1
|
Li G, Wang H, Meftahpour V. Overall review of curative impact and barriers of CAR-T cells in osteosarcoma. EXCLI JOURNAL 2024; 23:364-383. [PMID: 38655095 PMCID: PMC11036068 DOI: 10.17179/excli2023-6760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024]
Abstract
Osteosarcoma (OS) is a rare form of cancer and primary bone malignancy in children and adolescents. Current therapies include surgery, chemotherapy, and amputation. Therefore, a new therapeutic strategy is needed to dramatically change cancer treatment. Recently, chimeric antigen receptor T cells (CAR-T cells) have been of considerable interest as it has provided auspicious results and patients suffering from low side effects after injection that resolve with current therapy. However, there are reports that cytokine release storm (CRS) can be observed in some patients. In addition, as researchers have faced problems that limit and suppress T cells, further studies are required to resolve these problems. In addition, to maximize the therapeutic benefit of CAR-T cell therapy, researchers have suggested that combination therapy could be better used to treat cancer by overcoming any problems and reducing side effects as much as possible. This review summarizes these problems, barriers, and the results of some studies on the evaluation of CAR-T cells in patients with osteosarcoma.
Collapse
Affiliation(s)
- Guilin Li
- Xinyang Vocational and Technical College, Xinyang Henan 464000 China
| | - Hong Wang
- Xinyang Vocational and Technical College, Xinyang Henan 464000 China
| | - Vafa Meftahpour
- Medical Immunology, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Li YR, Halladay T, Yang L. Immune evasion in cell-based immunotherapy: unraveling challenges and novel strategies. J Biomed Sci 2024; 31:5. [PMID: 38217016 PMCID: PMC10785504 DOI: 10.1186/s12929-024-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Cell-based immunotherapies (CBIs), notably exemplified by chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy, have emerged as groundbreaking approaches for cancer therapy. Nevertheless, akin to various other therapeutic modalities, tumor cells employ counterstrategies to manifest immune evasion, thereby circumventing the impact of CBIs. This phenomenon is facilitated by an intricately immunosuppression entrenched within the tumor microenvironment (TME). Principal mechanisms underpinning tumor immune evasion from CBIs encompass loss of antigens, downregulation of antigen presentation, activation of immune checkpoint pathways, initiation of anti-apoptotic cascades, and induction of immune dysfunction and exhaustion. In this review, we delve into the intrinsic mechanisms underlying the capacity of tumor cells to resist CBIs and proffer prospective stratagems to navigate around these challenges.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Zhao X, Wright A, Goertz DE. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions. ULTRASONICS SONOCHEMISTRY 2023; 93:106291. [PMID: 36640460 PMCID: PMC9852793 DOI: 10.1016/j.ultsonch.2023.106291] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 06/04/2023]
Abstract
Therapeutic focused ultrasound in combination with encapsulated microbubbles is being widely investigated for its ability to elicit bioeffects in the microvasculature, such as transient permeabilization for drug delivery or at higher pressures to achieve 'antivascular' effects. While it is well established that the behaviors of microbubbles are altered when they are situated within sufficiently small vessels, there is a paucity of data examining how the bubble population dynamics and emissions change as a function of channel (vessel) diameter over a size range relevant to therapeutic ultrasound, particularly at pressures relevant to antivascular ultrasound. Here we use acoustic emissions detection and high-speed microscopy (10 kframes/s) to examine the behavior of a polydisperse clinically employed agent (Definity®) in wall-less channels as their diameters are scaled from 1200 to 15 µm. Pressures are varied from 0.1 to 3 MPa using either a 5 ms pulse or a sequence of 0.1 ms pulses spaced at 1 ms, both of which have been previously employed in an in vivo context. With increasing pressure, the 1200 µm channel - on the order of small arteries and veins - exhibited inertial cavitation, 1/2 subharmonics and 3/2 ultraharmonics, consistent with numerous previous reports. The 200 and 100 µm channels - in the size range of larger microvessels less affected by therapeutic focused ultrasound - exhibited a distinctly different behavior, having muted development of 1/2 subharmonics and 3/2 ultraharmonics and reduced persistence. These were associated with radiation forces displacing bubbles to the distal wall and inducing clusters that then rapidly dissipated along with emissions. As the diameter transitioned to 50 and then 15 µm - a size regime that is most relevant to therapeutic focused ultrasound - there was a higher threshold for the onset of inertial cavitation as well as subharmonics and ultraharmonics, which importantly had more complex orders that are not normally reported. Clusters also occurred in these channels (e.g. at 3 MPa, the mean lateral and axial sizes were 23 and 72 µm in the 15 µm channel; 50 and 90 µm in the 50 µm channel), however in this case they occupied the entire lumens and displaced the wall boundaries. Damage to the 15 µm channel was observed for both pulse types, but at a lower pressure for the long pulse. Experiments conducted with a 'nanobubble' (<0.45 µm) subpopulation of Definity followed broadly similar features to 'native' Definity, albeit at a higher pressure threshold for inertial cavitation. These results provide new insights into the behavior of microbubbles in small vessels at higher pressures and have implications for therapeutic focused ultrasound cavitation monitoring and control.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Medical Biophysics, University of Toronto, M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada.
| | - Alex Wright
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada.
| |
Collapse
|
4
|
Cazzaniga ME, Capici S, Cordani N, Cogliati V, Pepe FF, Riva F, Cerrito MG. Metronomic Chemotherapy for Metastatic Breast Cancer Treatment: Clinical and Preclinical Data between Lights and Shadows. J Clin Med 2022; 11:4710. [PMID: 36012949 PMCID: PMC9410269 DOI: 10.3390/jcm11164710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Metronomic chemotherapy (mCHT), defined as continuous administration of low-dose chemotherapeutic agents with no or short regular treatment-free intervals, was first introduced to the clinic in international guidelines in 2017, and, since then, has become one of the available strategies for the treatment of advanced breast cancer (ABC). Despite recent successes, many unsolved practical and theoretical issues remain to be addressed. The present review aims to identify the "lights and shadows" of mCHT in preclinical and clinical settings. In the preclinical setting, several findings indicate that one of the most noticeable effects of mCHT is on the tumor microenvironment, which, over the last twenty years, has been demonstrated to be pivotal in supporting tumor cell survival and proliferation. On the other hand, the direct effects on tumor cells have been less well-defined. In addition, critical items to be addressed are the lack of definition of an optimal biological dose (OBD), the method of administration of metronomic schedules, and the recognition and validation of predictive biomarkers. In the clinical context-where mCHT has mainly been used in a metastatic setting-low toxicity is the most well-recognised light of mCHT, whereas the type of study design, the absence of randomised trials and uncertainty in terms of doses and drugs remain among the shadows. In conclusion, growing evidence indicates that mCHT is a suitable treatment option for selected metastatic breast cancer (MBC) patients. Moreover, given its multimodal mechanisms of action, its addition to immunological and targeted therapies might represent a promising new approach to the treatment of MBC. More preclinical data are needed in this regard, which can only be obtained through support for translational research as the key link between basic science and patient care.
Collapse
Affiliation(s)
- Marina Elena Cazzaniga
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
- Phase 1 Research Centre, ASST Monza, 20900 Monza, Italy
| | - Serena Capici
- Phase 1 Research Centre, ASST Monza, 20900 Monza, Italy
| | - Nicoletta Cordani
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | | | | | | | | |
Collapse
|
5
|
The Treatment Combining Antiangiogenesis with Chemoradiotherapy Impinges on the Peripheral Circulation Vascular Endothelial Cells and Therapeutic Effect in the Patients with Locally Advanced Nasopharyngeal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1787854. [PMID: 35872851 PMCID: PMC9307343 DOI: 10.1155/2022/1787854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022]
Abstract
This study was implemented for the evaluation on the circulating endothelial cells' (CECs) clinical significance in the locally advanced nasopharyngeal carcinoma treatment with endostatin-combined chemoradiotherapy. This study enrolled 47 patients with locally advanced nasopharyngeal carcinoma who were hospitalized from May 9, 2012 to March 10, 2013. These patients were split up into the observation group (25 patients) and control group (22 patients). Patients in the observation group received the endostatin combined with induction chemotherapy and subsequently with concurrent chemoradiotherapy with endostatin. Patients in the control group were treated with inductive chemotherapy followed by concurrent chemoradiotherapy. CECs in peripheral blood were conducted separately before or after inductive chemotherapy and additionally in the end of concurrent chemoradiotherapy. The CEC values of the observation group showed significant statistical differences (p < 0.05) before or after different therapies, whereas those data in the control group were not statistically different. And, the mostly importantly, the CEC values in the observation group and control group turned out a statistical difference. The combination of endostatin and chemoradiotherapy significantly reduced parameters of peripheral blood CECs in these patients. According to the CEC parameters' variety that we observed in the combined therapies, this study demonstrated that the CECs might be a clinical clue to evaluate this antiangiogenic chemoradiotherapy. And the clinical value of CECs will be further determined along with increasing comparative studies and clinical long-term efficacy observation.
Collapse
|
6
|
Liu Z, Zhang Y, Shen N, Sun J, Tang Z, Chen X. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Adv Drug Deliv Rev 2022; 183:114138. [PMID: 35143895 DOI: 10.1016/j.addr.2022.114138] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Nanomedicine greatly improves the efficiency in the delivery of antitumor drugs into the tumor, but insufficient tumoral penetration impairs the therapeutic efficacy of most nanomedicines. Vascular disrupting agent (VDA) nanomedicines are distributed around the tumor vessels due to the low tissue penetration in solid tumors, and the released drugs can selectively destroy immature tumor vessels and block the supply of oxygen and nutrients, leading to the internal necrosis of the tumors. VDAs can also improve the vascular permeability of the tumor, further increasing the extravasation of VDA nanomedicines in the tumor site, markedly reducing the dependence of nanomedicines on the enhanced permeability and retention effect (EPR effect). This review highlights the progress of VDA nanomedicines in recent years and their application in cancer therapy. First, the mechanisms of different VDAs are introduced. Subsequently, different strategies of delivering VDAs are described. Finally, multiple combination strategies with VDA nanomedicines in cancer therapy are described in detail.
Collapse
|
7
|
Lai V, Neshat SY, Rakoski A, Pitingolo J, Doloff JC. Drug delivery strategies in maximizing anti-angiogenesis and anti-tumor immunity. Adv Drug Deliv Rev 2021; 179:113920. [PMID: 34384826 DOI: 10.1016/j.addr.2021.113920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Metronomic chemotherapy has been shown to elicit anti-tumor immune response and block tumor angiogenesis distinct from that observed with maximal tolerated dose (MTD) therapy. This review delves into the mechanisms behind anti-tumor immunity and seeks to identify the differential effect of dosing regimens, including daily low-dose and medium-dose intermittent chemotherapy (MEDIC), on both innate and adaptive immune populations involved in observed anti-tumor immune response. Given reports of VEGF/VEGFR blockade antagonizing anti-tumor immunity, drug choice, dose, and selective delivery determined by advanced formulations/vehicles are highlighted as potential sources of innovation for identifying anti-angiogenic modalities that may be combined with metronomic regimens without interrupting key immune players in the anti-tumor response. Engineered drug delivery mechanisms that exhibit extended and local release of anti-angiogenic agents both alone and in combination with chemotherapeutic treatments have also been demonstrated to elicit a potent and potentially systemic anti-tumor immune response, favoring tumor regression and stasis over progression. This review examines this interplay between various cancer models, the host immune response, and select anti-cancer agents depending on drug dosing, scheduling/regimen, and delivery modality.
Collapse
Affiliation(s)
- Victoria Lai
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amanda Rakoski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James Pitingolo
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua C Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Division of Cancer Immunology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
8
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|
9
|
Pharmacodynamic biomarkers in metronomic chemotherapy: multiplex cytokine measurements in gastrointestinal cancer patients. Clin Exp Med 2020; 21:149-159. [PMID: 33048259 DOI: 10.1007/s10238-020-00666-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
Metronomic chemotherapy has shown promising antitumor activity in a number of malignancies. We previously reported a phase II clinical trial of metronomic UFT (a 5-fluorouracil prodrug; 100 mg/twice per day p.o.) and cyclophosphamide (CTX; 500 mg/m2 i.v. bolus on day 1 and then 50 mg/day p.o.) plus celecoxib (200 mg/twice a day p.o.) in 38 patients with advanced refractory gastrointestinal tumors. The mechanisms of action of metronomic chemotherapy include inhibition of angiogenesis, direct cytotoxic effects on cancer cells, and, at least for drugs such as CTX, activation of the immune system. To further evaluate the latter, we carried out an immune system multiplex 14-cytokine profiling of plasma samples that were available (for day 0, day 28, and day 56) from 31 of the 38 patients in the above-noted clinical trial. Our results show that pre-treatment plasma-level cutoffs of interferon gamma (> 12.84 pg/ml), sCD40L (< 2168 pg/ml), interferon alpha 2 (> 55.11 pg/ml), and IL-17a (< 15.1 pg/ml) were predictive markers for those patients with better progression-free survival (p < .05 for each cytokine). After 28 days of metronomic therapy, the plasma levels of sCD40L, IL-17a, and IL-6 (< 130 pg/ml) could serve as predictors of improved progression-free survival, as could levels interferon gamma and sCD40L after 56 days of therapy. We observed minimal changes in cytokine profiles, from baseline, as a consequence of the metronomic therapy, with the exception of an elevation of IL-6 and IL-8 levels 28 days (and 56 days) after treatment started (p < 0.05). Our results indicate that a selective cytokine elevation involves IL-6 and IL-8, following metronomic chemotherapy administration. In addition, interferon gamma and sCD40L may be potential biomarkers for gastrointestinal cancer patients that are likely to benefit from metronomic chemotherapy. Our study contributes to our understanding of the mechanisms of action of metronomic chemotherapy, and the cytokine profiling we describe may guide future selection of gastrointestinal cancer patients for UFT/CTX/celecoxib combination metronomic chemotherapy.
Collapse
|
10
|
Khan KA, Ponce de Léon JL, Benguigui M, Xu P, Chow A, Cruz-Muñoz W, Man S, Shaked Y, Kerbel RS. Immunostimulatory and anti-tumor metronomic cyclophosphamide regimens assessed in primary orthotopic and metastatic murine breast cancer. NPJ Breast Cancer 2020; 6:29. [PMID: 32704531 PMCID: PMC7371860 DOI: 10.1038/s41523-020-0171-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
The impressive successes of immune checkpoint blockade antibodies to treat various types of cancer are limited to minor subsets of patients. Combination therapy strategies, including with chemotherapy, are being explored to possibly improve the efficacy of immunotherapies. Here we report results regarding the use of an immunostimulatory regimen of metronomic cyclophosphamide (CTX). We show that in orthotopic models of syngeneic murine triple-negative breast cancer (EMT6), CTX administered at 140 mg/kg every 6 days (CTX140 1q6d) is superior at inhibiting primary tumor growth when compared to maximum tolerated dose or daily oral (continuous) low-dose CTX. In SCID or SCID beige mice, anti-tumor effects of CTX140 1q6d are reduced, reinforcing the therapeutic contribution of the adaptive and innate immune systems. In a second breast cancer model (SP1-AC2M2), CTX140 1q6d again showed clear superiority in anti-tumor effects, causing complete tumor regressions; however, these mice were not protected from subsequent tumor re-challenge, suggesting absence of immune memory. We also show that in an aggressive and metastatic cisplatin-resistant variant (EMT6-CDDP), CTX140 1q6d is superior and invokes an influx of intra-tumoral CD4+ and CD8+ T cells. CTX increases expression of tumor cell PD-L1; however, when combined with concomitant PD-L1 antibody therapy none of the CTX regimens showed increased benefit. This work sheds light on the potential use of metronomic CTX for the treatment of breast cancer, in particular using the quasi-weekly regimen, but also underscores the complexity of the anti-tumor mechanisms and potential to improve immune checkpoint therapy efficacy.
Collapse
Affiliation(s)
- Kabir A. Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Madeleine Benguigui
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Annabelle Chow
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - William Cruz-Muñoz
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Yuval Shaked
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Robert S. Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Liu J, Xu M, Yuan Z. Immunoscore Guided Cold Tumors to Acquire “Temperature” Through Integrating Physicochemical and Biological Methods. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract Immunotherapy for the treatment of tumors has become the most compelling strategy after targeted treatment, especially for lung cancer and melanoma, as well as some blood cancers. For most remaining types of tumors (e.g., pancreatic, colorectal, and breast cancers),
abundant immunotherapeutic strategies in the forms of immune checkpoint blockade, cancer vaccines, and CAR-T therapies produce little effect. Furthermore, the immunoreactions induced by various types of cancer and even in individual patients, differ among the single therapeutic immune checkpoint
inhibitors, whose pre-existing immunoreaction remains to be optimized for cancer immunotherapy. According to the density of the infiltrating lymphocyte subsets at the invasive margin or core of primary solid tumors, the tumors were classified into four grades using the immunoscore, which is
complementary to the tumor node metastasis (TNM) staging system in providing a better prognosis of cancer patients in addition to the classification of immunogenic hot tumors and non-immunogenic cold tumors. This review aimed to outline the features of the most difficult-to-treat and challenging
cold tumors and potential approaches to transform “cold” tumors into “hot” tumors, because hot tumors are associated with a higher response rate to immunotherapy. We also summarized the current popular strategies for enhancing T cell trafficking, which may be helpful
to provide an etiological basement for a more rational design of drug delivery systems and conquer drug-resistance during cancer therapy.
Collapse
Affiliation(s)
- Jing Liu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Mengze Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
12
|
Scharovsky OG, Rico MJ, Mainetti LE, Perroud HA, Rozados VR. Achievements and challenges in the use of metronomics for the treatment of breast cancer. Biochem Pharmacol 2020; 175:113909. [DOI: 10.1016/j.bcp.2020.113909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
|
13
|
Pasquier J, Ghiabi P, Chouchane L, Razzouk K, Rafii S, Rafii A. Angiocrine endothelium: from physiology to cancer. J Transl Med 2020; 18:52. [PMID: 32014047 PMCID: PMC6998193 DOI: 10.1186/s12967-020-02244-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The significance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogenesis that is critical for tumor initiation and growth. Nevertheless, the identification of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profiling studies have demonstrated distinctive expression patterns in tumor-associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identified which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France.
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Pegah Ghiabi
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kais Razzouk
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Arash Rafii
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
14
|
Grosser R, Cherkassky L, Chintala N, Adusumilli PS. Combination Immunotherapy with CAR T Cells and Checkpoint Blockade for the Treatment of Solid Tumors. Cancer Cell 2019; 36:471-482. [PMID: 31715131 PMCID: PMC7171534 DOI: 10.1016/j.ccell.2019.09.006] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/19/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
Checkpoint blockade (CPB) therapy can elicit durable clinical responses by reactivating an exhausted immune response. However, response rates remain limited, likely secondary to a lack of a tumor-reactive immune infiltrate. Chimeric antigen receptor (CAR) T cells may provide the necessary tumor-targeting immune infiltrate and a highly specific antitumor immune response. This can be further amplified by the addition of CPB agents, which serve to counteract the immune inhibitory environment undermining optimal CAR T cell efficacy. Herein, we review preclinical and clinical combination therapy with CAR T cells and CPB agents, with a focus on solid tumor malignancies.
Collapse
Affiliation(s)
- Rachel Grosser
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Leonid Cherkassky
- Surgical Oncology Service, Department of Surgery, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Navin Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
15
|
Muñoz R, Hileeto D, Cruz-Muñoz W, Wood GA, Xu P, Man S, Viloria-Petit A, Kerbel RS. Suppressive impact of metronomic chemotherapy using UFT and/or cyclophosphamide on mediators of breast cancer dissemination and invasion. PLoS One 2019; 14:e0222580. [PMID: 31536574 PMCID: PMC6752870 DOI: 10.1371/journal.pone.0222580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
Metronomic chemotherapy using the 5-FU prodrug uracil-tegafur (UFT) and cyclophosphamide (CTX) was previously shown to only modestly delay primary tumor growth, but nevertheless markedly suppressed the development of micro-metastasis in an orthotopic breast cancer xenograft model, using the metastatic variant of the MDA-MB-231 cell line, 231/LM2-4. Furthermore, a remarkable prolongation of survival, with no toxicity, was observed in a model of postsurgical advanced metastatic disease. A question that has remained unanswered is the seemingly selective anti-metastatic mechanisms of action responsible for this treatment. We assessed the in vivo effect of metronomic UFT, CTX or their combination, on vascular density, collagen deposition and c-Met (cell mediators or modulators of tumor cell invasion or dissemination) via histochemistry/immunohistochemistry of primary tumor sections. We also assessed the effect of continuous exposure to low and non-toxic doses of active drug metabolites 5-fluorouracil (5-FU), 4-hydroperoxycyclophosphamide (4-HC) or their combination, on 231/LM2-4 cell invasiveness in vitro. In the in vivo studies, a significant reduction in vascular density and p-Met[Y1003] levels was associated with UFT+CTX treatment. All treatments reduced intratumoral collagen deposition. In the in vitro studies, a significant reduction of collagen IV invasion by all treatments was observed. The 3D structures formed by 231/LM2-4 on Matrigel showed a predominantly Mass phenotype under treated conditions and Stellate phenotype in untreated cultures. Taken together, the results suggest the low-dose metronomic chemotherapy regimens tested can suppress several mediators of tumor invasiveness highlighting a new perspective for the anti-metastatic efficacy of metronomic chemotherapy.
Collapse
Affiliation(s)
- Raquel Muñoz
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Denise Hileeto
- School of Optometry & Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - William Cruz-Muñoz
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Alicia Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert S. Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Pramanik R, Bakhshi S. Metronomic therapy in pediatric oncology: A snapshot. Pediatr Blood Cancer 2019; 66:e27811. [PMID: 31207063 DOI: 10.1002/pbc.27811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Metronomic chemotherapy transitioned from the bench to bedside in the early 2000s and since then has carved a niche for itself in pediatric oncology. It has been used solely or in combination with other modalities such as radiotherapy, maximum tolerated dose chemotherapy, and targeted agents in adjuvant, palliative, as well as maintenance settings. No wonder, the resulting medical literature is extremely heterogeneous. In this review, the authors review and synthesize the published literature in pediatric metronomics giving a glimpse of its history, varied applications, and evolution of this genre of chemotherapy in pediatric cancers. Limitations, future prospects, and grey areas are also highlighted.
Collapse
Affiliation(s)
- Raja Pramanik
- Department of Medical Oncology, Dr. B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
17
|
Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front Immunol 2019; 10:128. [PMID: 30804938 PMCID: PMC6370640 DOI: 10.3389/fimmu.2019.00128] [Citation(s) in RCA: 541] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells, T cells that have been genetically engineered to express a receptor that recognizes a specific antigen, have given rise to breakthroughs in treating hematological malignancies. However, their success in treating solid tumors has been limited. The unique challenges posed to CAR T cell therapy by solid tumors can be described in three steps: finding, entering, and surviving in the tumor. The use of dual CAR designs that recognize multiple antigens at once and local administration of CAR T cells are both strategies that have been used to overcome the hurdle of localization to the tumor. Additionally, the immunosuppressive tumor microenvironment has implications for T cell function in terms of differentiation and exhaustion, and combining CARs with checkpoint blockade or depletion of other suppressive factors in the microenvironment has shown very promising results to mitigate the phenomenon of T cell exhaustion. Finally, identifying and overcoming mechanisms associated with dysfunction in CAR T cells is of vital importance to generating CAR T cells that can proliferate and successfully eliminate tumor cells. The structure and costimulatory domains chosen for the CAR may play an important role in the overall function of CAR T cells in the TME, and “armored” CARs that secrete cytokines and third- and fourth-generation CARs with multiple costimulatory domains offer ways to enhance CAR T cell function.
Collapse
Affiliation(s)
- Marina Martinez
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Edmund Kyung Moon
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Bulner S, Prodeus A, Gariepy J, Hynynen K, Goertz DE. Enhancing Checkpoint Inhibitor Therapy with Ultrasound Stimulated Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:500-512. [PMID: 30447880 DOI: 10.1016/j.ultrasmedbio.2018.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 08/24/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
Checkpoint inhibitor (CI) immunotherapy is playing an increasingly prominent role in the treatment of cancer but is effective and durable in only a subset of patients. There are concerted efforts to improve CI therapy through the use of multiple CIs or use of CIs in combination with other anti-cancer agents. Here we investigate the use of "anti-vascular" ultrasound-stimulated microbubble (USMB) treatments in combination with anti-PD-1 CI therapy. The colorectal cancer cell line CT26 was used to conduct longitudinal growth studies along with acute experiments to assess ultrasound-induced anti-tumor immune responses using flow cytometry and enzyme-linked immunospot (ELISPOT) analysis. Longitudinal experiments indicated that USMB + anti-PD-1 treatments significantly enhanced tumor growth inhibition and animal survival relative to monotherapies. Flow cytometry and ELISPOT data did not clearly support a T cell-dependent mechanism for the enhancement. Therefore, the results indicate the ability of anti-vascular USMBs to increase the anti-tumor effects of CI therapy; the specific mechanisms of enhancement remain to be established.
Collapse
Affiliation(s)
| | - Aaron Prodeus
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jean Gariepy
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - David E Goertz
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Filippi R, Lombardi P, Depetris I, Fenocchio E, Quarà V, Chilà G, Aglietta M, Leone F. Rationale for the use of metronomic chemotherapy in gastrointestinal cancer. Expert Opin Pharmacother 2018; 19:1451-1463. [PMID: 30161003 DOI: 10.1080/14656566.2018.1512585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Metronomic chemotherapy (mCT) is endowed with various properties, ranging from antiangiogenic to immunomodulation, and may revert tumor resistance to conventional drug administration. A variety of antineoplastic agents displayed activity when administered with metronomic schedules in preclinical models of gastrointestinal cancers. However, most of the field is still unexplored. AREAS COVERED Herein, the authors review the existing literature from PubMed, concerning the use of mCT in gastrointestinal oncology. EXPERT OPINION A mounting body of evidence is emerging in support of mCT as a treatment option for gastrointestinal tumors, but the frequent signs of clinical activity inconsistently translate into a benefit for survival. Research in this field should focus on providing high-quality evidence on the safety and efficacy of mCT, with more prospective, comparative trials; identifying the subgroups of patients for whom mCT would be the best approach; establishing standardized protocols based on mCT pharmacokinetics and pharmacodynamics; developing drug activity biomarkers. mCT is also potentially suitable for combinations with targeted antiangiogenic drugs and may be incorporated with conventional administration into dual regimens.
Collapse
Affiliation(s)
- Roberto Filippi
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Pasquale Lombardi
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Ilaria Depetris
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Elisabetta Fenocchio
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Virginia Quarà
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Giovanna Chilà
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Massimo Aglietta
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Francesco Leone
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| |
Collapse
|
20
|
Bota DA, Chung J, Dandekar M, Carrillo JA, Kong XT, Fu BD, Hsu FP, Schönthal AH, Hofman FM, Chen TC, Zidovetzki R, Pretto C, Strik A, Schijns VE, Stathopoulos A. Phase II study of ERC1671 plus bevacizumab versus bevacizumab plus placebo in recurrent glioblastoma: interim results and correlations with CD4 + T-lymphocyte counts. CNS Oncol 2018; 7:CNS22. [PMID: 30157683 PMCID: PMC6200061 DOI: 10.2217/cns-2018-0009] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: ERC1671 is an allogeneic/autologous therapeutic glioblastoma (GBM) vaccine – composed of whole, inactivated tumor cells mixed with tumor cell lysates derived from the patient and three GBM donors. Methods: In this double-blinded, randomized, Phase II study bevacizumab-naive patients with recurrent GBM were randomized to receive either ERC1671 in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF) (Leukine® or sargramostim) and cyclophosphamide plus bevacizumab, or placebo plus bevacizumab. Interim results: Median overall survival (OS) of patients treated with ERC1671 plus bevacizumab was 12 months. In the placebo plus bevacizumab group, median OS was 7.5 months. The maximal CD4+ T-lymphocyte count correlated with OS in the ERC1671 but not in the placebo group. Conclusion: The addition of ERC1671/GM-CSF/cyclophosphamide to bevacizumab resulted in a clinically meaningful survival benefit with minimal additional toxicity.
Collapse
Affiliation(s)
- Daniela A Bota
- Department of Neurology, University of California Irvine, Irvine, CA 92868, USA.,Department of Neurological Surgery, University of California Irvine, Irvine, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Jinah Chung
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Manisha Dandekar
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Jose A Carrillo
- Department of Neurology, University of California Irvine, Irvine, CA 92868, USA.,Department of Neurological Surgery, University of California Irvine, Irvine, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Xiao-Tang Kong
- Department of Neurology, University of California Irvine, Irvine, CA 92868, USA.,Department of Neurological Surgery, University of California Irvine, Irvine, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Beverly D Fu
- Department of Neurology, University of California Irvine, Irvine, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Frank Pk Hsu
- Department of Neurological Surgery, University of California Irvine, Irvine, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Florence M Hofman
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Thomas C Chen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Raphael Zidovetzki
- Cell Biology & Neuroscience, University of California, Riverside, CA 92507, USA
| | - Chrystel Pretto
- Epitopoietic Research Corporation, Gembloux, 5032 Isnes, Belgium
| | - Ankie Strik
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Epitopoietic Research Corporation, Gembloux, 5032 Isnes, Belgium
| | - Virgil Ejc Schijns
- Epitopoietic Research Corporation, Gembloux, 5032 Isnes, Belgium.,Cell Biology & Immunology Group, Wageningen University, 6708 Wageningen, The Netherlands
| | - Apostolos Stathopoulos
- Epitopoietic Research Corporation, Gembloux, 5032 Isnes, Belgium.,Cell Biology & Immunology Group, Wageningen University, 6708 Wageningen, The Netherlands.,Department of Neurosurgery, Euroclinics Hospital, 151 21 Athens, Greece
| |
Collapse
|
21
|
Dynes J, Osz K, Hooper A, Petrik J. Low-dose metronomic delivery of cyclophosphamide is less detrimental to granulosa cell viability, ovarian function, and fertility than maximum tolerated dose delivery in the mouse. Biol Reprod 2018; 97:449-465. [PMID: 29024988 DOI: 10.1093/biolre/iox110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023] Open
Abstract
Chemotherapy can cause early menopause or infertility in women and have a profound negative impact on the quality of life of young female cancer survivors. Various factors are known to influence the risk of chemotherapy-induced ovarian failure, including the drug dose and treatment duration; however, the scheduling of dose administration has not yet been evaluated as an independent risk factor. We hypothesized that low-dose metronomic (LDM) chemotherapy scheduling would be less detrimental to ovarian function than the traditional maximum tolerated dose (MTD) strategy. In vitro, MTD cyclophosphamide exposure resulted in decreased proliferation and increased granulosa cell apoptosis, while cells treated with LDM cyclophosphamide were not different from untreated controls. Treatments of MTD cyclophosphamide induced high levels of follicle atresia and enhanced follicle recruitment in mice. In contrast, LDM delivery of an equivalent dose of cyclophosphamide reduced growing follicle numbers, but was not associated with higher levels of follicle atresia or recruitment. MTD cyclophosphamide induced significant vascular disruption and DNA damage in vivo, while LDM chemotherapy with equal cumulative amounts of cyclophosphamide was not different from controls. MTD chemotherapy also had a negative effect on mouse-fertility outcomes. Our findings suggest that LDM scheduling could potentially minimize the long-term effects of cyclophosphamide on female fertility by preventing follicle depletion from enhanced activation.
Collapse
Affiliation(s)
- Jacqueline Dynes
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kata Osz
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Allyssa Hooper
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Natale G, Bocci G. Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett 2018; 432:28-37. [PMID: 29885517 DOI: 10.1016/j.canlet.2018.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/11/2018] [Accepted: 06/03/2018] [Indexed: 02/08/2023]
Abstract
Tumor dormancy is the ability of cancer cells to survive in a non-proliferating state. This condition can depend on three main mechanisms: cell cycle arrest (quiescence or cell dormancy), immunosurveillance (immunologic dormancy), or lack of functional blood vessels (angiogenic dormancy). In particular, under angiogenic dormancy, cancer cell proliferation is counterbalanced by apoptosis owing to poor vascularization, impeding tumor mass expansion beyond a microscopic size, with an asymptomatic and non-metastatic state. Tumor vasculogenic or non-angiogenic switch is essential to promote escape from tumor dormancy, leading to tumor mass proliferation and metastasis. In avascular lesions angiogenesis process results blocked from the equilibrium between pro- and anti-angiogenic factors, such as vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1), respectively. The angiogenic switch mainly depends on the disruption of this balance, in favor of pro-angiogenic factors, and on the recruitment of circulating endothelial progenitors (CEPs) that promote the formation of new blood vessels. Metronomic chemotherapy, the regular intake of doses able to sustain low but active concentrations of chemotherapeutic drugs during protracted time periods, is an encouraging therapeutic approach that has shown to upregulate anti-angiogenic factors such as TSP-1 and decline pro-angiogenic factors such as VEGF, suppressing the proangiogenic cells such as CEPs. In this perspective, metronomic chemotherapy may be one of the available therapeutic approaches capable to modulate favorably the angiogenic tumor dormancy, but further research is essential to better define this particular characteristic.
Collapse
Affiliation(s)
- Gianfranco Natale
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, and Museo di Anatomia Umana ''Filippo Civinini'', Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
23
|
|
24
|
Yang Q, Tang P, He G, Ge S, Liu L, Zhou X. Hemocoagulase Combined with Microbubble-Enhanced Ultrasound Cavitation for Augmented Ablation of Microvasculature in Rabbit VX2 Liver Tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1658-1670. [PMID: 28545858 DOI: 10.1016/j.ultrasmedbio.2017.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
We investigated a new method for combining microbubble-enhanced ultrasound cavitation (MEUC) with hemocoagulase (HC) atrox. Our goal was to induce embolic effects in the vasculature and combine these with an anti-angiogenic treatment strategy. Fourteen days after being implanted with a single slice of the liver VX2 tumor, rabbits were randomly divided into five groups: (i) a control group injected intra-venously with saline using a micropump; (ii) a group given only an injection of HC; (iii) a group treated only with ultrasound cavitation; (iv) a group treated with MEUC; (v) a group treated with MEUC + HC. Contrast-enhanced ultrasound was performed before treatment and 1 h and 7 d post-treatment to measure tumor size, enhancement and necrosis range. QontraXt software was used to determine the time-intensity curve of tumor blood perfusion and microvascular changes. At 1 h and 7 d after treatment with MEUC + HC, the parameters of the time-intensity curve, which included peak value, regional blood volume, regional blood flow and area under the curve value and which were measured using contrast-enhanced ultrasound, were significantly lower than those of the other treatment groups. The MEUC + HC treatment group exhibited significant growth inhibition relative to the ultrasound cavitation only, HC and MEUC treatment groups. No damage was observed in the surrounding normal tissues. These results support the feasibility of reducing the blood perfusion of rabbit VX2 liver tumors using a new method that combines MEUC and HC.
Collapse
Affiliation(s)
- Qian Yang
- Department of Ultrasound, Xijing Hospital, Xi'an, China
| | - Peng Tang
- Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Charity Hospital, Beijing, China
| | - Guangbin He
- Department of Ultrasound, Xijing Hospital, Xi'an, China
| | - Shuping Ge
- The Heart Center, St. Christopher's Hospital for Children & Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Deborah Heart and Lung Center, Browns Mills, New Jersey, USA
| | - Liwen Liu
- Department of Ultrasound, Xijing Hospital, Xi'an, China.
| | - Xiaodong Zhou
- Department of Ultrasound, Xijing Hospital, Xi'an, China
| |
Collapse
|
25
|
Kerbel RS, Shaked Y. The potential clinical promise of 'multimodality' metronomic chemotherapy revealed by preclinical studies of metastatic disease. Cancer Lett 2017; 400:293-304. [PMID: 28202353 DOI: 10.1016/j.canlet.2017.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/04/2017] [Indexed: 12/24/2022]
Abstract
We present a rationale for further clinical development and assessment of metronomic chemotherapy on the basis of unexpected results obtained in translational mouse models of cancer involving treatment of advanced metastatic disease. Historically, mouse cancer therapy models have been dominated by treating established primary tumors or early stage low volume microscopic disease. Treatment of primary tumors is also almost always the case when using genetically engineered mouse models (GEMMs) of cancer or patient-derived xenografts (PDXs). Studies using such models, and others including transplanted cell lines, often yield highly encouraging results which are seldom recapitulated in the clinic, especially when assessed in randomized phase III clinical trials. While there are likely many different reasons for this discrepancy, one is likely the failure to recapitulate treatment of advanced visceral metastatic disease in mice. With this gap in mind, we have developed a number of models of metastatic human tumor xenografts (and more recently, of mouse tumors in syngeneic immunocompetent mice). A pattern of response we have observed with various targeted agents, e.g. VEGF pathway targeting antiangiogenic drugs or trastuzumab, is effective when treating primary tumors in contrast to a complete or severely reduced lack of such efficacy when treating advanced metastatic disease. Interestingly, an exception to this pattern has been observed using various continuous low-dose metronomic chemotherapy regimens, where counterintuitively, superior responses are observed in the metastatic setting, as well as superiority or equivalence of metronomic chemotherapy over standard maximum tolerated dose (MTD) chemotherapy, with lesser toxicity. The basis for these encouraging results may be related to the multiple mechanisms responsible for the anti-tumor effects and longer duration of metronomic chemotherapy regimens made possible by lesser toxicity. These include antiangiogenesis, stimulation of the immune system, stromal cell targeting in tumors, and possibly direct tumor cell targeting, including targeting cancer stem cells (CSCs). In addition, metronomic chemotherapy regimens minimize or even eliminate the problem of chemotherapy-induced host responses that may actually secondarily promote tumor growth and malignancy after causing an initial and beneficial anti-tumor response. We suggest that future preclinical studies of metronomic chemotherapy should be concentrated in the following areas: i) further comparative assessment of anti-tumor efficacy in primary vs metastatic treatment settings; ii) rigorous comparative assessment of conventional MTD chemotherapy vs metronomic chemotherapy using the same agent; iii) assessment of potential predictive biomarkers for metronomic chemotherapy, and methods to determine optimal biologic dose and schedule; and iv) a further detailed assessment of the potential of different chemotherapy drugs administered using MTD or metronomic regimens on stimulating or suppressing components of the innate or adaptive immune systems.
Collapse
Affiliation(s)
- Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Canada.
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Israel
| |
Collapse
|
26
|
Bar-Zion A, Yin M, Adam D, Foster FS. Functional Flow Patterns and Static Blood Pooling in Tumors Revealed by Combined Contrast-Enhanced Ultrasound and Photoacoustic Imaging. Cancer Res 2016; 76:4320-31. [PMID: 27325651 DOI: 10.1158/0008-5472.can-16-0376] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/26/2016] [Indexed: 11/16/2022]
Abstract
Alterations in tumor perfusion and microenvironment have been shown to be associated with aggressive cancer phenotypes, raising the need for noninvasive methods of tracking these changes. Dynamic contrast-enhanced ultrasound (DCEUS) and photoacoustic (PA) imaging serve as promising candidates-one has the ability to measure tissue perfusion, whereas the other can be used to monitor tissue oxygenation and hemoglobin concentration. In this study, we investigated the relationship between the different functional parameters measured with DCEUS and PA imaging, using two morphologically different hind-limb tumor models and drug-induced alterations in an orthotopic breast tumor model. Imaging results showed some correlation between perfusion and oxygen saturation maps and the ability to sensitively monitor antivascular treatment. In addition, DCEUS measurements revealed different vascular densities in the core of specific tumors compared with their rims. Noncorrelated perfusion and hemoglobin concentration measurements facilitated discrimination between blood lakes and necrotic areas. Taken together, our results illustrate the utility of a combined contrast-enhanced ultrasound method with photoacoustic imaging to visualize blood flow patterns in tumors. Cancer Res; 76(15); 4320-31. ©2016 AACR.
Collapse
Affiliation(s)
- Avinoam Bar-Zion
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Melissa Yin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Dan Adam
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - F Stuart Foster
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
27
|
Shaked Y. Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects. Nat Rev Clin Oncol 2016; 13:611-26. [PMID: 27118493 DOI: 10.1038/nrclinonc.2016.57] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Local and systemic treatments for cancer include surgery, radiation, chemotherapy, hormonal therapy, molecularly targeted therapies, antiangiogenic therapy, and immunotherapy. Many of these therapies can be curative in patients with early stage disease, but much less frequently is this the case when they are used to treat advanced-stage metastatic disease. In the latter setting, innate and/or acquired resistance are among the reasons for reduced responsiveness or nonresponsiveness to therapy, or for tumour relapse after an initial response. Most studies of resistance or reduced responsiveness focus on 'driver' genetic (or epigenetic) changes in the tumour-cell population. Several studies have highlighted the contribution of therapy-induced physiological changes in host tissues and cells that can reduce or even nullify the desired antitumour effects of therapy. These unwanted host effects can promote tumour-cell proliferation (repopulation) and even malignant aggressiveness. These effects occur as a result of systemic release of numerous cytokines, and mobilization of various host accessory cells, which can invade the treated tumour microenvironment. In short, the desired tumour-targeting effects of therapy (the 'yin') can be offset by a reactive host response (the 'yang'); proactively preventing or actively suppressing the latter represents a possible new approach to improving the efficacy of both local and systemic cancer therapies.
Collapse
Affiliation(s)
- Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron St. Bat Galim, Haifa 31096, Israel
| |
Collapse
|
28
|
Liang W, Ni Y, Chen F. Tumor resistance to vascular disrupting agents: mechanisms, imaging, and solutions. Oncotarget 2016; 7:15444-59. [PMID: 26812886 PMCID: PMC4941252 DOI: 10.18632/oncotarget.6999] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/14/2016] [Indexed: 01/04/2023] Open
Abstract
The emergence of vascular disrupting agents (VDAs) is a significant advance in the treatment of solid tumors. VDAs induce rapid and selective shutdown of tumor blood flow resulting in massive necrosis. However, a viable marginal tumor rim always remains after VDA treatment and is a major cause of recurrence. In this review, we discuss the mechanisms involved in the resistance of solid tumors to VDAs. Hypoxia, tumor-associated macrophages, and bone marrow-derived circulating endothelial progenitor cells all may contribute to resistance. Resistance can be monitored using magnetic resonance imaging markers. The various solutions proposed to manage tumor resistance to VDAs emphasize combining these agents with other approaches including antiangiogenic agents, chemotherapy, radiotherapy, radioimmunotherapy, and sequential dual-targeting internal radiotherapy.
Collapse
Affiliation(s)
- Wenjie Liang
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yicheng Ni
- Radiology Section, University Hospitals, University of Leuven, Leuven, Belgium
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Nilsson MB, Giri U, Gudikote J, Tang X, Lu W, Tran H, Fan Y, Koo A, Diao L, Tong P, Wang J, Herbst R, Johnson BE, Ryan A, Webster A, Rowe P, Wistuba II, Heymach JV. KDR Amplification Is Associated with VEGF-Induced Activation of the mTOR and Invasion Pathways but does not Predict Clinical Benefit to the VEGFR TKI Vandetanib. Clin Cancer Res 2015; 22:1940-50. [PMID: 26578684 DOI: 10.1158/1078-0432.ccr-15-1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/10/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE VEGF pathway inhibitors have been investigated as therapeutic agents in the treatment of non-small cell lung cancer (NSCLC) because of its central role in angiogenesis. These agents have improved survival in patients with advanced NSCLC, but the effects have been modest. Although VEGFR2/KDRis typically localized to the vasculature, amplification ofKDRhas reported to occur in 9% to 30% of the DNA from different lung cancers. We investigated the signaling pathways activated downstream ofKDRand whetherKDRamplification is associated with benefit in patients with NSCLC treated with the VEGFR inhibitor vandetanib. METHODS NSCLC cell lines with or withoutKDRamplification were studied for the effects of VEGFR tyrosine kinase inhibitors (TKI) on cell viability and migration. Archival tumor samples collected from patients with platinum-refractory NSCLC in the phase III ZODIAC study of vandetanib plus docetaxel or placebo plus docetaxel (N= 294) were screened forKDRamplification by FISH. RESULTS KDRamplification was associated with VEGF-induced activation of mTOR, p38, and invasiveness in NSCLC cell lines. However, VEGFR TKIs did not inhibit proliferation of NSCLC cell lines withKDRamplification. VEGFR inhibition decreased cell motility as well as expression of HIF1α inKDR-amplified NSCLC cells. In the ZODIAC study,KDRamplification was observed in 15% of patients and was not associated with improved progression-free survival, overall survival, or objective response rate for the vandetanib arm. CONCLUSIONS Preclinical studies suggestKDRactivates invasion but not survival pathways inKDR-amplified NSCLC models. Patients with NSCLC whose tumor hadKDRamplification were not associated with clinical benefit for vandetanib in combination with docetaxel.
Collapse
Affiliation(s)
- Monique B Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uma Giri
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jayanthi Gudikote
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hai Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Youhong Fan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew Koo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roy Herbst
- Section of Medical Oncology, Yale Cancer Center and Smilow Cancer Hospital, New Haven, Connecticut
| | - Bruce E Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts. Department of Medicine, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - Andy Ryan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | | | - Ignacio I Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
30
|
Rasmussen RM, Kurzman ID, Biller BJ, Guth A, Vail DM. Phase I lead-in and subsequent randomized trial assessing safety and modulation of regulatory T cell numbers following a maximally tolerated dose doxorubicin and metronomic dose cyclophosphamide combination chemotherapy protocol in tumour-bearing dogs. Vet Comp Oncol 2015; 15:421-430. [DOI: 10.1111/vco.12179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Affiliation(s)
- R. M. Rasmussen
- Department of Medical Sciences, School of Veterinary Medicine; University of Wisconsin-Madison; Madison WI USA
| | - I. D. Kurzman
- Department of Medical Sciences, School of Veterinary Medicine; University of Wisconsin-Madison; Madison WI USA
| | - B. J. Biller
- Flint Animal Cancer Center; Colorado State University; Fort Collins CO USA
| | - A. Guth
- Flint Animal Cancer Center; Colorado State University; Fort Collins CO USA
| | - D. M. Vail
- Department of Medical Sciences, School of Veterinary Medicine; University of Wisconsin-Madison; Madison WI USA
- The Carbone Cancer Center; University of Wisconsin-Madison; Madison WI USA
| |
Collapse
|
31
|
Schijns VEJC, Pretto C, Devillers L, Pierre D, Hofman FM, Chen TC, Mespouille P, Hantos P, Glorieux P, Bota DA, Stathopoulos A. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine 2015; 33:2690-6. [PMID: 25865468 PMCID: PMC10494870 DOI: 10.1016/j.vaccine.2015.03.095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/10/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) patients have a poor prognosis. After tumor recurrence statistics suggest an imminent death within 1-4.5 months. Supportive preclinical data, from a rat model, provided the rational for a prototype clinical vaccine preparation, named Gliovac (or ERC 1671) composed of autologous antigens, derived from the patient's surgically removed tumor tissue, which is administered together with allogeneic antigens from glioma tissue resected from other GBM patients. We now report the first results of the Gliovac treatment for treatment-resistant GBM patients. Nine (9) recurrent GBM patients, after standard of care treatment, including surgery radio- and chemotherapy temozolomide, and for US patients, also bevacizumab (Avastin™), were treated under a compassionate use/hospital exemption protocol. Gliovac was given intradermally, together with human GM-CSF (Leukine(®)), and preceded by a regimen of regulatory T cell-depleting, low-dose cyclophosphamide. Gliovac administration in patients that have failed standard of care therapies showed minimal toxicity and enhanced overall survival (OS). Six-month (26 weeks) survival for the nine Gliovac patients was 100% versus 33% in control group. At week 40, the published overall survival was 10% if recurrent, reoperated patients were not treated. In the Gliovac treated group, the survival at 40 weeks was 77%. Our data suggest that Gliovac has low toxicity and a promising efficacy. A phase II trial has recently been initiated in recurrent, bevacizumab naïve GBM patients (NCT01903330).
Collapse
Affiliation(s)
- Virgil E J C Schijns
- Cell Biology & Immunology Group, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands; Epitopoietic Research Corporation (ERC), Namur, Belgium; Epitopoietic Research Corporation (ERC), Schaijk, The Netherlands.
| | - Chrystel Pretto
- Epitopoietic Research Corporation (ERC), Namur, Belgium; Epitopoietic Research Corporation (ERC), Schaijk, The Netherlands
| | - Laurent Devillers
- Epitopoietic Research Corporation (ERC), Namur, Belgium; Epitopoietic Research Corporation (ERC), Schaijk, The Netherlands
| | - Denis Pierre
- Epitopoietic Research Corporation (ERC), Namur, Belgium; Epitopoietic Research Corporation (ERC), Schaijk, The Netherlands
| | - Florence M Hofman
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Thomas C Chen
- Department of Neurosurgery, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA; Epitopoietic Research Corporation (ERC), 1055 E Colorado Blvd., Suite 500, Pasadena, CA 91106, USA
| | | | - Peter Hantos
- Department of Neurosurgery, Arlon and Libramont Hospital, Arlon and Libramont, Belgium
| | | | - Daniela A Bota
- Department of Neurology/Neurosurgery, University of California at Irvine, UC Irvine Medical Center, Irvine, CA, USA
| | - Apostolos Stathopoulos
- Cell Biology & Immunology Group, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands; Epitopoietic Research Corporation (ERC), Namur, Belgium; Epitopoietic Research Corporation (ERC), Schaijk, The Netherlands; Department of Neurosurgery, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA; Epitopoietic Research Corporation (ERC), 1055 E Colorado Blvd., Suite 500, Pasadena, CA 91106, USA; Department of Neurosurgery, Arlon and Libramont Hospital, Arlon and Libramont, Belgium; Department of Neurology/Neurosurgery, University of California at Irvine, UC Irvine Medical Center, Irvine, CA, USA.
| |
Collapse
|
32
|
Gnoni A, Silvestris N, Licchetta A, Santini D, Scartozzi M, Ria R, Pisconti S, Petrelli F, Vacca A, Lorusso V. Metronomic chemotherapy from rationale to clinical studies: a dream or reality? Crit Rev Oncol Hematol 2015; 95:46-61. [PMID: 25656744 DOI: 10.1016/j.critrevonc.2015.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 12/12/2022] Open
Abstract
Metronomic chemotherapy (MC) refers to the close administration of a chemotherapeutic drug for a long time with no extended drug-free breaks. It was developed to overcome drug resistance, partly by shifting the therapeutic target from tumor cells to the tumor vasculature, with less toxicity. Because of this peculiar way of administration, MC can be viewed as a form of long-term 'maintenance' treatment, and can be integrated with standard and conventional chemotherapy in a "chemo-switching" strategy. Additional mechanisms are involved in its antitumor activity, such as activation of immunity, induction of tumor dormancy, chemotherapy-driven dependency of cancer cells, and the '4D effect'. In this paper we report the most important studies that have analyzed these processes. In fact, a number of preclinical and clinical studies in solid tumors as well as in multiple myeloma, have been reported regarding several chemotherapy drugs which have been proposed with a metronomic schedule: vinorelbine, cyclophosphamide, capecitabine, methotrexate, bevacizumab, etoposide, gemcitabine, sorafenib, everolimus and temozolomide. The results of these studies have been sometimes conflicting, highlighting the need to develop reliable tools for patient selection and stratification. However, a more precise evaluation of MC strategies with the ongoing randomized phase II/III clinical is fundamental, because of the strict correlation of this approach with translational research and target therapy. Moreover, because of the low toxicity of MC, these studies will also help to better evaluate the clinical benefit of this treatment, with a special focus on elderly and low performance status patients.
Collapse
Affiliation(s)
- Antonio Gnoni
- Medical Oncology Unit, Hospital Moscati, Taranto, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre "Giovanni Paolo II", Bari, Italy
| | | | - Daniele Santini
- Medical Oncology Unit, University Campus Biomedico, Roma, Italy
| | - Mario Scartozzi
- Department of Medical Oncoloy, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | - Fausto Petrelli
- Medical Oncology Unit, Hospital of Treviglio, Treviglio, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Lorusso
- Medical Oncology Unit, National Cancer Research Centre "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
33
|
Song HHG, Park KM, Gerecht S. Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv Drug Deliv Rev 2014; 79-80:19-29. [PMID: 24969477 PMCID: PMC4258430 DOI: 10.1016/j.addr.2014.06.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/14/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022]
Abstract
A growing number of failing clinical trials for cancer therapy are substantiating the need to upgrade the current practice in culturing tumor cells and modeling tumor angiogenesis in vitro. Many attempts have been made to engineer vasculature in vitro by utilizing hydrogels, but the application of these tools in simulating in vivo tumor angiogenesis is still very new. In this review, we explore current use of hydrogels and their design parameters to engineer vasculogenesis and angiogenesis and to evaluate the angiogenic capability of cancerous cells and tissues. By coupling these hydrogels with other technologies such as lithography and three-dimensional printing, one can create an advanced microvessel model as microfluidic channels to more accurately capture the native angiogenesis process.
Collapse
Affiliation(s)
- Hyun-Ho Greco Song
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, 3400 North Charles street, Baltimore, MD 21218, USA
| | - Kyung Min Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, 3400 North Charles street, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, 3400 North Charles street, Baltimore, MD 21218, USA.
| |
Collapse
|
34
|
Intermittent metronomic drug schedule is essential for activating antitumor innate immunity and tumor xenograft regression. Neoplasia 2014; 16:84-96. [PMID: 24563621 DOI: 10.1593/neo.131910] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 12/24/2022] Open
Abstract
Metronomic chemotherapy using cyclophosphamide (CPA) is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25%) reduction in CPA dose. Moreover, an ∼20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses.
Collapse
|
35
|
Hofmann E, Weibel S, Szalay AA. Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice. J Transl Med 2014; 12:197. [PMID: 25030093 PMCID: PMC4105246 DOI: 10.1186/1479-5876-12-197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 07/10/2014] [Indexed: 12/27/2022] Open
Abstract
Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the enhanced tumor growth inhibition achieved by combining GLV-1h68 with CPA is due to an effect on the vasculature rather than an immunosuppressive action of CPA. These results provide evidence to support further preclinical studies of combining GLV-1h68 and CPA in other highly angiogenic tumor models. Moreover, data presented here demonstrate that CPA can be combined successfully with GLV-1h68 based oncolytic virus therapy and therefore might be promising as combination therapy in human clinical trials.
Collapse
Affiliation(s)
| | | | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Wuerzburg, D-97074 Wuerzburg, Germany.
| |
Collapse
|
36
|
Doloff JC, Chen CS, Waxman DJ. Anti-tumor innate immunity activated by intermittent metronomic cyclophosphamide treatment of 9L brain tumor xenografts is preserved by anti-angiogenic drugs that spare VEGF receptor 2. Mol Cancer 2014; 13:158. [PMID: 24965046 PMCID: PMC4083145 DOI: 10.1186/1476-4598-13-158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023] Open
Abstract
Background Metronomic cyclophosphamide given on an intermittent, 6-day repeating schedule, but not on an exposure dose-equivalent daily schedule, activates an anti-tumor innate immune response that leads to major regression of large implanted gliomas, without anti-angiogenesis. Methods and approach Mice bearing implanted 9L gliomas were used to investigate the effects of this 6-day repeating, immunogenic cyclophosphamide schedule on myeloid-derived suppressor cells, which are pro-angiogenic and can inhibit anti-tumor immunity, and to elucidate the mechanism whereby the innate immune cell-dependent tumor regression response to metronomic cyclophosphamide treatment is blocked by several anti-angiogenic receptor tyrosine kinase inhibitors. Results Intermittent metronomic cyclophosphamide scheduling strongly increased glioma-associated CD11b+ immune cells but not CD11b+Gr1+ myeloid-derived suppressor cells, while bone marrow and spleen reservoirs of the suppressor cells were decreased. The inhibition of immune cell recruitment and tumor regression by anti-angiogenic receptor tyrosine kinase inhibitors, previously observed in several brain tumor models, was recapitulated in the 9L tumor model with the VEGFR2-specific inhibitory monoclonal antibody DC101 (p < 0.01), implicating VEGFR2 signaling as an essential step in metronomic cyclophosphamide-stimulated immune cell recruitment. In contrast, sorafenib, a multi-receptor tyrosine kinase inhibitor with comparatively weak VEGF receptor phosphorylation inhibitory activity, was strongly anti-angiogenic but did not block metronomic cyclophosphamide-induced innate immunity or tumor regression (p > 0.05). Conclusions The interference by receptor tyrosine kinase inhibitors in the immunogenic actions of intermittent metronomic chemotherapy is not a consequence of anti-angiogenesis per se, as demonstrated in an implanted 9L tumor model. Furthermore, this undesirable interaction with tyrosine kinase inhibitors can be avoided by using anti-angiogenic drugs that spare the VEGFR2 pathway.
Collapse
Affiliation(s)
| | | | - David J Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| |
Collapse
|
37
|
Nofiele JT, Cheng HLM. Establishment of a lung metastatic breast tumor xenograft model in nude rats. PLoS One 2014; 9:e97950. [PMID: 24835641 PMCID: PMC4024026 DOI: 10.1371/journal.pone.0097950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/26/2014] [Indexed: 12/12/2022] Open
Abstract
Objective Larger animal models provide relevant tumor burden in the development of advanced clinical imaging methods for non-invasive cancer detection and diagnosis, and are especially valuable for studying metastatic disease. Most available experimental models, however, are based on immune-compromised mice. To lay the foundation for studying spontaneous metastasis using non-invasive magnetic resonance imaging (MRI), this study aims to establish a highly metastatic breast cancer xenograft model in nude rats. Materials and Methods A highly metastatic variant of human adenocarcinoma MDA-MB-231 known as LM2 was inoculated into nude rats. Orthotopic and subcutaneous (flank) sites were compared, with half of the orthotopic injections guided by ultrasound imaging. MRI with gadolinium contrast administration was performed weekly beginning on Day 6 and ending on Day 104. Excised tumors were assessed on histology using hematoxylin and eosin and CD34. Fisher's exact test was used to compare successful tumor induction amongst different inoculation methods. Results Primary LM2 tumors were established orthotopically in all cases under ultrasound-guided injection, and none otherwise (p = 0.0028). Contrast-enhanced MRI revealed rapidly progressing tumors that reached critical size (15 mm diameter) in 2 to 3 weeks after inoculation. MRI and histology findings were consistent: LM2 tumors were characterized by low vascularity confined to the tumor rim and large necrotic cores with increasing interstitial fluid pressure. Conclusions The metastatic LM2 breast tumor model was successfully established in the mammary fat pads of nude rats, using ultrasound needle guidance as a non-invasive alternative to surgery. This platform lays the foundation for future development and application of MRI to study spontaneous metastasis and different stages throughout the metastatic cascade.
Collapse
Affiliation(s)
- Joris Tchouala Nofiele
- The Research Institute and Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hai-Ling Margaret Cheng
- The Research Institute and Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- The Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Analysis of acquired resistance to metronomic oral topotecan chemotherapy plus pazopanib after prolonged preclinical potent responsiveness in advanced ovarian cancer. Angiogenesis 2014; 17:661-73. [PMID: 24569856 DOI: 10.1007/s10456-014-9422-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 01/07/2014] [Indexed: 02/03/2023]
Abstract
An alternative or follow-up adjunct to conventional maximum tolerated dose (MTD) chemotherapy now in advanced phase III clinical trial assessment is metronomic chemotherapy--the close regular administration of low doses of drug with no prolonged breaks. A number of preclinical studies have shown metronomic chemotherapy can cause long term survival of mice with advanced cancer, including metastatic disease, in the absence of overt toxicity, especially when combined with targeted antiangiogenic drugs. However, similar to MTD chemotherapy acquired resistance eventually develops, the basis of which is unknown. Using a preclinical model of advanced human ovarian (SKOV-3-13) cancer in SCID mice, we show that acquired resistance can develop after terminating prolonged (over 3 months) successful therapy utilizing daily oral metronomic topotecan plus pazopanib, an oral antiangiogenic tyrosine kinase inhibitor (TKI). Two resistant sublines were isolated from a single mouse, one from a solid tumor (called KH092-7SD, referred to as 7SD) and another from ascites tumor cells (called KH092-7AS, referred to as 7AS). Using these sublines we show acquired resistance to the combination treatment is due to tumor cell alterations that confer relative refractoriness to topotecan. The resistant phenotype is heritable, associated with reduced cellular uptake of topotecan and could not be reversed by switching to MTD topotecan or to another topoisomerase-1 inhibitor, CPT-11, given either in a metronomic or MTD manner nor switching to another antiangiogenic drug, e.g. the anti-VEGFR-2 antibody, DC101, or another TKI, sunitinib. Thus, in this case cross resistance seems to exist between MTD and metronomic topotecan, the basis of which is unknown. However, gene expression profiling revealed several potential genes that are stably upregulated in the resistant lines, that previously have been implicated in resistance to various chemotherapy drugs, and which, therefore, may contribute to the drug resistant phenotype.
Collapse
|
39
|
Signal transduction in tumor angiogenesis. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
40
|
Choisunirachon N, Jaroensong T, Yoshida K, Saeki K, Mochizuki M, Nishimura R, Sasaki N, Nakagawa T. Effects of low-dose cyclophosphamide with piroxicam on tumour neovascularization in a canine oral malignant melanoma-xenografted mouse model. Vet Comp Oncol 2013; 13:424-32. [DOI: 10.1111/vco.12059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- N. Choisunirachon
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
- Department of Veterinary Surgery; Faculty of Veterinary Science, Chulalongkorn University; Bangkok Thailand
| | - T. Jaroensong
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
- Department of Companion Animal Clinical Sciences; Faculty of Veterinary Medicine, Kasetsart University; Bangkok Thailand
| | - K. Yoshida
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - K. Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - M. Mochizuki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - R. Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - N. Sasaki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - T. Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| |
Collapse
|
41
|
Di Matteo P, Hackl C, Jedeszko C, Valentinis B, Bordignon C, Traversari C, Kerbel RS, Rizzardi GP. NGR-TNF, a novel vascular-targeting agent, does not induce cytokine recruitment of proangiogenic bone marrow-derived cells. Br J Cancer 2013; 109:360-9. [PMID: 23828516 PMCID: PMC3722487 DOI: 10.1038/bjc.2013.347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 01/11/2023] Open
Abstract
Background: Administration of certain chemotherapy drugs at the maximum tolerated dose, vascular-disrupting agents (VDAs) and irradiation can induce mobilisation and tumour homing of proangiogenic bone marrow-derived cells (BMDCs). Increases in cytokines and chemokines contribute to such mobilisation that eventually promotes tumour (re)growth. NGR-TNF is a vascular-targeting agent in advanced clinical development, coupling the CNGRCG angiogenic vessel-homing peptide with tumour necrosis factor-alpha (TNF). We investigated whether NGR-TNF mobilises host BMDCs and growth factors. Methods: Blood was obtained from Lewis lung carcinoma and 4T1 tumour-bearing mice at different time points following NGR-TNF, VDA or anti-VEGFR2/flk-1 antibody treatment. Levels of circulating growth factors were assessed by ELISAs. BMDCs were characterised by FACS. Circulating endothelial progenitor cells were defined as CD45−/CD13+/flk-1+/CD117+/7AAD−, Tie2-expressing monocytes as CD45+/CD11b+/Tie2+ and myeloid-derived suppressor cells as CD45+/CD11b+/Gr1+ cells. Results: NGR-TNF decreases tumour blood vessel density-inducing apoptosis of tumour and tumour endothelial cells. Unlike VDAs, or high-dose NGR-TNF, lower doses of NGR-TNF, comparable to those used in clinical trials, neither mobilise nor recruit to the tumour site proangiogenic BMDCs or induce host growth factors. Conclusion: Low-dose NGR-TNF exerts antitumour activity without inducing proangiogenic host responses, conceivably important for preventing/overcoming resistance and designing combination therapeutic strategies.
Collapse
|
42
|
Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A, Danesi R. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev 2013; 31:753-61. [PMID: 22711031 DOI: 10.1007/s10555-012-9387-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor angiogenesis and metastatic spreading are two highly interconnected phenomena, which contribute to cancer-associated deaths. Thus, the identification of novel strategies to target angiogenesis and metastatic spreading is crucial. Polycomb genes are a set of epigenetic effectors, structured in multimeric repressive complexes. EZH2 is the catalytic subunit of Polycomb repressive complex 2 (PRC2), which methylates histone H3 lysine 27, thereby silencing several tumor-suppressor genes. EZH2 is essential for cancer stem cell self-renewal. Interestingly, cancer stem cells are thought to be the seeds of metastatic spreading and are able to differentiate into tumor-associated endothelial cells. Pre-clinical studies showed that EZH2 is able to silence several anti-metastatic genes (e.g., E-cadherin and tissue inhibitors of metalloproteinases), thereby favoring cell invasion and anchorage-independent growth. In addition, EZH2 seems to play a crucial role in the regulation of tumor angiogenesis. High EZH2 expression predicts poor prognosis, high grade, and high stage in several cancer types. Recently, a small molecule inhibitor of PRC2 (DZNeP) demonstrated promising anti-tumor activity, both in vitro and in vivo. Interestingly, DZNeP was able to inhibit cancer cell invasion and tumor angiogenesis in prostate and brain cancers, respectively. At tumor-inhibiting doses, DZNeP is not harmful for non-transformed cells. In the present manuscript, we review current evidence supporting a role of EZH2 in metastatic spreading and tumor angiogenesis. Using Oncomine datasets, we show that DZNeP targets are specifically silenced in some metastatic cancers, and some of them may inhibit angiogenesis. Based on this evidence, we propose the development of EZH2 inhibitors as anti-angiogenic and anti-metastatic therapy.
Collapse
Affiliation(s)
- Francesco Crea
- Division of Pharmacology, Department of Internal Medicine, University of Pisa, via Roma 55, 56126 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Treatment-induced host-mediated mechanisms reducing the efficacy of antitumor therapies. Oncogene 2013; 33:1341-7. [PMID: 23524584 DOI: 10.1038/onc.2013.94] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/03/2013] [Accepted: 02/03/2013] [Indexed: 12/22/2022]
Abstract
In addition to its direct effects on tumor cells, chemotherapy can rapidly activate various host processes that contribute to therapy resistance and tumor regrowth. The host response to chemotherapy consists of changes in numerous cell types and cytokines. Examples include the acute mobilization and tumor homing of pro-angiogenic bone marrow-derived cells, activation of cells in the tumor microenvironment to produce systemic or paracrine factors, and tissue-specific responses that provide a protective niche for tumor cells. All of these factors reduce chemotherapy efficacy, and blocking the host response at various levels may therefore significantly improve treatment outcome. However, before the combination of conventional chemotherapy with agents blocking specific aspects of the host response can be implemented into clinical practice, a better understanding of the molecular mechanisms behind the host response is required.
Collapse
|
44
|
Carneiro MLB, Peixoto RCA, Joanitti GA, Oliveira RGS, Telles LAM, Miranda-Vilela AL, Bocca AL, Vianna LMS, da Silva ICR, de Souza AR, Lacava ZGM, Báo SN. Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer. J Nanobiotechnology 2013; 11:4. [PMID: 23414068 PMCID: PMC3598481 DOI: 10.1186/1477-3155-11-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. METHODS Mice were evaluated with regard to the treatments' toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry. RESULTS Regarding the treatments' toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining. CONCLUSIONS In summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report demonstrating the therapeutic efficacy of maghemite nanoparticles coated with rhodium (II) citrate. This treatment prolonged the survival period of treated mice without inducing apparent systemic toxicity, which strengthens its use for future breast cancer therapeutic applications.
Collapse
Affiliation(s)
- Marcella Lemos Brettas Carneiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), 70.910-900, Brasília-DF, Brazil
| | - Raphael CA Peixoto
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), 70.910-900, Brasília-DF, Brazil
| | - Graziela A Joanitti
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), 70.910-900, Brasília-DF, Brazil
| | - Ricardo GS Oliveira
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), 70.910-900, Brasília-DF, Brazil
| | - Luis AM Telles
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), 70.910-900, Brasília-DF, Brazil
| | - Ana L Miranda-Vilela
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), 70.910-900, Brasília-DF, Brazil
| | - Anamélia L Bocca
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), 70.910-900, Brasília-DF, Brazil
| | - Leonora MS Vianna
- Departamento de Patologia, Faculdade de Medicina, Universidade de Brasília, 70.919-970, Brasília-DF, Brazil
| | | | - Aparecido R de Souza
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, 74.001-970, Goiânia, Brazil
| | - Zulmira GM Lacava
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), 70.910-900, Brasília-DF, Brazil
| | - Sônia N Báo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), 70.910-900, Brasília-DF, Brazil
| |
Collapse
|
45
|
Low-dose metronomic chemotherapy: from past experience to new paradigms in the treatment of cancer. Drug Discov Today 2013; 18:193-201. [DOI: 10.1016/j.drudis.2012.07.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/28/2012] [Accepted: 07/26/2012] [Indexed: 01/22/2023]
|
46
|
Todorova M, Agache V, Mortazavi O, Chen B, Karshafian R, Hynynen K, Man S, Kerbel RS, Goertz DE. Antitumor effects of combining metronomic chemotherapy with the antivascular action of ultrasound stimulated microbubbles. Int J Cancer 2013; 132:2956-66. [DOI: 10.1002/ijc.27977] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/22/2012] [Indexed: 01/20/2023]
|
47
|
Moura V, Lacerda M, Figueiredo P, Corvo ML, Cruz MEM, Soares R, de Lima MCP, Simões S, Moreira JN. Targeted and intracellular triggered delivery of therapeutics to cancer cells and the tumor microenvironment: impact on the treatment of breast cancer. Breast Cancer Res Treat 2012; 133:61-73. [PMID: 21805188 DOI: 10.1007/s10549-011-1688-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/15/2011] [Indexed: 01/30/2023]
Abstract
Limiting tumor invasion to the surrounding healthy tissues has proven to be clinically relevant for anticancer treatment options. We have demonstrated that, within a solid tumor, it is possible to achieve such a goal with the same nanoparticle by intracellular and triggered targeted drug delivery to more than one cell population. We have identified the nucleolin receptor in endothelial and cancer cells in tissue samples from breast cancer patients, which enabled the design of a F3-peptide-targeted sterically stabilized pH-sensitive liposome. The clinical potential of such strategy was demonstrated by the successful specific cellular association by breast cancer cells harvested from tumors of patients submitted to mastectomy. In vitro, the nanoparticle targeted the nucleolin receptor on a cell and ligand-specific manner and improved cytotoxicity of doxorubicin (used as a model drug) towards breast cancer and endothelial cells by 177- and 162-fold, respectively, relative to the commercially available non-targeted non-pH-sensitive liposomes. Moreover, active accumulation of F3-targeted pH-sensitive liposomes into human orthotopic tumors, implanted in the mammary fat pad of nude mice, was registered for a time point as short as 4 h, reaching 48% of the injected dose/g of tissue. Twenty-four hours post-injection the accumulation of the dual-targeted pH-sensitive nanoparticle in the tumor tissue was 33-fold higher than the non-targeted non-pH-sensitive counterpart. In mice treated with the developed targeted nanoparticle significant decrease of the tumor viable rim area and microvascular density, as well as limited invasion to surrounding healthy tissues were observed (as opposed to other tested controls), which may increase the probability of tumors falling in the category of "negative margins" with reduced risk of relapse.
Collapse
Affiliation(s)
- Vera Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Penel N, Adenis A, Bocci G. Cyclophosphamide-based metronomic chemotherapy: After 10 years of experience, where do we stand and where are we going? Crit Rev Oncol Hematol 2012; 82:40-50. [DOI: 10.1016/j.critrevonc.2011.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 04/07/2011] [Accepted: 04/21/2011] [Indexed: 02/08/2023] Open
|
49
|
Taylor M, Billiot F, Marty V, Rouffiac V, Cohen P, Tournay E, Opolon P, Louache F, Vassal G, Laplace-Builhé C, Vielh P, Soria JC, Farace F. Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells. Cancer Discov 2012; 2:434-49. [PMID: 22588881 DOI: 10.1158/2159-8290.cd-11-0171] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The prevailing concept is that immediate mobilization of bone marrow-derived circulating endothelial progenitor cells (CEP) is a key mechanism mediating tumor resistance to vascular-disrupting agents (VDA). Here, we show that administration of VDA to tumor-bearing mice induces 2 distinct peaks in CEPs: an early, unspecific CEP efflux followed by a late yet more dramatic tumor-specific CEP burst that infiltrates tumors and is recruited to vessels. Combination with antiangiogenic drugs could not disrupt the early peak but completely abrogated the late VDA-induced CEP burst, blunted bone marrow-derived cell recruitment to tumors, and resulted in striking antitumor efficacy, indicating that the late CEP burst might be crucial to tumor recovery after VDA therapy. CEP and circulating endothelial cell kinetics in VDA-treated patients with cancer were remarkably consistent with our preclinical data. These findings expand the current understanding of vasculogenic "rebounds" that may be targeted to improve VDA-based strategies. SIGNIFICANCE Our findings suggest that resistance to VDA therapy may be strongly mediated by late, rather than early, tumor-specific recruitment of CEPs, the suppression of which resulted in increased VDA-mediated antitumor efficacy. VDA-based therapy might thus be significantly enhanced by combination strategies targeting late CEP mobilization.
Collapse
Affiliation(s)
- Melissa Taylor
- Translational Research Laboratory, University of Paris-Sud, INSERM U981, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21:309-22. [PMID: 22439926 DOI: 10.1016/j.ccr.2012.02.022] [Citation(s) in RCA: 3179] [Impact Index Per Article: 264.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 12/13/2022]
Abstract
Mutationally corrupted cancer (stem) cells are the driving force of tumor development and progression. Yet, these transformed cells cannot do it alone. Assemblages of ostensibly normal tissue and bone marrow-derived (stromal) cells are recruited to constitute tumorigenic microenvironments. Most of the hallmarks of cancer are enabled and sustained to varying degrees through contributions from repertoires of stromal cell types and distinctive subcell types. Their contributory functions to hallmark capabilities are increasingly well understood, as are the reciprocal communications with neoplastic cancer cells that mediate their recruitment, activation, programming, and persistence. This enhanced understanding presents interesting new targets for anticancer therapy.
Collapse
Affiliation(s)
- Douglas Hanahan
- The Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|