1
|
Chakraborty DD, Chakraborty P, Mondal A. An insight into cancer nanomedicine based on polysaccharides. Int J Biol Macromol 2024; 290:138678. [PMID: 39672407 DOI: 10.1016/j.ijbiomac.2024.138678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
With cancer rates on the rise around the world, cancer treatment has dominated scientific discussions in recent years. The toxicity of cytotoxic drugs, their lack of tumor localization, and their uniform dispersion into tumor tissues are the obstacles to cancer therapy. Other cancer treatment drawbacks include short blood circulation half-lives and undesirable pharmacokinetic behavior. Low-molecular-weight drugs conjugated with macromolecular carriers are better distributed in the body. The enhanced permeation and retention (EPR) effect causes natural and synthetic polymers, such as polysaccharides, proteins, antibodies, and poly amino acids, to accumulate in tumor tissue. Many manufactured and natural polymers are attractive polymeric drug carriers, allowing the creation of prodrugs from medicinal substances. Polysaccharides are biological polymers with structural and functional variations. They are also non-toxic, hydrophilic, biodegradable, and efficiently bioactive. Polysaccharides are ideal for synthesizing many nanoparticles due to their functional groups. Their ability to adapt to their microenvironment makes them valuable. Nanoplatforms based on polysaccharides can deliver targeted anticancer drugs for personalized cancer treatment. Unique polysaccharide structures and properties offer chemical and biological advantages for novel drug delivery. Polysaccharide-drug conjugation could revolutionize cancer chemotherapy. This study investigates polysaccharide conjugates and polysaccharides as natural biomaterials for cancer drug delivery.
Collapse
Affiliation(s)
| | - Prithviraj Chakraborty
- Royal School of Pharmacy, The Assam Royal Global University, Betkuchi, Guwahati-781035, India
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha-743234, India.
| |
Collapse
|
2
|
Dhanushkumar T, M E S, Selvam PK, Rambabu M, Dasegowda KR, Vasudevan K, George Priya Doss C. Advancements and hurdles in the development of a vaccine for triple-negative breast cancer: A comprehensive review of multi-omics and immunomics strategies. Life Sci 2024; 337:122360. [PMID: 38135117 DOI: 10.1016/j.lfs.2023.122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) presents a significant challenge in oncology due to its aggressive behavior and limited therapeutic options. This review explores the potential of immunotherapy, particularly vaccine-based approaches, in addressing TNBC. It delves into the role of immunoinformatics in creating effective vaccines against TNBC. The review first underscores the distinct attributes of TNBC and the importance of tumor antigens in vaccine development. It then elaborates on antigen detection techniques such as exome sequencing, HLA typing, and RNA sequencing, which are instrumental in identifying TNBC-specific antigens and selecting vaccine candidates. The discussion then shifts to the in-silico vaccine development process, encompassing antigen selection, epitope prediction, and rational vaccine design. This process merges computational simulations with immunological insights. The role of Artificial Intelligence (AI) in expediting the prediction of antigens and epitopes is also emphasized. The review concludes by encapsulating how Immunoinformatics can augment the design of TNBC vaccines, integrating tumor antigens, advanced detection methods, in-silico strategies, and AI-driven insights to advance TNBC immunotherapy. This could potentially pave the way for more targeted and efficacious treatments.
Collapse
Affiliation(s)
- T Dhanushkumar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Santhosh M E
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Prasanna Kumar Selvam
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Majji Rambabu
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - K R Dasegowda
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
| |
Collapse
|
3
|
Junyaprasert VB, Thummarati P. Innovative Design of Targeted Nanoparticles: Polymer-Drug Conjugates for Enhanced Cancer Therapy. Pharmaceutics 2023; 15:2216. [PMID: 37765185 PMCID: PMC10537251 DOI: 10.3390/pharmaceutics15092216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Polymer-drug conjugates (PDCs) have shown great promise in enhancing the efficacy and safety of cancer therapy. These conjugates combine the advantageous properties of both polymers and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for cancer therapy. First, various types of polymers used in these conjugates are discussed, including synthetic polymers, such as poly(↋-caprolactone) (PCL), D-α-tocopheryl polyethylene glycol (TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are explored, including covalent bonding, which enables a stable linkage between the polymer and the drug, ensuring controlled release and minimizing premature drug release. The use of polymers can extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a versatile and effective approach to cancer therapy. Their ability to combine the advantages of polymers and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby improving the overall efficacy and safety of cancer therapies. Further research and development in this field has great potential to advance personalized cancer treatment options.
Collapse
|
4
|
Silant'ev VE, Shmelev ME, Belousov AS, Patlay AA, Shatilov RA, Farniev VM, Kumeiko VV. How to Develop Drug Delivery System Based on Carbohydrate Nanoparticles Targeted to Brain Tumors. Polymers (Basel) 2023; 15:polym15112516. [PMID: 37299315 DOI: 10.3390/polym15112516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Brain tumors are the most difficult to treat, not only because of the variety of their forms and the small number of effective chemotherapeutic agents capable of suppressing tumor cells, but also limited by poor drug transport across the blood-brain barrier (BBB). Nanoparticles are promising drug delivery solutions promoted by the expansion of nanotechnology, emerging in the creation and practical use of materials in the range from 1 to 500 nm. Carbohydrate-based nanoparticles is a unique platform for active molecular transport and targeted drug delivery, providing biocompatibility, biodegradability, and a reduction in toxic side effects. However, the design and fabrication of biopolymer colloidal nanomaterials have been and remain highly challenging to date. Our review is devoted to the description of carbohydrate nanoparticle synthesis and modification, with a brief overview of the biological and promising clinical outcomes. We also expect this manuscript to highlight the great potential of carbohydrate nanocarriers for drug delivery and targeted treatment of gliomas of various grades and glioblastomas, as the most aggressive of brain tumors.
Collapse
Affiliation(s)
- Vladimir E Silant'ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Laboratory of Electrochemical Processes, Institute of Chemistry, FEB RAS, 690022 Vladivostok, Russia
| | - Mikhail E Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Andrei S Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Aleksandra A Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Roman A Shatilov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vladislav M Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vadim V Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, 690041 Vladivostok, Russia
| |
Collapse
|
5
|
Xiong S, Tan X, Wu X, Wan A, Zhang G, Wang C, Liang Y, Zhang Y. Molecular landscape and emerging therapeutic strategies in breast
cancer brain metastasis. Ther Adv Med Oncol 2023; 15:17588359231165976. [PMID: 37034479 PMCID: PMC10074632 DOI: 10.1177/17588359231165976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer worldwide. Advanced BC
with brain metastasis (BM) is a major cause of mortality with no specific or
effective treatment. Therefore, better knowledge of the cellular and molecular
mechanisms underlying breast cancer brain metastasis (BCBM) is crucial for
developing novel therapeutic strategies and improving clinical outcomes. In this
review, we focused on the latest advances and discuss the contribution of the
molecular subtype of BC, the brain microenvironment, exosomes, miRNAs/lncRNAs,
and genetic background in BCBM. The blood–brain barrier and blood–tumor barrier
create challenges to brain drug delivery, and we specifically review novel
approaches to bypass these barriers. Furthermore, we discuss the potential
application of immunotherapies and genetic editing techniques based on
CRISPR/Cas9 technology in treating BCBM. Emerging techniques and research
findings continuously shape our views of BCBM and contribute to improvements in
precision therapies and clinical outcomes.
Collapse
Affiliation(s)
- Siyi Xiong
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xuanni Tan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xiujuan Wu
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Andi Wan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Guozhi Zhang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Cheng Wang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Yan Liang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, 30 Gaotanyan, Shapingba, China Chongqing 400038,
China
| | | |
Collapse
|
6
|
Knier NN, Pellizzari S, Zhou J, Foster PJ, Parsyan A. Preclinical Models of Brain Metastases in Breast Cancer. Biomedicines 2022; 10:biomedicines10030667. [PMID: 35327469 PMCID: PMC8945440 DOI: 10.3390/biomedicines10030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer remains a leading cause of mortality among women worldwide. Brain metastases confer extremely poor prognosis due to a lack of understanding of their specific biology, unique physiologic and anatomic features of the brain, and limited treatment strategies. A major roadblock in advancing the treatment of breast cancer brain metastases (BCBM) is the scarcity of representative experimental preclinical models. Current models are predominantly based on the use of animal xenograft models with immortalized breast cancer cell lines that poorly capture the disease’s heterogeneity. Recent years have witnessed the development of patient-derived in vitro and in vivo breast cancer culturing systems that more closely recapitulate the biology from individual patients. These advances led to the development of modern patient-tissue-based experimental models for BCBM. The success of preclinical models is also based on the imaging technologies used to detect metastases. Advances in animal brain imaging, including cellular MRI and multimodality imaging, allow sensitive and specific detection of brain metastases and monitoring treatment responses. These imaging technologies, together with novel translational breast cancer models based on patient-derived cancer tissues, represent a unique opportunity to advance our understanding of brain metastases biology and develop novel treatment approaches. This review discusses the state-of-the-art knowledge in preclinical models of this disease.
Collapse
Affiliation(s)
- Natasha N. Knier
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada; (N.N.K.); (P.J.F.)
- Imaging Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Sierra Pellizzari
- Department of Anatomy and Cell Biology, Western University, London, ON N6A 3K7, Canada;
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA;
| | - Paula J. Foster
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada; (N.N.K.); (P.J.F.)
- Imaging Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Western University, London, ON N6A 3K7, Canada;
- London Regional Cancer Program, London Health Science Centre, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 4L6, Canada
- Department of Surgery, Western University, London, ON N6A 3K7, Canada
- Correspondence: ; Tel.: +1-519-646-4831; Fax: +1-519-646-6327
| |
Collapse
|
7
|
|
8
|
Liu J, Guo L, Rao Y, Zheng W, Gao D, Zhang J, Luo L, Kuang X, Sukumar S, Tu Y, Chen C, Sun S. In situ Injection of pH- and Temperature-Sensitive Nanomaterials Increases Chemo-Photothermal Efficacy by Alleviating the Tumor Immunosuppressive Microenvironment. Int J Nanomedicine 2022; 17:2661-2678. [PMID: 35733417 PMCID: PMC9208637 DOI: 10.2147/ijn.s367121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is challenging to treat with traditional "standard of care" therapy due to the lack of targetable biomarkers and rapid progression to distant metastasis. Methods We synthesized a novel combination regimen that included chemotherapy and photothermal therapy (PTT) to address this problem. Here, we tested a magnetic nanosystem (MNs-PEG/IR780-DOX micelles) loaded with the near-infrared (NIR) photothermal agent IR780 and doxorubicin (DOX) to achieve chemo-photothermal and boost antitumor immunity. Intraductal (i.duc) administration of MNs-PEG/IR780-DOX could increase the concentration of the drug in the tumor while reducing systemic side effects. Results We showed more uptake of MNs-PEG/IR780-DOX by 4T1-luc cells and higher penetration in the tumor. MNs-PEG/IR780-DOX exhibited excellent photothermal conversion in vivo and in vitro. The release of DOX from MNs-PEG/IR780-DOX is pH- and temperature-sensitive. Facilitated by i.duc administration, MNs-PEG/IR780-DOX displayed antitumor effects and prevented distant organs metastasis under NIR laser (L) irradiation and magnetic field (MF)while avoiding DOX-induced toxicity. More importantly, MNs-PEG/IR780-DOX alleviated tumor immunosuppressive microenvironment by increasing tumor CD8+ T cells infiltration and reducing the proportion of myeloid-derived suppressor cells (MDSCs) and Tregs. Conclusion Intraductal administration of pH- and temperature-sensitive MNs-PEG/IR780-DOX with L and MF had the potential for achieving minimally invasive, targeted, and accurate treatment of TNBC.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Dongcheng Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jing Zhang
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Lan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xinwen Kuang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
9
|
Mu QG, Lin G, Jeon M, Wang H, Chang FC, Revia RA, Yu J, Zhang M. Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:149-169. [PMID: 34987308 PMCID: PMC8722574 DOI: 10.1016/j.mattod.2021.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Triple negative breast cancer is difficult to treat effectively, due to its aggressiveness, drug resistance, and lack of the receptors required for hormonal therapy, particularly at the metastatic stage. Here, we report the development and evaluation of a multifunctional nanoparticle formulation containing an iron oxide core that can deliver doxorubicin, a cytotoxic agent, and polyinosinic:polycytidylic acid (Poly IC), a TLR3 agonist, in a targeted and simultaneous fashion to both breast cancer and dendritic cells. Endoglin-binding peptide (EBP) is used to target both TNBC cells and vasculature epithelia. The nanoparticle demonstrates favorable physicochemical properties and a tumor-specific targeting profile. The nanoparticle induces tumor apoptosis through multiple mechanisms including direct tumor cell killing, dendritic cell-initiated innate and T cell-mediated adaptive immune responses. The nanoparticle markedly inhibits tumor growth and metastasis and substantially extends survival in an aggressive and drug-resistant metastatic mouse model of triple negative breast cancer (TNBC). This study points to a promising platform that may substantially improve the therapeutic efficacy for treating metastatic TNBC.
Collapse
Affiliation(s)
- Qin gxin Mu
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Mike Jeon
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Hui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - John Yu
- Department of Neurosurgery, Maxine-Dunitz Neurosurgical Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Steeg PS. The blood-tumour barrier in cancer biology and therapy. Nat Rev Clin Oncol 2021; 18:696-714. [PMID: 34253912 DOI: 10.1038/s41571-021-00529-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The protective blood-brain barrier has a major role in ensuring normal brain function by severely limiting and tightly controlling the ingress of substances into the brain from the circulation. In primary brain tumours, such as glioblastomas, as well as in brain metastases from cancers in other organs, including lung and breast cancers and melanoma, the blood-brain barrier is modified and is referred to as the blood-tumour barrier (BTB). Alterations in the BTB affect its permeability, and this structure participates in reciprocal regulatory pathways with tumour cells. Importantly, the BTB typically retains a heterogeneous capacity to restrict the penetration of many therapeutic agents into intracranial tumours, and overcoming this challenge is a key to improving the effectiveness of treatment and patient quality of life. Herein, current knowledge of BTB structure and function is reviewed from a cell and cancer biology standpoint, with a focus on findings derived from in vivo models and human tumour specimens. Additionally, how this knowledge can be translated into clinical advances for patients with cancer is discussed.
Collapse
Affiliation(s)
- Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
11
|
Chowdhury P, Ghosh U, Samanta K, Jaggi M, Chauhan SC, Yallapu MM. Bioactive nanotherapeutic trends to combat triple negative breast cancer. Bioact Mater 2021; 6:3269-3287. [PMID: 33778204 PMCID: PMC7970221 DOI: 10.1016/j.bioactmat.2021.02.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 02/09/2023] Open
Abstract
The management of aggressive breast cancer, particularly, triple negative breast cancer (TNBC) remains a formidable challenge, despite treatment advancement. Although newer therapies such as atezolizumab, olaparib, and sacituzumab can tackle the breast cancer prognosis and/or progression, but achieved limited survival benefit(s). The current research efforts are aimed to develop and implement strategies for improved bioavailability, targetability, reduce systemic toxicity, and enhance therapeutic outcome of FDA-approved treatment regimen. This review presents various nanoparticle technology mediated delivery of chemotherapeutic agent(s) for breast cancer treatment. This article also documents novel strategies to employ cellular and cell membrane cloaked (biomimetic) nanoparticles for effective clinical translation. These technologies offer a safe and active targeting nanomedicine for effective management of breast cancer, especially TNBC.
Collapse
Affiliation(s)
- Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Upasana Ghosh
- Department of Biomedical Engineering, School of Engineering, Rutgers University, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Kamalika Samanta
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C. Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M. Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| |
Collapse
|
12
|
Sawanny R, Pramanik S, Agarwal U. Role of Phytochemicals in the Treatment of Breast Cancer: Natural Swords Battling Cancer Cells. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666210106123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most common type of malignancy among ladies (around 30% of
newly diagnosed patients every year). To date, various modern treatment modalities for breast cancer,
such as radiotherapy, surgical method, hormonal therapy, and chemotherapeutic drug utilisation,
are available. However, adverse drug reactions, therapeutic resistance, metastasis, or cancer reoccurrence
chances remain the primary causes of mortality for breast cancer patients. To overcome
all the potential drawbacks, we need to investigate novel techniques and strategies that are not considered
previously to treat breast cancer effectively with safety and efficacy. For centuries, we
utilise phytochemicals to treat various diseases because of their safety, low-cost, and least or no
side effects. Recently, naturally produced phytochemicals gain immense attention as potential
breast cancer therapeutics because of their ideal characteristics; for instance, they operate via modulating
molecular pathways associated with cancer growth and progression. The primary mechanism
involves inhibition of cell proliferation, angiogenesis, migration, invasion, increasing anti-oxidant
status, initiation of the arrest of the cell cycle, and apoptosis. Remedial viability gets effectively enhanced
when phytochemicals work as adjuvants with chemotherapeutic drugs. This comprehensive
review revolves around the latest chemopreventive, chemotherapeutic, and chemoprotective treatments
with their molecular mechanisms to treat breast cancer by utilising phytochemicals such as
vinca alkaloids, resveratrol, curcumin, paclitaxel, silibinin, quercetin, genistein, and epigallocatechin
gallate. The authors wish to extend the field of phytochemical study for its scientific validity
and its druggability.
Collapse
Affiliation(s)
- Rajni Sawanny
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201306, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600036, India
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Delhi, Grand Trunk Road, Phagwara, Punjab-144001, India
| |
Collapse
|
13
|
Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Rattray Z, Deng G, Zhang S, Shirali A, May CK, Chen X, Cuffari BJ, Liu J, Zou P, Rattray NJ, Johnson CH, Dubljevic V, Campbell JA, Huttner A, Baehring JM, Zhou J, Hansen JE. ENT2 facilitates brain endothelial cell penetration and blood-brain barrier transport by a tumor-targeting anti-DNA autoantibody. JCI Insight 2021; 6:e145875. [PMID: 34128837 PMCID: PMC8410084 DOI: 10.1172/jci.insight.145875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
The blood-brain barrier (BBB) prevents antibodies from penetrating the CNS and limits conventional antibody-based approaches to brain tumors. We now show that ENT2, a transporter that regulates nucleoside flux at the BBB, may offer an unexpected path to circumventing this barrier to allow targeting of brain tumors with an anti-DNA autoantibody. Deoxymab-1 (DX1) is a DNA-damaging autoantibody that localizes to tumors and is synthetically lethal to cancer cells with defects in the DNA damage response. We found that DX1 penetrated brain endothelial cells and crossed the BBB, and mechanistic studies identify ENT2 as the key transporter. In efficacy studies, DX1 crosses the BBB to suppress orthotopic glioblastoma and breast cancer brain metastases. ENT2-linked transport of autoantibodies across the BBB has potential to be exploited in brain tumor immunotherapy, and its discovery raises hypotheses on actionable mechanisms of CNS penetration by neurotoxic autoantibodies in CNS lupus.
Collapse
Affiliation(s)
| | - Gang Deng
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - Jun Liu
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pan Zou
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Caroline H Johnson
- Yale School of Public Health, New Haven, Connecticut, USA.,Yale Cancer Center, New Haven, Connecticut, USA
| | | | | | - Anita Huttner
- Yale Cancer Center, New Haven, Connecticut, USA.,Department of Pathology and
| | - Joachim M Baehring
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA.,Yale Cancer Center, New Haven, Connecticut, USA.,Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA.,Yale Cancer Center, New Haven, Connecticut, USA
| | - James E Hansen
- Department of Therapeutic Radiology and.,Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Echeverria Molina MI, Malollari KG, Komvopoulos K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front Bioeng Biotechnol 2021; 9:617141. [PMID: 34195178 PMCID: PMC8236583 DOI: 10.3389/fbioe.2021.617141] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous surgical procedures are daily performed worldwide to replace and repair damaged tissue. Tissue engineering is the field devoted to the regeneration of damaged tissue through the incorporation of cells in biocompatible and biodegradable porous constructs, known as scaffolds. The scaffolds act as host biomaterials of the incubating cells, guiding their attachment, growth, differentiation, proliferation, phenotype, and migration for the development of new tissue. Furthermore, cellular behavior and fate are bound to the biodegradation of the scaffold during tissue generation. This article provides a critical appraisal of how key biomaterial scaffold parameters, such as structure architecture, biochemistry, mechanical behavior, and biodegradability, impart the needed morphological, structural, and biochemical cues for eliciting cell behavior in various tissue engineering applications. Particular emphasis is given on specific scaffold attributes pertaining to skin and brain tissue generation, where further progress is needed (skin) or the research is at a relatively primitive stage (brain), and the enumeration of some of the most important challenges regarding scaffold constructs for tissue engineering.
Collapse
Affiliation(s)
- Maria I Echeverria Molina
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Katerina G Malollari
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Kyriakos Komvopoulos
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
16
|
Ju X, Chen H, Miao T, Ni J, Han L. Prodrug Delivery Using Dual-Targeting Nanoparticles To Treat Breast Cancer Brain Metastases. Mol Pharm 2021; 18:2694-2702. [PMID: 34109794 DOI: 10.1021/acs.molpharmaceut.1c00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain metastases from breast cancer are the most frequent brain metastasis in women, which are often difficult to be surgically removed due to the multifocal and infiltrative intracranial growth patterns. Cytotoxic drugs have potent anti-breast cancer properties. However, owing to the toxic side effects and the blood-brain barrier (BBB), these drugs cannot be fully and aggressively exploited with systemic administration and hence have very limited application for brain metastases. In this study, hyaluronidase-activated prodrug hyaluronic-doxorubicin (hDOX) was assembled by the BBB and metastatic breast cancer dual-targeting nanoparticles (NPs), which were constructed based on transcytosis-targeting peptide and hyaluronic acid co-modified poly(lactic-co-glycolic acid)-poly(ε-carbobenzoxy-l-lysine). hDOX showed enzyme-recovered DNA insertion, selective cytotoxicity to metastatic breast cancer cells rather than astrocytes, and efficient loading into dual-targeting NPs. hDOX@NPs displayed the ability of dually targeting the BBB and metastatic breast cancer and significantly extended the median survival time of mice with intracranial metastatic breast cancer. Based on these improvements, this prodrug delivery tactic may serve as an important direction for drug therapy against brain metastases.
Collapse
Affiliation(s)
- Xiufeng Ju
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haiyan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tongtong Miao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
17
|
Ju X, Miao T, Chen H, Ni J, Han L. Overcoming Mfsd2a-Mediated Low Transcytosis to Boost Nanoparticle Delivery to Brain for Chemotherapy of Brain Metastases. Adv Healthc Mater 2021; 10:e2001997. [PMID: 33738958 DOI: 10.1002/adhm.202001997] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Indexed: 12/27/2022]
Abstract
Microvessels of the blood-brain barrier (BBB) exclusively express the major facilitator superfamily domain-containing protein 2a (Mfsd2a), which is the key transporter for docosahexaenoic acid uptake into the brain. Mfsd2a suppresses caveolae-mediated transcytosis to regulate BBB transcellular permeability via controlling lipid composition of BBB endothelial cells. It is speculated that Mfsd2a can restrain BBB crossing efficiency and brain accumulation efficiency of brain-targeting drug delivery systems, which penetrate the BBB often through the receptor-mediated transcytosis pathway. Transcytosis across the BBB is a crucial bottleneck for targeted chemotherapy of brain metastases. To overcome this issue, a pair of priming nanoparticles (NPs) and following drug-loaded NPs are designed. Tunicamycin-(TM)-loaded transcytosis-targeting-peptide-(TTP)-decorated NPs (TM@TTP) are used to boost BBB transcytosis via inhibiting Mfsd2a. Doxorubicin (DOX)-loaded TTP and CD44-specific hyaluronic acid (HA)-comodified NPs (DOX@TTP-HA) are designed as following drug-loaded NPs. The brain accumulation efficacy of following DOX@TTP-HA with priming is 4.30-fold higher than that without priming through the enhanced transcytosis pathway rather than the tight junction opening. Effective BBB crossing and brain accumulation, selective tumor uptake, excellent antitumor efficacy, and low hepatotoxicity are achieved by TM@TTP and DOX@TTP-HA, suggesting this tactic as a significant therapeutic strategy against breast cancer brain metastases.
Collapse
Affiliation(s)
- Xiufeng Ju
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Tongtong Miao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Haiyan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Jiang Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
- Stake Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| |
Collapse
|
18
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
19
|
Eigel D, Werner C, Newland B. Cryogel biomaterials for neuroscience applications. Neurochem Int 2021; 147:105012. [PMID: 33731275 DOI: 10.1016/j.neuint.2021.105012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials in the form of 3D polymeric scaffolds have been used to create structurally and functionally biomimetic constructs of nervous system tissue. Such constructs can be used to model defects and disease or can be used to supplement neuronal tissue regeneration and repair. One such group of biomaterial scaffolds are hydrogels, which have been widely investigated for cell/tissue culture and as cell or molecule delivery systems in the field of neurosciences. However, a subset of hydrogels called cryogels, have shown to possess several distinct structural advantages over conventional hydrogel networks. Their macroporous structure, created via the time and resource efficient fabrication process (cryogelation) not only allows mass fluid transport throughout the structure, but also creates a high surface area to volume ratio for cell growth or drug loading. In addition, the macroporous structure of cryogels is ideal for applications in the central nervous system as they are very soft and spongey, yet also robust, which makes them a user-friendly and reproducible tool to address neuroscience challenges. In this review, we aim to provide the neuroscience community, who may not be familiar with the fundamental concepts of cryogels, an accessible summary of the basic information that pertain to their use in the brain and nervous tissue. We hope that this review shall initiate creative ways that cryogels could be further adapted and employed to tackle unsolved neuroscience challenges.
Collapse
Affiliation(s)
- Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB, Cardiff, Wales, UK.
| |
Collapse
|
20
|
Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021; 169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Brain metastasis is emerging as a unique entity in oncology based on its particular biology and, consequently, the pharmacological approaches that should be considered. We discuss the current state of modelling this specific progression of cancer and how these experimental models have been used to test multiple pharmacologic strategies over the years. In spite of pre-clinical evidences demonstrating brain metastasis vulnerabilities, many clinical trials have excluded patients with brain metastasis. Fortunately, this trend is getting to an end given the increasing importance of secondary brain tumors in the clinic and a better knowledge of the underlying biology. We discuss emerging trends and unsolved issues that will shape how we will study experimental brain metastasis in the years to come.
Collapse
|
21
|
Valiente M, Van Swearingen AED, Anders CK, Bairoch A, Boire A, Bos PD, Cittelly DM, Erez N, Ferraro GB, Fukumura D, Gril B, Herlyn M, Holmen SL, Jain RK, Joyce JA, Lorger M, Massague J, Neman J, Sibson NR, Steeg PS, Thorsen F, Young LS, Varešlija D, Vultur A, Weis-Garcia F, Winkler F. Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Res 2020; 80:4314-4323. [PMID: 32641416 PMCID: PMC7572582 DOI: 10.1158/0008-5472.can-20-0291] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/27/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Spread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.e., specific microenvironment) and particular therapeutic requirements (i.e., presence of blood-brain barrier, blood-tumor barrier, molecular differences with the primary tumor) are thought to be critical aspects that must be functionally exploited using preclinical models. We present the coordinated effort of 19 laboratories to compile comprehensive information related to brain metastasis experimental models. Each laboratory has provided details on the cancer cell lines they have generated or characterized as being capable of forming metastatic colonies in the brain, as well as principle methodologies of brain metastasis research. The Brain Metastasis Cell Lines Panel (BrMPanel) represents the first of its class and includes information about the cell line, how tropism to the brain was established, and the behavior of each model in vivo. These and other aspects described are intended to assist investigators in choosing the most suitable cell line for research on brain metastasis. The main goal of this effort is to facilitate research on this unmet clinical need, to improve models through a collaborative environment, and to promote the exchange of information on these valuable resources.
Collapse
Affiliation(s)
- Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | | | - Carey K Anders
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Durham, North Carolina
| | - Amos Bairoch
- CALIPHO group, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paula D Bos
- Department of Pathology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Diana M Cittelly
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gino B Ferraro
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Dai Fukumura
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | | | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Rakesh K Jain
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Johanna A Joyce
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mihaela Lorger
- Brain Metastasis Research Group, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Joan Massague
- Cancer Cell Biology Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Josh Neman
- Departments of Neurological Surgery, Physiology & Neuroscience, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Frits Thorsen
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, P.R. China
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Adina Vultur
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Frances Weis-Garcia
- Antibody & Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Ahmed A, Sarwar S, Hu Y, Munir MU, Nisar MF, Ikram F, Asif A, Rahman SU, Chaudhry AA, Rehman IU. Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin Drug Deliv 2020; 18:1-24. [PMID: 32905714 DOI: 10.1080/17425247.2020.1822321] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The utilization of polymeric nanoparticles, as drug payloads, has been extensively prevailed in cancer therapy. However, the precise distribution of these nanocarriers is restrained by various physiological and cellular obstacles. Nanoparticles must avoid nonspecific interactions with healthy cells and in vivo compartments to circumvent these barriers. Since in vivo interactions of nanoparticles are mainly dependent on surface properties of nanoparticles, efficient control on surface constituents is necessary for the determination of nanoparticles' fate in the body. AREAS COVERED In this review, the surface-modified polymeric nanoparticles and their utilization in cancer treatment were elaborated. First, the interaction of nanoparticles with numerous in vivo barriers was highlighted. Second, different strategies to overcome these obstacles were described. Third, some inspiring examples of surface-modified nanoparticles were presented. Later, fabrication and characterization methods of surface-modified nanoparticles were discussed. Finally, the applications of these nanoparticles in different routes of treatments were explored. EXPERT OPINION Surface modification of anticancer drug-loaded polymeric nanoparticles can enhance the efficacy, selective targeting, and biodistribution of the anticancer drug at the tumor site.
Collapse
Affiliation(s)
- Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Shumaila Sarwar
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan.,Faculty of Pharmacy, University of Sargodha , Sargodha, Pakistan
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing, Jiangsu, China
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University , Sakaka, Aljouf, Saudi Arabia
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences , Bahawalpur, Pakistan
| | - Fakhera Ikram
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Saeed Ur Rahman
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Ihtasham Ur Rehman
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan.,Bioengineering, Engineering Department, Lancaster University , Lancaster, UK
| |
Collapse
|
23
|
Lee SY, Kang MS, Jeong WY, Han DW, Kim KS. Hyaluronic Acid-Based Theranostic Nanomedicines for Targeted Cancer Therapy. Cancers (Basel) 2020; 12:E940. [PMID: 32290285 PMCID: PMC7226393 DOI: 10.3390/cancers12040940] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022] Open
Abstract
Hyaluronic acid (HA) is a natural mucopolysaccharide and has many useful advantages, including biocompatibility, non-immunogenicity, chemical versatility, non-toxicity, biodegradability, and high hydrophilicity. Numerous tumor cells overexpress several receptors that have a high binding affinity for HA, while these receptors are poorly expressed in normal body cells. HA-based drug delivery carriers can offer improved solubility and stability of anticancer drugs in biological environments and allow for the targeting of cancer treatments. Based on these benefits, HA has been widely investigated as a promising material for developing the advanced clinical cancer therapies in various formulations, including nanoparticles, micelles, liposomes, and hydrogels, combined with other materials. We describe various approaches and findings showing the feasibility of improvement in theragnosis probes through the application of HA.
Collapse
Affiliation(s)
- So Yun Lee
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Woo Yeup Jeong
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
24
|
Zhang S, Deng G, Liu F, Peng B, Bao Y, Du F, Chen AT, Liu J, Chen Z, Ma J, Tang X, Chen Q, Zhou J. Autocatalytic Delivery of Brain Tumor-targeting, Size-shrinkable Nanoparticles for Treatment of Breast Cancer Brain Metastases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910651. [PMID: 32440263 PMCID: PMC7241433 DOI: 10.1002/adfm.201910651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 05/06/2023]
Abstract
Breast cancer brain metastases (BCBMs) represent a major cause of morbidity and mortality among patients with breast cancer. Chemotherapy, which is widely used to treat tumors outside of the brain, is often ineffective on BCBMs due to its inability to efficiently cross the blood-brain barrier (BBB). Although the BBB is partially disrupted in tumor lesions, it remains intact enough to prevent most therapeutics from entering the brain. Here, we report a nanotechnology approach that can overcome the BBB through synthesis of lexiscan-loaded, AMD3100-conjugated, shrinkable NPs, or LANPs. LANPs respond to neutrophil elastase-enriched tumor microenvironment by shrinking in size and disrupt the BBB in tumors through lexiscan-mediated modulation. LANPs recognize tumor cells through the interaction between AMD3100 and CXCR4, which are expressed in metastatic tumor cells. We demonstrate that the integration of tumor responsiveness, tumor targeting, and BBB penetration enables LANPs to penetrate metastatic lesions in the brain with high efficiency, and, when doxorubicin was encapsulated, LANPs effectively inhibited tumor growth and prolonged the survival of tumor-bearing mice. Due to their high efficiency in penetrating the BBB for BCBMs treatment, LANPs have the potential to be translated into clinical applications for improved treatment of patients with BCBMs.
Collapse
Affiliation(s)
- Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Bin Peng
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Fengyi Du
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Ann T Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Junning Ma
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Xiangjun Tang
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
25
|
Wyatt EA, Davis ME. Nanoparticles Containing a Combination of a Drug and an Antibody for the Treatment of Breast Cancer Brain Metastases. Mol Pharm 2020; 17:717-721. [PMID: 31916770 DOI: 10.1021/acs.molpharmaceut.9b01167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In women with human epidermal growth factor 2 (HER2)-positive breast cancer, the improved control of systemic disease with new therapies has unmasked brain metastases that historically would have remained clinically silent. The efficacy of therapeutic agents against brain metastases is limited by their inability to permeate the blood-brain and blood-tumor barriers (BBB and BTB) in therapeutic amounts. Here, we investigate the potential of mucic acid-based, targeted nanoparticles designed to transcytose the BBB/BTB to deliver a small molecule drug, camptothecin (CPT), and therapeutic antibody, Herceptin, to brain metastases in mice. Treatment with BBB-targeted combination CPT/Herceptin nanoparticles significantly inhibits tumor growth compared to free CPT/Herceptin and BBB-targeted nanoparticles carrying CPT alone. Though not as efficacious, BBB-targeted nanoparticles carrying only Herceptin also elicit considerable antitumor activity. These results demonstrate the potential of the targeted nanoparticle system for the delivery of an antibody alone or in combination with other drugs across the BBB/BTB to improve the therapeutic outcome.
Collapse
Affiliation(s)
- Emily A Wyatt
- Chemical Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125 , United States
| | - Mark E Davis
- Chemical Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125 , United States
| |
Collapse
|
26
|
Al-Ahmad AJ, Patel R, Palecek SP, Shusta EV. Hyaluronan impairs the barrier integrity of brain microvascular endothelial cells through a CD44-dependent pathway. J Cereb Blood Flow Metab 2019; 39:1759-1775. [PMID: 29589805 PMCID: PMC6727144 DOI: 10.1177/0271678x18767748] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyaluronan (HA) constitutes the most abundant extracellular matrix component during brain development, only to become a minor component rapidly after birth and in adulthood to remain in specified regions. HA signaling has been associated with several neurological disorders, yet the impact of HA signaling at the blood-brain barrier (BBB) function remains undocumented. In this study, we investigated the impact of HA on BBB properties using human-induced pluripotent stem cell (iPSC) -derived and primary human and rat BMECs. The impact of HA signaling on developmental and mature BMECs was assessed by measuring changes in TEER, permeability, BMECs markers (GLUT1, tight junction proteins, P-gp) expression and localization, CD44 expression and hyaluronan levels. In general, HA treatment decreased barrier function and reduced P-gp activity with effects being more prominent upon treatment with oligomeric forms of HA (oHA). Such effects were exacerbated when applied during BMEC differentiation phase (considered as developmental BBB). We noted a hyaluronidase activity as well as an increase in CD44 expression during prolonged oxygen-glucose deprivation stress. Inhibition of HA signaling by antibody blockade of CD44 abrogated the detrimental effects of HA treatment. These results suggest the importance of HA signaling through CD44 on BBB properties.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- 1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.,2 Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ronak Patel
- 2 Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sean P Palecek
- 1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- 1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
27
|
Guo Q, Zhu Q, Miao T, Tao J, Ju X, Sun Z, Li H, Xu G, Chen H, Han L. LRP1-upregulated nanoparticles for efficiently conquering the blood-brain barrier and targetedly suppressing multifocal and infiltrative brain metastases. J Control Release 2019; 303:117-129. [DOI: 10.1016/j.jconrel.2019.04.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
|
28
|
Sorolla A, Wang E, Clemons TD, Evans CW, Plani-Lam JH, Golden E, Dessauvagie B, Redfern AD, Swaminathan-Iyer K, Blancafort P. Triple-hit therapeutic approach for triple negative breast cancers using docetaxel nanoparticles, EN1-iPeps and RGD peptides. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102003. [PMID: 31055077 DOI: 10.1016/j.nano.2019.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
Triple negative breast cancers (TNBC) are aggressive malignancies for which chemotherapy is the only treatment option. Many TNBC acquire chemotherapy resistance, notably docetaxel, which has been associated with the overexpression of transcription factors (TFs), such as ENGRAILED1 (EN1). Here, we have developed a tumor delivery system for docetaxel-PGMA-PAA-nanoparticles and interference peptides designed to specifically inhibit EN1 (EN1-iPeps). To promote tumor specific targeting, we functionalized these nanoparticles with EN1-iPeps engineered with RGD sequences. We found that these peptides reduce cell viability and induce apoptosis in TNBC cells with negligible effects on normal cells (EN1-). Moreover, EN1-RGD-iPeps-mediated nanoparticle internalization into breast cancer cells was via integrins and intravenous injection of this nanoformulation increased tumor accumulation. Furthermore, docetaxel nanoparticles functionalized with EN1-RGD-iPeps significantly reduced TNBC growth both in vitro and in vivo without showing toxicity. Our results suggest that this targeted nanoformulation represents a new and safe therapeutic approach for chemoresistant TNBCs.
Collapse
Affiliation(s)
- Anabel Sorolla
- Cancer Epigenetics, Harry Perkins Institute of Medical Research Nedlands, WA 6009, Australia; School of Human Sciences, The University of Western Australia Crawley, WA 6009, Australia.
| | - Edina Wang
- Cancer Epigenetics, Harry Perkins Institute of Medical Research Nedlands, WA 6009, Australia; School of Human Sciences, The University of Western Australia Crawley, WA 6009, Australia
| | - Tristan D Clemons
- School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Cameron W Evans
- School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Janice Hc Plani-Lam
- Cancer Epigenetics, Harry Perkins Institute of Medical Research Nedlands, WA 6009, Australia; School of Human Sciences, The University of Western Australia Crawley, WA 6009, Australia
| | - Emily Golden
- Cancer Epigenetics, Harry Perkins Institute of Medical Research Nedlands, WA 6009, Australia; School of Human Sciences, The University of Western Australia Crawley, WA 6009, Australia
| | - Ben Dessauvagie
- Division of Pathology and Laboratory Medicine, Medical School, The University of Western Australia, Crawley, WA 6009, Australia
| | - Andrew D Redfern
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia
| | - K Swaminathan-Iyer
- School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics, Harry Perkins Institute of Medical Research Nedlands, WA 6009, Australia; School of Human Sciences, The University of Western Australia Crawley, WA 6009, Australia.
| |
Collapse
|
29
|
Innovative Therapeutic Strategies for Effective Treatment of Brain Metastases. Int J Mol Sci 2019; 20:ijms20061280. [PMID: 30875730 PMCID: PMC6471202 DOI: 10.3390/ijms20061280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/21/2022] Open
Abstract
Brain metastases are the most prevalent of intracranial malignancies. They are associated with a very poor prognosis and near 100% mortality. This has been the case for decades, largely because we lack effective therapeutics to augment surgery and radiotherapy. Notwithstanding improvements in the precision and efficacy of these life-prolonging treatments, with no reliable options for adjunct systemic therapy, brain recurrences are virtually inevitable. The factors limiting intracranial efficacy of existing agents are both physiological and molecular in nature. For example, heterogeneous permeability, abnormal perfusion and high interstitial pressure oppose the conventional convective delivery of circulating drugs, thus new delivery strategies are needed to achieve uniform drug uptake at therapeutic concentrations. Brain metastases are also highly adapted to their microenvironment, with complex cross-talk between the tumor, the stroma and the neural compartments driving speciation and drug resistance. New strategies must account for resistance mechanisms that are frequently engaged in this milieu, such as HER3 and other receptor tyrosine kinases that become induced and activated in the brain microenvironment. Here, we discuss molecular and physiological factors that contribute to the recalcitrance of these tumors, and review emerging therapeutic strategies, including agents targeting the PI3K axis, immunotherapies, nanomedicines and MRI-guided focused ultrasound for externally controlling drug delivery.
Collapse
|
30
|
Shah N, Mohammad AS, Saralkar P, Sprowls SA, Vickers SD, John D, Tallman RM, Lucke-Wold BP, Jarrell KE, Pinti M, Nolan RL, Lockman PR. Investigational chemotherapy and novel pharmacokinetic mechanisms for the treatment of breast cancer brain metastases. Pharmacol Res 2018; 132:47-68. [PMID: 29604436 PMCID: PMC5997530 DOI: 10.1016/j.phrs.2018.03.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/08/2023]
Abstract
In women, breast cancer is the most common cancer diagnosis and second most common cause of cancer death. More than half of breast cancer patients will develop metastases to the bone, liver, lung, or brain. Breast cancer brain metastases (BCBM) confers a poor prognosis, as current therapeutic options of surgery, radiation, and chemotherapy rarely significantly extend life and are considered palliative. Within the realm of chemotherapy, the last decade has seen an explosion of novel chemotherapeutics involving targeting agents and unique dosage forms. We provide a historical overview of BCBM chemotherapy, review the mechanisms of new agents such as poly-ADP ribose polymerase inhibitors, cyclin-dependent kinase 4/6 inhibitors, phosphatidyl inositol 3-kinaseinhibitors, estrogen pathway antagonists for hormone-receptor positive BCBM; tyrosine kinase inhibitors, antibodies, and conjugates for HER2+ BCBM; repurposed cytotoxic chemotherapy for triple negative BCBM; and the utilization of these new agents and formulations in ongoing clinical trials. The mechanisms of novel dosage formulations such as nanoparticles, liposomes, pegylation, the concepts of enhanced permeation and retention, and drugs utilizing these concepts involved in clinical trials are also discussed. These new treatments provide a promising outlook in the treatment of BCBM.
Collapse
Affiliation(s)
- Neal Shah
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| | - Afroz S Mohammad
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| | - Pushkar Saralkar
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| | - Samuel A Sprowls
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| | - Schuyler D Vickers
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| | - Devin John
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| | - Rachel M Tallman
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| | - Brandon P Lucke-Wold
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| | - Katherine E Jarrell
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| | - Mark Pinti
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| | - Richard L Nolan
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| | - Paul R Lockman
- West Virginia University, Health Sciences Center, School of Pharmacy, Department of Basic Pharmaceutical Sciences, Morgantown, WV 26506, USA.
| |
Collapse
|
31
|
Affiliation(s)
| | - Lila Kanta Nath
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
32
|
Veillon L, Fakih C, Abou-El-Hassan H, Kobeissy F, Mechref Y. Glycosylation Changes in Brain Cancer. ACS Chem Neurosci 2018; 9:51-72. [PMID: 28982002 DOI: 10.1021/acschemneuro.7b00271] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein glycosylation is a posttranslational modification that affects more than half of all known proteins. Glycans covalently bound to biomolecules modulate their functions by both direct interactions, such as the recognition of glycan structures by binding partners, and indirect mechanisms that contribute to the control of protein conformation, stability, and turnover. The focus of this Review is the discussion of aberrant glycosylation related to brain cancer. Altered sialylation and fucosylation of N- and O-glycans play a role in the development and progression of brain cancer. Additionally, aberrant O-glycan expression has been implicated in brain cancer. This Review also addresses the clinical potential and applications of aberrant glycosylation for the detection and treatment of brain cancer. The viable roles glycans may play in the development of brain cancer therapeutics are addressed as well as cancer-glycoproteomics and personalized medicine. Glycoprotein alterations are considered as a hallmark of cancer while high expression in body fluids represents an opportunity for cancer assessment.
Collapse
Affiliation(s)
- Lucas Veillon
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock Texas 79409, United States
| | - Christina Fakih
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yehia Mechref
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock Texas 79409, United States
| |
Collapse
|
33
|
Liposomal Irinotecan Accumulates in Metastatic Lesions, Crosses the Blood-Tumor Barrier (BTB), and Prolongs Survival in an Experimental Model of Brain Metastases of Triple Negative Breast Cancer. Pharm Res 2018; 35:31. [PMID: 29368289 DOI: 10.1007/s11095-017-2278-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/06/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE The blood-tumor barrier (BTB) limits irinotecan distribution in tumors of the central nervous system. However, given that the BTB has increased passive permeability we hypothesize that liposomal irinotecan would improve local exposure of irinotecan and its active metabolite SN-38 in brain metastases relative to conventional irinotecan due to enhanced-permeation and retention (EPR) effect. METHODS Female nude mice were intracardially or intracranially implanted with human brain seeking breast cancer cells (brain metastases of breast cancer model). Mice were administered vehicle, non-liposomal irinotecan (50 mg/kg), liposomal irinotecan (10 mg/kg and 50 mg/kg) intravenously starting on day 21. Drug accumulation, tumor burden, and survival were evaluated. RESULTS Liposomal irinotecan showed prolonged plasma drug exposure with mean residence time (MRT) of 17.7 ± 3.8 h for SN-38, whereas MRT was 3.67 ± 1.2 for non-liposomal irinotecan. Further, liposomal irinotecan accumulated in metastatic lesions and demonstrated prolonged exposure of SN-38 compared to non-liposomal irinotecan. Liposomal irinotecan achieved AUC values of 6883 ± 4149 ng-h/g for SN-38, whereas non-liposomal irinotecan showed significantly lower AUC values of 982 ± 256 ng-h/g for SN-38. Median survival for liposomal irinotecan was 50 days, increased from 37 days (p<0.05) for vehicle. CONCLUSIONS Liposomal irinotecan accumulates in brain metastases, acts as depot for sustained release of irinotecan and SN-38, which results in prolonged survival in preclinical model of breast cancer brain metastasis.
Collapse
|
34
|
Berghoff AS, Preusser M. Role of the blood-brain barrier in metastatic disease of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2018; 149:57-66. [PMID: 29307361 DOI: 10.1016/b978-0-12-811161-1.00004-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Systemic therapy is an important backbone in the multimodal treatment approach of brain metastases. However, the blood-brain barrier or, more correctly, the blood-tumor barrier, as the properties of tumor-associated vessels differ from the physiologic state, potentially limits the passage of systemic drugs. Indeed, several preclinical and clinical investigations showed that the distribution of drugs is very heterogeneous within a given brain metastasis, despite the contrast enhancement in magnetic resonance imaging. Brain metastases may show lower intratumoral concentrations of some drugs as compared to extracranial tumor sites, resulting in mixed responses. Therefore, a more profound understanding of the role of the blood-brain/blood-tumor barrier is needed to effectively formulate clinical trial approaches on systemic therapy options in patients with brain metastases.
Collapse
Affiliation(s)
- Anna S Berghoff
- Clinical Division of Oncology, Department of Medicine and CNS Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Clinical Division of Oncology, Department of Medicine and CNS Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
35
|
Liang DS, Zhang WJ, Wang AT, Su HT, Zhong HJ, Qi XR. Treating metastatic triple negative breast cancer with CD44/neuropilin dual molecular targets of multifunctional nanoparticles. Biomaterials 2017; 137:23-36. [DOI: 10.1016/j.biomaterials.2017.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 12/18/2022]
|
36
|
O’Sullivan CC, Davarpanah NN, Abraham J, Bates SE. Current challenges in the management of breast cancer brain metastases. Semin Oncol 2017; 44:85-100. [DOI: 10.1053/j.seminoncol.2017.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023]
|
37
|
Kim H, Jeong H, Han S, Beack S, Hwang BW, Shin M, Oh SS, Hahn SK. Hyaluronate and its derivatives for customized biomedical applications. Biomaterials 2017; 123:155-171. [DOI: 10.1016/j.biomaterials.2017.01.029] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/23/2016] [Accepted: 01/27/2017] [Indexed: 01/02/2023]
|
38
|
Liu MC, Cortés J, O'Shaughnessy J. Challenges in the treatment of hormone receptor-positive, HER2-negative metastatic breast cancer with brain metastases. Cancer Metastasis Rev 2017; 35:323-32. [PMID: 27023712 DOI: 10.1007/s10555-016-9619-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain metastases are a major cause of morbidity and mortality for women with hormone receptor (HR)-positive breast cancer, yet little is known about the optimal treatment of brain disease in this group of patients. Although these patients are at lower risk for brain metastases relative to those with HER2-positive and triple-negative disease, they comprise the majority of women diagnosed with breast cancer. Surgery and radiation continue to have a role in the treatment of brain metastases, but there is a dearth of effective systemic therapies due to the poor penetrability of many systemic drugs across the blood-brain barrier (BBB). Additionally, patients with brain metastases have long been excluded from clinical trials, and few studies have been conducted to evaluate the safety and effectiveness of systemic therapies specifically for the treatment of HER2-negative breast cancer brain metastases. New approaches are on the horizon, such as nanoparticle-based cytotoxic drugs that have the potential to cross the BBB and provide clinically meaningful benefits to patients with this life-threatening consequence of HR-positive breast cancer.
Collapse
Affiliation(s)
- Minetta C Liu
- Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| | - Javier Cortés
- Ramon y Cajal University Hospital, Madrid, Spain
- Vall D'Hebron Institute of Oncology, Barcelona, Spain
| | - Joyce O'Shaughnessy
- Baylor-Sammons Cancer Center, Texas Oncology, U.S. Oncology, Dallas, TX, USA
| |
Collapse
|
39
|
Saunus JM, McCart Reed AE, Lim ZL, Lakhani SR. Breast Cancer Brain Metastases: Clonal Evolution in Clinical Context. Int J Mol Sci 2017; 18:ijms18010152. [PMID: 28098771 PMCID: PMC5297785 DOI: 10.3390/ijms18010152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 02/01/2023] Open
Abstract
Brain metastases are highly-evolved manifestations of breast cancer arising in a unique microenvironment, giving them exceptional adaptability in the face of new extrinsic pressures. The incidence is rising in line with population ageing, and use of newer therapies that stabilise metastatic disease burden with variable efficacy throughout the body. Historically, there has been a widely-held view that brain metastases do not respond to circulating therapeutics because the blood-brain-barrier (BBB) restricts their uptake. However, emerging data are beginning to paint a more complex picture where the brain acts as a sanctuary for dormant, subclinical proliferations that are initially protected by the BBB, but then exposed to dynamic selection pressures as tumours mature and vascular permeability increases. Here, we review key experimental approaches and landmark studies that have charted the genomic landscape of breast cancer brain metastases. These findings are contextualised with the factors impacting on clonal outgrowth in the brain: intrinsic breast tumour cell capabilities required for brain metastatic fitness, and the neural niche, which is initially hostile to invading cells but then engineered into a tumour-support vehicle by the successful minority. We also discuss how late detection, abnormal vascular perfusion and interstitial fluid dynamics underpin the recalcitrant clinical behaviour of brain metastases, and outline active clinical trials in the context of precision management.
Collapse
Affiliation(s)
- Jodi M Saunus
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland 4029, Australia.
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.
| | - Amy E McCart Reed
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland 4029, Australia.
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.
| | - Zhun Leong Lim
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland 4029, Australia.
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.
| | - Sunil R Lakhani
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland 4029, Australia.
- Pathology Queensland, Royal Brisbane Women's Hospital, Herston, Queensland 4029, Australia.
- UQ School of Medicine, Herston, Queensland 4006, Australia.
| |
Collapse
|
40
|
Dubey RD, Klippstein R, Wang JTW, Hodgins N, Mei KC, Sosabowski J, Hider RC, Abbate V, Gupta PN, Al-Jamal KT. Novel Hyaluronic Acid Conjugates for Dual Nuclear Imaging and Therapy in CD44-Expressing Tumors in Mice In Vivo. Nanotheranostics 2017; 1:59-79. [PMID: 29071179 PMCID: PMC5646725 DOI: 10.7150/ntno.17896] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid, a natural CD44 receptor ligand, has attracted attention in the past years as a macromolecular delivery of anticancer agents to cancer. At the same time, the clinical applications of Gemcitabine (Gem) have been hindered by its short biological half-life, high dose and development of drug resistance. This work reports the synthesis of a hyaluronic acid (HA) conjugate for nuclear imaging, and in vivo Gem delivery to CD44-expressing solid tumors in mice. HA was individually conjugated, via amide coupling, to Gem (HA-Gem), 4'-(aminomethyl)fluorescein hydrochloride (HA-4'-AMF) or tris(hydroxypyridinone) amine (HA-THP) for cancer therapy, in vitro tracking or single photon emission computed tomography/computed tomography (SPECT/CT) imaging, respectively. Gem conjugation to HA was directly confirmed by nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC) and UV-visible spectrometry, or indirectly by a nucleoside transporter inhibition study. Gem conjugation to HA improved its plasma stability, reduced blood hemolysis and resulted in delayed cytotoxicity in vitro. Uptake inhibition studies in colon CT26 and pancreatic PANC-1 cells, by flow cytometry, revealed that uptake of fluorescent HA conjugate is CD44 receptor and macropinocytosis-dependent. Gamma scintigraphy and SPECT/CT imaging confirmed the relatively prolonged blood circulation profile and uptake in CT26 (1.5 % ID/gm) and PANC-1 (1 % ID/gm) subcutaneous tumors at 24 h after intravenous injection in mice. Four injections of HA-Gem at ~15 mg/kg, over a 28-day period, resulted in significant delay in CT26 tumor growth and prolonged mice survival compared to the free drug. This study reports for the first time dual nuclear imaging and drug delivery (Gem) of HA conjugates to solid tumors in mice. The conjugates show great potential in targeting, imaging and killing of CD44-over expressing cells in vivo. This work is likely to open new avenues for the application of HA-based macromolecules in the field of image-guided delivery in oncology.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Rebecca Klippstein
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Naomi Hodgins
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Kuo-Ching Mei
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Bart's Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Robert C Hider
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| |
Collapse
|
41
|
He C, Cai P, Li J, Zhang T, Lin L, Abbasi AZ, Henderson JT, Rauth AM, Wu XY. Blood-brain barrier-penetrating amphiphilic polymer nanoparticles deliver docetaxel for the treatment of brain metastases of triple negative breast cancer. J Control Release 2017; 246:98-109. [DOI: 10.1016/j.jconrel.2016.12.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
|
42
|
Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv 2017; 14:123-136. [PMID: 27401941 PMCID: PMC5835024 DOI: 10.1080/17425247.2016.1208650] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Metastatic breast cancer is one of the most devastating cancers that have no cure. Many therapeutic and diagnostic strategies have been extensively studied in the past decade. Among these strategies, cancer nanotechnology has emerged as a promising strategy in preclinical studies by enabling early identification of primary tumors and metastases, and by effective killing of cancer cells. Areas covered: This review covers the recent progress made in targeting and imaging of metastatic breast cancer with nanoparticles, and treatment using nanoparticle-enabled chemo-, gene, photothermal- and radio-therapies. This review also discusses recent developments of nanoparticle-enabled stem cell therapy and immunotherapy. Expert opinion: Nanotechnology is expected to play important roles in modern therapy for cancers, including metastatic breast cancer. Nanoparticles are able to target and visualize metastasis in various organs, and deliver therapeutic agents. Through targeting cancer stem cells, nanoparticles are able to treat resistant tumors with minimal toxicity to healthy tissues/organs. Nanoparticles are also able to activate immune cells to eliminate tumors. Owing to their multifunctional, controllable and trackable features, nanotechnology-based imaging and therapy could be a highly potent approach for future cancer research and treatment.
Collapse
Affiliation(s)
- Qingxin Mu
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| | - Hui Wang
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| | - Miqin Zhang
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| |
Collapse
|
43
|
Mittapalli RK, Adkins CE, Bohn KA, Mohammad AS, Lockman JA, Lockman PR. Quantitative Fluorescence Microscopy Measures Vascular Pore Size in Primary and Metastatic Brain Tumors. Cancer Res 2016; 77:238-246. [PMID: 27815391 DOI: 10.1158/0008-5472.can-16-1711] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 01/16/2023]
Abstract
Tumors residing in the central nervous system (CNS) compromise the blood-brain barrier (BBB) via increased vascular permeability, with the magnitude of changes dependent on the tumor type and location. Current studies determine penetrability of a cancer therapeutic by administering progressively larger molecules until cutoff is observed where little to no tumor accumulation occurs. However, decades-old experimental work and mathematical modeling document methods to calculate both the size of the vascular opening (pore) with solute permeability values. In this study, we updated this classic mathematical modeling approach with quantitative fluorescence microscopy in two preclinical tumor models, allowing simultaneous administration of multiple sized tracers to determine vascular permeability at a resolution of nearly one micron. We observed that three molecules ranging from 100 Da to 70 kDa permeated into a preclinical glioblastoma model at rates proportional to their diffusion in water. This suggests the solutes freely diffused from blood to glioma across vascular pores without steric restriction, which calculates to a pore size of >140 nm in diameter. In contrast, the calculated pore size of a brain metastasis of breast cancer was approximately 10-fold smaller than glioma vasculature. This difference explains why antibodies are effective against glioblastoma but generally fail in brain metastases of breast cancer. On the basis of our observations, we hypothesize that trastuzumab most likely fails in the treatment of brain metastases of breast cancer because of poor CNS penetration, while the similar sized antibody bevacizumab is effective in the same tumor type not because it penetrates the CNS degree better, but because it scavenges VEGF in the vascular compartment, which reduces edema and permeation. Cancer Res; 77(2); 238-46. ©2016 AACR.
Collapse
Affiliation(s)
- Rajendar K Mittapalli
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Chris E Adkins
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Kaci A Bohn
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas.,Department of Pharmaceutical Sciences, College of Pharmacy, Harding University, Searcy, Arkansas
| | - Afroz S Mohammad
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Julie A Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Paul R Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas. .,Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University Health Sciences Center, Morgantown, West Virginia
| |
Collapse
|
44
|
|
45
|
Majeski HE, Yang J. The 2016 John J. Abel Award Lecture: Targeting the Mechanical Microenvironment in Cancer. Mol Pharmacol 2016; 90:744-754. [PMID: 27742780 DOI: 10.1124/mol.116.106765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
Past decades of cancer research have mainly focused on the role of various extracellular and intracellular biochemical signals on cancer progression and metastasis. Recent studies suggest an important role of mechanical forces in regulating cellular behaviors. This review first provides an overview of the mechanobiology research field. Then we specially focus on mechanotransduction pathways in cancer progression and describe in detail the key signaling components of such mechanotransduction pathways and extracellular matrix components that are altered in cancer. Although our understanding of mechanoregulation in cancer is still in its infancy, some agents against key mechanoregulators have been developed and will be discussed to explore the potential of pharmacologically targeting mechanotransduction in cancer.
Collapse
Affiliation(s)
- Hannah E Majeski
- Department of Pharmacology (H.E.M., J.Y.), Department of Pediatrics (J.Y.), and Biomedical Sciences Graduate Program (H.E.M., J.Y.), Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Jing Yang
- Department of Pharmacology (H.E.M., J.Y.), Department of Pediatrics (J.Y.), and Biomedical Sciences Graduate Program (H.E.M., J.Y.), Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
46
|
Liu K, Jiang X, Hunziker P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. NANOSCALE 2016; 8:16091-16156. [PMID: 27714108 DOI: 10.1039/c6nr04489a] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoparticles (NPs) are novel drug delivery systems that have been attracting more and more attention in recent years, and have been used for the treatment of cancer, infection, inflammation and other diseases. Among the numerous classes of materials employed for constructing NPs, organic polymers are outstanding due to the flexibility of design and synthesis and the ease of modification and functionalization. In particular, NP based amphiphilic polymers make a great contribution to the delivery of poorly-water soluble drugs. For example, natural, biocompatible and biodegradable products like polysaccharides are widely used as building blocks for the preparation of such drug delivery vehicles. This review will detail carbohydrate based amphiphilic polymeric systems for cancer therapy. Specifically, it focuses on the nature of the polymer employed for the preparation of targeted nanocarriers, the synthetic methods, as well as strategies for the application and evaluation of biological activity. Applications of the amphiphilic polymer systems include drug delivery, gene delivery, photosensitizer delivery, diagnostic imaging and specific ligand-assisted cellular uptake. As a result, a thorough understanding of the relationship between chemical structure and biological properties facilitate the optimal design and rational clinical application of the resulting carbohydrate based nano delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Kegang Liu
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland.
| | - Xiaohua Jiang
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Patrick Hunziker
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland. and CLINAM Foundation for Clinical Nanomedicine, Alemannengasse 12, Basel, CH-4016, Switzerland.
| |
Collapse
|
47
|
Cadete A, Alonso MJ. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives. Nanomedicine (Lond) 2016; 11:2341-57. [PMID: 27526874 DOI: 10.2217/nnm-2016-0117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hyaluronic acid is a natural polysaccharide that has been widely explored for the development of anticancer therapies due to its ability to target cancer cells. Moreover, advances made in the last decade have revealed the versatility of this biomaterial in the design of multifunctional carriers, intended for the delivery of a variety of bioactive molecules, including polynucleotides, immunomodulatory drugs and imaging agents. In this review, we aim to provide an overview of the major recent achievements in this field, highlighting the application of the newly developed nanostructures in combination therapies, immunomodulation and theranostics. Finally, we will discuss the main challenges and technological advances that will allow these carriers to be considered as candidates for clinical development.
Collapse
Affiliation(s)
- Ana Cadete
- NanoBioFar Group, Center for Research in Molecular Medicine & Chronic Diseases, Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela (USC), Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - María José Alonso
- NanoBioFar Group, Center for Research in Molecular Medicine & Chronic Diseases, Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela (USC), Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
48
|
Morshed RA, Muroski ME, Dai Q, Wegscheid ML, Auffinger B, Yu D, Han Y, Zhang L, Wu M, Cheng Y, Lesniak MS. Cell-Penetrating Peptide-Modified Gold Nanoparticles for the Delivery of Doxorubicin to Brain Metastatic Breast Cancer. Mol Pharm 2016; 13:1843-54. [PMID: 27169484 DOI: 10.1021/acs.molpharmaceut.6b00004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As therapies continue to increase the lifespan of patients with breast cancer, the incidence of brain metastases has steadily increased, affecting a significant number of patients with metastatic disease. However, a major barrier toward treating these lesions is the inability of therapeutics to penetrate into the central nervous system and accumulate within intracranial tumor sites. In this study, we designed a cell-penetrating gold nanoparticle platform to increase drug delivery to brain metastatic breast cancer cells. TAT peptide-modified gold nanoparticles carrying doxorubicin led to improved cytotoxicity toward two brain metastatic breast cancer cell lines with a decrease in the IC50 of at least 80% compared to free drug. Intravenous administration of these particles led to extensive accumulation of particles throughout diffuse intracranial metastatic microsatellites with cleaved caspase-3 activity corresponding to tumor foci. Furthermore, intratumoral administration of these particles improved survival in an intracranial MDA-MB-231-Br xenograft mouse model. Our results demonstrate the promising application of gold nanoparticles for improving drug delivery in the context of brain metastatic breast cancer.
Collapse
Affiliation(s)
- Ramin A Morshed
- The Brain Tumor Center, The University of Chicago , Chicago, Illinois United States
| | - Megan E Muroski
- Northwestern University Feinberg School of Medicine , 676 North Saint Clair Street, Suite 2210, Chicago, Illinois 60611, United States
| | - Qing Dai
- Department of Chemistry, Institute of Biophysics Dynamics and Howard Hughes Medical Institute, The University of Chicago , Chicago, Illinois United States
| | - Michelle L Wegscheid
- The Brain Tumor Center, The University of Chicago , Chicago, Illinois United States
| | - Brenda Auffinger
- The Brain Tumor Center, The University of Chicago , Chicago, Illinois United States
| | - Dou Yu
- Northwestern University Feinberg School of Medicine , 676 North Saint Clair Street, Suite 2210, Chicago, Illinois 60611, United States
| | - Yu Han
- Northwestern University Feinberg School of Medicine , 676 North Saint Clair Street, Suite 2210, Chicago, Illinois 60611, United States
| | - Lingjiao Zhang
- The Brain Tumor Center, The University of Chicago , Chicago, Illinois United States
| | - Meijing Wu
- Northwestern University Feinberg School of Medicine , 676 North Saint Clair Street, Suite 2210, Chicago, Illinois 60611, United States
| | - Yu Cheng
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine , Shanghai, China
| | - Maciej S Lesniak
- Northwestern University Feinberg School of Medicine , 676 North Saint Clair Street, Suite 2210, Chicago, Illinois 60611, United States
| |
Collapse
|
49
|
Han L, Kong DK, Zheng MQ, Murikinati S, Ma C, Yuan P, Li L, Tian D, Cai Q, Ye C, Holden D, Park JH, Gao X, Thomas JL, Grutzendler J, Carson RE, Huang Y, Piepmeier JM, Zhou J. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging. ACS NANO 2016; 10:4209-18. [PMID: 26967254 PMCID: PMC5257033 DOI: 10.1021/acsnano.5b07573] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The blood-brain barrier (BBB) is partially disrupted in brain tumors. Despite the gaps in the BBB, there is an inadequate amount of pharmacological agents delivered into the brain. Thus, the low delivery efficiency renders many of these agents ineffective in treating brain cancer. In this report, we proposed an "autocatalytic" approach for increasing the transport of nanoparticles into the brain. In this strategy, a small number of nanoparticles enter into the brain via transcytosis or through the BBB gaps. After penetrating the BBB, the nanoparticles release BBB modulators, which enables more nanoparticles to be transported, creating a positive feedback loop for increased delivery. Specifically, we demonstrated that these autocatalytic brain tumor-targeting poly(amine-co-ester) terpolymer nanoparticles (ABTT NPs) can readily cross the BBB and preferentially accumulate in brain tumors at a concentration of 4.3- and 94.0-fold greater than that in the liver and in brain regions without tumors, respectively. We further demonstrated that ABTT NPs were capable of mediating brain cancer gene therapy and chemotherapy. Our results suggest ABTT NPs can prime the brain to increase the systemic delivery of therapeutics for treating brain malignancies.
Collapse
Affiliation(s)
- Liang Han
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Derek K. Kong
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Ming-qiang Zheng
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | | | - Chao Ma
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Peng Yuan
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - Liyuan Li
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Daofeng Tian
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Qiang Cai
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Chunlin Ye
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Daniel Holden
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | - June-Hee Park
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - Xiaobin Gao
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | | | - Richard E. Carson
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | - Yiyun Huang
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | | | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Correspondence: Jiangbing Zhou, 310 Cedar Street, FMB 410, New Haven, CT 06510, Tel: 203-785-5327,
| |
Collapse
|
50
|
Deshpande N, Rangarajan A. Cancer Stem Cells: Formidable Allies of Cancer. Indian J Surg Oncol 2016; 6:400-14. [PMID: 27081258 DOI: 10.1007/s13193-015-0451-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells (CSC) represent the subpopulation of cells within a tumour showing two fundamental properties of stem cells - self-renewal (the ability to make more of their own kind) and differentiation (the ability to generate diverse cell types present within a tissue). The CSC hypothesis posits that CSCs play an important role in tumour initiation, maintenance and progression. Furthermore, owing to their intrinsic drug resistance, they remain refractory to currently used therapy, thereby contributing to tumour relapse. Thus, targeting or taming CSCs can lead to more effective cancer treatment in the coming decades. In this review, we will discuss about the origin of CSC hypothesis, evidence showing their existence, clinical relevance and translational significance.
Collapse
Affiliation(s)
- Neha Deshpande
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560065 India
| | - Annapoorni Rangarajan
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560065 India
| |
Collapse
|