1
|
Lee PWT, Koseki LR, Haitani T, Harada H, Kobayashi M. Hypoxia-Inducible Factor-Dependent and Independent Mechanisms Underlying Chemoresistance of Hypoxic Cancer Cells. Cancers (Basel) 2024; 16:1729. [PMID: 38730681 PMCID: PMC11083728 DOI: 10.3390/cancers16091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In hypoxic regions of malignant solid tumors, cancer cells acquire resistance to conventional therapies, such as chemotherapy and radiotherapy, causing poor prognosis in patients with cancer. It is widely recognized that some of the key genes behind this are hypoxia-inducible transcription factors, e.g., hypoxia-inducible factor 1 (HIF-1). Since HIF-1 activity is suppressed by two representative 2-oxoglutarate-dependent dioxygenases (2-OGDDs), PHDs (prolyl-4-hydroxylases), and FIH-1 (factor inhibiting hypoxia-inducible factor 1), the inactivation of 2-OGDD has been associated with cancer therapy resistance by the activation of HIF-1. Recent studies have also revealed the importance of hypoxia-responsive mechanisms independent of HIF-1 and its isoforms (collectively, HIFs). In this article, we collate the accumulated knowledge of HIF-1-dependent and independent mechanisms responsible for resistance of hypoxic cancer cells to anticancer drugs and briefly discuss the interplay between hypoxia responses, like EMT and UPR, and chemoresistance. In addition, we introduce a novel HIF-independent mechanism, which is epigenetically mediated by an acetylated histone reader protein, ATAD2, which we recently clarified.
Collapse
Affiliation(s)
- Peter Wai Tik Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Lina Rochelle Koseki
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Voggu R, Karmakar A, Puli VS, Damerla VSB, Mogili P, Amaladass P, Chidara S, Pasunooti KK, Gupta S. Design, Synthesis, Molecular Docking Study and Biological Evaluation of Novel γ-Carboline Derivatives of Latrepirdine (Dimebon) as Potent Anticancer Agents. Molecules 2023; 28:4965. [PMID: 37446626 DOI: 10.3390/molecules28134965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
A series of novel γ-Carboline derivatives were designed and synthesized using the Suzuki coupling reaction to identify the leads for the activity against cancer. Interestingly, these compounds were tested for their anticancer activity against the cell lines, particularly human cancer cell lines MCF7 (breast), A549 (lung), SiHa (cervix), and Colo-205 (colon). Most of the γ-Carboline derivatives showed potent inhibitory activity in four cancer cell lines, according to in vitro anticancer activity screening. Two compounds, specifically LP-14 and LP-15, showed superior activity in cancer cell lines among the γ-Carboline derivatives from LP-1 to LP-16. Additionally, the compound LP-14, LP-15 and Etoposide carried out molecular docking studies on human topoisomerase II beta in complex with DNA and Etoposide (PDB ID: 3QX3). The docking studies' results showed that the derivative LP-15 was strongly bound with the receptor amino acid residues, including Glu477 and DC8 compared with the marked drug Etoposide.
Collapse
Affiliation(s)
- Ramakrishna Voggu
- Department of Medicinal Chemistry, Aragen Life Sciences Pvt. Ltd. (Formerly Known as GVK Biosciences Pvt. Ltd.), IDA, Nacharam, Hyderabad 500076, Telangana, India
- Department of Engineering Chemistry, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India
| | - Arundhati Karmakar
- Molecular Science Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Venkat Swamy Puli
- Department of Medicinal Chemistry, Aragen Life Sciences Pvt. Ltd. (Formerly Known as GVK Biosciences Pvt. Ltd.), IDA, Nacharam, Hyderabad 500076, Telangana, India
| | - V Surendra Babu Damerla
- Department of Medicinal Chemistry, Aragen Life Sciences Pvt. Ltd. (Formerly Known as GVK Biosciences Pvt. Ltd.), IDA, Nacharam, Hyderabad 500076, Telangana, India
| | - Padma Mogili
- Department of Engineering Chemistry, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India
| | - P Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Sridhar Chidara
- Department of Medicinal Chemistry, Aragen Life Sciences Pvt. Ltd. (Formerly Known as GVK Biosciences Pvt. Ltd.), IDA, Nacharam, Hyderabad 500076, Telangana, India
| | - Kalyan Kumar Pasunooti
- ProSAM Bioscience Pvt. Ltd., Hyderabad 500049, Telangana, India
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Sarika Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
3
|
Liu Y, Dong W, Ma Y, Dou J, Jiang W, Wang L, Wang Q, Li S, Wang Y, Li M. Nanomedicines with high drug availability and drug sensitivity overcome hypoxia-associated drug resistance. Biomaterials 2023; 294:122023. [PMID: 36708621 DOI: 10.1016/j.biomaterials.2023.122023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
Tumor hypoxia heterogeneity, a hallmark of the tumor microenvironment, confers resistance to conventional chemotherapy due to insufficient drug availability and drug sensitivity in hypoxic regions. To overcome these challenges, we develope a nanomedicine, NPHPaPN, constructed with hyaluronic acid (HA) grafted with cisplatin prodrug and PEG-azobenzene for hypoxia-responsive PEG shell deshielding and loaded with a DNA damage repair inhibitor (NERi). After arriving at the tumor site, NPHPaPN deshields the PEG shell in response to hypoxia due to the enzymolysis of azobenzene and thus exposes HA. The exposed HA binds to the highly expressed CD44 on cisplatin-resistant tumor cells and mediates drug internalization, thus increasing drug availability to hypoxic tumor cells. After intracellular hyaluronidase-mediated cleavage, the HA NPs release the cisplatin prodrug and NERi, and cause enhanced DNA damage and consequent cell death, thus enhancing the drug sensitivity of hypoxic tumor cells. Eventually, NPHPaPN achieves distinct tumor growth suppression with an ∼84.4% inhibition rate.
Collapse
Affiliation(s)
- Yi Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Wang Dong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yinchu Ma
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jiaxiang Dou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Wei Jiang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Li Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qin Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shuya Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, 230601, China.
| | - Min Li
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
4
|
Cheng W, Xiao X, Liao Y, Cao Q, Wang C, Li X, Jia Y. Conducive target range of breast cancer: Hypoxic tumor microenvironment. Front Oncol 2022; 12:978276. [PMID: 36226050 PMCID: PMC9550190 DOI: 10.3389/fonc.2022.978276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is a kind of malignant tumor disease that poses a serious threat to human health. Its biological characteristics of rapid proliferation and delayed angiogenesis, lead to intratumoral hypoxia as a common finding in breast cancer. HIF as a transcription factor, mediate a series of reactions in the hypoxic microenvironment, including metabolic reprogramming, tumor angiogenesis, tumor cell proliferation and metastasis and other important physiological and pathological processes, as well as gene instability under hypoxia. In addition, in the immune microenvironment of hypoxia, both innate and acquired immunity of tumor cells undergo subtle changes to support tumor and inhibit immune activity. Thus, the elucidation of tumor microenvironment hypoxia provides a promising target for the resistance and limited efficacy of current breast cancer therapies. We also summarize the hypoxic mechanisms of breast cancer treatment related drug resistance, as well as the current status and prospects of latest related drugs targeted HIF inhibitors.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingqing Cao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Xiaojiang Li, ; Yingjie Jia,
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Xiaojiang Li, ; Yingjie Jia,
| |
Collapse
|
5
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
6
|
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MFR, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol 2022; 12:891652. [PMID: 35814435 PMCID: PMC9262248 DOI: 10.3389/fonc.2022.891652] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Several treatments are available for cancer treatment, but many treatment methods are ineffective against multidrug-resistant cancer. Multidrug resistance (MDR) represents a major obstacle to effective therapeutic interventions against cancer. This review describes the known MDR mechanisms in cancer cells and discusses ongoing laboratory approaches and novel therapeutic strategies that aim to inhibit, circumvent, or reverse MDR development in various cancer types. In this review, we discuss both intrinsic and acquired drug resistance, in addition to highlighting hypoxia- and autophagy-mediated drug resistance mechanisms. Several factors, including individual genetic differences, such as mutations, altered epigenetics, enhanced drug efflux, cell death inhibition, and various other molecular and cellular mechanisms, are responsible for the development of resistance against anticancer agents. Drug resistance can also depend on cellular autophagic and hypoxic status. The expression of drug-resistant genes and the regulatory mechanisms that determine drug resistance are also discussed. Methods to circumvent MDR, including immunoprevention, the use of microparticles and nanomedicine might result in better strategies for fighting cancer.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud M Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
7
|
Kopecka J, Salaroglio IC, Perez-Ruiz E, Sarmento-Ribeiro AB, Saponara S, De Las Rivas J, Riganti C. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat 2021; 59:100787. [PMID: 34840068 DOI: 10.1016/j.drup.2021.100787] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia, a hallmark of solid tumors, determines the selection of invasive and aggressive malignant clones displaying resistance to radiotherapy, conventional chemotherapy or targeted therapy. The recent introduction of immunotherapy, based on immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cells, has markedly transformed the prognosis in some tumors but also revealed the existence of intrinsic or acquired drug resistance. In the current review we highlight hypoxia as a culprit of immunotherapy failure. Indeed, multiple metabolic cross talks between tumor and stromal cells determine the prevalence of immunosuppressive populations within the hypoxic tumor microenvironment and confer upon tumor cells resistance to ICPIs and CAR T-cells. Notably, hypoxia-triggered angiogenesis causes immunosuppression, adding another piece to the puzzle of hypoxia-induced immunoresistance. If these factors concurrently contribute to the resistance to immunotherapy, they also unveil an unexpected Achille's heel of hypoxic tumors, providing the basis for innovative combination therapies that may rescue the efficacy of ICPIs and CAR T-cells. Although these treatments reveal both a bright side and a dark side in terms of efficacy and safety in clinical trials, they represent the future solution to enhance the efficacy of immunotherapy against hypoxic and therapy-resistant solid tumors.
Collapse
Affiliation(s)
| | | | - Elizabeth Perez-Ruiz
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB) and Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | | | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | |
Collapse
|
8
|
Yang J, Virostko J, Hormuth DA, Liu J, Brock A, Kowalski J, Yankeelov TE. An experimental-mathematical approach to predict tumor cell growth as a function of glucose availability in breast cancer cell lines. PLoS One 2021; 16:e0240765. [PMID: 34255770 PMCID: PMC8277046 DOI: 10.1371/journal.pone.0240765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
We present the development and validation of a mathematical model that predicts how glucose dynamics influence metabolism and therefore tumor cell growth. Glucose, the starting material for glycolysis, has a fundamental influence on tumor cell growth. We employed time-resolved microscopy to track the temporal change of the number of live and dead tumor cells under different initial glucose concentrations and seeding densities. We then constructed a family of mathematical models (where cell death was accounted for differently in each member of the family) to describe overall tumor cell growth in response to the initial glucose and confluence conditions. The Akaikie Information Criteria was then employed to identify the most parsimonious model. The selected model was then trained on 75% of the data to calibrate the system and identify trends in model parameters as a function of initial glucose concentration and confluence. The calibrated parameters were applied to the remaining 25% of the data to predict the temporal dynamics given the known initial glucose concentration and confluence, and tested against the corresponding experimental measurements. With the selected model, we achieved an accuracy (defined as the fraction of measured data that fell within the 95% confidence intervals of the predicted growth curves) of 77.2 ± 6.3% and 87.2 ± 5.1% for live BT-474 and MDA-MB-231 cells, respectively.
Collapse
Affiliation(s)
- Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jack Virostko
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Oncology, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, United States of America
| | - David A. Hormuth
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, United States of America
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Junyan Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Oncology, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jeanne Kowalski
- Department of Oncology, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, United States of America
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Oncology, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, United States of America
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
9
|
Yatagai N, Hasegawa T, Amano R, Saito I, Arimoto S, Takeda D, Kakei Y, Akashi M. Transcutaneous Carbon Dioxide Decreases Immunosuppressive Factors in Squamous Cell Carcinoma In Vivo. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5568428. [PMID: 34307656 PMCID: PMC8270696 DOI: 10.1155/2021/5568428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION In recent years, the tumour immunosuppressive mechanism has attracted attention as a cause of tumour chemoresistance. Although chemoresistance and immunosuppression of tumours have been reported to be associated with a hypoxic environment, effective treatments to improve hypoxia in tumours have not yet been established. We have previously applied carbon dioxide (CO2) to squamous cell carcinoma and have shown that improvement in local oxygenation has an antitumour effect. However, the effects of local CO2 administration on tumour immunosuppression, chemoresistance, and combination with chemotherapy are unknown. In this study, we investigated the effects of local CO2 administration on squamous cell carcinoma and the effects of combined use with chemotherapy, focusing on the effects on tumour immunosuppressive factors. METHODS Human oral squamous cell carcinoma (HSC-3) was transplanted subcutaneously into the back of a nude mouse, and CO2 and cisplatin were administered. After administration twice a week for a total of 4 times, tumours were collected and the expression of tumour immunosuppressive factors (PD-L1, PD-L2, and galectin-9) was evaluated using real-time polymerase chain reaction and immunostaining. RESULTS Compared with the control group, a significant decrease in the mRNA expression of PD-L1 was observed in both, CO2-treated and combination groups. Similarly, the expression of PD-L2 and galectin-9 decreased in the CO2-treated and combination groups. Furthermore, immunostaining also showed a significant decrease in the protein expression of tumour immunosuppressive factors in the CO2-treated and combination groups. CONCLUSION It was confirmed that the tumour immunosuppressive factors decreased due to local CO2 administration to the mouse model. CO2 administration has the potential to improve the hypoxic environment in tumours, and combined use with chemotherapy may also improve tumour immunosuppression.
Collapse
MESH Headings
- Administration, Cutaneous
- Animals
- Body Weight/drug effects
- Carbon Dioxide/administration & dosage
- Carbon Dioxide/pharmacology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunosuppression Therapy
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Mouth Neoplasms/genetics
- Mouth Neoplasms/immunology
- Mouth Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tumor Burden/drug effects
- Mice
Collapse
Affiliation(s)
- Nanae Yatagai
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Rika Amano
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Izumi Saito
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satomi Arimoto
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Daisuke Takeda
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasumasa Kakei
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
10
|
Zhu J, Zheng S, Liu H, Wang Y, Jiao Z, Nie Y, Wang H, Liu T, Song K. Evaluation of anti-tumor effects of crocin on a novel 3D tissue-engineered tumor model based on sodium alginate/gelatin microbead. Int J Biol Macromol 2021; 174:339-351. [PMID: 33529625 DOI: 10.1016/j.ijbiomac.2021.01.181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 02/03/2023]
Abstract
Crocin, as one of the biologically active components of saffron, has anti-inflammatory, anti-oxidant, anti-depressant and auxiliary anti-tumor effects. Studies have shown that crocin could promote breast cancer cell apoptosis. However, conventional methods are mainly based on two-dimensional (2D) cell culture models, which are difficult to reproduce the tumor environment in vivo due to space constraints. In this study, we prepared a three-dimensional (3D) cell model in vitro based on sodium alginate/gelatin to evaluate the inhibitory effect of crocin on MCF-7 cells, which could bridge the gap in crocin drug evaluation between 2D and 3D cell model in vitro. Different from the 2D culture, the cells were found to aggregate in a spherical shape in the 3D microgel beads. And the CCK-8 assay showed that the growth of MCF-7 cells exposed to crocin was inhibited in a time-related and concentration-related manner. Compared with 2D culture (IC50 that MCF-7 cells treated with crocin at 24 h, 48 h, 72 h: 3.68, 2.55 and 1.53 mg/mL, respectively), the IC50 value of 3D culture (IC50 that MCF-7 cells treated with crocin at 24 h, 48 h, 72 h: 10.12, 6.89 and 6.64 mg/mL, respectively) was significantly increased by 2.77, 2.70, 4.34 times, respectively. Besides, live/dead staining and scanning electron microscope (SEM) revealed that the 2D cultured cells shrank and ruptured after crocin treatment, and the number of living cells was considerably reduced; the size of the cell colonies in the 3D microgel beads decreased.
Collapse
Affiliation(s)
- Jingjing Zhu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Hanbo Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW 2139, Australia
| | - Zeren Jiao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hong Wang
- Department of Spine Surgery, First Affiliated Hospital, Institute of Cancer Stem Cell of Dalian Medical University, Dalian 116011, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
11
|
Akman M, Belisario DC, Salaroglio IC, Kopecka J, Donadelli M, De Smaele E, Riganti C. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:28. [PMID: 33423689 PMCID: PMC7798239 DOI: 10.1186/s13046-020-01824-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Solid tumors often grow in a micro-environment characterized by < 2% O2 tension. This condition, together with the aberrant activation of specific oncogenic patwhays, increases the amount and activity of the hypoxia-inducible factor-1α (HIF-1α), a transcription factor that controls up to 200 genes involved in neoangiogenesis, metabolic rewiring, invasion and drug resistance. Hypoxia also induces endoplasmic reticulum (ER) stress, a condition that triggers cell death, if cells are irreversibly damaged, or cell survival, if the stress is mild.Hypoxia and chronic ER stress both induce chemoresistance. In this review we discuss the multiple and interconnected circuitries that link hypoxic environment, chronic ER stress and chemoresistance. We suggest that hypoxia and ER stress train and select the cells more adapted to survive in unfavorable conditions, by activating pleiotropic mechanisms including apoptosis inhibition, metabolic rewiring, anti-oxidant defences, drugs efflux. This adaptative process unequivocally expands clones that acquire resistance to chemotherapy.We believe that pharmacological inhibitors of HIF-1α and modulators of ER stress, although characterized by low specificty and anti-cancer efficacy when used as single agents, may be repurposed as chemosensitizers against hypoxic and chemorefractory tumors in the next future.
Collapse
Affiliation(s)
- Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | | | | | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| |
Collapse
|
12
|
Boyd NH, Tran AN, Bernstock JD, Etminan T, Jones AB, Gillespie GY, Friedman GK, Hjelmeland AB. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics 2021; 11:665-683. [PMID: 33391498 PMCID: PMC7738846 DOI: 10.7150/thno.41692] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironments are the result of cellular alterations in cancer that support unrestricted growth and proliferation and result in further modifications in cell behavior, which are critical for tumor progression. Angiogenesis and therapeutic resistance are known to be modulated by hypoxia and other tumor microenvironments, such as acidic stress, both of which are core features of the glioblastoma microenvironment. Hypoxia has also been shown to promote a stem-like state in both non-neoplastic and tumor cells. In glial tumors, glioma stem cells (GSCs) are central in tumor growth, angiogenesis, and therapeutic resistance, and further investigation of the interplay between tumor microenvironments and GSCs is critical to the search for better treatment options for glioblastoma. Accordingly, we summarize the impact of hypoxia and acidic stress on GSC signaling and biologic phenotypes, and potential methods to inhibit these pathways.
Collapse
|
13
|
Belisario DC, Kopecka J, Pasino M, Akman M, De Smaele E, Donadelli M, Riganti C. Hypoxia Dictates Metabolic Rewiring of Tumors: Implications for Chemoresistance. Cells 2020; 9:cells9122598. [PMID: 33291643 PMCID: PMC7761956 DOI: 10.3390/cells9122598] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a condition commonly observed in the core of solid tumors. The hypoxia-inducible factors (HIF) act as hypoxia sensors that orchestrate a coordinated response increasing the pro-survival and pro-invasive phenotype of cancer cells, and determine a broad metabolic rewiring. These events favor tumor progression and chemoresistance. The increase in glucose and amino acid uptake, glycolytic flux, and lactate production; the alterations in glutamine metabolism, tricarboxylic acid cycle, and oxidative phosphorylation; the high levels of mitochondrial reactive oxygen species; the modulation of both fatty acid synthesis and oxidation are hallmarks of the metabolic rewiring induced by hypoxia. This review discusses how metabolic-dependent factors (e.g., increased acidification of tumor microenvironment coupled with intracellular alkalinization, and reduced mitochondrial metabolism), and metabolic-independent factors (e.g., increased expression of drug efflux transporters, stemness maintenance, and epithelial-mesenchymal transition) cooperate in determining chemoresistance in hypoxia. Specific metabolic modifiers, however, can reverse the metabolic phenotype of hypoxic tumor areas that are more chemoresistant into the phenotype typical of chemosensitive cells. We propose these metabolic modifiers, able to reverse the hypoxia-induced metabolic rewiring, as potential chemosensitizer agents against hypoxic and refractory tumor cells.
Collapse
Affiliation(s)
- Dimas Carolina Belisario
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Martina Pasino
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, 00185 Roma, Italy;
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy;
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
- Correspondence: ; Tel.: +39-011-670-5857
| |
Collapse
|
14
|
Addressing the tumour microenvironment in early drug discovery: a strategy to overcome drug resistance and identify novel targets for cancer therapy. Drug Discov Today 2020; 26:663-676. [PMID: 33278601 DOI: 10.1016/j.drudis.2020.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
Abstract
The tumour microenvironment (TME) comprises not only malignant and non-malignant cells, but also the extracellular matrix (ECM), secreted factors, and regulators of cellular functions. In addition to genetic alterations, changes of the biochemical/biophysical properties or cellular composition of the TME have been implicated in drug resistance. Here, we review the composition of the ECM and different elements of the TME contributing to drug resistance, including soluble factors, hypoxia, extracellular acidity, and cell adhesion properties. We discuss selected approaches for modelling the TME, current progress, and their use in low-and high-throughput assays for preclinical studies. Lastly, we summarise the status quo of advanced 3D cancer models compatible with high-throughput screening (HTS), the technical practicalities and challenges.
Collapse
|
15
|
Dong Q, Zhou C, Ren H, Zhang Z, Cheng F, Xiong Z, Chen C, Yang J, Gao J, Zhang Y, Xu L, Fang J, Cao Y, Wei H, Wu Z. Lactate-induced MRP1 expression contributes to metabolism-based etoposide resistance in non-small cell lung cancer cells. Cell Commun Signal 2020; 18:167. [PMID: 33097055 PMCID: PMC7583203 DOI: 10.1186/s12964-020-00653-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Metabolic reprogramming contributes significantly to tumor development and is tightly linked to drug resistance. The chemotherapeutic agent etoposide (VP-16) has been used clinically in the treatment of lung cancer but possess different sensitivity and efficacy towards SCLC and NSCLC. Here, we assessed the impact of etoposide on glycolytic metabolism in SCLC and NSCLC cell lines and investigated the role of metabolic rewiring in mediating etoposide resistance. METHODS glycolytic differences of drug-treated cancer cells were determined by extracellular acidification rate (ECAR), glucose consumption, lactate production and western blot. DNA damage was evaluated by the comet assay and western blot. Chemoresistant cancer cells were analyzed by viability, apoptosis and western blot. Chromatin immunoprecipitation (ChIP) was used for analysis of DNA-protein interaction. RESULTS Here we showed that exposure to chemotherapeutic drug etoposide induces an exacerbation of ROS production which activates HIF-1α-mediated the metabolic reprogramming toward increased glycolysis and lactate production in non-small cell lung cancer (NSCLC). We identified lactic acidosis as the key that confers multidrug resistance through upregulation of multidrug resistance-associated protein 1 (MRP1, encoded by ABCC1), a member of ATP-binding cassette (ABC) transporter family. Mechanistically, lactic acid coordinates TGF-β1/Snail and TAZ/AP-1 pathway to induce formation of Snail/TAZ/AP-1 complex at the MRP1/ABCC1 promoter. Induction of MRP1 expression inhibits genotoxic and apoptotic effects of chemotherapeutic drugs by increasing drug efflux. Furthermore, titration of lactic acid with NaHCO3 was sufficient to overcome resistance. CONCLUSIONS The chemotherapeutic drug etoposide induces the shift toward aerobic glycolysis in the NSCLC rather than SCLC cell lines. The increased lactic acid in extracellular environment plays important role in etoposide resistance through upregulation of MRP expression. These data provide first evidence for the increased lactate production, upon drug treatment, contributes to adaptive resistance in NSCLC and reveal potential vulnerabilities of lactate metabolism and/or pathway suitable for therapeutic targeting. Video Abstract The chemotherapeutic drug etoposide induces metabolic reprogramming towards glycolysis in the NSCLC cells. The secreted lactic acid coordinates TGF-β1/Snail and TAZ/AP-1 pathway to activate the expression of MRP1/ABCC1 protein, thus contributing to chemoresistance in NSCLC.
Collapse
Affiliation(s)
- Qi Dong
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, China.,Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China
| | - Chenkang Zhou
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241001, China.,School of laboratory Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Haodong Ren
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241001, China.,School of pharmacy, Wannan Medical College, Wuhu, 241001, China
| | - Zhijian Zhang
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Feng Cheng
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China
| | - Zhenkai Xiong
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Medical Imageology, Wannan Medical College, Wuhu, 241001, China
| | - Chuantao Chen
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Medical Imageology, Wannan Medical College, Wuhu, 241001, China
| | - Jianke Yang
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Jiguang Gao
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Yao Zhang
- Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China
| | - Lei Xu
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, China.,Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China
| | - Jian Fang
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, China.,Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China
| | - Yuxiang Cao
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of laboratory Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Huijun Wei
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China.,Anhui provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241001, China
| | - Zhihao Wu
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China. .,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China. .,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
16
|
Premaratne ID, Toyoda Y, Celie KB, Brown KA, Spector JA. Tissue Engineering Models for the Study of Breast Neoplastic Disease and the Tumor Microenvironment. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:423-442. [DOI: 10.1089/ten.teb.2019.0347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ishani D. Premaratne
- Department of Surgery, Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Yoshiko Toyoda
- Department of Surgery, Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Karel-Bart Celie
- Department of Surgery, Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jason A. Spector
- Department of Surgery, Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
Yang WJ, Zhang GL, Cao KX, Liu XN, Wang XM, Yu MW, Li JP, Yang GW. Heparanase from triple‑negative breast cancer and platelets acts as an enhancer of metastasis. Int J Oncol 2020; 57:890-904. [PMID: 32945393 PMCID: PMC7473754 DOI: 10.3892/ijo.2020.5115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC), which is characterized by inherently aggressive behavior and lack of recognized molecular targets for therapy, poses a serious threat to women's health worldwide. However, targeted treatments have yet to be made available. A crosstalk between tumor cells and platelets (PLT) contributing to growth, angiogenesis and metastasis has been reported in numerous cancers. Heparanase (Hpa), the only mammalian endoglycosidase that cleaves heparan sulfate, has been demonstrated to contribute to the growth, angiogenesis and metastasis of numerous cancers. Hypoxia affects the growth, angiogenesis and metastasis of nearly all solid tumors, and the ability of Hpa to promote invasion is enhanced in hypoxia. However, whether Hpa can strengthen the crosstalk between tumor cells and PLT, and whether enhancing the biological function of Hpa in TNBC promotes malignant progression, have yet to be fully elucidated. The present study, based on bioinformatics analysis and experimental studies in vivo and in vitro, demonstrated that Hpa enhanced the crosstalk between TNBC cells and PLT to increase the supply of oxygen and nutrients, while also conferring tolerance of TNBC cells to oxygen and nutrient shortage, both of which are important for overcoming the stress of hypoxia and nutritional deprivation in the tumor microenvironment, thereby promoting malignant progression, including growth, angiogenesis and metastasis in TNBC. In addition, the hypoxia-inducible factor-1a (HIF-1a)/vascular endothelial growth factor-a (VEGF- a)/phosphorylated protein kinase B (p-)Akt axis may be the key pathway involved in the effects of Hpa on the biological processes mentioned above. Therefore, improving local hypoxia, anti-Hpa treatment and inhibiting PLT activation may improve the prognosis of TNBC.
Collapse
Affiliation(s)
- Wen-Jing Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Gan-Lin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Ke-Xin Cao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Xiao-Ni Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xiao-Min Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Ming-Wei Yu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Jin-Ping Li
- Biomedical Center, Uppsala University, Uppsala 75123, Sweden
| | - Guo-Wang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
18
|
Roy S, Kumaravel S, Sharma A, Duran CL, Bayless KJ, Chakraborty S. Hypoxic tumor microenvironment: Implications for cancer therapy. Exp Biol Med (Maywood) 2020; 245:1073-1086. [PMID: 32594767 DOI: 10.1177/1535370220934038] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPACT STATEMENT Hypoxia contributes to tumor aggressiveness and promotes growth of many solid tumors that are often resistant to conventional therapies. In order to achieve successful therapeutic strategies targeting different cancer types, it is necessary to understand the molecular mechanisms and signaling pathways that are induced by hypoxia. Aberrant tumor vasculature and alterations in cellular metabolism and drug resistance due to hypoxia further confound this problem. This review focuses on the implications of hypoxia in an inflammatory TME and its impact on the signaling and metabolic pathways regulating growth and progression of cancer, along with changes in lymphangiogenic and angiogenic mechanisms. Finally, the overarching role of hypoxia in mediating therapeutic resistance in cancers is discussed.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Ankith Sharma
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Camille L Duran
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
19
|
Al‐Husaini K, Elkamel E, Han X, Chen P. Therapeutic potential of a cell penetrating peptide (CPP, NP1) mediated siRNA delivery: Evidence in 3D spheroids of colon cancer cells. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Khalsa Al‐Husaini
- Department of Chemical Engineering and Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario Canada
| | - Erij Elkamel
- Department of Chemical Engineering and Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario Canada
| | - Xiaoxia Han
- Department of Chemical Engineering and Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario Canada
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario Canada
| |
Collapse
|
20
|
Optimal control nodes in disease-perturbed networks as targets for combination therapy. Nat Commun 2019; 10:2180. [PMID: 31097707 PMCID: PMC6522545 DOI: 10.1038/s41467-019-10215-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Most combination therapies are developed based on targets of existing drugs, which only represent a small portion of the human proteome. We introduce a network controllability-based method, OptiCon, for de novo identification of synergistic regulators as candidates for combination therapy. These regulators jointly exert maximal control over deregulated genes but minimal control over unperturbed genes in a disease. Using data from three cancer types, we show that 68% of predicted regulators are either known drug targets or have a critical role in cancer development. Predicted regulators are depleted for known proteins associated with side effects. Predicted synergy is supported by disease-specific and clinically relevant synthetic lethal interactions and experimental validation. A significant portion of genes regulated by synergistic regulators participate in dense interactions between co-regulated subnetworks and contribute to therapy resistance. OptiCon represents a general framework for systemic and de novo identification of synergistic regulators underlying a cellular state transition. Synergistic interactions may arise between regulators in complex molecular networks. Here, the authors develop OptiCon, a computational method for de novo identification of synergistic key regulators and investigate their potential roles as candidate targets for combination therapy.
Collapse
|
21
|
Cowman S, Fan YN, Pizer B, Sée V. Decrease of Nibrin expression in chronic hypoxia is associated with hypoxia-induced chemoresistance in some brain tumour cells. BMC Cancer 2019; 19:300. [PMID: 30943920 PMCID: PMC6446413 DOI: 10.1186/s12885-019-5476-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/14/2019] [Indexed: 12/03/2022] Open
Abstract
Background Solid tumours are less oxygenated than normal tissues. This is called tumour hypoxia and leads to resistance to radiotherapy and chemotherapy. The molecular mechanisms underlying such resistance have been investigated in a range of tumour types, including the adult brain tumours glioblastoma, yet little is known for paediatric brain tumours. Medulloblastoma (MB) is the most common malignant brain tumour in children. We aimed to elucidate the impact of hypoxia on the sensitivity of MB cells to chemo- and radiotherapy. Methods We used two MB cell line (D283-MED and MEB-Med8A) and a widely used glioblastoma cell line (U87MG) for comparison. We applied a range of molecular and cellular techniques to measure cell survival, cell cycle progression, protein expression and DNA damage combined with a transcriptomic micro-array approach in D283-MED cells, for global gene expression analysis in acute and chronic hypoxic conditions. Results In D283-MED and U87MG, chronic hypoxia (5 days), but not acute hypoxia (24 h) induced resistance to chemotherapy and X-ray irradiation. This acquired resistance upon chronic hypoxia was present but less pronounced in MEB-Med8A cells. Using transcriptomic analysis in D283-MED cells, we found a large transcriptional remodelling upon long term hypoxia, in particular the expression of a number of genes involved in detection and repair of double strand breaks (DSB) was altered. The levels of Nibrin (NBN) and MRE11, members of the MRN complex (MRE11/Rad50/NBN) responsible for DSB recognition, were significantly down-regulated. This was associated with a reduction of Ataxia Telangiectasia Mutated (ATM) activation by etoposide, indicating a profound dampening of the DNA damage signalling in hypoxic conditions. As a consequence, p53 activation by etoposide was reduced, and cell survival enhanced. Whilst U87MG shared the same dampened p53 activity, upon chemotherapeutic drug treatment in chronic hypoxic conditions, these cells used a different mechanism, independent of the DNA damage pathway. Conclusion Together our results demonstrate a new mechanism explaining hypoxia-induced resistance involving the alteration of the response to DSB in D283-MED cells, but also highlight the cell type to cell type diversity and the necessity to take into account the differing tumour genetic make-up when considering re-sensitisation therapeutic protocols. Electronic supplementary material The online version of this article (10.1186/s12885-019-5476-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Cowman
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK
| | - Yuen Ngan Fan
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK.,University of Manchester, Faculty of Biology, Medicine and Health, M13 9PT, Manchester, UK
| | - Barry Pizer
- University of Liverpool and Alder Hey Children's NHS Foundation Trust, member of Liverpool Health Partners., Liverpool, UK
| | - Violaine Sée
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK.
| |
Collapse
|
22
|
Minassian LM, Cotechini T, Huitema E, Graham CH. Hypoxia-Induced Resistance to Chemotherapy in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:123-139. [PMID: 31201721 DOI: 10.1007/978-3-030-12734-3_9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A major barrier to the successful management of cancer is the development of resistance to therapy. Chemotherapy resistance can either be an intrinsic property of malignant cells developed prior to therapy, or acquired following exposure to anti-cancer drugs. Given the impact of drug resistance to the overall poor survival of cancer patients, there is an urgent need to better understand the molecular pathways regulating this malignant phenotype. In this chapter we describe some of the molecular pathways that contribute to drug resistance in cancer, the role of a microenvironment deficient in oxygen (hypoxia) in malignant progression, and how hypoxia can be a significant factor in the development of drug resistance. We conclude by proposing potential therapeutic approaches that take advantage of a hypoxic microenvironment to chemosensitize therapy-resistant tumours.
Collapse
Affiliation(s)
- Lori M Minassian
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Erin Huitema
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
23
|
STAT3 but Not HIF-1α Is Important in Mediating Hypoxia-Induced Chemoresistance in MDA-MB-231, a Triple Negative Breast Cancer Cell Line. Cancers (Basel) 2017; 9:cancers9100137. [PMID: 29036915 PMCID: PMC5664076 DOI: 10.3390/cancers9100137] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/02/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022] Open
Abstract
Hypoxia-induced chemoresistance (HICR) is a well-recognized phenomenon, and in many experimental models, hypoxia inducible factor-1α (HIF-1α) is believed to be a key player. We aimed to better understand the mechanism underlying HICR in a triple negative breast cancer cell line, MDA-MB-231, with a focus on the role of HIF-1α. In this context, the effect of hypoxia on the sensitivity of MDA-MB-231 cells to cisplatin and their stem-like features was evaluated and the role of HIF-1α in both phenomena was assessed. Our results showed that hypoxia significantly increased MDA-MB-231 resistance to cisplatin. Correlating with this, intracellular uptake of cisplatin was significantly reduced under hypoxia. Furthermore, the stem-like features of MDA-MB-231 cells increased as evidenced by the significant increases in the expression of ATP-binding cassette (ABC) drug transporters, the proportion of CD44+/CD24− cells, clonogenic survival and cisplatin chemoresistance. Under hypoxia, both the protein level and DNA binding of HIF-1α was dramatically increased. Surprisingly, siRNA knockdown of HIF-1α did not result in an appreciable change to HICR. Instead, signal transducer and activator of transcription 3 (STAT3) activation was found to be important. STAT3 activation may confer HICR by upregulating ABC transporters, particularly ABCC2 and ABCC6. This study has demonstrated that, in MDA-MB-231 cells, STAT3 rather than HIF-1α is important in mediating HICR to cisplatin.
Collapse
|
24
|
Black M, Barsoum IB, Truesdell P, Cotechini T, Macdonald-Goodfellow SK, Petroff M, Siemens DR, Koti M, Craig AWB, Graham CH. Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget 2016; 7:10557-67. [PMID: 26859684 PMCID: PMC4891140 DOI: 10.18632/oncotarget.7235] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
The ability of tumor cells to avoid immune destruction (immune escape) as well as their acquired resistance to anti-cancer drugs constitute important barriers to the successful management of cancer. Interaction between the Programmed Death Ligand 1 (PD-L1) on the surface of tumor cells with the Programmed Death-1 (PD-1) receptor on cytotoxic T lymphocytes leads to inactivation of these immune effectors and, consequently, immune escape. Here we show that the PD-1/PD-L1 axis also leads to tumor cell resistance to conventional chemotherapeutic agents. Using a panel of PD-L1-expressing human and mouse breast and prostate cancer cell lines, we found that incubation of breast and prostate cancer cells in the presence of purified recombinant PD-1 resulted in resistance to doxorubicin and docetaxel as determined using clonogenic survival assays. Co-culture with PD-1-expressing Jurkat T cells also promoted chemoresistance and this was prevented by antibody blockade of either PD-L1 or PD-1 or by silencing of the PD-L1 gene. Moreover, inhibition of the PD-1/PD-L1 axis using anti-PD-1 antibody enhanced doxorubicin chemotherapy to inhibit metastasis in a syngeneic mammary orthotopic mouse model of metastatic breast cancer. To further investigate the mechanism of tumor cell survival advantage upon PD-L1 ligation, we show that exposure to rPD-1 promoted ERK and mTOR growth and survival pathways leading to increased cell proliferation. Overall, the findings of this study indicate that combinations of chemotherapy and immune checkpoint blockade may limit chemoresistance and progression to metastatic disease.
Collapse
Affiliation(s)
- Madison Black
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ivraym B Barsoum
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Department of Urology, Queen's University, Kingston, Ontario, Canada
| | - Peter Truesdell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Margaret Petroff
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - D Robert Siemens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Department of Urology, Queen's University, Kingston, Ontario, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Andrew W B Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Department of Urology, Queen's University, Kingston, Ontario, Canada.,Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 2016; 164:152-69. [PMID: 27139518 DOI: 10.1016/j.pharmthera.2016.04.009] [Citation(s) in RCA: 473] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insufficient tissue oxygenation, or hypoxia, contributes to tumor aggressiveness and has a profound impact on clinical outcomes in cancer patients. At decreased oxygen tensions, hypoxia-inducible factors (HIFs) 1 and 2 are stabilized and mediate a hypoxic response, primarily by acting as transcription factors. HIFs exert differential effects on tumor growth and affect important cancer hallmarks including cell proliferation, apoptosis, differentiation, vascularization/angiogenesis, genetic instability, tumor metabolism, tumor immune responses, and invasion and metastasis. As a consequence, HIFs mediate resistance to chemo- and radiotherapy and are associated with poor prognosis in cancer patients. Intriguingly, perivascular tumor cells can also express HIF-2α, thereby forming a "pseudohypoxic" phenotype that further contributes to tumor aggressiveness. Therefore, therapeutic targeting of HIFs in cancer has the potential to improve treatment efficacy. Different strategies to target hypoxic cancer cells and/or HIFs include hypoxia-activated prodrugs and inhibition of HIF dimerization, mRNA or protein expression, DNA binding capacity, and transcriptional activity. Here we review the functions of HIFs in the progression and treatment of malignant solid tumors. We also highlight how HIFs may be targeted to improve the management of patients with therapy-resistant and metastatic cancer.
Collapse
Affiliation(s)
- Caroline Wigerup
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden
| | - Sven Påhlman
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden.
| | - Daniel Bexell
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Van Pham P, Vu BT, Lu-Chinh Phan N, Le HT, Phan NK. In vitro spontaneous differentiation of human breast cancer stem cells and methods to control this process. BIOMEDICAL RESEARCH AND THERAPY 2015. [DOI: 10.7603/s40730-015-0014-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Doktorova H, Hrabeta J, Khalil MA, Eckschlager T. Hypoxia-induced chemoresistance in cancer cells: The role of not only HIF-1. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:166-77. [PMID: 26001024 DOI: 10.5507/bp.2015.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/07/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The aim of this review is to provide the information about molecular basis of hypoxia-induced chemoresistance, focusing on the possibility of diagnostic and therapeutic use. RESULTS Hypoxia is a common feature of tumors and represents an independent prognostic factor in many cancers. It is the result of imbalances in the intake and consumption of oxygen caused by abnormal vessels in the tumor and the rapid proliferation of cancer cells. Hypoxia-induced resistance to cisplatin, doxorubicin, etoposide, melphalan, 5-flouoruracil, gemcitabine, and docetaxel has been reported in a number of experiments. Adaptation of tumor cells to hypoxia has important biological effects. The most studied factor responsible for these effects is hypoxia-inducible factor-1 (HIF-1) that significantly contributes to the aggressiveness and chemoresistance of different tumors. The HIF-1 complex, induced by hypoxia, binds to target genes, thereby increasing the expression of many genes. In addition, the expression of hundreds of genes can be also decreased in response to hypoxia in HIF-1 dependent manner, but without the detection of HIF-1 in these genes' promoters. HIF-1 independent mechanisms for drug resistance in hypoxia have been described, however, they are still rarely reported. The first clinical studies focusing on diagnosis of hypoxia and on inhibition of hypoxia-induced changes in cancer cells are starting to yield results. CONCLUSIONS The adaptation to hypoxia requires many genetic and biochemical responses that regulate one another. Hypoxia-induced resistance is a very complex field and we still know very little about it. Different approaches to circumvent hypoxia in tumors are under development.
Collapse
Affiliation(s)
- Helena Doktorova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Mohamed Ashraf Khalil
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
28
|
O'Reilly EA, Gubbins L, Sharma S, Tully R, Guang MHZ, Weiner-Gorzel K, McCaffrey J, Harrison M, Furlong F, Kell M, McCann A. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA CLINICAL 2015; 3:257-75. [PMID: 26676166 PMCID: PMC4661576 DOI: 10.1016/j.bbacli.2015.03.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Treatment options for women presenting with triple negative breast cancer (TNBC) are limited due to the lack of a therapeutic target and as a result, are managed with standard chemotherapy such as paclitaxel (Taxol®). Following chemotherapy, the ideal tumour response is apoptotic cell death. Post-chemotherapy, cells can maintain viability by undergoing viable cellular responses such as cellular senescence, generating secretomes which can directly enhance the malignant phenotype. SCOPE OF REVIEW How tumour cells retain viability in response to chemotherapeutic engagement is discussed. In addition we discuss the implications of this retained tumour cell viability in the context of the development of recurrent and metastatic TNBC disease. Current adjuvant and neo-adjuvant treatments available and the novel potential therapies that are being researched are also reviewed. MAJOR CONCLUSIONS Cellular senescence and cytoprotective autophagy are potential mechanisms of chemoresistance in TNBC. These two non-apoptotic outcomes in response to chemotherapy are inextricably linked and are neglected outcomes of investigation in the chemotherapeutic arena. Cellular fate assessments may therefore have the potential to predict TNBC patient outcome. GENERAL SIGNIFICANCE Focusing on the fact that cancer cells can bypass the desired cellular apoptotic response to chemotherapy through cellular senescence and cytoprotective autophagy will highlight the importance of targeting non-apoptotic survival pathways to enhance chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Elma A O'Reilly
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland ; Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Luke Gubbins
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Shiva Sharma
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland ; Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Riona Tully
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Matthew Ho Zhing Guang
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Karolina Weiner-Gorzel
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - John McCaffrey
- Department of Oncology, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Michele Harrison
- Department of Pathology, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Fiona Furlong
- School of Pharmacy, Queens University Belfast, Belfast BT7 1NN, UK
| | - Malcolm Kell
- Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Amanda McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Guo Y, Wu M, Zhao J, Li Y. [Advances in hypoxia microenvironment and chemotherapy-resistant of lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 17:265-8. [PMID: 24667266 PMCID: PMC6019371 DOI: 10.3779/j.issn.1009-3419.2014.03.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
肺癌是我国近年来发病率最高的恶性肿瘤之一,肿瘤低氧首先在肺癌中被发现,低氧与肿瘤细胞的耐药、凋亡、迁徙、血管生成等有密切联系。化疗耐药是肺癌治疗失败、病情进展的重要原因之一,近年来相关研究较多,现对肺癌低氧微环境以及其诱导化疗耐药作用机制的研究进展进行综述。
Collapse
Affiliation(s)
- Yang Guo
- Qinghai University, Xining 810001, China
| | - Milu Wu
- Department of Oncology, Affilitated Hospital of Qinghai University, Xining 810001, China
| | - Junhui Zhao
- Department of Oncology, Affilitated Hospital of Qinghai University, Xining 810001, China
| | - Yuying Li
- Department of Oncology, Affilitated Hospital of Qinghai University, Xining 810001, China
| |
Collapse
|
30
|
Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota N, Takao S, Kono S, Nakatsura T, Minami H. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep 2015; 33:1837-43. [PMID: 25634491 DOI: 10.3892/or.2015.3767] [Citation(s) in RCA: 554] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/11/2014] [Indexed: 12/15/2022] Open
Abstract
It is becoming recognized that screening of oncology drugs on a platform using two-dimensionally (2D)-cultured cell lines is unable to precisely select clinically active drugs; therefore three-dimensional (3D)-culture systems are emerging and show potential for better simulating the in vivo tumor microenvironment. The purpose of this study was to reveal the differential effects of chemotherapeutic drugs between 2D- and 3D-cultures and to explore their underlying mechanisms. We evaluated differences between 2D- and 3D-cultured breast cancer cell lines by assessing drug sensitivity, oxygen status and expression of Ki-67 and caspases. Three cell lines (BT-549, BT-474 and T-47D) developed dense multicellular spheroids (MCSs) in 3D-culture, and showed greater resistance to paclitaxel and doxorubicin compared to the 2D-cultured cells. An additional three cell lines (MCF-7, HCC-1954, and MDA-MB‑231) developed only loose MCSs in 3D, and showed drug sensitivities similar to those found in the 2D-culture. Treatment with paclitaxel resulted in greater increases in cleaved-PARP expression in the 2D-culture compared with the 3D-culture, but only in cell lines forming dense 3D-MCSs, suggesting that MCS formation protected the cells from paclitaxel-induced apoptosis. Hypoxia was observed only in the dense 3D-MCSs. BT-549 had fewer cells positive for Ki-67 in 3D- than in 2D-culture, suggesting that the greater G0-dormant subpopulation was responsible for its drug resistance in the 3D-culture. BT-474 had a lower level of caspase-3 in the 3D- than in the 2D-culture, suggesting that the 3D-environment was anti-apoptotic. Finally, we compared staining for Ki-67 and caspases in the 2D- and 3D-primary‑cultured cells originating from a patient-derived xenograft (PDX), fresh PDX tumor, and the patient's original tumor; 2D-cultured cells showed greater proportions of Ki-67-positive and caspase-3-positive cells, in agreement with the view that 3D-primary culture better represents characteristics of tumors in vivo. In conclusion, 3D-cultured cells forming dense MCSs may be better than 2D-cultured cells in simulating important tumor characteristics in vivo, namely hypoxia, dormancy, anti-apoptotic features and their resulting drug resistance.
Collapse
Affiliation(s)
- Yoshinori Imamura
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toru Mukohara
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yohei Shimono
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yohei Funakoshi
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naoko Chayahara
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masanori Toyoda
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naomi Kiyota
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shintaro Takao
- Division of Breast and Endocrine Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Seishi Kono
- Division of Breast and Endocrine Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
31
|
Garza-Treviño EN, Said-Fernández SL, Martínez-Rodríguez HG. Understanding the colon cancer stem cells and perspectives on treatment. Cancer Cell Int 2015; 15:2. [PMID: 25685060 PMCID: PMC4328053 DOI: 10.1186/s12935-015-0163-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 01/14/2015] [Indexed: 02/07/2023] Open
Abstract
An area of research that has been recently gaining attention is the relationship between cancer stem cell (CSC) biology and chemo-resistance in colon cancer patients. It is well recognized that tumor initiation, growth, invasion and metastasis are promoted by CSCs. An important reason for the widespread interest in the CSC model is that it can comprehensibly explain essential and poorly understood clinical events, such as therapy resistance, minimal residual disease, and tumor recurrence. This review discusses the recent advances in colon cancer stem cell research, the genes responsible for CSC chemoresistance, and new therapies against CSCs.
Collapse
Affiliation(s)
- Elsa N Garza-Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, León, Mexico
| | - Salvador L Said-Fernández
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, León, Mexico
| | - Herminia G Martínez-Rodríguez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, León, Mexico
| |
Collapse
|
32
|
SHI SHANSHAN, YUAN CHENXING, ZHUANG KAIZAN, LIANG GUIKAI, YAO ZHANGTING, WANG DUODUO, WENG QINJIE, CAO JI, LUO PEIHUA, ZHU HONG, DING LING, MA SHENGLIN. Resistance of SMMC-7721 hepatoma cells to etoposide in hypoxia is reversed by VEGF inhibitor. Mol Med Rep 2015; 11:3842-7. [DOI: 10.3892/mmr.2015.3217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
|
33
|
Jumonji domain-containing protein 2B silencing induces DNA damage response via STAT3 pathway in colorectal cancer. Br J Cancer 2014; 110:1014-26. [PMID: 24473398 PMCID: PMC3929886 DOI: 10.1038/bjc.2013.808] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022] Open
Abstract
Background: Jumonji domain-containing protein 2B (JMJD2B), directly targeted by hypoxia-inducible factor 1α, maintains the histone methylation balance important for the transcriptional activation of many oncogenes. Jumonji domain-containing protein 2B has been implicated in colorectal cancer (CRC) progression; however, the mechanism remains unclear. Methods: Immunofluorescence and western blotting detected phosphorylated histone H2AX, characteristic of double-strand breaks, and comet assay was used to investigate DNA damage, in CRC cells after JMJD2B small interfering RNA (siRNA) transfection. We assessed the resulting in vitro responses, that is, cell cycle progression, apoptosis, and senescence coupled with JMJD2B silencing-induced DNA damage, studying the regulatory role of signal transducers and activators of transcription 3 (STAT3). The JMJD2B silencing anti-cancer effect was determined using an in vivo CRC xenograft model. Results: Jumonji domain-containing protein 2B knockdown induced DNA damage via ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related pathway activation, resulting in cell cycle arrest, apoptosis, and senescence in both normoxia and hypoxia. Signal transducers and activators of transcription 3 suppression by JMJD2B silencing enhanced DNA damage. Intratumoural injection of JMJD2B siRNA suppressed tumour growth in vivo and activated the DNA damage response (DDR). Conclusions: Jumonji domain-containing protein 2B has an essential role in cancer cell survival and tumour growth via DDR mediation, which STAT3 partially regulates, suggesting that JMJD2B is a potential anti-cancer target.
Collapse
|
34
|
Sermeus A, Rebucci M, Fransolet M, Flamant L, Desmet D, Delaive E, Arnould T, Michiels C. Differential effect of hypoxia on etoposide-induced DNA damage response and p53 regulation in different cell types. J Cell Physiol 2013; 228:2365-76. [DOI: 10.1002/jcp.24409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 05/10/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Audrey Sermeus
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Magali Rebucci
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Lionel Flamant
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Déborah Desmet
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Edouard Delaive
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| |
Collapse
|
35
|
Strese S, Fryknäs M, Larsson R, Gullbo J. Effects of hypoxia on human cancer cell line chemosensitivity. BMC Cancer 2013; 13:331. [PMID: 23829203 PMCID: PMC3707755 DOI: 10.1186/1471-2407-13-331] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/28/2013] [Indexed: 12/24/2022] Open
Abstract
Background Environment inside even a small tumor is characterized by total (anoxia) or partial oxygen deprivation, (hypoxia). It has been shown that radiotherapy and some conventional chemotherapies may be less effective in hypoxia, and therefore it is important to investigate how different drugs act in different microenvironments. In this study we perform a large screening of the effects of 19 clinically used or experimental chemotherapeutic drugs on five different cell lines in conditions of normoxia, hypoxia and anoxia. Methods A panel of 19 commercially available drugs: 5-fluorouracil, acriflavine, bortezomib, cisplatin, digitoxin, digoxin, docetaxel, doxorubicin, etoposide, gemcitabine, irinotecan, melphalan, mitomycin c, rapamycin, sorafenib, thalidomide, tirapazamine, topotecan and vincristine were tested for cytotoxic activity on the cancer cell lines A2780 (ovarian), ACHN (renal), MCF-7 (breast), H69 (SCLC) and U-937 (lymphoma). Parallel aliquots of the cells were grown at different oxygen pressures and after 72 hours of drug exposure viability was measured with the fluorometric microculture cytotoxicity assay (FMCA). Results Sorafenib, irinotecan and docetaxel were in general more effective in an oxygenated environment, while cisplatin, mitomycin c and tirapazamine were more effective in a low oxygen environment. Surprisingly, hypoxia in H69 and MCF-7 cells mostly rendered higher drug sensitivity. In contrast ACHN appeared more sensitive to hypoxia, giving slower proliferating cells, and consequently, was more resistant to most drugs. Conclusions A panel of standard cytotoxic agents was tested against five different human cancer cell lines cultivated at normoxic, hypoxic and anoxic conditions. Results show that impaired chemosensitivity is not universal, in contrast different cell lines behave different and some drugs appear even less effective in normoxia than hypoxia.
Collapse
Affiliation(s)
- Sara Strese
- Clinical Pharmacology, Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
36
|
Adamski J, Price A, Dive C, Makin G. Hypoxia-induced cytotoxic drug resistance in osteosarcoma is independent of HIF-1Alpha. PLoS One 2013; 8:e65304. [PMID: 23785417 PMCID: PMC3681794 DOI: 10.1371/journal.pone.0065304] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/24/2013] [Indexed: 01/06/2023] Open
Abstract
Survival rates from childhood cancer have improved dramatically in the last 40 years, such that over 80% of children are now cured. However in certain subgroups, including metastatic osteosarcoma, survival has remained stubbornly poor, despite dose intensive multi-agent chemotherapy regimens, and new therapeutic approaches are needed. Hypoxia is common in adult solid tumours and is associated with treatment resistance and poorer outcome. Hypoxia induces chemotherapy resistance in paediatric tumours including neuroblastoma, rhabdomyosarcoma and Ewing’s sarcoma, in vitro, and this drug resistance is dependent on the oxygen-regulated transcription factor hypoxia inducible factor-1 (HIF-1). In this study the effects of hypoxia on the response of the osteosarcoma cell lines 791T, HOS and U2OS to the clinically relevant cytotoxics cisplatin, doxorubicin and etoposide were evaluated. Significant hypoxia-induced resistance to all three agents was seen in all three cell lines and hypoxia significantly reduced drug-induced apoptosis. Hypoxia also attenuated drug-induced activation of p53 in the p53 wild-type U2OS osteosarcoma cells. Drug resistance was not induced by HIF-1α stabilisation in normoxia by cobalt chloride nor reversed by the suppression of HIF-1α in hypoxia by shRNAi, siRNA, dominant negative HIF or inhibition with the small molecule NSC-134754, strongly suggesting that hypoxia-induced drug resistance in osteosarcoma cells is independent of HIF-1α. Inhibition of the phosphoinositide 3-kinase (PI3K) pathway using the inhibitor PI-103 did not reverse hypoxia-induced drug resistance, suggesting the hypoxic activation of Akt in osteosarcoma cells does not play a significant role in hypoxia-induced drug resistance. Targeting hypoxia is an exciting prospect to improve current anti-cancer therapy and combat drug resistance. Significant hypoxia-induced drug resistance in osteosarcoma cells highlights the potential importance of hypoxia as a target to reverse drug resistance in paediatric osteosarcoma. The novel finding of HIF-1α independent drug resistance suggests however other hypoxia related targets may be more relevant in paediatric osteosarcoma.
Collapse
Affiliation(s)
- Jennifer Adamski
- Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Manchester, United Kingdom
- Institute of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Department of Paediatric Oncology, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Andrew Price
- Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Manchester, United Kingdom
| | - Caroline Dive
- Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Manchester, United Kingdom
- Institute of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Guy Makin
- Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Manchester, United Kingdom
- Institute of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Department of Paediatric Oncology, Royal Manchester Children’s Hospital, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Cuvillier O, Ader I, Bouquerel P, Brizuela L, Gstalder C, Malavaud B. Hypoxia, therapeutic resistance, and sphingosine 1-phosphate. Adv Cancer Res 2013; 117:117-41. [PMID: 23290779 DOI: 10.1016/b978-0-12-394274-6.00005-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia, defined as a poor oxygenation, has been long recognized as a hallmark of solid tumors and a negative prognostic factor for response to therapeutics and survival of patients. Cancer cells have evolved biochemical mechanisms that allow them to react and adapt to hypoxia. At the cellular level, this adaptation is under the control of two related transcription factors, HIF-1 and HIF-2 (hypoxia-inducible factor), that respond rapidly to decreased oxygen levels to activate the expression of a broad range of genes promoting neoangiogenesis, glycolysis, metastasis, increased tumor growth, and resistance to treatments. Recent studies have identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway-which elicits various cellular processes including cell proliferation, cell survival, or angiogenesis-as a new regulator of HIF-1 or HIF-2 activity. In this review, we will focus on how the inhibition/neutralization of the SphK1/S1P signaling could be exploited for cancer therapy.
Collapse
Affiliation(s)
- Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France; Université de Toulouse, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The metabolic properties of cancer cells diverge significantly from those of normal cells. Energy production in cancer cells is abnormally dependent on aerobic glycolysis. In addition to the dependency on glycolysis, cancer cells have other atypical metabolic characteristics such as increased fatty acid synthesis and increased rates of glutamine metabolism. Emerging evidence shows that many features characteristic to cancer cells, such as dysregulated Warburg-like glucose metabolism, fatty acid synthesis and glutaminolysis are linked to therapeutic resistance in cancer treatment. Therefore, targeting cellular metabolism may improve the response to cancer therapeutics and the combination of chemotherapeutic drugs with cellular metabolism inhibitors may represent a promising strategy to overcome drug resistance in cancer therapy. Recently, several review articles have summarized the anticancer targets in the metabolic pathways and metabolic inhibitor-induced cell death pathways, however, the dysregulated metabolism in therapeutic resistance, which is a highly clinical relevant area in cancer metabolism research, has not been specifically addressed. From this unique angle, this review article will discuss the relationship between dysregulated cellular metabolism and cancer drug resistance and how targeting of metabolic enzymes, such as glucose transporters, hexokinase, pyruvate kinase M2, lactate dehydrogenase A, pyruvate dehydrogenase kinase, fatty acid synthase and glutaminase can enhance the efficacy of common therapeutic agents or overcome resistance to chemotherapy or radiotherapy.
Collapse
|
39
|
The growing complexity of HIF-1α’s role in tumorigenesis: DNA repair and beyond. Oncogene 2012; 32:3569-76. [DOI: 10.1038/onc.2012.510] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/28/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022]
|
40
|
Flamant L, Roegiers E, Pierre M, Hayez A, Sterpin C, De Backer O, Arnould T, Poumay Y, Michiels C. TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer 2012; 12:391. [PMID: 22954140 PMCID: PMC3519606 DOI: 10.1186/1471-2407-12-391] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoxia is a common characteristic of solid tumors associated with reduced response to radio- and chemotherapy, therefore increasing the probability of tumor recurrence. The aim of this study was to identify new mechanisms responsible for hypoxia-induced resistance in breast cancer cells. METHODS MDA-MB-231 and HepG2 cells were incubated in the presence of taxol or etoposide respectively under normoxia and hypoxia and apoptosis was analysed. A whole transcriptome analysis was performed in order to identify genes whose expression profile was correlated with apoptosis. The effect of gene invalidation using siRNA was studied on drug-induced apoptosis. RESULTS MDA-MB-231 cells incubated in the presence of taxol were protected from apoptosis and cell death by hypoxia. We demonstrated that TMEM45A expression was associated with taxol resistance. TMEM45A expression was increased both in MDA-MB-231 human breast cancer cells and in HepG2 human hepatoma cells in conditions where protection of cells against apoptosis induced by chemotherapeutic agents was observed, i.e. under hypoxia in the presence of taxol or etoposide. Moreover, this resistance was suppressed by siRNA-mediated silencing of TMEM45A. Kaplan Meier curve showed an association between high TMEM45A expression and poor prognostic in breast cancer patients. Finally, TMEM45 is highly expressed in normal differentiated keratinocytes both in vitro and in vivo, suggesting that this protein is involved in epithelial functions. CONCLUSION Altogether, our results unravel a new mechanism for taxol and etoposide resistance mediated by TMEM45A. High levels of TMEM45A expression in tumors may be indicative of potential resistance to cancer therapy, making TMEM45A an interesting biomarker for resistance.
Collapse
Affiliation(s)
- Lionel Flamant
- URBC-NARILIS, University of Namur-FUNDP, 61 rue de Bruxelles, 5000, Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 2012; 33:207-14. [PMID: 22398146 DOI: 10.1016/j.tips.2012.01.005] [Citation(s) in RCA: 1141] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/24/2012] [Accepted: 01/27/2012] [Indexed: 02/08/2023]
Abstract
Hypoxia-inducible factors (HIFs) mediate adaptive physiological responses to hypoxia. In human cancers that are accessible for O(2) electrode measurements, intratumoral hypoxia is common and severe hypoxia is associated with increased risk of mortality. HIF activity in regions of intratumoral hypoxia mediates angiogenesis, epithelial-mesenchymal transition, stem-cell maintenance, invasion, metastasis, and resistance to radiation therapy and chemotherapy. A growing number of drugs have been identified that inhibit HIF activity by a variety of molecular mechanisms. Because many of these drugs are already FDA-approved for other indications, clinical trials can (and should) be initiated to test the hypothesis that incorporation of HIF inhibitors into current standard-of-care therapy will increase the survival of cancer patients.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
[Molecular determinants of response to topoisomerase II inhibitors]. Bull Cancer 2012; 98:1299-310. [PMID: 22023806 DOI: 10.1684/bdc.2011.1475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human nuclear topoisomerases II (Top2) are involved in the relaxation of DNA supercoiling during transcription and replication but also play a pivotal role in the segregation of newly replicated chromosomes and in chromatin remodelling. Top2 have been used as targets for the development of anticancer drugs. These inhibitors include anthracyclines (doxorubcin, daunorubicin, epirubicin) and epipodophyllotoxins (etoposide), which are widely used in the clinic. These drugs poison Top2 by trapping the enzyme on its DNA cleavage sites, which results in irreversible double-strand breaks that are responsible for cell death. They also include Top2 catalytic inhibitors such as bisdioxopiperazines (ICRF-187 and merbarone), which inhibit Top2 binding to its substrate. Efficacy of Top2 inhibitors is still limited by the problem of resistance, which involves various mechanisms from drug transport and/or metabolism to the signalling and/or repair of Top2-mediated DNA lesions. Secondary malignancies induced by the poisoning of Top2β are also a major clinical issue. A better understanding of these mechanisms is critical for the future development of new Top2 inhibitors and the identification of biomarkers that could be used to predict tumour response to these drugs in the clinic and to adapt the treatment to each patient.
Collapse
|
43
|
Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 2011; 14:191-201. [PMID: 21466972 DOI: 10.1016/j.drup.2011.03.001] [Citation(s) in RCA: 465] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 12/23/2022]
Abstract
Resistance towards chemotherapy, either primary or acquired, represents a major obstacle in clinical oncology. Three basic categories underlie most cases of chemotherapy failure: Inadequate pharmacokinetic properties of the drug, tumor cell intrinsic factors such as the expression of drug efflux pumps and tumor cell extrinsic conditions present in the tumor microenvironment, characterized by such hostile conditions as hypoxia, acidosis, nutrient starvation and increased interstitial pressure. Tumor hypoxia has been known to negatively affect therapy outcome for decades. Hypoxia inhibits tumor cell proliferation and induces cell cycle arrest, ultimately conferring chemoresistance since anticancer drugs preferentially target rapidly proliferating cells. However, this knowledge has been largely neglected while screening for anti-proliferative substances in vitro, resulting in hypoxia-mediated failure of most newly identified substances in vivo. To achieve a tangible therapeutic benefit from this knowledge, the mechanisms that drive tumoral responses to hypoxia need to be identified and exploited for their validity as innovative therapy targets. The HIF family of hypoxia-inducible transcription factors represents the main mediator of the hypoxic response and is widely upregulated in human cancers. HIF-1α and to a lesser extent HIF-2α, the oxygen-regulated HIF isoforms, have been associated with chemotherapy failure and interference with HIF function holds great promise to improve future anticancer therapy. In this review we summarize recent findings on the molecular mechanisms that underlie the role of the HIFs in drug resistance. Specifically, we will highlight the multifaceted interaction of HIF with apoptosis, senescence, autophagy, p53 and mitochondrial activity and outline how these are at the heart of HIF-mediated therapy failure.
Collapse
Affiliation(s)
- Nadine Rohwer
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | |
Collapse
|
44
|
Wysocki PJ, Wierusz-Wysocka B. Obesity, hyperinsulinemia and breast cancer: novel targets and a novel role for metformin. Expert Rev Mol Diagn 2010; 10:509-19. [PMID: 20465505 DOI: 10.1586/erm.10.22] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The relationship between obesity, metabolic syndrome, diabetes and cancer has been recognized for many years. Multiple studies conducted in the last 20 years have identified molecular mechanisms responsible for this phenomenon. Elucidation of the important role of insulin, IGF receptor, mTOR and AMP-activated protein kinase in breast cancer biology has led to the development and subsequent clinical evaluation of novel targeted therapies, including IGF-1 receptor-specific antibodies or tyrosine kinase inhibitors and inhibitors of mTOR. There is also a growing interest in the use of metformin, which has been shown to possess antitumor activity resulting from activation of AMP-activated protein kinase and subsequent inhibiton of mTOR, as well as from decreased circulating insulin levels. Metformin has been shown to inhibit proliferation, invasion and angiogenesis of neoplastic cells and to overcome resistance of breast cancer to chemotherapy, hormonal therapy and HER2 inhibition. Recently, metformin has been demonstrated to inhibit breast cancer stem cell growth and to synergize with chemotherapy in suppression of tumor growth and prolongation of survival of breast tumor-bearing animals. Several currently ongoing Phase II and III clinical studies are evaluating the therapeutic efficacy of metformin in the treatment of early and advanced breast cancer patients.
Collapse
Affiliation(s)
- Piotr J Wysocki
- Department of Chemotherapy, Greater Poland Cancer Center, University of Medical Sciences, Poznan, Poland.
| | | |
Collapse
|
45
|
Quaegebeur A, Carmeliet P. Oxygen sensing: a common crossroad in cancer and neurodegeneration. Curr Top Microbiol Immunol 2010; 345:71-103. [PMID: 20582529 DOI: 10.1007/82_2010_83] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prolyl hydroxylase domain (PHD) proteins are cellular oxygen sensors that orchestrate an adaptive response to hypoxia and oxidative stress, executed by hypoxia-inducible factors (HIFs). By increasing oxygen supply, reducing oxygen consumption, and reprogramming metabolism, the PHD/HIF pathway confers tolerance towards hypoxic and oxidative stress. This review discusses the involvement of the PHD/HIF response in two, at first sight, entirely distinct pathologies with opposite outcome, i.e. cancer leading to cellular growth and neurodegeneration resulting in cell death. However, these disorders share common mechanisms of sensing oxygen and oxidative stress. We will focus on how PHD/HIF signaling is pathogenetically implicated in metabolic and vessel alterations in these diseases and how manipulation of this pathway might offer novel treatment opportunities.
Collapse
Affiliation(s)
- Annelies Quaegebeur
- Vesalius Research Center (VRC), VIB, K.U. Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium
| | | |
Collapse
|
46
|
Broxterman HJ, Gotink KJ, Verheul HMW. Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug Resist Updat 2009; 12:114-26. [PMID: 19648052 DOI: 10.1016/j.drup.2009.07.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 12/22/2022]
Abstract
Multiple molecular, cellular, micro-environmental and systemic causes of anticancer drug resistance have been identified during the last 25 years. At the same time, genome-wide analysis of human tumor tissues has made it possible in principle to assess the expression of critical genes or mutations that determine the response of an individual patient's tumor to drug treatment. Why then do we, with a few exceptions, such as mutation analysis of the EGFR to guide the use of EGFR inhibitors, have no predictive tests to assess a patient's drug sensitivity profile. The problem urges the more with the expanding choice of drugs, which may be beneficial for a fraction of patients only. In this review we discuss recent studies and insights on mechanisms of anticancer drug resistance and try to answer the question: do we understand why a patient responds or fails to respond to therapy? We focus on doxorubicin as example of a classical cytotoxic, DNA damaging agent and on sunitinib, as example of the new generation of (receptor) tyrosine kinase-targeted agents. For both drugs, classical tumor cell autonomous resistance mechanisms, such as drug efflux transporters and mutations in the tumor cell's survival signaling pathways, as well as micro-environment-related resistance mechanisms, such as changes in tumor stromal cell composition, matrix proteins, vascularity, oxygenation and energy metabolism may play a role. Novel agents that target specific mutations in the tumor cell's damage repair (e.g. PARP inhibitors) or that target tumor survival pathways, such as Akt inhibitors, glycolysis inhibitors or mTOR inhibitors, are of high interest. In order to increase the therapeutic index of treatments, fine-tuned synergistic combinations of new and/or classical cytotoxic agents will be designed. More quantitative assessment of potential resistance mechanisms in real tumors and in real time, such as by kinase profiling methodology, will be developed to allow more precise prediction of the optimal drug combination to treat each patient.
Collapse
Affiliation(s)
- Henk J Broxterman
- Department of Medical Oncology, CCA 1-38, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|