and hostile microenvironment in order to escape protective innate and adaptive immune responses. Specific conditions and factors within tumors, including hypoxia, nutrient starvation, acidic pH, and increased levels of free radicals, provoke a state of "endoplasmic reticulum stress" in both malignant cells and infiltrating myeloid cells. The stimulated endoplasmic reticulum stress can affect cancer progression via cross-talks with the innate immune system. Recently, the immunosuppressive activities of myeloid cells in the development of antineoplastic resistance are gaining more attention. Based on all these available data, we hypothesize that interruption of innate-immune recognition-mediated emergency myelopoiesis may be beneficial in halting cancer progression.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Dika E, Broseghini E, Porcellini E, Lambertini M, Riefolo M, Durante G, Loher P, Roncarati R, Bassi C, Misciali C, Negrini M, Rigoutsos I, Londin E, Patrizi A, Ferracin M. Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis. Cell Death Dis 2021; 12:473. [PMID: 33980826 PMCID: PMC8115306 DOI: 10.1038/s41419-021-03764-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Malignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial-mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|-2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas.
Collapse
Affiliation(s)
- Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Martina Lambertini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giorgio Durante
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Roberta Roncarati
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
- CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milan, Italy
| | - Cristian Bassi
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Cosimo Misciali
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimo Negrini
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Annalisa Patrizi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
12
|
Zheng X, Li S, Yang H. Roles of Toll-Like Receptor 3 in Human Tumors. Front Immunol 2021; 12:667454. [PMID: 33986756 PMCID: PMC8111175 DOI: 10.3389/fimmu.2021.667454] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptor 3 (TLR3) is an important member of the TLR family, which is an important group of pathogen-associated molecular patterns. TLR3 can recognize double-stranded RNA and induce activation of NF-κB and the production of type I interferons. In addition to its immune-associated role, TLR3 has also been detected in some tumors. However TLR3 can play protumor or antitumor roles in different tumors or cell lines. Here, we review the basic signaling associated with TLR3 and the pro- or antitumor roles of TLR3 in different types of tumors and discuss the possible reasons for the opposing roles of TLR3 in tumors.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Tewary P, Brooks AD, Xu YM, Wijeratne EMK, Babyak AL, Back TC, Chari R, Evans CN, Henrich CJ, Meyer TJ, Edmondson EF, de Aquino MTP, Kanagasabai T, Shanker A, Gunatilaka AAL, Sayers TJ. Small-Molecule Natural Product Physachenolide C Potentiates Immunotherapy Efficacy by Targeting BET Proteins. Cancer Res 2021; 81:3374-3386. [PMID: 33837043 DOI: 10.1158/0008-5472.can-20-2634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
Screening for sensitizers of cancer cells to TRAIL-mediated apoptosis identified a natural product of the 17β-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), as a promising hit. In this study, we show that PCC was also able to sensitize melanoma and renal carcinoma cells to apoptosis in response not only to TRAIL, but also to the synthetic polynucleotide poly I:C, a viral mimetic and immune activator, by reducing levels of antiapoptotic proteins cFLIP and Livin. Both death receptor and TLR3 signaling elicited subsequent increased assembly of a proapoptotic ripoptosome signaling complex. Administration of a combination of PCC and poly I:C in human M14 melanoma xenograft and a syngeneic B16 melanoma model provided significant therapeutic benefit as compared with individual agents. In addition, PCC enhanced melanoma cell death in response to activated human T cells in vitro and in vivo in a death ligand-dependent manner. Biochemical mechanism-of-action studies established bromo and extraterminal domain (BET) proteins as major cellular targets of PCC. Thus, by targeting of BET proteins to reduce antiapoptotic proteins and enhance caspase-8-dependent apoptosis of cancer cells, PCC represents a unique agent that can potentially be used in combination with various immunotherapeutic approaches to promote tumor regression and improve outcome. SIGNIFICANCE: These findings demonstrate that PCC selectively sensitizes cancer cells to immune-mediated cell death, potentially improving the efficacy of cancer immunotherapies. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3374/F1.large.jpg.
Collapse
Affiliation(s)
- Poonam Tewary
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Alan D Brooks
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona
| | | | - Timothy C Back
- Cancer and Inflammation Program, NCI, Frederick, Maryland
| | - Raj Chari
- Genome Modification Core Laboratory Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Christine N Evans
- Genome Modification Core Laboratory Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Curtis J Henrich
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, NCI, NIH, Bethesda, Maryland.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Maria T Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona.
| | - Thomas J Sayers
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
14
|
Kumar V. Going, Toll-like receptors in skin inflammation and inflammatory diseases. EXCLI JOURNAL 2021; 20:52-79. [PMID: 33510592 PMCID: PMC7838829 DOI: 10.17179/excli2020-3114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The Indian Ayurvedic physicians knew the concept of inflammation dating back to 1500 BC. The continuous progress in the immunology of inflammation has explained its undiscovered mechanisms. For example, the discovery of Toll-like receptor 4 (TLR4) in humans (1997) has revolutionized the field of infection biology and innate immunity. The laboratory mice have shown twelve TLRs and express TLR10 (CD290) as a disrupted pseudogene, and humans have ten functional TLRs. Now, it is well established that TLRs play a significant role in different infectious and inflammatory diseases. Skin inflammation and other associated inflammatory diseases, including atopic dermatitis (AD), acne vulgaris, and psoriasis, along with many skin cancers are major health problems all over the world. The continuous development in the immunopathogenesis of inflammatory skin diseases has opened the window of opportunity for TLRs in studying their role. Hence, the manuscript explores the role of different TLRs in the pathogenesis of skin inflammation and associated inflammatory diseases. The article starts with the concept of inflammation, its origin, and the impact of TLRs discovery on infection and inflammation biology. The subsequent section describes the burden of skin-associated inflammatory diseases worldwide and the effect of the geographical habitat of people affecting it. The third section explains skin as an immune organ and explains the expression of different TLRs on different skin cells, including keratinocytes, Langerhans cells (LCs), skin fibroblasts, and melanocytes. The fourth section describes the impact of TLRs on these cells in different skin-inflammatory conditions, including acne vulgaris, AD, psoriasis, and skin cancers. The article also discusses the use of different TLR-based therapeutic approaches as specific to these inflammatory skin diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children Health Clinical Unit, Faculty of Medicine and Biomedical Sciences, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
| |
Collapse
|
15
|
Mokhtari Y, Pourbagheri‐Sigaroodi A, Zafari P, Bagheri N, Ghaffari SH, Bashash D. Toll-like receptors (TLRs): An old family of immune receptors with a new face in cancer pathogenesis. J Cell Mol Med 2021; 25:639-651. [PMID: 33336901 PMCID: PMC7812258 DOI: 10.1111/jcmm.16214] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
In the dark path of tumorigenesis, the more carefully the cancer biology is studied, the more brilliant answers could be given to the countless questions about its orchestrating derivers. The identification of the correlation between Toll-like receptors (TLRs) and different processes involved in carcinogenesis was one of the single points of blinding light highlighting the interconnection between the immune system and cancer. TLRs are a wide family of single-pass membrane-spanning receptors that have developed through the evolution to recognize the structurally conserved molecules derived from microorganisms or damaged cells. But this is not everything about these receptors as they could orchestrate several downstream signalling pathways leading to the formation or suppression of cancer cells. The present review is tempted to provide a concise schematic about the biology and the characters of TLRs and also summarize the major findings of the regulatory role of TLRs and their associated signalling in the pathogenesis of human cancers.
Collapse
Affiliation(s)
- Yazdan Mokhtari
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Atieh Pourbagheri‐Sigaroodi
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Parisa Zafari
- Department of ImmunologyFaculty of MedicineMazandaran University of Medical SciencesSariIran
- Student Research CommitteeFaculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Nader Bagheri
- Cellular and Molecular Research CenterBasic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Seyed H. Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research CenterShariati HospitalSchool of MedicineTehran University of Medical SciencesTehranIran
| | - Davood Bashash
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
16
|
Interactions between tumor-derived proteins and Toll-like receptors. Exp Mol Med 2020; 52:1926-1935. [PMID: 33299138 PMCID: PMC8080774 DOI: 10.1038/s12276-020-00540-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are danger signals (or alarmins) alerting immune cells through pattern recognition receptors (PRRs) to begin defense activity. Moreover, DAMPs are host biomolecules that can initiate a noninflammatory response to infection, and pathogen-associated molecular pattern (PAMPs) perpetuate the inflammatory response to infection. Many DAMPs are proteins that have defined intracellular functions and are released from dying cells after tissue injury or chemo-/radiotherapy. In the tumor microenvironment, DAMPs can be ligands for Toll-like receptors (TLRs) expressed on immune cells and induce cytokine production and T-cell activation. Moreover, DAMPs released from tumor cells can directly activate tumor-expressed TLRs that induce chemoresistance, migration, invasion, and metastasis. Furthermore, DAMP-induced chronic inflammation in the tumor microenvironment causes an increase in immunosuppressive populations, such as M2 macrophages, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). Therefore, regulation of DAMP proteins can reduce excessive inflammation to create an immunogenic tumor microenvironment. Here, we review tumor-derived DAMP proteins as ligands of TLRs and discuss their association with immune cells, tumors, and the composition of the tumor microenvironment. Tumor cells killed by radiotherapy or chemotherapy release signaling molecules that stimulate both immune response and tumor aggressiveness; regulating these molecules could improve treatment efficacy. Tae Heung Kang, Yeong-Min Park, and co-workers at Konkuk University, Seoul, South Korea, have reviewed the role of damage-associated molecular patterns (DAMPs) in immunity and cancer. These signaling molecules act as danger signals, activating immune cells by binding to specific receptors. However, tumor cells have the same receptors, and DAMPs binding triggers chemoresistance and increases invasiveness. The researchers report that although DAMPs can trigger a helpful immune response, they can also cause chronic inflammation, which in turn promotes an immune suppression response, allowing tumors to escape immune detection. Improving our understanding of the functions of different DAMPs could improve our ability to boost the immune response and decrease tumor aggressiveness.
Collapse
|
17
|
Dong X, Zhang D, Zhang J, Chen X, Zhang Y, Zhang Y, Zhou X, Chen T, Zhou H. Immune prognostic risk score model in acute myeloid leukemia with normal karyotype. Oncol Lett 2020; 20:380. [PMID: 33154778 DOI: 10.3892/ol.2020.12243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 01/14/2023] Open
Abstract
Acute myeloid leukemia with normal karyotype (NK-AML) is a group of diseases with high heterogeneity and immunological processes are significantly associated with its initiation and development. The implication of the immunogenomic landscape in the prognosis of patients with NK-AML has remained largely elusive. In the present study, the expression profiles of immune-related genes (IRGs) were examined and their association with overall survival (OS) was determined in 60 patients with NK-AML from The Cancer Genome Atlas dataset and 104 patients from the Gene Expression Omnibus (GEO) dataset no. GSE71014. Univariate Cox regression analysis was used to identify 42 and 203 IRGs in the two respective cohorts, which were significantly associated with OS in NK-AML. A risk model was constructed based on the regression coefficient and expression values of nine survival-associated IRGs shared between the two datasets [zinc finger CCCH-type containing, antiviral 1 like; transferrin receptor; suppressor of cytokine signaling 1; ELAV like RNA binding protein 1; roundabout guidance receptor 3; unc-93 homolog B1, Toll-like receptor signaling regulator; protein tyrosine phosphatase non-receptor type 6; interleukin 2 receptor subunit alpha (IL2RA) and IL3RA]. Using this risk model, patients with NK-AML may be divided into high- and low-risk groups in prognostic predictions. The area under the receiver operating characteristic curve for predicting OS was 0.793. The prognostic role of this risk model was successfully verified in another independent cohort (GEO dataset no. GSE71014). The prognostic risk score was positively associated with age and fms related receptor tyrosine kinase 3 mutation and correlated with infiltration by T regulatory cells. In conclusion, the results of the present study provided an IRG score model for prognostic stratification of adult patients with NK-AML, as well as further insight into the implication of IRGs in NK-AML that may lead to the development of novel immunotherapy approaches for this disease.
Collapse
Affiliation(s)
- Xiaomin Dong
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Danyang Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Juan Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Xiaolei Chen
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Yue Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Yong Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Xiaohuan Zhou
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Tingting Chen
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Hebing Zhou
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
18
|
Lomphithak T, Choksi S, Mutirangura A, Tohtong R, Tencomnao T, Usubuchi H, Unno M, Sasano H, Jitkaew S. Receptor-interacting protein kinase 1 is a key mediator in TLR3 ligand and Smac mimetic-induced cell death and suppresses TLR3 ligand-promoted invasion in cholangiocarcinoma. Cell Commun Signal 2020; 18:161. [PMID: 33036630 PMCID: PMC7545934 DOI: 10.1186/s12964-020-00661-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) ligand which activates TLR3 signaling induces both cancer cell death and activates anti-tumor immunity. However, TLR3 signaling can also harbor pro-tumorigenic consequences. Therefore, we examined the status of TLR3 in cholangiocarcinoma (CCA) cases to better understand TLR3 signaling and explore the potential therapeutic target in CCA. METHODS The expression of TLR3 and receptor-interacting protein kinase 1 (RIPK1) in primary CCA tissues was assayed by Immunohistochemical staining and their associations with clinicopathological characteristics and survival data were evaluated. The effects of TLR3 ligand, Poly(I:C) and Smac mimetic, an IAP antagonist on CCA cell death and invasion were determined by cell death detection methods and Transwell invasion assay, respectively. Both genetic and pharmacological inhibition of RIPK1, RIPK3 and MLKL and inhibitors targeting NF-κB and MAPK signaling were used to investigate the underlying mechanisms. RESULTS TLR3 was significantly higher expressed in tumor than adjacent normal tissues. We demonstrated in a panel of CCA cell lines that TLR3 was frequently expressed in CCA cell lines, but was not detected in a nontumor cholangiocyte. Subsequent in vitro study demonstrated that Poly(I:C) specifically induced CCA cell death, but only when cIAPs were removed by Smac mimetic. Cell death was also switched from apoptosis to necroptosis when caspases were inhibited in CCA cells-expressing RIPK3. In addition, RIPK1 was required for Poly(I:C) and Smac mimetic-induced apoptosis and necroptosis. Of particular interest, high TLR3 or low RIPK1 status in CCA patients was associated with more invasiveness. In vitro invasion demonstrated that Poly(I:C)-induced invasion through NF-κB and MAPK signaling. Furthermore, the loss of RIPK1 enhanced Poly(I:C)-induced invasion and ERK activation in vitro. Smac mimetic also reversed Poly(I:C)-induced invasion, partly mediated by RIPK1. Finally, a subgroup of patients with high TLR3 and high RIPK1 had a trend toward longer disease-free survival (p = 0.078, 28.0 months and 10.9 months). CONCLUSION RIPK1 plays a pivotal role in TLR3 ligand, Poly(I:C)-induced cell death when cIAPs activity was inhibited and loss of RIPK1 enhanced Poly(I:C)-induced invasion which was partially reversed by Smac mimetic. Our results suggested that TLR3 ligand in combination with Smac mimetic could provide therapeutic benefits to the patients with CCA. Video abstract.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Swati Choksi
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892 USA
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Hajime Usubuchi
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University School of Medicine, Sendai, Miyagi 98-8075 Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Siriporn Jitkaew
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
19
|
Sato Y, Motoyama S, Wakita A, Kawakita Y, Liu J, Nagaki Y, Nanjo H, Ito S, Terata K, Imai K, Minamiya Y. High TLR4 expression predicts a poor prognosis after esophagectomy for advanced thoracic esophageal squamous cell carcinoma. Esophagus 2020; 17:408-416. [PMID: 32170544 DOI: 10.1007/s10388-020-00732-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Poor oral health is an independent risk factor for upper aerodigestive tract cancers, including esophageal squamous cell carcinoma (ESCC). The pattern recognition receptor Toll-like receptor 4 (TLR4) recognizes lipopolysaccharide in the cell walls of Gram-negative periodontal pathogens associated with the development and progression of ESCC. It is, therefore, plausible that TLR4 plays a crucial role in the pathogenesis of ESCC. METHODS We used an ESCC tissue microarray to confirm expression of TLR4 in patients with ESCC and to determine whether TLR4 expression status correlates with the clinicopathological features of these patients or their prognosis after esophagectomy. We also tested whether the combined expression statuses of TLR4 and TLR3 better correlate with prognosis in these patients than either parameter alone. RESULTS Clinical ESCC samples from all 177 patients tested showed expression of TLR4. Moreover, high TLR4 expression (3 + and 2 +) correlated with poorer 5-year overall survival after esophagectomy than lower TLR4 expression (1 +) (p = 0.0491). Patients showing high TLR4 expression tended to have a poorer prognosis whether treated with surgery alone or with surgery and adjuvant chemotherapy. Univariate and multivariate analyses showed TLR4 expression status to be an independent prognostic factor affecting 5-year overall survival. Patients exhibiting high TLR4 expression with low TLR3 expression had a much poorer prognosis than other patients (p = < 0.0001). CONCLUSION High TLR4 expression predicts a poor prognosis in advanced thoracic ESCC patients after esophagectomy.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan.
| | - Satoru Motoyama
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Akiyuki Wakita
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yuta Kawakita
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Jiajia Liu
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yushi Nagaki
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Hiroshi Nanjo
- Department of Pathology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Satoru Ito
- Department of Pathology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Kaori Terata
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Kazuhiro Imai
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| |
Collapse
|
20
|
Gnanasekaran J, Binder Gallimidi A, Saba E, Pandi K, Eli Berchoer L, Hermano E, Angabo S, Makkawi H, Khashan A, Daoud A, Elkin M, Nussbaum G. Intracellular Porphyromonas gingivalis Promotes the Tumorigenic Behavior of Pancreatic Carcinoma Cells. Cancers (Basel) 2020; 12:cancers12082331. [PMID: 32824786 PMCID: PMC7465784 DOI: 10.3390/cancers12082331] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gingivalis is a member of the dysbiotic oral microbiome associated with oral inflammation and periodontal disease. Intriguingly, epidemiological studies link P. gingivalis to an increased risk of pancreatic cancer. Given that oral bacteria are detected in human pancreatic cancer, and both mouse and human pancreata harbor microbiota, we explored the involvement of P. gingivalis in pancreatic tumorigenesis using cell lines and a xenograft model. Live P. gingivalis induced proliferation of pancreatic cancer cells; however, surprisingly, this effect was independent of Toll-like receptor 2, the innate immune receptor that is engaged in response to P. gingivalis on other cancer and immune cells, and is required for P. gingivalis to induce alveolar bone resorption. Instead, we found that P. gingivalis survives inside pancreatic cancer cells, a trait that can be enhanced in vitro and is increased by hypoxia, a central characteristic of pancreatic cancer. Increased tumor cell proliferation was related to the degree of intracellular persistence, and infection of tumor cells with P. gingivalis led to enhanced growth in vivo. To the best of our knowledge, this study is the first to demonstrate the direct effect of exposure to P. gingivalis on the tumorigenic behavior of pancreatic cancer cell lines. Our findings shed light on potential mechanisms underlying the pancreatic cancer–periodontitis link.
Collapse
Affiliation(s)
- JebaMercy Gnanasekaran
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Adi Binder Gallimidi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
| | - Elias Saba
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Karthikeyan Pandi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Luba Eli Berchoer
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Esther Hermano
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
| | - Sarah Angabo
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Hasna′a Makkawi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Arin Khashan
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Alaa Daoud
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
- Correspondence: (M.E.); (G.N.); Tel.: +972-2-6776782 (M.E.); +972-2-6758581 (G.N.)
| | - Gabriel Nussbaum
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
- Correspondence: (M.E.); (G.N.); Tel.: +972-2-6776782 (M.E.); +972-2-6758581 (G.N.)
| |
Collapse
|
21
|
Bellenghi M, Puglisi R, Pontecorvi G, De Feo A, Carè A, Mattia G. Sex and Gender Disparities in Melanoma. Cancers (Basel) 2020; 12:E1819. [PMID: 32645881 PMCID: PMC7408637 DOI: 10.3390/cancers12071819] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Worldwide, the total incidence of cutaneous melanoma is higher in men than in women, with some differences related to ethnicity and age and, above all, sex and gender. Differences exist in respect to the anatomic localization of melanoma, in that it is more frequent on the trunk in men and on the lower limbs in women. A debated issue is if-and to what extent-melanoma development can be attributed to gender-specific behaviors or to biologically intrinsic differences. In the search for factors responsible for the divergences, a pivotal role of sex hormones has been observed, although conflicting results indicate the involvement of other mechanisms. The presence on the X chromosome of numerous miRNAs and coding genes playing immunological roles represents another important factor, whose relevance can be even increased by the incomplete X chromosome random inactivation. Considering the known advantages of the female immune system, a different cancer immune surveillance efficacy was suggested to explain some sex disparities. Indeed, the complexity of this picture emerged when the recently developed immunotherapies unexpectedly showed better improvements in men than in women. Altogether, these data support the necessity of further studies, which consider enrolling a balanced number of men and women in clinical trials to better understand the differences and obtain actual gender-equitable healthcare.
Collapse
Affiliation(s)
- Maria Bellenghi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Rossella Puglisi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Giada Pontecorvi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alessandra Carè
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Gianfranco Mattia
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| |
Collapse
|
22
|
Angrini M, Varthaman A, Cremer I. Toll-Like Receptors (TLRs) in the Tumor Microenvironment (TME): A Dragon-Like Weapon in a Non-fantasy Game of Thrones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:145-173. [DOI: 10.1007/978-3-030-44518-8_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Duval KEA, Vernice NA, Wagner RJ, Fiering SN, Petryk JD, Lowry GJ, Tau SS, Yin J, Houde GR, Chaudhry AS, Hoopes PJ. Immunogenetic effects of low dose (CEM43 30) magnetic nanoparticle hyperthermia and radiation in melanoma cells. Int J Hyperthermia 2020; 36:37-46. [PMID: 31795829 PMCID: PMC6943912 DOI: 10.1080/02656736.2019.1627433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objective: In this in vitro study we have used an RNA quantification technique, nanoString, and a conventional protein analysis technique (Western Blot) to assess the genetic and protein expression of B16 murine melanoma cells following a modest magnetic nanoparticle hyperthermia (mNPH) dose equivalent to 30 minutes @ 43°C (CEM43 30) and/or a clinically relevant 8 Gy radiation dose. Methods: Melanoma cells with mNPs(2.5 μg Fe/106 cells) were pelleted and exposed to an alternating magnetic field (AMF) to generate the targeted thermal dose. Thermal dose was accurately monitored by a fiber optic probe and automatically maintained at CEM43 30. All cells were harvested 24 hours after treatment. Results: The mNPH dose demonstrated notable elevations in the thermotolerance/immunogenic HSP70 gene and a number of chemoattractant and toll-like receptor gene pathways. The 8 Gy dose also upregulated a number of important immune and cytotoxic genetic and protein pathways. However, the mNPH/radiation combination was the most effective stimulator of a wide variety of immune and cytotoxic genes including HSP70, cancer regulating chemokines CXCL10, CXCL11, the T-cell trafficking chemokine CXCR3, innate immune activators TLR3, TLR4, the MDM2 and mTOR negative regulator of p53, the pro-apoptotic protein PUMA, and the cell death receptor Fas. Importantly a number of the genetic changes were accurately validated by protein expression changes, i.e., HSP70, p-mTOR, p-MDM2. Conclusion: These results not only show that low dose mNPH and radiation independently increase the expression of important immune and cytotoxic genes but that the effect is greatly enhanced when they are used in combination.
Collapse
Affiliation(s)
- Kayla E A Duval
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | - Robert J Wagner
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - James D Petryk
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Steven S Tau
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - John Yin
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Georgia R Houde
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
24
|
Fu XQ, Liu B, Wang YP, Li JK, Zhu PL, Li T, Tse KW, Chou JY, Yin CL, Bai JX, Liu YX, Chen YJ, Yu ZL. Activation of STAT3 is a key event in TLR4 signaling-mediated melanoma progression. Cell Death Dis 2020; 11:246. [PMID: 32312954 PMCID: PMC7171093 DOI: 10.1038/s41419-020-2440-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
Malignant melanoma is aggressive and has a high mortality rate. Toll-like receptor 4 (TLR4) has been linked to melanoma growth, angiogenesis and metastasis. However, signal transduction mediated by TLR4 for driving melanoma progression is not fully understood. Signal transducer and activator of transcription 3 (STAT3) has been identified as a major oncogene in melanoma progression. We found: that TLR4 expression positively correlates with activation/phosphorylation of STAT3 in human melanoma samples; that TLR4 ligands activate STAT3 through MYD88 and TRIF in melanoma cells; and that intratumoral activation of TLR4 increases STAT3 activation in the tumor and promotes tumor growth, angiogenesis, epithelial-mesenchymal transition (EMT) and the formation of an immunosuppressive tumor microenvironment in mice. Further, we found that the effects mediated by activating TLR4 are weakened by suppressing STAT3 function with a dominant negative STAT3 variant in melanoma. Collectively, our work identifies STAT3 activation as a key event in TLR4 signaling-mediated melanoma progression, shedding new light on the pathophysiology of melanoma.
Collapse
Affiliation(s)
- Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Bin Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ya-Ping Wang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jun-Kui Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Pei-Li Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Kai-Wing Tse
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ji-Yao Chou
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Cheng-Le Yin
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jing-Xuan Bai
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Yu-Xi Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
- JaneClare Transdermal TCM Therapy Laboratory, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
25
|
Shi HZ, Xiong JS, Xu CC, Bu WB, Wang Y, Sun JF, Chen H. Long non-coding RNA expression identified by microarray analysis: Candidate biomarkers in human acral lentiginous melanoma. Oncol Lett 2019; 19:1465-1477. [PMID: 31966073 PMCID: PMC6956422 DOI: 10.3892/ol.2019.11207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/14/2019] [Indexed: 11/05/2022] Open
Abstract
Melanoma is a rare but fatal form of skin cancer and acral lentiginous melanoma (ALM) is one of its most common types. Long non-coding RNA (lncRNA) has emerged as a crucial molecule in the development and progression of human cancers, and several studies have revealed that lncRNAs may be associated with the pathogenesis, progression and metastasis of melanoma. To demonstrate the association between ALM and lncRNAs, microarray analysis was performed in tumor and adjacent non-tumor tissues. A total of 4,488 lncRNAs and 3,913 mRNAs were identified to be differentially expressed in these samples. Among them, 2,211 and 2,277 lncRNAs were upregulated and downregulated in the ALM samples compared with adjacent tissues, respectively. In addition, 1,191 and 2,722 mRNAs were upregulated and downregulated, respectively. Additionally, five randomly selected lncRNAs (fold-change >2; P<0.05) were validated by reverse transcription-quantitative PCR. An lncRNA and mRNA co-expression network and competing endogenous network analysis were also constructed. In summary, the results of the present study may reveal a novel mechanism associated with the pathogenesis and malignant biological processes of ALM and indicate that lncRNAs may serve as potential targets for the treatment of ALM.
Collapse
Affiliation(s)
- Hao-Ze Shi
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Jing-Shu Xiong
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Cong-Cong Xu
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Wen-Bo Bu
- Department of Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Yan Wang
- Department of Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Jian-Fang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Hao Chen
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| |
Collapse
|
26
|
Ploypetch S, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Krobthong S, Suriyaphol G. Salivary proteomics of canine oral tumors using MALDI-TOF mass spectrometry and LC-tandem mass spectrometry. PLoS One 2019; 14:e0219390. [PMID: 31318878 PMCID: PMC6638856 DOI: 10.1371/journal.pone.0219390] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023] Open
Abstract
Canine oral tumors are relatively common neoplasms in dogs. For disease monitoring and early diagnosis, salivary biomarkers are appropriate because saliva collection is non-invasive and requires no professional skills. In the era of omics, matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOF MS) coupled with liquid chromatography-tandem MS (LC-MS/MS) are suitable to identify potential disease-associated peptides and proteins. The present study aimed to use MALDI-TOF MS and LC-MS/MS to search for particular peptide mass fingerprints (PMFs) and conceivable biomarkers in saliva of dogs with early- and late-stage oral melanoma (EOM and LOM, respectively), oral squamous cell carcinoma (OSCC), benign oral tumors (BN), and periodontitis and healthy controls (CP). Pooled saliva samples in each group were used to be representative of population change. Unique PMFs were obtained and specific peptide fragments were sequenced by LC-MS/MS and BLAST-searched with mammalian protein databases. Seven peptide fragments appeared in the tumor groups (EOM, LOM, OSCC and BN) at 1096, 1208, 1322, 1794, 1864, 2354 and 2483 Da, two peptide fragments appeared in the LOM and OSCC groups at 2450 and 3492 Da, and in the CP controls at 2544 and 3026 Da. Also, protein–chemotherapy drug interaction networks were exhibited. Using western blot analysis, the expression of sentrin-specific protease 7 (SENP7), a peptide fragment at 1096 Da, in OSCC was significantly increased, as was the expression of TLR4, a peptide fragment at 3492 Da, in LOM and OSCC, compared with the CP group. The expression of nuclear factor kappa B (NF-κB), a TLR4 partner, was notably increased in OSCC compared with CP, BN and EOM. The expression was also enhanced in LOM compared with EOM. Expressed protein sequences from western blots were verified by LC-MS/MS. Western blots were then performed with individual samples in each group. The results showed the elevated expression of TLR4 in LOM and OSCC, compared with that in CP and BN, the increased expression of NF-κB in LOM and OSCC, compared with CP and in LOM compared with BN, and the enhanced expression of SENP7 in LOM and OSCC, compared with that in CP and BN. In conclusion, discrete clusters of EOM, LOM, OSCC, BN and CP groups and potential protein candidates associated with the diseases were demonstrated by salivary proteomics. Western blot analysis verified SENP7, TLR4 and NF-κB as potential salivary biomarkers of canine oral tumors.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sucheewin Krobthong
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
27
|
Jin C, Wang A, Liu L, Wang G, Li G, Han Z. miR-145-5p inhibits tumor occurrence and metastasis through the NF-κB signaling pathway by targeting TLR4 in malignant melanoma. J Cell Biochem 2019; 120:11115-11126. [PMID: 30701576 DOI: 10.1002/jcb.28388] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/26/2018] [Accepted: 01/09/2019] [Indexed: 01/24/2023]
Abstract
Compelling evidence shows that deregulated microRNAs (miRNAs) are important regulators in the progression of melanoma. miR-145-5p has been suggested to exhibit antitumorigenic activity in melanoma. However, the molecular mechanism underlying the biological activity of miR-145-5p in melanoma remains to be further understood. Herein, quantitative real-time polymerase chain reaction was used to examine the miR-145-5p expression in malignant melanoma tissues and cells. The interaction between miR-145-5p and toll-like receptor 4 (TLR4) was explored by bioinformatics analyses, luciferase reporter assay, and Western blot. The effects of miR-145-5p or combined with TLR4 on cell proliferation, colony formation, migration, and invasion abilities were investigated by (4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, colony formation, wound healing, and transwell assays, respectively. The melanoma xenograft tumor models were established to determine the biological activity of miR-145-5p in melanoma in vivo. In addition, the changes of the nuclear factor kappa B (NF-κB) pathway were analyzed by detecting the NF-κB activity and the NF-κB p65 protein level. We observed that the miR-145-5p expression was underexpressed in melanoma tissues and cells. miR-145-5p suppressed the TLR4 expression by binding to its 3'untranslated region in melanoma cells. Moreover, TLR4 overexpression abolished the inhibition of cell proliferation, colony formation, migration, and invasion abilities induced by miR-145-5p in melanoma cells. Meanwhile, miR-145-5p was confirmed to restrain melanoma tumor growth in vivo by targeting TLR4. Furthermore, miR-145-5p overexpression inactivated the NF-κB pathway in melanoma in vitro and in vivo, which was reversed by TLR4 overexpression. We concluded that miR-145-5p hindered the occurrence and metastasis of melanoma cells in vitro and in vivo by targeting TLR4 via inactivation of the NF-κB pathway.
Collapse
Affiliation(s)
- Canhui Jin
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Aihong Wang
- Department of Gynecologic Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Linbo Liu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gongping Wang
- Department of Gastrointestinal Tumor Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Guangshuai Li
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaofeng Han
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Dickinson SE, Wondrak GT. TLR4 in skin cancer: From molecular mechanisms to clinical interventions. Mol Carcinog 2019; 58:1086-1093. [PMID: 31020719 DOI: 10.1002/mc.23016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022]
Abstract
The health and economic burden imposed by skin cancer is substantial, creating an urgent need for the development of improved molecular strategies for its prevention and treatment. Cutaneous exposure to solar ultraviolet (UV) radiation is a causative factor in skin carcinogenesis, and TLR4-dependent inflammatory dysregulation is an emerging key mechanism underlying detrimental effects of acute and chronic UV exposure. Direct and indirect TLR4 activation, upstream of inflammatory signaling, is elicited by a variety of stimuli, including pathogen-associated molecular patterns (such as lipopolysaccharide) and damage-associated molecular patterns (such as HMGB1) that are formed upon exposure to environmental stressors, such as solar UV. TLR4 involvement has now been implicated in major types of skin malignancies, including nonmelanoma skin cancer, melanoma and Merkel cell carcinoma. Targeted molecular interventions that positively or negatively modulate TLR4 signaling have shown promise in translational, preclinical, and clinical investigations that may benefit skin cancer patients in the near future.
Collapse
Affiliation(s)
- Sally E Dickinson
- Department of Pharmacology, College of Medicine and The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
29
|
Human Toll-Like Receptor 4 (hTLR4): Structural and functional dynamics in cancer. Int J Biol Macromol 2019; 122:425-451. [DOI: 10.1016/j.ijbiomac.2018.10.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
|
30
|
Narita N, Ito Y, Takabayashi T, Okamoto M, Imoto Y, Ogi K, Tokunaga T, Matsumoto H, Fujieda S. Suppression of SESN1 reduces cisplatin and hyperthermia resistance through increasing reactive oxygen species (ROS) in human maxillary cancer cells. Int J Hyperthermia 2018; 35:269-278. [PMID: 30300027 DOI: 10.1080/02656736.2018.1496282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Cisplatin is used as a standard chemotherapeutic agent for head and neck cancer treatment. However, some head and neck cancers have cisplatin resistance, leading to difficulty in treatment and poor prognosis. Overcoming cisplatin resistance remains an important strategy to improve prognoses for head and neck cancer patients. OBJECTIVE Elucidation of the mechanisms underlying cisplatin resistance can suggest novel targets to enhance the anticancer effects of cisplatin for treating head and neck cancers. MATERIAL AND METHODS We used a cisplatin-resistant human maxillary cancer cell line, IMC-3CR to analyse the cisplatin resistance mechanisms. Cisplatin-induced genes were analysed in IMC-3CR cells using PCR array. Among the genes with expression increased by cisplatin, we specifically examined SESN1. SESN family reportedly regenerates peroxiredoxin and suppresses oxidative DNA injury by reactive oxygen species (ROS), which can be induced by chemotherapeutic agents such as cisplatin, radiation, and hyperthermia. The function of SESN1 in cisplatin resistance and ROS generation were analysed using specific RNAi. RESULTS Results show that SESN1 was induced by cisplatin treatment in IMC-3CR cells. Suppression of SESN1 by RNAi induced apoptosis and reduced cell viability through enhancement of ROS after cisplatin treatment. Moreover, suppression of SESN1 enhanced the cell-killing effects of hyperthermia with increased ROS, but did not affect the cell-killing effects of radiation. CONCLUSIONS This study demonstrated the participation of SESN1 in cisplatin and hyperthermia resistance of human head and neck cancers. SESN1 is a novel molecular target to overcome cisplatin resistance and hyperthermia resistance and improve head and neck cancer treatment.
Collapse
Affiliation(s)
- Norihiko Narita
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Yumi Ito
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Tetsuji Takabayashi
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Masayuki Okamoto
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Yoshimasa Imoto
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Kazuhiro Ogi
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Takahiro Tokunaga
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Hideki Matsumoto
- b Department of Experimental Radiology and Health Physics, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Shigeharu Fujieda
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| |
Collapse
|
31
|
Mahmoud Hashemi A, Mahmoud Hashemi H, Solahaye Kahnamouii S, Mahmoud Hashemi T, Agajani H, Frozannia K, Pournasrollah A, Sadeg R, Estakhri R, Razmpa E, Bahrami N. Activation Toll-Like Receptor7 (TLR7) Responsiveness Associated with Mitogen- Activated Protein Kinase (MAPK) Activation in HIOEC Cell Line of Oral Squamous Cell Carcinoma. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2018; 19:217-224. [PMID: 30175192 PMCID: PMC6092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
STATEMENT OF THE PROBLEM Oral squamous cell carcinoma is the most common oral malignancy. Toll-like receptor (TLR) activation led to alterations in the levels of mRNA encoding the TLR accountable for recognizing the inducing agonist and cross-regulation of other TLR. PURPOSE The purpose of this study is determination of mitogen-associated protein kinase (MAPK) activation in human immortalized oral epithelial cell (HIOEC) line via up regulating of TLR7. MATERIALS AND METHOD expression of TLR7 was measured in HIOEC and normal cells by quantitative real-time polymerase chain reaction (qRT-PCR) and samples were calibrated by β-actin. RESULTS Western blot analysis discovered high expression of TLR7 and MAPK in HIOEC cell lines. TLR7 was over-expressed in HIOEC cell line. Imiquimod-induced expression of interleukin (IL)-6, IL-8, and vascular endothelial growth factor (VEGF) was inhibited by TLR7 siRNA in HIOEC cells as determined by reverse transcription polymerase chain reaction (RT-PCR). Mean fluorescence intensity of nuclear p38 expression was determined in HIOEC cell lines (p< 0.05). RT-PCR analysis of IL-6, IL-8, and VEGF mRNA expression in HIOEC cells stimulated with imiquimod (1 μg/ml) for indicated time points. CONCLUSION TLR7 is functionally over-expressed in HIOEC cell line of oral squamous cell carcinoma and development of resistance to cisplatin in human oral squamous cell carcinoma might occur through the mechanism involving activation of TLR7 and its dependent signaling pathway.
Collapse
Affiliation(s)
- Ali Mahmoud Hashemi
- Dental Implant Research Center, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Mahmoud Hashemi
- Dental Implant Research Center, Dept. of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shiva Solahaye Kahnamouii
- Craniomaxillofacial Research Center, Dept. of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Talieh Mahmoud Hashemi
- Dental Implant Research Center, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Agajani
- Dept. of Cardiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Khalil Frozannia
- Dept. of Cardiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Rasoul Sadeg
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Rasoul Estakhri
- Dept. of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ebrahim Razmpa
- Dept. of Otolaryngology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Naghmeh Bahrami
- Dept. of Stem Cell, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a novel marker for patients with BRAF-mutated metastatic melanoma. Oncotarget 2018; 9:18997-19005. [PMID: 29721178 PMCID: PMC5922372 DOI: 10.18632/oncotarget.24871] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
Metastatic melanoma carrying BRAF mutations represent a still unmet medical need as success of BRAF inhibitors is limited by development of resistance. Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme in NAD biosynthesis. An extracellular form (eNAMPT) possesses cytokine-like functions and is up-regulated in inflammatory disorders, including cancer. Here we show that eNAMPT is actively released in culture supernatants of melanoma cell lines. Furthermore, cells that become resistant to BRAF inhibitors (BiR) show a significant increase of eNAMPT levels. Plasma from mice xenografted with BiR cell lines contain higher eNAMPT levels compared to tumor-free animals. Consistently, eNAMPT levels are elevated in 113 patients with BRAF-mutated metastatic melanoma compared to 50 with localized disease or to 38 healthy donors, showing a direct correlation with markers of tumor burden, such as LDH, or aggressive disease (such as PD-L1). eNAMPT concentrations decrease in response to therapy with BRAF/MEK inhibitors, but increase again at progression, as inferred from the serial analysis of 50 patients. Lastly, high eNAMPT levels correlate with a significantly shorter overall survival. Our findings suggest that eNAMPT is a novel marker of tumor burden and response to therapy in patients with metastatic melanoma carrying BRAF mutations.
Collapse
|
33
|
Zymosan attenuates melanoma growth progression, increases splenocyte proliferation and induces TLR-2/4 and TNF-α expression in mice. JOURNAL OF INFLAMMATION-LONDON 2018; 15:5. [PMID: 29588627 PMCID: PMC5863857 DOI: 10.1186/s12950-018-0182-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/11/2018] [Indexed: 11/10/2022]
Abstract
Background Melanoma is one of the most common types of skin malignancies. Since current therapies are suboptimal, considerable interest has focused on novel natural-based treatments. Toll-like receptors (TLRs) play an important role in evoking innate immunity against cancer cells. Zymosan, a known TLR-2 agonist, is a glucan derived from yeast cell walls with promising immunomodulatory effects. The aim of this study was to evaluate whether Saccharomyces cerevisiae-derived zymosan-modulated skin melanoma progression by regulation of TLR-2 and TLR-4 expression in peritoneal macrophages and serum TNF-α level. Methods Male C57BL/6 mice were divided into four groups: i) zymosan-treated (Z), ii) Melanoma-bearing mice (M), iii) Melanoma-bearing mice treated with zymosan (ZM) and iv) a healthy control group (negative control). 15 days after melanoma induction, mice were injected i.p. with zymosan (10 μg) daily for 4 consecutive days. Mice were CO2-euthanized and serum TNF-α level, TLR-2 and TLR-4 expression in peritoneal macrophages and tumor growth measured. Splenocytes were treated ex-vivo with zymosan to determine viability and proliferation. Results Tumor weight significantly decreased following therapeutic dosing with zymosan (P < 0.05). This was associated with zymosan-induced upregulation of TLR-2, TLR-4 and TNF-α mRNA in peritoneal macrophages and enhanced serum TNF-α levels (P < 0.05). Splenocyte number and viability were increased in a concentration-dependent manner by zymosan. Conclusions Our study suggests that zymosan-induced upregulation of TLR-2, TLR-4 and TNF-α gene expression and of TNF-α release; together with increased level of lymphocyte proliferation may play a role in the inhibition of melanoma progression.
Collapse
|
34
|
Sorrentino C, Ciummo SL, Cipollone G, Caputo S, Bellone M, Di Carlo E. Interleukin-30/IL27p28 Shapes Prostate Cancer Stem-like Cell Behavior and Is Critical for Tumor Onset and Metastasization. Cancer Res 2018; 78:2654-2668. [PMID: 29487200 DOI: 10.1158/0008-5472.can-17-3117] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/01/2017] [Accepted: 02/22/2018] [Indexed: 11/16/2022]
Abstract
Prostate cancer stem-like cells (PCSLC) are believed to be responsible for prostate cancer onset and metastasis. Autocrine and microenvironmental signals dictate PCSLC behavior and patient outcome. In prostate cancer patients, IL30/IL27p28 has been linked with tumor progression, but the mechanisms underlying this link remain mostly elusive. Here, we asked whether IL30 may favor prostate cancer progression by conditioning PCSLCs and assessed the value of blocking IL30 to suppress tumor growth. IL30 was produced by PCSLCs in human and murine prostatic intraepithelial neoplasia and displayed significant autocrine and paracrine effects. PCSLC-derived IL30 supported PCSLC viability, self-renewal and tumorigenicity, expression of inflammatory mediators and growth factors, tumor immune evasion, and regulated chemokine and chemokine receptor genes, primarily via STAT1/STAT3 signaling. IL30 overproduction by PCSLCs promoted tumor onset and development associated with increased proliferation, vascularization, and myeloid cell recruitment. Furthermore, it promoted PCSLC dissemination to lymph nodes and bone marrow by upregulating the CXCR5/CXCL13 axis, and drove metastasis to lungs through the CXCR4/CXCL12 axis. These mechanisms were drastically hindered by IL30 knockdown or knockout in PCSLCs. Collectively, these results mark IL30 as a key driver of PCSLC behavior. Targeting IL30 signaling may be a potential therapeutic strategy against prostate cancer progression and recurrence.Significance: IL30 plays an important role in regulating prostate cancer stem-like cell behavior and metastatic potential, therefore targeting this cytokine could hamper prostate cancer progression or recurrence. Cancer Res; 78(10); 2654-68. ©2018 AACR.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Division of Anatomic Pathology, "SS Annunziata" Hospital, Chieti, Italy.,Ce.S.I.-Me.T, Aging Research Center, Anatomic Pathology and Immuno-Oncology Unit, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Sciences of Aging, Division of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania L Ciummo
- Division of Anatomic Pathology, "SS Annunziata" Hospital, Chieti, Italy.,Ce.S.I.-Me.T, Aging Research Center, Anatomic Pathology and Immuno-Oncology Unit, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Sciences of Aging, Division of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Cipollone
- General and Thoracic Surgery, "SS Annunziata" Hospital, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Caputo
- Cellular Immunology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Emma Di Carlo
- Division of Anatomic Pathology, "SS Annunziata" Hospital, Chieti, Italy. .,Ce.S.I.-Me.T, Aging Research Center, Anatomic Pathology and Immuno-Oncology Unit, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Sciences of Aging, Division of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
35
|
Sato Y, Motoyama S, Wakita A, Kawakita Y, Liu J, Nagaki Y, Nanjo H, Terata K, Imai K, Saito H, Minamiya Y. TLR3 expression status predicts prognosis in patients with advanced thoracic esophageal squamous cell carcinoma after esophagectomy. Am J Surg 2018; 216:319-325. [PMID: 29395019 DOI: 10.1016/j.amjsurg.2018.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/05/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The relationship between Toll-like receptors (TLRs) and esophageal squamous cell carcinoma (ESCC) is not completely understood. METHODS RT-qPCR was used to evaluate the mRNA expression of TLR1-10 in 13 ESCC lines. We then used ESCC tissue microarray (TMA) to confirm expression of TLR3 protein in patients with ESCC. RESULTS All ESCC lines showed 10-60 times higher TLR3 mRNA expression than PBLs. High expression of TLR3 correlated with favorable 5-year overall survival (OS) and disease specific survival (DSS) among patients with ESCC after esophagectomy (p < 0.01). Additionally, In the adjuvant chemotherapy group, TLR3 high patients had significantly better 5-year OS compared to TLR3 low patients (60.2%, 34.4%, respectively) but not in the surgery alone group. CONCLUSION High TLR3 expression is an independent prognostic factor and has the potential to serve as a clinically useful marker of the need for adjuvant chemotherapy after esophagectomy in patients with advanced thoracic ESCC.
Collapse
Affiliation(s)
- Yusuke Sato
- Dept. of Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan.
| | - Satoru Motoyama
- Dept. of Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Akiyuki Wakita
- Dept. of Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yuta Kawakita
- Dept. of Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Jiajia Liu
- Dept. of Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yushi Nagaki
- Dept. of Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Hiroshi Nanjo
- Dept. of Pathology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kaori Terata
- Dept. of Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kazuhiro Imai
- Dept. of Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Hajime Saito
- Dept. of Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yoshihiro Minamiya
- Dept. of Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
36
|
Ding SM, Lu AL, Zhang W, Zhou L, Xie HY, Zheng SS, Li QY. The role of cancer-associated fibroblast MRC-5 in pancreatic cancer. J Cancer 2018; 9:614-628. [PMID: 29483967 PMCID: PMC5820929 DOI: 10.7150/jca.19614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 11/25/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Our previous study showed that cancer-associated fibroblast MRC-5 promoted hepatocellular carcinoma progression by enhancing migration and invasion capability. However, few studies have explored the role of MRC-5 in pancreatic cancer (PC). In this study, we examined the exact role and associated mechanisms of MRC-5. Methods: The conditioned media for MRC-5 was used to culture PC cell lines SW1990 and PANC-1. Cell proliferation was compared based on colony formation assays of PC cells in normal media and of PC cells cultured with conditioned media of MRC-5. Cell migration and invasion were assayed by transwell chambers. The expression of EMT-related proteins and apoptosis-related proteins was evaluated using Western blot. And confocal microscopy was used to further detect the expression of EMT-related proteins. qRT-PCR was used to confirm the expression changes of related genes at the mRNA level. We also used flow cytometry to examine the cell cycle, apoptotic rate, and expression of CD3, CD4, CD14, CD25, CD45, CD61, CD90, TLR1, and TLR4. Results: MRC-5 repressed the colony formation ability of PC cells and significantly inhibited cell migration and invasion potential. MRC-5 induced S-phase cell cycle arrest but did not augment the apoptotic effects in PC cells. We hypothesized that the weakened malignant biological behavior of PC cells was correlated with MRC-5-induced altered expression of the cancer stem cell marker CD90; the immune-related cell surface molecules CD14, CD25, TLR4, and TLR1; and cell polarity complexes Par, Scribble, and Crumbs. Conclusion: MRC-5 limits the malignant activities of PC cells by suppressing cancer stem cell expansion, remolding epithelial polarity, and blocking the protumoral cascade reaction coupled to TLR4, TLR1, CD14, and CD25.
Collapse
Affiliation(s)
- Song-Ming Ding
- Shulan (Hangzhou) Hospital (Zhejiang University International Hospital), Hangzhou, Zhejiang, P.R. China
| | - Ai-Li Lu
- Division of oncology department, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Wu Zhang
- Shulan (Hangzhou) Hospital (Zhejiang University International Hospital), Hangzhou, Zhejiang, P.R. China
| | - Lin Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Trans-plantation, Zhejiang Province; Hangzhou, Zhejiang, China
| | - Hai-Yang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Trans-plantation, Zhejiang Province; Hangzhou, Zhejiang, China
| | - Shu-Sen Zheng
- Shulan (Hangzhou) Hospital (Zhejiang University International Hospital), Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Trans-plantation, Zhejiang Province; Hangzhou, Zhejiang, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Qi-Yong Li
- Shulan (Hangzhou) Hospital (Zhejiang University International Hospital), Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
37
|
Matijevic Glavan T, Mikulandra M. The in vitro effect of poly (I:C) on cell morphology of a metastatic pharyngeal cell line. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Yang X, Chen GT, Wang YQ, Xian S, Zhang L, Zhu SM, Pan F, Cheng YX. TLR4 promotes the expression of HIF-1α by triggering reactive oxygen species in cervical cancer cells in vitro-implications for therapeutic intervention. Mol Med Rep 2017; 17:2229-2238. [PMID: 29207048 PMCID: PMC5783462 DOI: 10.3892/mmr.2017.8108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
The present study investigated the mechanism underlying Toll-like receptor 4 (TLR4)-mediated stimulation of hypoxia-inducible factor-1α (HIF-1α) activity and its association with reactive oxygen species (ROS) in cervical cancer cells. SiHa cells were cultured and randomized to control, lipopolysaccharide (LPS), methyl-β-cyclodextrin (MβCD)+LPS, ammonium pyrrolidinedithiocarbamate (PDTC)+LPS, ST2825+LPS and small interfering (si) RNA TLR4+LPS treatment groups. Cell proliferation was quantified using an MTT assay, cell cloning was performed using soft agar colony formation and HIF-1α expression was detected by immunocytochemical staining and western blot analyses. Dichloro-dihydro-fluorescein diacetate and lucigenin luminescence assays were used to detect alterations in ROS and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase content, respectively. Co-localization of TLR4 and HIF-1α was detected by immunofluorescence staining and observed using fluorescence microscopy. Compared with the control group, cell proliferation was enhanced in the LPS-treated group and was not altered in the PDTC+LPS treatment group. Cell proliferation was reduced in all other treatment groups (P<0.05). Compared with the LPS group, cell proliferation decreased in all other groups. Compared with the PDTC+LPS treatment group, cell proliferation significantly decreased when LPS was co-administered with ST2825, siTLR4 and MβCD (P<0.01). Treatment with MβCD+LPS exhibited an increased inhibitory effect on cell activity and proliferation. Compared with the control group, HIF-1α expression was enhanced following treatment with LPS, although it decreased when LPS was co-administered with ST2825, siTLR4 and MβCD (P<0.05). HIF-1α expression decreased following treatment with ST2825, siTLR4, MβCD and PDTC+LPS, compared with treatment with LPS alone. Compared with the PDTC+LPS group, HIF-1α activity decreased when LPS was co-administered with ST2825, siTLR4 and MβCD. NADPH oxidase and ROS levels increased in cells treated with LPS, compared with the control group, at 24 and 12 h following treatment, respectively, and decreased at 12 h when LPS was co-administered with ST2825, siTLR4 and MβCD. There was no difference between the LPS and PDTC+LPS groups with respect to NADPH and ROS levels. Compared with the PDTC+LPS group, NADPH oxidase activity and ROS content decreased when LPS was co-administered with ST2825, siTLR4 and MβCD. NADPH oxidase activity and ROS content were lowest in the MβCD+LPS treatment group, and immunofluorescent staining demonstrated that TLR4 was localized to the cell surface and HIF-1α was primarily localized to the cytoplasm. TLR4 was co-expressed with HIF-1α in cervical cancer cells. The results of the present study suggested that TLR4 signaling primarily promoted HIF-1α activity via activation of lipid rafts/NADPH oxidase redox signaling and may be associated with the initiation and progression of cervical cancer. This promoting effect was stronger in TLR4/lipid rafts/NADPH oxidase pathway than that in TLR4-NF-κB signaling pathway. Therefore, the TLR4/lipid raft-associated redox signal may be a target for therapeutic intervention to prevent the growth of cervical cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gan Tao Chen
- Department of Gastroenterology, The Third Renmin Hospital of Xiantao City, Xiantao, Hubei 433000, P.R. China
| | - Yan Qing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shu Xian
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shao Ming Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Pan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
39
|
Bianchi F, Pretto S, Tagliabue E, Balsari A, Sfondrini L. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol Ther 2017; 18:747-756. [PMID: 28881163 PMCID: PMC5678690 DOI: 10.1080/15384047.2017.1373220] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TLR3 belong to the Toll-like receptors family, it is mainly expressed on immune cells where it senses pathogen-associated molecular patterns and initiates innate immune response. TLR3 agonist poly(I:C) was developed to mimic pathogens infection and boost immune system activation to promote anti-cancer therapy. Accordingly, TLR agonists were included in the National Cancer Institute list of immunotherapeutic agents with the highest potential to cure cancer. Besides well known effects on immune cells, poly(I:C) was also shown, in experimental models, to directly induce apoptosis in cancer cells expressing TLR3. This review presents the current knowledge on the mechanism of poly(I:C)-induced apoptosis in cancer cells. Experimental evidences on positive or negative regulators of TLR3-mediated apoptosis induced by poly(I:C) are reported and strategies are proposed to successfully promote this event in cancer cells. Cancer cells apoptosis is an additional arm offered by poly(I:C), besides activation of immune system, for the treatment of various type of cancer. A further dissection of TLR3 signaling would contribute to greater resolution of the critical steps that impede full exploitation of the poly(I:C)-induced apoptosis. Experimental evidences about negative regulator of poly(I:C)-induced apoptotic program should be considered in combinations with TLR3 agonists in clinical trials.
Collapse
Affiliation(s)
- Francesca Bianchi
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy.,b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Samantha Pretto
- b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Elda Tagliabue
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy
| | - Andrea Balsari
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy.,b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Lucia Sfondrini
- b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| |
Collapse
|
40
|
Sabah-Ozcan S, Baser A, Olcucu T, Barıs IC, Elmas L, Tuncay L, Eskicorapci S, Turk NS, Caner V. Human TLR gene family members are differentially expressed in patients with urothelial carcinoma of the bladder. Urol Oncol 2017; 35:674.e11-674.e17. [PMID: 28843340 DOI: 10.1016/j.urolonc.2017.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/22/2017] [Accepted: 07/23/2017] [Indexed: 01/25/2023]
Abstract
PURPOSE Toll-like receptors (TLRs) have an important role in the activation of both innate and adaptive immunity in response to pathogens and endogenous danger signals from damaged or dying cells. The aim of this study was to determine the relationship between urothelial carcinoma (UC) and TLR expression. BASIC PROCEDURES Real-time polymerase chain reaction evaluation was made of the messenger RNA expression of TLRs 1-10 in 24 UC samples and 46 nontumoral bladder tissue samples. The levels of proinflammatory cytokines (IL-1β, IL-6, and IL-8) in the urine samples were also determined with enzyme-linked immunosorbent assay. MAIN FINDINGS TLR2-7 and TLR10 expressions were significantly higher in UC than in the control group (P<0.05 for all comparisons). No concordance was found between matched tumor tissue and urine samples in terms of TLR expression. IL-1β, IL-6, and IL-8 levels were significantly higher in urine specimens of patients with UC (P = 0.033, P = 0.001, and P = 0.008, respectively). PRINCIPAL CONCLUSIONS The results of this study demonstrated that the TLR gene expression profiles reflect the heterogeneity within UC. These results might also prompt further investigation to better understand the role of the TLR gene family expression in the tumor progression of UC.
Collapse
Affiliation(s)
- Seda Sabah-Ozcan
- Department of Medical Biology, School of Medicine, Bozok University, Yozgat, Turkey
| | - Aykut Baser
- Department of Urology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Taha Olcucu
- Department of Urology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Ikbal Cansu Barıs
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Levent Elmas
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Levent Tuncay
- Department of Urology, School of Medicine, Pamukkale University, Denizli, Turkey
| | | | - Nilay Sen Turk
- Department of Pathology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Vildan Caner
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
41
|
Wouters J, Vizoso M, Martinez-Cardus A, Carmona FJ, Govaere O, Laguna T, Joseph J, Dynoodt P, Aura C, Foth M, Cloots R, van den Hurk K, Balint B, Murphy IG, McDermott EW, Sheahan K, Jirström K, Nodin B, Mallya-Udupi G, van den Oord JJ, Gallagher WM, Esteller M. Comprehensive DNA methylation study identifies novel progression-related and prognostic markers for cutaneous melanoma. BMC Med 2017; 15:101. [PMID: 28578692 PMCID: PMC5458482 DOI: 10.1186/s12916-017-0851-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/03/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cutaneous melanoma is the deadliest skin cancer, with an increasing incidence and mortality rate. Currently, staging of patients with primary melanoma is performed using histological biomarkers such as tumor thickness and ulceration. As disruption of the epigenomic landscape is recognized as a widespread feature inherent in tumor development and progression, we aimed to identify novel biomarkers providing additional clinical information over current factors using unbiased genome-wide DNA methylation analyses. METHODS We performed a comprehensive DNA methylation analysis during all progression stages of melanoma using Infinium HumanMethylation450 BeadChips on a discovery cohort of benign nevi (n = 14) and malignant melanoma from both primary (n = 33) and metastatic (n = 28) sites, integrating the DNA methylome with gene expression data. We validated the discovered biomarkers in three independent validation cohorts by pyrosequencing and immunohistochemistry. RESULTS We identified and validated biomarkers for, and pathways involved in, melanoma development (e.g., HOXA9 DNA methylation) and tumor progression (e.g., TBC1D16 DNA methylation). In addition, we determined a prognostic signature with potential clinical applicability and validated PON3 DNA methylation and OVOL1 protein expression as biomarkers with prognostic information independent of tumor thickness and ulceration. CONCLUSIONS Our data underscores the importance of epigenomic regulation in triggering metastatic dissemination through the inactivation of central cancer-related pathways. Inactivation of cell-adhesion and differentiation unleashes dissemination, and subsequent activation of inflammatory and immune system programs impairs anti-tumoral defense pathways. Moreover, we identify several markers of tumor development and progression previously unrelated to melanoma, and determined a prognostic signature with potential clinical utility.
Collapse
Affiliation(s)
- Jasper Wouters
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven (University of Leuven), Leuven, Belgium
| | - Miguel Vizoso
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Anna Martinez-Cardus
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - F Javier Carmona
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Olivier Govaere
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Teresa Laguna
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | - Claudia Aura
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Mona Foth
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Cancer Research UK, Beatson Institute, Glasgow, G61 1BD, UK
| | - Roy Cloots
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Department of Pathology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Karin van den Hurk
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Department of Pathology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Balazs Balint
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Ian G Murphy
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Enda W McDermott
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Kieran Sheahan
- Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Karin Jirström
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden
| | - Bjorn Nodin
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden
| | | | - Joost J van den Oord
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - William M Gallagher
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland.
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
42
|
Spanou E, Kalisperati P, Pateras IS, Papalampros A, Barbouti A, Tzioufas AG, Kotsinas A, Sougioultzis S. Genetic Variability as a Regulator of TLR4 and NOD Signaling in Response to Bacterial Driven DNA Damage Response (DDR) and Inflammation: Focus on the Gastrointestinal (GI) Tract. Front Genet 2017; 8:65. [PMID: 28611823 PMCID: PMC5447025 DOI: 10.3389/fgene.2017.00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
The fundamental role of human Toll-like receptors (TLRs) and NOD-like receptors (NLRs), the two most studied pathogen recognition receptors (PRRs), is the protection against pathogens and excessive tissue injury. Recent evidence supports the association between TLR/NLR gene mutations and susceptibility to inflammatory, autoimmune, and malignant diseases. PRRs also interfere with several cellular processes, such as cell growth, apoptosis, cell proliferation, differentiation, autophagy, angiogenesis, cell motility and migration, and DNA repair mechanisms. We briefly review the impact of TLR4 and NOD1/NOD2 and their genetic variability in the process of inflammation, tumorigenesis and DNA repair, focusing in the gastrointestinal tract. We also review the available data on new therapeutic strategies utilizing TLR/NLR agonists and antagonists for cancer, allergic diseases, viral infections and vaccine development against both infectious diseases and cancer.
Collapse
Affiliation(s)
- Evagelia Spanou
- Gastroenterology Division, Department of Pathophysiology, “Laikon” General Hospital, University of AthensAthens, Greece
| | - Polyxeni Kalisperati
- Gastroenterology Division, Department of Pathophysiology, “Laikon” General Hospital, University of AthensAthens, Greece
| | - Ioannis S. Pateras
- Department of Histology and Embryology, University of AthensAthens, Greece
| | - Alexandros Papalampros
- 1st Department of Surgery, “Laikon” General Hospital, University of AthensAthens, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, University of IoanninaIoannina, Greece
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, “Laikon” General Hospital, University of AthensAthens, Greece
| | | | - Stavros Sougioultzis
- Gastroenterology Division, Department of Pathophysiology, “Laikon” General Hospital, University of AthensAthens, Greece
| |
Collapse
|
43
|
Li Y, Yang W, Wu B, Liu Y, Li D, Guo Y, Fu H, Li Y. KDM3A promotes inhibitory cytokines secretion by participating in TLR4 regulation of Foxp3 transcription in lung adenocarcinoma cells. Oncol Lett 2017; 13:3529-3537. [PMID: 28521455 PMCID: PMC5431314 DOI: 10.3892/ol.2017.5949] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is a pattern recognition receptors, a member of the Toll-like receptor family and it serves a role in innate and acquired immunity. It has previously been reported that TLR4 was overexpressed in a variety of tumor tissues and cells, including colorectal cancer, gastric cancer and ovarian cancer. In the tumor microenvironment, the TLR4 signaling pathway may be activated in order to upregulate forkhead box P3 (Foxp3) expression in regulatory T cells (Tregs), and thus enhance the immunosuppressive function of Tregs. Also, inflammatory cytokine release would be increased, which promotes tumor immune system evasion. Additionally, it has previously been reported that TLR4 activation may induce histone methylation changes at multiple sites. However, the effects of the alterations to histone methylation in the process of TLR4-associated tumor immune system evasion are not currently known. Histone methylation serves a critical role in regulating gene expression. Abnormal histone methylation is closely associated with tumor development and progression. In order to investigate the epigenetic mechanisms underlying Foxp3 regulation by TLR4, the human lung adenocarcinoma cell line A549 was used. In the present study, it was revealed that the expression level of H3K9me1/2 histone lysine demethylase 3A (KDM3A) was significantly increased following TLR 4 activation in the lung adenocarcinoma A549 cell line, whereas silencing of KDM3A expression led to significantly reduced Foxp3 expression under TLR4 regulation. This result suggests that KDM3A participates in TLR4 regulation of Foxp3 transcription. Additional analysis revealed that during nuclear transport of Foxp3, KDM3A may directly bind to the Foxp3 promoter and activate its transcription. This results in increased secretion of Foxp3-downstream inhibitory cytokines, including transforming growth factor-β1 (TGF-β1), interleukin 35 (IL-35) and heme oxygenase 1 (HO-1), which have immunosuppressive effects and ultimately facilitate the immune escape of lung cancer cells. From the results, the present study concluded that TLR4 activation promoted the expression of H3K9me1/2 demethylase KDM3A. KDM3A bound directly to the Foxp3 promoter and promoted Foxp3 transcription, thereby inducing the secretion of Foxp3-associated downstream inhibitory cytokines (TGF-β1, IL-35, and HO-1), ultimately facilitating the immune system evasion of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yinan Li
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China.,Department of Pathology, Qingdao Center Medical Group, Qingdao, Shandong 266000, P.R. China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Wu
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yaqing Liu
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dongbei Li
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yantong Guo
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haiying Fu
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yi Li
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
44
|
Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun 2017; 8:14600. [PMID: 28300057 PMCID: PMC5356072 DOI: 10.1038/ncomms14600] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) are located either on the cell surface or intracellularly in endosomes and their activation normally contributes to the induction of protective immune responses. However, in cancer their activation by endogenous ligands can modulate tumour progression. It is currently unknown how endosomal TLRs regulate endogenous anti-tumour immunity. Here we show that TLR3, 7 and 9 deficiencies on host cells, after initial tumour growth, result in complete tumour regression and induction of anti-tumour immunity. Tumour regression requires the combined absence of all three receptors, is dependent on both CD4 and CD8 T cells and protects the mice from subsequent tumour challenge. While tumours in control mice are infiltrated by higher numbers of regulatory T cells, tumour regression in TLR-deficient mice is paralleled by altered vascular structure and strongly induced influx of cytotoxic and cytokine-producing effector T cells. Thus, endosomal TLRs may represent a molecular link between the inflamed tumour cell phenotype, anti-tumour immunity and the regulation of T-cell activation. Activation of Toll-like receptor (TLR) is generally associated with increased immune activity. Here, the authors show, using syngeneic mouse models, that combined deficiency of TLR 3/7/9 in the host induces an inflamed tumour phenotype and results in T cell dependent tumour regression after an initial growth.
Collapse
|
45
|
Dysregulation of signaling pathways associated with innate antibacterial immunity in patients with pancreatic cancer. Cent Eur J Immunol 2017; 41:404-418. [PMID: 28450804 PMCID: PMC5382886 DOI: 10.5114/ceji.2016.65140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
Disorders of innate antibacterial response are of fundamental importance in the development of gastrointestinal cancers, including pancreatic cancer. Multi-regulatory properties of the Toll-like receptors (TLRs) (e.g., regulation of proliferation, the activity of NF-κB, gene transcription of apoptosis proteins, regulation of angiogenesis, HIF-1α protein expression) are used in experimental studies to better understand the pathogenesis of pancreatic cancer, for early diagnosis, and for more effective therapeutic intervention. There are known numerous examples of TLR agonists (e.g., TLR2/5 ligands, TLR6, TLR9) of antitumor effect. The direction of these studies is promising, but a small number of them does not allow for an accurate assessment of the impact of TLR expression disorders, proteins of these signaling pathways, or attempts to block or stimulate them, on the results of treatment of pancreatic cancer patients. It is known, however, that the expression disorders of proteins of innate antibacterial response signaling pathways occur not only in tumor tissue but also in peripheral blood leukocytes of pancreatic cancer patients (e.g., increased expression of TLR4, NOD1, TRAF6), which is one of the most important factors facilitating further tumor development. This review mainly focuses on the genetic aspects of signaling pathway disorders associated with innate antibacterial response in the pathogenesis and diagnosis of pancreatic cancer.
Collapse
|
46
|
Zhang H, Zhang S. The expression of Foxp3 and TLR4 in cervical cancer: association with immune escape and clinical pathology. Arch Gynecol Obstet 2016; 295:705-712. [PMID: 28013346 DOI: 10.1007/s00404-016-4277-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE To explore the expression of forkhead/winged helix transcription factor p3(Foxp3) and toll-like receptor 4(TLR4) in cervical cancer and evaluate their clinical significance. METHODS Foxp3 and TLR4 protein expression was detected in 105 cervical tissue specimens including cervical cancer, cervical intraepithelial neoplasia (CIN), and healthy control samples using immunohistochemistry. Their relationship with clinicopathologic parameters was also determined. RESULTS Foxp3 and TLR4 had high levels of expression in cervical cancer cells (91.43 and 82.86%, respectively). Foxp3 levels were significantly associated with FIGO stage (P < 0.001) and tumor size (P = 0.034), while TLR4 levels were associated with clinical FIGO stage (P = 0.033) and lymph node metastasis (P = 0.031). Their expression levels were not correlated with age, histologic type, or differentiation (all P > 0.05). These findings suggest that Foxp3 and TLR4 may be useful prognostic indicators of cervical carcinoma. In addition, there were significant positive relationships between Foxp3 and TLR4 expression (r = 0.703, P < 0.001), which shows a possible link and synergistic role of Foxp3 and TLR4 in promoting the immune escape of cervical cancer. CONCLUSIONS Foxp3 and TLR4 may be useful biomarkers for patient prognosis and cervical cancer prediction and treatment.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao St, Heping District, Shenyang, 110004, Liaoning, China
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao St, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
47
|
Jiang J, Dong L, Qin B, Shi H, Guo X, Wang Y. Decreased expression of TLR7 in gastric cancer tissues and the effects of TLR7 activation on gastric cancer cells. Oncol Lett 2016; 12:631-636. [PMID: 27347192 DOI: 10.3892/ol.2016.4617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/26/2016] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to determine the expression of Toll-like receptor 7 (TLR7) in gastric cancer tissues and investigate the effects of its activation on gastric cancer cells. Patients with gastric cancer (n=30) and patients without gastric cancer (control; n=14) who underwent gastroscopy were enrolled in the study. Gastric cancer and cancer-adjacent tissues were obtained from the patients with gastric cancer, and normal gastric epithelial tissues were obtained from the control patients. The TLR7 mRNA and protein expressions in different tissues were investigated by reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. The present study also determined the effects of TLR7 activation by the agonist imiquimod on TLR7 protein expression, proinflammatory cytokine secretion and viability in SGC-7901 gastric cancer cells. The mRNA and protein expression levels of TLR7 were significantly downregulated in gastric cancer tissues compared with cancer-adjacent and normal gastric epithelial tissues (P<0.01). Imiquimod significantly increased TLR7 protein expression levels, and promoted the secretion of proinflammatory cytokines tumor necrosis factor-α and interleukin-6 in SGC-7901 cells. Furthermore, imiquimod inhibited the proliferation of SGC-7901 cells in a dose- and time-dependent manner. Thus, the present study identified that the expression of TLR7 was decreased in gastric cancer tissues, and TLR7 activation enhanced TLR7 expression, promoted the production of proinflammatory cytokines and inhibited the growth of gastric cancer cells.
Collapse
Affiliation(s)
- Jiong Jiang
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710003, P.R. China
| | - Lei Dong
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710003, P.R. China
| | - Bin Qin
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710003, P.R. China
| | - Haitao Shi
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710003, P.R. China
| | - Xiaoyan Guo
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710003, P.R. China
| | - Yan Wang
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710003, P.R. China
| |
Collapse
|
48
|
Activated human mesenchymal stem/stromal cells suppress metastatic features of MDA-MB-231 cells by secreting IFN-β. Cell Death Dis 2016; 7:e2191. [PMID: 27077807 PMCID: PMC4855669 DOI: 10.1038/cddis.2016.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 12/16/2022]
Abstract
Our recent study showed that human mesenchymal stem/stromal cells (hMSCs) are activated to express tumor necrosis factor (TNF)-α-related apoptosis-inducing ligand (TRAIL) by exposure to TNF-α and these activated hMSCs effectively induce apoptosis in triple-negative breast cancer MDA-MB-231 (MDA) cells in vitro and in vivo. Here, we further demonstrated that activated hMSCs not only induced apoptosis of MDA cells but also reduced metastatic features in MDA cells. These activated hMSC-exposed MDA cells showed reduced tumorigenicity and suppressed formation of lung metastasis when implanted in the mammary fat pad. Surprisingly, the activated hMSC-exposed MDA cells increased TRAIL expression, resulting in apoptosis in MDA cells. Interestingly, upregulation of TRAIL in MDA cells was mediated by interferon-beta (IFN-β) secreted from activated hMSCs. Furthermore, IFN-β in activated hMSCs was induced by RNA and DNA released from apoptotic MDA cells in absent in melanoma 2 (AIM2) and IFN induced with helicase C domain 1 (IFIH1)-dependent manners. These observations were only seen in the TRAIL-sensitive breast cancer cell lines but not in the TRAIL-resistant breast cancer cell lines. Consistent with these results, Kaplan-Meier survival analysis also showed that lack of innate sensors detecting DNA or RNA is strongly associated with poor survival in estrogen receptor-negative breast cancer patients. In addition, cancer-associated fibroblasts (CAF) isolated from a breast cancer patient were also able to express TRAIL and IFN-β upon DNA and RNA stimulation. Therefore, our results suggest that the crosstalk between TRAIL-sensitive cancer cells and stromal cells creates a tumor-suppressive microenvironment and further provide a novel therapeutic approach to target stromal cells within cancer microenvironment for TRAIL sensitive cancer treatment.
Collapse
|
49
|
Pandolfi F, Altamura S, Frosali S, Conti P. Key Role of DAMP in Inflammation, Cancer, and Tissue Repair. Clin Ther 2016; 38:1017-28. [PMID: 27021609 DOI: 10.1016/j.clinthera.2016.02.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE This review aimed to take stock of the current status of research on damage-associated molecular pattern (DAMP) protein. We discuss the Janus-faced role of DAMP molecules in inflammation, cancer, and tissue repair. The high-mobility group box (HMGB)-1 and adenosine triphosphate proteins are well-known DAMP molecules and have been primarily associated with inflammation. However, as we shall see, recent data have linked these molecules to tissue repair. HMGB1 is associated with cancer-related inflammation. It activates nuclear factor kB, which is involved in cancer regulation via its receptor for advanced glycation end-products (RAGE), Toll-like receptors 2 and 4. Proinflammatory activity and tissue repair may lead to pharmacologic intervention, by blocking DAMP RAGE and Toll like receptor 2 and 4 role in inflammation and by increasing their concentration in tissue repair, respectively. METHODS We conducted a MEDLINE search for articles pertaining to the various issues related to DAMP, and we discuss the most relevant articles especially (ie, not only those published in journals with a higher impact factor). FINDINGS A cluster of remarkable articles on DAMP have appeared in the literature in recent years. Regarding inflammation, several strategies have been proposed to target HMGB1, from antibodies to recombinant box A, which interacts with RAGE, competing with the full molecule. In tissue repair, it was reported that the overexpression of HMGB1 or the administration of exogenous HMGB1 significantly increased the number of vessels and promoted recovery in skin-wound, ischemic injury. IMPLICATIONS Due to the bivalent nature of DAMP, it is often difficult to explain the relative role of DAMP in inflammation versus its role in tissue repair. However, this point is crucial as DAMP-related treatments move into clinical practice.
Collapse
Affiliation(s)
- Franco Pandolfi
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy.
| | - Simona Altamura
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy
| | - Simona Frosali
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy
| | - Pio Conti
- Postgraduate Medical School, Chieti University, Chieti, Italy
| |
Collapse
|
50
|
Kim TW, Lee SJ, Oh BM, Lee H, Uhm TG, Min JK, Park YJ, Yoon SR, Kim BY, Kim JW, Choe YK, Lee HG. Epigenetic modification of TLR4 promotes activation of NF-κB by regulating methyl-CpG-binding domain protein 2 and Sp1 in gastric cancer. Oncotarget 2016; 7:4195-209. [PMID: 26675260 PMCID: PMC4826199 DOI: 10.18632/oncotarget.6549] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is important in promoting the immune response in various cancers. Recently, TLR4 is highly expressed in a stage-dependent manner in gastric cancer, but the regulatory mechanism of TLR4 expression has been not elucidated it. Here, we investigated the mechanism underlying regulation of TLR4 expression through promoter methylation and histone modification between transcriptional regulation and silencing of the TLR4 gene in gastric cancer cells. Chromatin immunoprecipitation was carried out to screen for factors related to TLR4 methylation such as MeCP2, HDAC1, and Sp1 on the TLR4 promoter. Moreover, DNA methyltransferase inhibitor 5-aza-deoxycytidine (5-aza-dC) induced demethylation of the TLR4 promoter and increased H3K4 trimethylation and Sp1 binding to reactivate silenced TLR4. In contrast, although the silence of TLR4 activated H3K9 trimethylation and MeCP2 complex, combined treatment with TLR4 agonist and 5-aza-dC upregulated H3K4 trimethylation and activated with transcription factors as Sp1 and NF-κB. This study demonstrates that recruitment of the MeCP2/HDAC1 repressor complex increases the low levels of TLR4 expression through epigenetic modification of DNA and histones on the TLR4 promoter, but Sp1 activates TLR4 high expression by hypomethylation and NF-κB signaling in gastric cancer cells.
Collapse
Affiliation(s)
- Tae Woo Kim
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Byung Moo Oh
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Heesoo Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Tae Gi Uhm
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeong-Ki Min
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Bo-Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Jong Wan Kim
- Department of Laboratory Medicine, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Yong-Kyung Choe
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|