1
|
Zárate-Pérez A, Cruz-Cázares AP, Ordaz-Rosado D, García-Quiroz J, León-Del-Rio A, Avila E, Milo-Rocha E, Díaz L, García-Becerra R. The vitamin D analog EB1089 sensitizes triple-negative breast cancer cells to the antiproliferative effects of antiestrogens. Adv Med Sci 2024; 69:398-406. [PMID: 39233278 DOI: 10.1016/j.advms.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/12/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE Patients bearing estrogen receptor (ER)α-negative breast cancer tumors confront poor prognosis and are typically unresponsive to hormone therapy. Previous studies have shown that calcitriol, the active vitamin D metabolite, can induce ERα expression in ERα-negative cells. EB1089, a calcitriol analog with reduced calcemic effects, exhibits greater potency than calcitriol in inhibiting cancer cell growth. However, the impact of EB1089 on ERα expression in triple-negative breast cancer (TNBC) cells remains unexplored. This study aims to investigate whether EB1089 could induce functional ERα expression in TNBC cell lines, potentially enabling the antiproliferative effects of antiestrogens. MATERIALS AND METHODS TNBC cell lines HCC1806 and HCC1937 were treated with EB1089, and ERα expression was analyzed using real-time PCR and Western blots. The transcriptional activity of induced ERα was evaluated through a luciferase reporter assay. The antiproliferative effects of tamoxifen and fulvestrant antiestrogens were assessed using the sulforhodamine B assay in the EB1089-treated cells. RESULTS Our findings indicated that EB1089 significantly induced ERα mRNA and protein expression in TNBC cells. Moreover, EB1089-induced ERα exhibited transcriptional activity and effectively restored the inhibitory effects of antiestrogens, thereby suppressing cell proliferation in TNBC cells. CONCLUSION EB1089 induced the expression of functional ERα in TNBC cells, restoring the antiproliferative effects of antiestrogens. These results highlight the potential of using EB1089 as a promising strategy for re-establishment of the antiproliferative effect of antiestrogens as a possible management for TNBC. This research lays the foundation for potential advancements in TNBC treatment, offering new avenues for targeted and effective interventions.
Collapse
Affiliation(s)
- Adriana Zárate-Pérez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alitzin Pamela Cruz-Cázares
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - David Ordaz-Rosado
- Departamento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, Mexico
| | - Janice García-Quiroz
- Departamento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, Mexico
| | - Alfonso León-Del-Rio
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico; Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Euclides Avila
- Departamento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, Mexico
| | - Edgar Milo-Rocha
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lorenza Díaz
- Departamento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, Mexico.
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico; Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Stachowicz-Suhs M, Łabędź N, Anisiewicz A, Banach J, Kłopotowska D, Milczarek M, Piotrowska A, Dzięgiel P, Maciejczyk A, Matkowski R, Wietrzyk J. Calcitriol promotes M2 polarization of tumor-associated macrophages in 4T1 mouse mammary gland cancer via the induction of proinflammatory cytokines. Sci Rep 2024; 14:3778. [PMID: 38355711 PMCID: PMC10866890 DOI: 10.1038/s41598-024-54433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/16/2024] Open
Abstract
Our research found that vitamin D3 (VD3) treatment increased lung metastasis in mice with 4T1 murine breast cancer (BC). This study aims to investigate the impact of VD3 on the activation of tumor-associated macrophages (TAMs) in BC. Mice bearing 4T1, E0771, 67NR BC cells, and healthy mice, were fed diets with varying VD3 contents (100-deficient, 1000-normal, and 5000 IU/kg-elevated). Some mice in the 1000 and 100 IU/kg groups received calcitriol. We studied bone metastasis and characterized TAMs and bone marrow-derived macrophages (BMDMs). 4T1 cells had higher bone metastasis potential in the 5000 IU/kg and calcitriol groups. In the same mice, an elevated tumor osteopontin level and M2 polarization of TAMs (MHCIIlow CD44high phenotype) were observed. Gene expression analysis confirmed M2 polarization of 4T1 (but not 67NR) TAMs and BMDMs, particularly in the 100 IU + cal group (increased Mrc1, Il23, and Il6). This polarization was likely due to COX-2/PGE2 induction in 4T1 calcitriol-treated cells, leading to increased proinflammatory cytokines like IL-6 and IL-23. Future studies will explore COX-2/PGE2 as a primary mediator of calcitriol-stimulated inflammation in the BC microenvironment, especially relevant for BC patients with VD3 deficiency and supplementation.
Collapse
Affiliation(s)
- Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland
| | - Natalia Łabędź
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland
| | - Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland
| | - Dagmara Kłopotowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 6a, 50-368, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 6a, 50-368, Wroclaw, Poland
| | - Adam Maciejczyk
- Department of Oncology, Wroclaw Medical University, Pl. Ludwika Hirszfelda 12, 53-413, Wrocław, Poland
- Lower Silesian Oncology, Pulmonology and Hematology Center, Pl. Ludwika Hirszfelda 12, 53-413, Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, Pl. Ludwika Hirszfelda 12, 53-413, Wrocław, Poland
- Lower Silesian Oncology, Pulmonology and Hematology Center, Pl. Ludwika Hirszfelda 12, 53-413, Wrocław, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
3
|
Filip-Psurska B, Zachary H, Strzykalska A, Wietrzyk J. Vitamin D, Th17 Lymphocytes, and Breast Cancer. Cancers (Basel) 2022; 14:cancers14153649. [PMID: 35954312 PMCID: PMC9367508 DOI: 10.3390/cancers14153649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The effect of vitamin D3 on the development of breast cancer (favorable, ineffective, or even unfavorable) depends on many factors, such as age, menopausal status, or obesity. The immunomodulatory effect of vitamin D may be unfavorable in case of breast cancer progression. The effect of vitamin D on Th17 cells may depend on disease type and patients’ age. Our goal was to summarize the data available and to find indications of vitamin D treatment failure or success. Therefore, in this review, we present data describing the effects of vitamin D3 on Th17 cells, mainly in breast cancer. Abstract Vitamin D3, which is well known to maintain calcium homeostasis, plays an important role in various cellular processes. It regulates the proliferation and differentiation of several normal cells, including immune and neoplastic cells, influences the cell cycle, and stimulates cell maturation and apoptosis through a mechanism dependent on the vitamin D receptor. The involvement of vitamin D3 in breast cancer development has been observed in numerous clinical studies. However, not all studies support the protective effect of vitamin D3 against the development of this condition. Furthermore, animal studies have revealed that calcitriol or its analogs may stimulate tumor growth or metastasis in some breast cancer models. It has been postulated that the effect of vitamin D3 on T helper (Th) 17 lymphocytes is one of the mechanisms promoting metastasis in these murine models. Herein we present a literature review on the existing data according to the interplay between vitamin D, Th17 cell and breast cancer. We also discuss the effects of this vitamin on Th17 lymphocytes in various disease entities known to date, due to the scarcity of scientific data on Th17 lymphocytes and breast cancer. The presented data indicate that the effect of vitamin D3 on breast cancer development depends on many factors, such as age, menopausal status, or obesity. According to that, more extensive clinical trials and studies are needed to assess the importance of vitamin D in breast cancer, especially when no correlations seem to be obvious.
Collapse
|
4
|
Sirajudeen S, Shah I, Ayoub MA, Karam SM, Al Menhali A. Long-Term Vitamin D Deficiency Results in the Inhibition of Cell Proliferation and Alteration of Multiple Gastric Epithelial Cell Lineages in Mice. Int J Mol Sci 2022; 23:ijms23126684. [PMID: 35743124 PMCID: PMC9224370 DOI: 10.3390/ijms23126684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Over one billion people globally are vitamin D (VD) deficient. Studies on the biological roles of VD are numerous but very little on the stomach. This project aims to understand how gastric homeostasis is affected by VD deficiency caused by prolonged exposure to darkness alone or combined with VD deficient diet. Three groups of C57/BL6 mice were subjected to different light exposure conditions and diets for 12 months (n = 8−12/group): control—12 h/12 h light/dark SDL (Standard Diet/Light), 24 h dark SDD (Standard Diet/Dark), and 24 h dark VDD (VD deficient diet/Dark). Stomach samples were collected for different multi-label lectin-/immuno-histochemical and qRT-PCR analyses, and the serum for LC-MS-MS. We found that the membrane VD receptor is expressed widely in the stomach when compared to nuclear VD receptors. Compared to SDL, VDD mice developed mucous cell expansion with increased mucins-mRNA (3.27 ± 2.73 (p < 0.05)) increased apoptotic cells, 15 ± 7 (p ≤ 0.001)); decreased cell proliferation, 4 ± 4 (p < 0.05)) and decreased acid secretion 33 ± 2 μEq/kg (p ≤ 0.0001)). Interestingly, mice exposed to full darkness developed mild VD deficiency with higher VD epimer levels: 11.9 ± 2.08 ng/mL (p ≤ 0.0001)), expansion in zymogenic cell number (16 ± 3 (p ≤ 0.01)), and a reduction in acid secretion (18 ± 2 μEq/kg (p ≤ 0.0001)). In conclusion, changes in light exposure or VD levels have serious physiological effects on the gastric mucosa, which should be considered during the management of gastric disorders.
Collapse
Affiliation(s)
- Shaima Sirajudeen
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
| | - Iltaf Shah
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
| | - Sherif M. Karam
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Correspondence:
| |
Collapse
|
5
|
O’Brien KM, Keil AP, Harmon QE, Jackson CL, White AJ, Santana MVD, Taylor JA, Sandler DP. Vitamin D Supplement Use and Risk of Breast Cancer by Race-Ethnicity. Epidemiology 2022; 33:37-47. [PMID: 34847083 PMCID: PMC8641477 DOI: 10.1097/ede.0000000000001413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Vitamin D has anticarcinogenic properties, but a relationship between vitamin D supplement use and breast cancer is not established. Few studies have accounted for changes in supplement use over time or evaluated racial-ethnic differences. METHODS The Sister Study is a prospective cohort of 50,884 women with 35-74 years of age who had a sister with breast cancer, but no breast cancer themselves at enrollment (2003-2009). We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between vitamin D supplement use and incident breast cancer (3,502 cases; median follow-up 10.5 years). RESULTS Vitamin D supplement use was common, with 64% reporting ever use (at least once per month) in the year before enrollment. Considering supplement use over time, ever use of vitamin D supplements was not meaningfully associated with breast cancer (HR = 0.96, 95% CI = 0.88, 1.0), relative to never use. However, after adjusting for prior use, recent use of vitamin D supplements ≥1/month was inversely associated with breast cancer (HR = 0.88, 95% CI = 0.78, 1.0), relative to nonrecent use. The inverse association was stronger for ductal carcinoma in situ (HR = 0.67, 95% CI = 0.52, 0.87) than invasive breast cancer (HR = 0.94, 95% CI = 0.72, 1.1, p-for-heterogeneity = 0.02). Supplement use was less common among African American/Black (56%) and non-Black Hispanic/Latina (50%) women than non-Hispanic White women (66%), but there was limited evidence of racial-ethnic differences in HRs (p-for-heterogeneity = 0.16 for ever use, P = 0.55 for recent). CONCLUSIONS Our findings are consistent with the hypothesis that recent vitamin D use is inversely associated with breast cancer risk.
Collapse
Affiliation(s)
- Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Alexander P. Keil
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Quaker E. Harmon
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Chandra L. Jackson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
- Intramural Program, National Institute of Minority Health and Health Disparities, Bethesda, MD
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Mary V. Diaz Santana
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| |
Collapse
|
6
|
Welsh J. Vitamin D and Breast Cancer: Mechanistic Update. JBMR Plus 2021; 5:e10582. [PMID: 34950835 PMCID: PMC8674767 DOI: 10.1002/jbm4.10582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of the vitamin D receptor (VDR) in mammary gland and breast cancer has long been recognized, and multiple preclinical studies have demonstrated that its ligand, 1,25-dihydroxyvitamin D (1,25D), modulates normal mammary gland development and inhibits growth of breast tumors in animal models. Vitamin D deficiency is common in breast cancer patients, and some evidence suggests that low vitamin D status enhances the risk for disease development or progression. Although many 1,25D-responsive targets in normal mammary cells and in breast cancers have been identified, validation of specific targets that regulate cell cycle, apoptosis, autophagy, and differentiation, particularly in vivo, has been challenging. Model systems of carcinogenesis have provided evidence that both VDR expression and 1,25D actions change with transformation, but clinical data regarding vitamin D responsiveness of established tumors is limited and inconclusive. Because breast cancer is heterogeneous, the relevant VDR targets and potential sensitivity to vitamin D repletion or supplementation will likely differ between patient populations. Detailed analysis of VDR actions in specific molecular subtypes of the disease will be necessary to clarify the conflicting data. Genomic, proteomic, and metabolomic analyses of in vitro and in vivo model systems are also warranted to comprehensively understand the network of vitamin D-regulated pathways in the context of breast cancer heterogeneity. This review provides an update on recent studies spanning the spectrum of mechanistic (cell/molecular), preclinical (animal models), and translational work on the role of vitamin D in breast cancer. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- JoEllen Welsh
- Department of Environmental Health SciencesSUNY Albany Cancer Research CenterRensselaerNYUSA
| |
Collapse
|
7
|
Segovia-Mendoza M, García-Quiroz J, Díaz L, García-Becerra R. Combinations of Calcitriol with Anticancer Treatments for Breast Cancer: An Update. Int J Mol Sci 2021; 22:12741. [PMID: 34884550 PMCID: PMC8657847 DOI: 10.3390/ijms222312741] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical, clinical, and epidemiological studies indicate that vitamin D3 (VD) deficiency is a risk factor for the development of breast cancer. Underlying mechanisms include the ability of calcitriol to induce cell differentiation, inhibit oncogenes expression, and modify different signaling pathways involved in the control of cell proliferation. In addition, calcitriol combined with different kinds of antineoplastic drugs has been demonstrated to enhance their beneficial effects in an additive or synergistic fashion. However, a recognized adjuvant regimen based on calcitriol for treating patients with breast cancer has not yet been fully established. Accordingly, in the present work, we review and discuss the preclinical and clinical studies about the combination of calcitriol with different oncological drugs, aiming to emphasize its main therapeutic benefits and opportunities for the treatment of this pathology.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
8
|
Yu X, Wang Q, Liu B, Zhang N, Cheng G. Vitamin D Enhances Radiosensitivity of Colorectal Cancer by Reversing Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2021; 9:684855. [PMID: 34422809 PMCID: PMC8371408 DOI: 10.3389/fcell.2021.684855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is often resistant to conventional therapies. Previous studies have reported the anticancer effects of vitamin D in several cancers, its role in radiotherapy (RT) remains unknown. We found that 1α, 25-dihydroxyvitamin D3 (VD3), the biologically active form of vitamin D, had antitumor effect on CRC and sensitized CRC cells to ionizing radiation (IR). VD3 demonstrated synergistic effect in combination with IR, which were detected by colony formation and cell proliferation assay. Radiosensitivity restoration induced by VD3 was associated with a series of phenotypes, including apoptosis, autophagy, and epithelial-mesenchymal transition (EMT). Using proteomics, “regulation of cell migration” and “cadherin” were found to be obviously enriched GO terms. Moreover, cystatin D and plasminogen activator inhibitor-1 (PAI-1), the differentially expressed proteins, were associated with EMT. Next, we confirmed the contributions of these two genes in enhancing IR sensitivity of CRC cells upon inhibition of EMT. As determined by proteomics, the mechanism underlying such sensitivity involved partially block of JAK/STAT3 signaling pathway. Furthermore, VD3 also elicited sensitization to RT in xenograft CRC models without additional toxicity. Our study revealed that VD3 was able to act in synergy with IR both in vitro and in vivo and could also confer radiosensitivity by regulating EMT, thereby providing a novel insight for elevating the efficacy of therapeutic regimens.
Collapse
Affiliation(s)
- Xinyue Yu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Wang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ning Zhang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guanghui Cheng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Yu X, Liu B, Zhang N, Wang Q, Cheng G. Immune Response: A Missed Opportunity Between Vitamin D and Radiotherapy. Front Cell Dev Biol 2021; 9:646981. [PMID: 33928081 PMCID: PMC8076745 DOI: 10.3389/fcell.2021.646981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Radiotherapy (RT) is a mainstay treatment in several types of cancer and acts by mediating various forms of cancer cell death, although it is still a large challenge to enhance therapy efficacy. Radiation resistance represents the main cause of cancer progression, therefore, overcoming treatment resistance is now the greatest challenge for clinicians. Increasing evidence indicates that immune response plays a role in reprogramming the radiation-induced tumor microenvironment (TME). Intriguingly, radiation-induced immunosuppression possibly overwhelms the ability of immune system to ablate tumor cells. This induces an immune equilibrium, which, we hypothesize, is an opportunity for radiosensitizers to make actions. Vitamin D has been reported to act in synergistic with RT by potentiating antiproliferative effect induced by therapeutics. Additionally, vitamin D can also regulate the TME and may even lead to immunostimulation by blocking immunosuppression following radiation. Previous reviews have focused on vitamin D metabolism and epidemiological trials, however, the synergistic effect of vitamin D and existing therapies remains unknown. This review summarizes vitamin D mediated radiosensitization, radiation immunity, and vitamin D-regulated TME, which may contribute to more successful vitamin D-adjuvant radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Guanghui Cheng
- Department of Radiation Oncology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Karimi S, Movafaghi V, Arabi A, Shahraki T, Safi S. Effects of Oral Vitamin D Supplement Therapy on Clinical Outcomes of Intravitreal Bevacizumab in Diabetic Macular Edema. J Ophthalmic Vis Res 2021; 16:34-41. [PMID: 33520126 PMCID: PMC7841288 DOI: 10.18502/jovr.v16i1.8249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/14/2020] [Indexed: 12/04/2022] Open
Abstract
Purpose To assess the effects of oral vitamin D supplement therapy on clinical outcomes of intravitreal bevacizumab (IVB) injections in patients with diabetic macular edema (DME). Methods Seventy-one patients with center-involving DME received IVB injections three times monthly. Cases with serum 25-hydroxyvitamin D (25(OH)D) levels <30 ng/ml were divided into treatment and control groups. The treatment group received 50000 IU of oral vitamin D once a week for eight weeks. One month after the third IVB injection, changes in the best-corrected visual acuity (BCVA) and central macular thickness (CMT) were analyzed for each group. Results Thirty-seven patients had sufficient levels of 25 (OH) D, while 34 patients had insufficient levels. Nineteen cases with deficient levels of 25(OH)D were treated with oral vitamin D, while 15 patients were assigned to the control group. The mean of serum 25(OH)D in patients was 27.9 ng/ml [mean 20.3 ± 5.4 and 17.3 ± 5.4 ng/ml in control and treatment groups, respectively (P = 0.231)]. After three IVB injections, BCVA improved significantly in each group, but the difference between the study groups was not statistically significant. CMT decreased significantly in all the groups. The mean CMT reduction was more prominent in the vitamin D-treated group, but the difference between groups did not reach statistical significance (P = 0.29). Conclusion In DME patients with vitamin D deficiency, vitamin D supplement therapy had some beneficial effects on CMT reduction following three injections of IVB; nevertheless, these effects were not statistically significant. Definite conclusion needs further prospective studies with a larger sample size.
Collapse
Affiliation(s)
- Saeed Karimi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Ophthalmology, Torfeh Medical Center, Shahid Beheshti University of Medicine Sciences,Tehran, Iran
| | - Vahid Movafaghi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Arabi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Ophthalmology, Torfeh Medical Center, Shahid Beheshti University of Medicine Sciences,Tehran, Iran
| | - Toktam Shahraki
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Ophthalmology, Torfeh Medical Center, Shahid Beheshti University of Medicine Sciences,Tehran, Iran
| | - Sare Safi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Griñan-Lison C, Blaya-Cánovas JL, López-Tejada A, Ávalos-Moreno M, Navarro-Ocón A, Cara FE, González-González A, Lorente JA, Marchal JA, Granados-Principal S. Antioxidants for the Treatment of Breast Cancer: Are We There Yet? Antioxidants (Basel) 2021; 10:205. [PMID: 33572626 PMCID: PMC7911462 DOI: 10.3390/antiox10020205] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on "redoxidomics" or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.
Collapse
Affiliation(s)
- Carmen Griñan-Lison
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan A. Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
12
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
13
|
Wnt and Vitamin D at the Crossroads in Solid Cancer. Cancers (Basel) 2020; 12:cancers12113434. [PMID: 33227961 PMCID: PMC7699248 DOI: 10.3390/cancers12113434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The Wnt/β-catenin signaling pathway is aberrantly activated in most colorectal cancers and less frequently in a variety of other solid neoplasias. Many epidemiological and experimental studies and some clinical trials suggest an anticancer action of vitamin D, mainly against colorectal cancer. The aim of this review was to analyze the literature supporting the interference of Wnt/β-catenin signaling by the active vitamin D metabolite 1α,25-dihydroxyvitamin D3. We discuss the molecular mechanisms of this antagonism in colorectal cancer and other cancer types. Additionally, we summarize the available data indicating a reciprocal inhibition of vitamin D action by the activated Wnt/β-catenin pathway. Thus, a complex mutual antagonism between Wnt/β-catenin signaling and the vitamin D system seems to be at the root of many solid cancers. Abstract Abnormal activation of the Wnt/β-catenin pathway is common in many types of solid cancers. Likewise, a large proportion of cancer patients have vitamin D deficiency. In line with these observations, Wnt/β-catenin signaling and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active vitamin D metabolite, usually have opposite effects on cancer cell proliferation and phenotype. In recent years, an increasing number of studies performed in a variety of cancer types have revealed a complex crosstalk between Wnt/β-catenin signaling and 1,25(OH)2D3. Here we review the mechanisms by which 1,25(OH)2D3 inhibits Wnt/β-catenin signaling and, conversely, how the activated Wnt/β-catenin pathway may abrogate vitamin D action. The available data suggest that interaction between Wnt/β-catenin signaling and the vitamin D system is at the crossroads in solid cancers and may have therapeutic applications.
Collapse
|
14
|
Anisiewicz A, Kowalski K, Banach J, Łabędź N, Stachowicz-Suhs M, Piotrowska A, Milczarek M, Kłopotowska D, Dzięgiel P, Wietrzyk J. Vitamin D Metabolite Profile in Cholecalciferol- or Calcitriol-Supplemented Healthy and Mammary Gland Tumor-Bearing Mice. Nutrients 2020; 12:nu12113416. [PMID: 33172201 PMCID: PMC7695033 DOI: 10.3390/nu12113416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
To analyze if the prometastatic activity of calcitriol (active vitamin D3 metabolite), which was previously observed in a 4T1 breast cancer model, is also found in other breast cancers, and to assess the impact of various schemes of vitamin D supply, we used 4T1 and E0771 mouse metastatic and 67NR nonmetastatic cells in this study. BALB/c and C57BL/6 healthy and tumor-bearing mice were exposed to a control (1000 IU), low- (100 IU), and high- (5000 IU) vitamin D3 diets. Additionally, from day 7 of tumor transplantation, the 1000 and 100 IU groups were gavaged with calcitriol (+cal). After 8 weeks of feeding, plasma levels of 25(OH)D3, 24,25(OH)2D3, and 3-epi-25(OH)D3 were significantly lower in calcitriol-treated and vitamin D-deficient groups than in the control, whereas the levels of all metabolites were increased in the 5000 IU group. The ratio of 25(OH)D3:24,25(OH)2D3 was increased in both calcitriol-treated groups, whereas the ratio of 25(OH)D3:3-epi-25(OH)D3 was increased only in the 100 IU group but decreased in the 5000 IU group. In contrast to E0771, 4T1 lung metastasis was accelerated in all vitamin D-supplemented mice, as well as in the deficient group with an increased inflammatory response. 67NR tumor growth was transiently inhibited in the 1000 IU+cal group, but single metastases were observed in the 5000 and 100 IU groups. Based on the results, we conclude that various schemes of vitamin D supply and vitamin D deficiency led to similar metabolite profiles irrespective of the mice strain and tumor burden. However, depending on the type of breast cancer, different effects on tumor growth and metastasis were noticed.
Collapse
Affiliation(s)
- Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland; (A.A.); (J.B.); (N.Ł.); (M.S.-S.); (M.M.); (D.K.)
| | - Konrad Kowalski
- Research and Development Center Masdiag, 01-882 Warsaw, Poland;
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland; (A.A.); (J.B.); (N.Ł.); (M.S.-S.); (M.M.); (D.K.)
| | - Natalia Łabędź
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland; (A.A.); (J.B.); (N.Ł.); (M.S.-S.); (M.M.); (D.K.)
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland; (A.A.); (J.B.); (N.Ł.); (M.S.-S.); (M.M.); (D.K.)
| | - Aleksandra Piotrowska
- Department of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (P.D.)
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland; (A.A.); (J.B.); (N.Ł.); (M.S.-S.); (M.M.); (D.K.)
| | - Dagmara Kłopotowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland; (A.A.); (J.B.); (N.Ł.); (M.S.-S.); (M.M.); (D.K.)
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (P.D.)
- Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland; (A.A.); (J.B.); (N.Ł.); (M.S.-S.); (M.M.); (D.K.)
- Correspondence: ; Tel.: +48-713-709-985
| |
Collapse
|
15
|
Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E. Nature-derived compounds modulating Wnt/ β -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 2020; 10:1814-1834. [PMID: 33163337 PMCID: PMC7606110 DOI: 10.1016/j.apsb.2019.12.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.
Collapse
Affiliation(s)
- Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Marco Corti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
16
|
Anisiewicz A, Pawlik A, Filip-Psurska B, Wietrzyk J. Differential Impact of Calcitriol and Its Analogs on Tumor Stroma in Young and Aged Ovariectomized Mice Bearing 4T1 Mammary Gland Cancer. Int J Mol Sci 2020; 21:E6359. [PMID: 32887237 PMCID: PMC7503326 DOI: 10.3390/ijms21176359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Vitamin D compounds (VDC) are extensively studied in the field of anticancer properties, including breast cancer. Previously, we showed that calcitriol and its analogs (PRI-2191 and PRI-2205) stimulate metastasis in 4T1 murine mammary gland cancer models in young mice, whereas the reverse effect was observed in aged ovariectomized (OVX) mice; (2) Methods: We determined the phenotype of monocytes/macrophages using FACS and examined the expression of selected genes and proteins by Real-Time PCR and ELISA; (3) Results: Activities of VDC are accompanied by an increase in the percentage of Ly6Clow anti-inflammatory monocytes in the spleen of young and a decrease in aged OVX mice. Treatment of young mice with VDC resulted in an increase of CCL2 plasma and tumor concentration and Arg1 in tumor. In later stage of tumor progression the expression of genes related to metastasis in lung tissue was decreased or increased, in old OVX or young mice, respectively; (4) Conclusions: Pro- or anti-metastatic effects of calcitriol and its analogs in young or aged OVX mice, respectively, can be attributed to the differences in the effects of VDC on the tumor microenvironment, as a consequence of differences in the immunity status of young and aged mice.
Collapse
Affiliation(s)
- Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.P.); (B.F.-P.); (J.W.)
| | | | | | | |
Collapse
|
17
|
Vitamin D Effects on Cell Differentiation and Stemness in Cancer. Cancers (Basel) 2020; 12:cancers12092413. [PMID: 32854355 PMCID: PMC7563562 DOI: 10.3390/cancers12092413] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
Vitamin D3 is the precursor of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), a pleiotropic hormone that is a major regulator of the human genome. 1,25(OH)2D3 modulates the phenotype and physiology of many cell types by controlling the expression of hundreds of genes in a tissue- and cell-specific fashion. Vitamin D deficiency is common among cancer patients and numerous studies have reported that 1,25(OH)2D3 promotes the differentiation of a wide panel of cultured carcinoma cells, frequently associated with a reduction in cell proliferation and survival. A major mechanism of this action is inhibition of the epithelial–mesenchymal transition, which in turn is largely based on antagonism of the Wnt/β-catenin, TGF-β and EGF signaling pathways. In addition, 1,25(OH)2D3 controls the gene expression profile and phenotype of cancer-associated fibroblasts (CAFs), which are important players in the tumorigenic process. Moreover, recent data suggest a regulatory role of 1,25(OH)2D3 in the biology of normal and cancer stem cells (CSCs). Here, we revise the current knowledge of the molecular and genetic basis of the regulation by 1,25(OH)2D3 of the differentiation and stemness of human carcinoma cells, CAFs and CSCs. These effects support a homeostatic non-cytotoxic anticancer action of 1,25(OH)2D3 based on reprogramming of the phenotype of several cell types.
Collapse
|
18
|
Nuszkiewicz J, Woźniak A, Szewczyk-Golec K. Ionizing Radiation as a Source of Oxidative Stress-The Protective Role of Melatonin and Vitamin D. Int J Mol Sci 2020; 21:E5804. [PMID: 32823530 PMCID: PMC7460937 DOI: 10.3390/ijms21165804] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation (IR) has found widespread application in modern medicine, including medical imaging and radiotherapy. As a result, both patients and healthcare professionals are exposed to various IR doses. To minimize the negative side effects of radiation associated with oxidative imbalance, antioxidant therapy has been considered. In this review, studies on the effects of melatonin and vitamin D on radiation-induced oxidative stress are discussed. According to the research data, both substances meet the conditions for use as agents that protect humans against IR-induced tissue damage. Numerous studies have confirmed that melatonin, a hydro- and lipophilic hormone with strong antioxidant properties, can potentially be used as a radioprotectant in humans. Less is known about the radioprotective effects of vitamin D, but the results to date have been promising. Deficiencies in melatonin and vitamin D are common in modern societies and may contribute to the severity of adverse side effects of medical IR exposure. Hence, supporting supplementation with both substances seems to be of first importance. Interestingly, both melatonin and vitamin D have been found to selectively radiosensitise cancer cells, which makes them promising adjuvants in radiotherapy. More research is needed in this area, especially in humans.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| | | | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
19
|
Carlberg C, Muñoz A. An update on vitamin D signaling and cancer. Semin Cancer Biol 2020; 79:217-230. [DOI: 10.1016/j.semcancer.2020.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
|
20
|
Shaurova T, Dy GK, Battaglia S, Hutson A, Zhang L, Zhang Y, Lovly CM, Seshadri M, Goodrich DW, Johnson CS, Hershberger PA. Vitamin D3 Metabolites Demonstrate Prognostic Value in EGFR-Mutant Lung Adenocarcinoma and Can be Deployed to Oppose Acquired Therapeutic Resistance. Cancers (Basel) 2020; 12:cancers12030675. [PMID: 32183160 PMCID: PMC7140110 DOI: 10.3390/cancers12030675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
EGFR tyrosine kinase inhibitors (EGFR TKIs) are the standard of care treatment for patients with EGFR-mutant lung adenocarcinoma (LUAD). Although initially effective, EGFR TKIs are not curative. Disease inevitably relapses due to acquired drug resistance. We hypothesized that vitamin D metabolites could be used with EGFR TKIs to prevent therapeutic failure. To test this idea, we investigated the link between serum 25-hydroxyvitamin D3 (25(OH)D3) and progression-free survival (PFS) in patients with EGFR-mutant LUAD that received EGFR TKIs (erlotinib n = 20 and afatinib n = 1). Patients who were 25(OH)D3-sufficient experienced significantly longer benefit from EGFR TKI therapy (mean 14.5 months) than those with 25(OH)D3 insufficiency (mean 10.6 months, p = 0.026). In contrast, 25(OH)D3 had no prognostic value in patients with KRAS-mutant LUAD that received cytotoxic chemotherapy. To gain mechanistic insights, we tested 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) activity in vitro. 1,25(OH)2D3 promoted epithelial differentiation and restored EGFR TKI sensitivity in models of EGFR TKI resistance that were associated with epithelial–mesenchymal transition (EMT). 1,25(OH)2D3 was ineffective in a non-EMT model of resistance. We conclude that vitamin D sufficiency portends increased PFS among EGFR-mutant LUAD patients that receive EGFR TKIs, and that vitamin D signaling maintains drug efficacy in this specific patient subset by opposing EMT.
Collapse
Affiliation(s)
- Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.S.); (L.Z.); (D.W.G.); (C.S.J.)
| | - Grace K Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Sebastiano Battaglia
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Letian Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.S.); (L.Z.); (D.W.G.); (C.S.J.)
| | - Yunkai Zhang
- Department of Medicine and Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Y.Z.); (C.M.L.)
| | - Christine M Lovly
- Department of Medicine and Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Y.Z.); (C.M.L.)
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.S.); (L.Z.); (D.W.G.); (C.S.J.)
| | - Candace S Johnson
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.S.); (L.Z.); (D.W.G.); (C.S.J.)
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.S.); (L.Z.); (D.W.G.); (C.S.J.)
- Correspondence: ; Tel.: +1-716-845-1697
| |
Collapse
|
21
|
Anisiewicz A, Filip-Psurska B, Pawlik A, Nasulewicz-Goldeman A, Piasecki T, Kowalski K, Maciejewska M, Jarosz J, Banach J, Papiernik D, Mazur A, Kutner A, Maier JA, Wietrzyk J. Calcitriol Analogues Decrease Lung Metastasis but Impair Bone Metabolism in Aged Ovariectomized Mice Bearing 4T1 Mammary Gland Tumours. Aging Dis 2019; 10:977-991. [PMID: 31595196 PMCID: PMC6764735 DOI: 10.14336/ad.2018.0921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022] Open
Abstract
Calcitriol and its analogues are considered drugs supporting the anticancer treatment of breast cancer and preventing the osteoporosis that results from the development of cancer or from chemotherapy or hormone therapy. Following the orthotopic implantation of 4T1 mammary carcinoma cells into aged ovariectomized (OVX) mice, we evaluated the effects of calcitriol and its two analogues, PRI-2191 and PRI-2205, on metastatic spread and bone homeostasis. Calcitriol and its analogues temporarily inhibited the formation of metastases in the lungs. Unexpectedly, only mice treated with calcitriol analogues showed a deterioration of bone-related parameters, such as bone column density, marrow column density and the CaPO4 coefficient. These findings correlated with an increased number of active osteoclasts differentiated from bone marrow-derived macrophages in mice treated with the analogues. Interestingly, in the tumours from mice treated with PRI-2191 and PRI-2205, the expression of Tnfsf11 (RANKL) was increased. On the other hand, osteopontin (OPN) levels in plasma and tumour tissue, as well as TRAC5b levels in tumours, were diminished by calcitriol and its analogues. Despite a similar action of both analogues towards bone metabolism, their impact on vitamin D metabolism differed. In particular, PRI-2191 and calcitriol, not PRI-2205 treatment significantly diminished the levels of both 25(OH)D3 and 24,25(OH)2D3. In conclusion, though there is evident antimetastatic activity in old OVX mice, signs of increased bone metabolism and deterioration of bone mineralization during therapy with calcitriol analogues were observed.
Collapse
Affiliation(s)
- Artur Anisiewicz
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Beata Filip-Psurska
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Agata Pawlik
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Anna Nasulewicz-Goldeman
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Tomasz Piasecki
- 2Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Magdalena Maciejewska
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Joanna Jarosz
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Joanna Banach
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Diana Papiernik
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Andrzej Mazur
- 4Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France
| | - Andrzej Kutner
- 5Pharmaceutical Research Institute, 01-793 Warsaw, Poland
| | - Jeanette A Maier
- 6Università di Milano, Dept. Biomedical and Clinical Sciences, 20157 Milano, Italy
| | - Joanna Wietrzyk
- 1Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
22
|
Nigjeh SE, Yeap SK, Nordin N, Rahman H, Rosli R. In Vivo Anti-Tumor Effects of Citral on 4T1 Breast Cancer Cells via Induction of Apoptosis and Downregulation of Aldehyde Dehydrogenase Activity. Molecules 2019; 24:molecules24183241. [PMID: 31492037 PMCID: PMC6767168 DOI: 10.3390/molecules24183241] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among females globally. The tumorigenic activities of cancer cells such as aldehyde dehydrogenase (ALDH) activity and differentiation have contributed to relapse and eventual mortality in breast cancer. Thus, current drug discovery research is focused on targeting breast cancer cells with ALDH activity and their capacity to form secondary tumors. Citral (3,7-dimethyl-2,6-octadienal), from lemon grass (Cymbopogoncitrates), has been previously reported to have a cytotoxic effect on breast cancer cells. Hence, this study was conducted to evaluate the in vivo effect of citral in targeting ALDH activity of breast cancer cells. BALB/c mice were challenged with 4T1 breast cancer cells followed by daily oral feeding of 50 mg/kg citral or distilled water for two weeks. The population of ALDH+ tumor cells and their capacity to form secondary tumors in both untreated and citral treated 4T1 challenged mice were assessed by Aldefluor assay and tumor growth upon cell reimplantation in normal mice, respectively. Citral treatment reduced the size and number of cells with ALDH+ activity of the tumors in 4T1-challenged BALB/c mice. Moreover, citral-treated mice were also observed with smaller tumor size and delayed tumorigenicity after reimplantation of the primary tumor cells into normal mice. These findings support the antitumor effect of citral in targeting ALDH+ cells and tumor recurrence in breast cancer cells.
Collapse
Affiliation(s)
- Siyamak Ebrahimi Nigjeh
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Daneshjou Boulevard, Tehran 1983969411, Iran
- Department of Medical Genetics, Tehran University of Medical Sciences, Poursina street, Tehran 1366736511, Iran
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| | - Norshariza Nordin
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Heshu Rahman
- Department of Medical Laboratory Sciences and Technology, College of Health Sciences, Komar University of Science and Technology, Chaq Chaq Qularaese, Sarchinar District, Sulaimani 334, Iraq
- Department of Clinical and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani 334, Iraq
| | - Rozita Rosli
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
23
|
Hu P, Fang D, Shen L, Zhou H, Shao R, Chen M, Yao C, Shi Y, Chen Q. Fibrin matrix containing high-dose calcitriol promotes the apoptosis of gastric cancer cells by sustainably releasing calcitrol and D-dimer. J Biomater Appl 2019; 34:509-522. [PMID: 31195918 DOI: 10.1177/0885328219856248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Pingping Hu
- 1 Department of Pathology, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated to Jiangsu University, Zhenjiang, China
| | - Dong Fang
- 2 Department of Oncology, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated to Jiangsu University, Zhenjiang, China
| | - Liping Shen
- 2 Department of Oncology, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated to Jiangsu University, Zhenjiang, China
| | - Huangao Zhou
- 3 Intensive Care Unit, Jiangyin People's Hospital, Jiangyin, China
| | - Rui Shao
- 4 Department of Pathology, Zhenjiang People's Hospital, Zhenjiang, China
| | - Miao Chen
- 4 Department of Pathology, Zhenjiang People's Hospital, Zhenjiang, China
| | - Chenghu Yao
- 4 Department of Pathology, Zhenjiang People's Hospital, Zhenjiang, China
| | - Yang Shi
- 4 Department of Pathology, Zhenjiang People's Hospital, Zhenjiang, China
| | - Qian Chen
- 5 School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Tuyaerts S, Van Nuffel AMT, Naert E, Van Dam PA, Vuylsteke P, De Caluwé A, Aspeslagh S, Dirix P, Lippens L, De Jaeghere E, Amant F, Vandecasteele K, Denys H. PRIMMO study protocol: a phase II study combining PD-1 blockade, radiation and immunomodulation to tackle cervical and uterine cancer. BMC Cancer 2019; 19:506. [PMID: 31138229 PMCID: PMC6537207 DOI: 10.1186/s12885-019-5676-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Immunotherapeutic approaches have revolutionized oncological practice but are less evaluated in gynecological malignancies. PD-1/PD-L1 blockade in gynecological cancers showed objective responses in 13-17% of patients. This could be due to immunosuppressive effects exerted by gynecological tumors on the microenvironment and an altered tumor vasculature. In other malignancies, combining checkpoint blockade with radiation delivers benefit that is believed to be due to the abscopal effect. Addition of immune modulation agents has also shown to enhance immune checkpoint blockade efficacy. Therefore we designed a regimen consisting of PD-1 blockade combined with radiation, and different immune/environmental-targeting compounds: repurposed drugs, metronomic chemotherapy and a food supplement. We hypothesize that these will synergistically modulate the tumor microenvironment and induce and sustain an anti-tumor immune response, resulting in tumor regression. METHODS PRIMMO is a multi-center, open-label, non-randomized, 3-cohort phase 2 study with safety run-in in patients with recurrent/refractory cervical carcinoma, endometrial carcinoma or uterine sarcoma. Treatment consists of daily intake of vitamin D, lansoprazole, aspirin, cyclophosphamide and curcumin, starting 2 weeks before the first pembrolizumab dose. Pembrolizumab is administered 3-weekly for a total of 6 cycles. Radiation (3 × 8 Gy) is given on days 1, 3 and 5 of the first pembrolizumab dose. The safety run-in consists of 6 patients. In total, 18 and 25 evaluable patients for cervical and endometrial carcinoma respectively are foreseen to enroll. No sample size is determined for uterine sarcoma due to its rarity. The primary objective is objective response rate at week 26 according to immune-related response criteria. Secondary objectives include safety, objective response rate at week 26 according to RECIST v1.1, best overall response, progression-free survival, overall survival and quality of life. Exploratory, translational research aims to evaluate immune biomarkers, extracellular vesicles, cell death biomarkers and the gut microbiome. DISCUSSION In this study, a combination of PD-1 blockade, radiation and immune/environmental-targeting compounds is tested, aiming to tackle the tumor microenvironment and induce anti-tumor immunity. Translational research is performed to discover biomarkers related to the mode of action of the combination. TRIAL REGISTRATION EU Clinical Trials Register: EudraCT 2016-001569-97 , registered on 19-6-2017. Clinicaltrials.gov: NCT03192059 , registered on 19-6-2017.
Collapse
Affiliation(s)
- Sandra Tuyaerts
- Division of Gynecologic Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
| | | | - Eline Naert
- Division of Medical Oncology, UZ Gent, Ghent, Belgium
- Cancer Research Institute Gent (CRIG), Ghent, Belgium
| | - Peter A. Van Dam
- Division of Gynecologic Oncology and Senology, University Hospital Antwerp, Antwerp, Belgium
| | - Peter Vuylsteke
- Division of Oncology, CHU UCL Namur, Sainte Elisabeth, Namur, Belgium
| | - Alex De Caluwé
- Division of Radiation Oncology, Institut Jules Bordet, Brussels, Belgium
| | - Sandrine Aspeslagh
- Division of Radiation Oncology, Institut Jules Bordet, Brussels, Belgium
| | - Piet Dirix
- Division of Radiation Oncology, Iridium Cancer Network, Antwerp, Belgium
- Division of Molecular Imaging, Pathology, Radiotherapy & Oncology (MIPRO), University of Antwerp, Antwerp, Belgium
| | - Lien Lippens
- Division of Medical Oncology, UZ Gent, Ghent, Belgium
- Cancer Research Institute Gent (CRIG), Ghent, Belgium
| | - Emiel De Jaeghere
- Division of Medical Oncology, UZ Gent, Ghent, Belgium
- Cancer Research Institute Gent (CRIG), Ghent, Belgium
| | - Frédéric Amant
- Division of Gynecologic Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
- Division of Gynecology & Obstetrics, UZ Leuven, Leuven, Belgium
- Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam, the Netherlands
| | - Katrien Vandecasteele
- Cancer Research Institute Gent (CRIG), Ghent, Belgium
- Division of Radiation Oncology, UZ Gent, Ghent, Belgium
| | - Hannelore Denys
- Division of Medical Oncology, UZ Gent, Ghent, Belgium
- Cancer Research Institute Gent (CRIG), Ghent, Belgium
| |
Collapse
|
25
|
Vitamin D3 constrains estrogen's effects and influences mammary epithelial organization in 3D cultures. Sci Rep 2019; 9:7423. [PMID: 31092845 PMCID: PMC6520380 DOI: 10.1038/s41598-019-43308-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamin D3 (vitD3) and its active metabolite, calcitriol (1,25-(OH)2D3), affect multiple tissue types by interacting with the vitamin D receptor (VDR). Although vitD3 deficiency has been correlated with increased incidence of breast cancer and less favorable outcomes, randomized clinical trials have yet to provide conclusive evidence on the efficacy of vitD3 in preventing or treating breast cancer. Additionally, experimental studies are needed to assess the biological plausibility of these outcomes. The mammary gland of VDR KO mice shows a florid phenotype revealing alterations of developmental processes that are largely regulated by mammotropic hormones. However, most research conducted on vitD3's effects used 2D cell cultures and supra-physiological doses of vitD3, conditions that spare the microenvironment in which morphogenesis takes place. We investigated the role of vitD3 in mammary epithelial morphogenesis using two 3D culture models. VitD3 interfered with estrogen's actions on T47D human breast cancer cells in 3D differently at different doses, and recapitulated what is observed in vivo. Also, vitD3 can act autonomously and affected the organization of estrogen-insensitive MCF10A cells in 3D collagen matrix by influencing collagen fiber organization. Thus, vitD3 modulates mammary tissue organization independent of its effects on cell proliferation.
Collapse
|
26
|
Ng K, Nimeiri HS, McCleary NJ, Abrams TA, Yurgelun MB, Cleary JM, Rubinson DA, Schrag D, Miksad R, Bullock AJ, Allen J, Zuckerman D, Chan E, Chan JA, Wolpin BM, Constantine M, Weckstein DJ, Faggen MA, Thomas CA, Kournioti C, Yuan C, Ganser C, Wilkinson B, Mackintosh C, Zheng H, Hollis BW, Meyerhardt JA, Fuchs CS. Effect of High-Dose vs Standard-Dose Vitamin D3 Supplementation on Progression-Free Survival Among Patients With Advanced or Metastatic Colorectal Cancer: The SUNSHINE Randomized Clinical Trial. JAMA 2019; 321:1370-1379. [PMID: 30964527 PMCID: PMC6459117 DOI: 10.1001/jama.2019.2402] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE In observational studies, higher plasma 25-hydroxyvitamin D (25[OH]D) levels have been associated with improved survival in metastatic colorectal cancer (CRC). OBJECTIVE To determine if high-dose vitamin D3 added to standard chemotherapy improves outcomes in patients with metastatic CRC. DESIGN, SETTING, AND PARTICIPANTS Double-blind phase 2 randomized clinical trial of 139 patients with advanced or metastatic CRC conducted at 11 US academic and community cancer centers from March 2012 through November 2016 (database lock: September 2018). INTERVENTIONS mFOLFOX6 plus bevacizumab chemotherapy every 2 weeks and either high-dose vitamin D3 (n = 69) or standard-dose vitamin D3 (n = 70) daily until disease progression, intolerable toxicity, or withdrawal of consent. MAIN OUTCOMES AND MEASURES The primary end point was progression-free survival (PFS) assessed by the log-rank test and a supportive Cox proportional hazards model. Testing was 1-sided. Secondary end points included tumor objective response rate (ORR), overall survival (OS), and change in plasma 25(OH)D level. RESULTS Among 139 patients (mean age, 56 years; 60 [43%] women) who completed or discontinued chemotherapy and vitamin D3 (median follow-up, 22.9 months), the median PFS for high-dose vitamin D3 was 13.0 months (95% CI, 10.1 to 14.7; 49 PFS events) vs 11.0 months (95% CI, 9.5 to 14.0; 62 PFS events) for standard-dose vitamin D3 (log-rank P = .07); multivariable hazard ratio for PFS or death was 0.64 (1-sided 95% CI, 0 to 0.90; P = .02). There were no significant differences between high-dose and standard-dose vitamin D3 for tumor ORR (58% vs 63%, respectively; difference, -5% [95% CI, -20% to 100%], P = .27) or OS (median, 24.3 months vs 24.3 months; log-rank P = .43). The median 25(OH)D level at baseline for high-dose vitamin D3 was 16.1 ng/mL vs 18.7 ng/mL for standard-dose vitamin D3 (difference, -2.6 ng/mL [95% CI, -6.6 to 1.4], P = .30); at first restaging, 32.0 ng/mL vs 18.7 ng/mL (difference, 12.8 ng/mL [95% CI, 9.0 to 16.6], P < .001); at second restaging, 35.2 ng/mL vs 18.5 ng/mL (difference, 16.7 ng/mL [95% CI, 10.9 to 22.5], P < .001); and at treatment discontinuation, 34.8 ng/mL vs 18.7 ng/mL (difference, 16.2 ng/mL [95% CI, 9.9 to 22.4], P < .001). The most common grade 3 and higher adverse events for chemotherapy plus high-dose vs standard-dose vitamin D3 were neutropenia (n = 24 [35%] vs n = 21 [31%], respectively) and hypertension (n = 9 [13%] vs n = 11 [16%]). CONCLUSIONS AND RELEVANCE Among patients with metastatic CRC, addition of high-dose vitamin D3, vs standard-dose vitamin D3, to standard chemotherapy resulted in a difference in median PFS that was not statistically significant, but with a significantly improved supportive hazard ratio. These findings warrant further evaluation in a larger multicenter randomized clinical trial. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01516216.
Collapse
Affiliation(s)
- Kimmie Ng
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Halla S. Nimeiri
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | | - Rebecca Miksad
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Dan Zuckerman
- St Luke’s Mountain States Tumor Institute, Boise, Idaho
| | - Emily Chan
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | | | | | - Chen Yuan
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | - Hui Zheng
- Massachusetts General Hospital, Boston
| | | | | | | |
Collapse
|
27
|
Preclinical Prevention Trial of Calcitriol: Impact of Stage of Intervention and Duration of Treatment on Oral Carcinogenesis. Neoplasia 2019; 21:376-388. [PMID: 30875566 PMCID: PMC6416727 DOI: 10.1016/j.neo.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
The anticancer activity of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3 or calcitriol) has been widely reported in preclinical models. However, systematic investigation into the chemopreventive potential of calcitriol against the spectrum of oral carcinogenesis has not been performed. To address this gap in knowledge, we conducted a preclinical prevention trial of calcitriol in the 4-nitroquinoline-1-oxide (4NQO) oral carcinogenesis model. C57BL/6 mice were exposed to the carcinogen 4NQO in drinking water for 16 weeks and randomized to control (4NQO only) or calcitriol arms. Calcitriol (0.1 μg i.p, Monday, Wednesday, and Friday) was administered for (i) 16 weeks concurrently with 4NQO exposure, (ii) 10 weeks post completion of 4NQO exposure, and, (iii) a period of 26 weeks concurrent with and following 4NQO exposure. Longitudinal magnetic resonance imaging (MRI) was performed to monitor disease progression until end point (week 26). Correlative histopathology of tongue sections was performed to determine incidence and multiplicity of oral dysplastic lesions and squamous cell carcinomas (SCC). Vitamin D metabolites and calcium were measured in the serum using liquid chromatography-mass spectrometry (LC-MS/MS) and colorimetric assay, respectively. Renal CYP24A1 (24-hydroxylase) and CYP27B1 (1α-hydroxylase) expression was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Immunostaining of tongue sections for vitamin D receptor (VDR), CYP24A1, and Ki67 was also performed. Non-invasive MRI enabled longitudinal assessment of lesions in the oral cavity. Calcitriol administered concurrently with 4NQO for 16 weeks significantly (P < .001) decreased the number of premalignant lesions by 57% compared to 4NQO only controls. Mice treated with calcitriol for 26 weeks showed highest renal CYP24A1, lowest serum 1,25(OH)2D3 levels and highest incidence of invasive SCC. Immunohistochemistry revealed increased VDR, CYP24A1 and Ki67 staining in dysplastic epithelia compared to normal epithelium, in all four groups. Collectively, our results show that the effects of calcitriol on oral carcinogenesis are critically influenced by the stage of intervention and duration of exposure and provide the basis for exploring the potential of calcitriol for prevention of OSCC in the clinical setting.
Collapse
|
28
|
Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm Sin B 2019; 9:203-219. [PMID: 30972274 PMCID: PMC6437556 DOI: 10.1016/j.apsb.2018.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor cells along with a small proportion of cancer stem cells exist in a stromal microenvironment consisting of vasculature, cancer-associated fibroblasts, immune cells and extracellular components. Recent epidemiological and clinical studies strongly support that vitamin D supplementation is associated with reduced cancer risk and favorable prognosis. Experimental results suggest that vitamin D not only suppresses cancer cells, but also regulates tumor microenvironment to facilitate tumor repression. In this review, we have outlined the current knowledge on epidemiological studies and clinical trials of vitamin D. Notably, we summarized and discussed the anticancer action of vitamin D in cancer cells, cancer stem cells and stroma cells in tumor microenvironment, providing a better understanding of the role of vitamin D in cancer. We presently re-propose vitamin D to be a novel and economical anticancer agent.
Collapse
Key Words
- 1,25(OH)2D3, 1α,25-dihydroxyvitamin D3
- 1α,25-Dihydroxyvitamin D3
- 25(OH)D, 25-hydroxyvitamin D
- CAF, cancer-associated fibroblast
- CRC, colorectal cancer
- CSC, cancer stem cell
- Cancer stem cell
- Cancer-associated fibroblast
- DBP/GC, vitamin D-binding protein
- ESCC, esophageal squamous cell carcinoma
- GI, gastrointestinal
- NSCLC, non-small cell lung cancer
- PC, pancreatic adenocarcinoma
- PG, prostaglandin
- PSC, pancreatic stellate cells
- TDEC, tumor derived endothelial cell
- TIC, tumor initiating cell
- TIL, tumor-infiltrating lymphocyte
- TME, tumor microenvironment
- Tumor microenvironment
- Tumor-derived endothelial cell
- Tumor-infiltrating lymphocyte
- VDR, vitamin D receptor
- VDRE, VDR element
- VEGF, vascular endothelial growth factor
- Vitamin D
Collapse
|
29
|
Hermawan A, Putri H. Current report of natural product development against breast cancer stem cells. Int J Biochem Cell Biol 2018; 104:114-132. [DOI: 10.1016/j.biocel.2018.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
|
30
|
Zhao CN, Li Y, Meng X, Li S, Liu Q, Tang GY, Gan RY, Li HB. Insight into the roles of vitamins C and D against cancer: Myth or truth? Cancer Lett 2018; 431:161-170. [DOI: 10.1016/j.canlet.2018.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
|
31
|
Dittmer J. Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol 2018; 53:59-74. [PMID: 30059727 DOI: 10.1016/j.semcancer.2018.07.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The current view is that breast cancer is a stem cell disease characterized by the existence of cancer cells with stem-like features and tumor-initiating potential. These cells are made responsible for tumor dissemination and metastasis. Common therapies by chemotherapeutic drugs fail to eradicate these cells and rather increase the pool of cancer stem cells in tumors, an effect that may increase the likelyhood of recurrence. Fifteen years after the first evidence for a small stem-like subpopulation playing a major role in breast cancer initiation has been published a large body of knowledge has been accumulated regarding the signaling cascades and proteins involved in maintaining stemness in breast cancer. Differences in the stem cell pool size and in mechanisms regulating stemness in the different breast cancer subtypes have emerged. Overall, this knowledge offers new approaches to intervene with breast cancer stem cell activity. New options are particularly needed for the treatment of triple-negative breast cancer subtype, which is particularly rich in cancer stem cells and is also the subtype for which specific therapies are still not available.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
32
|
Pawlik A, Anisiewicz A, Filip-Psurska B, Nowak M, Turlej E, Trynda J, Banach J, Gretkierewicz P, Wietrzyk J. Calcitriol and Its Analogs Establish the Immunosuppressive Microenvironment That Drives Metastasis in 4T1 Mouse Mammary Gland Cancer. Int J Mol Sci 2018; 19:ijms19072116. [PMID: 30037009 PMCID: PMC6073894 DOI: 10.3390/ijms19072116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/15/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
Abstract
In our previous study, calcitriol and its analogs PRI-2191 and PRI-2205 stimulated 4T1 mouse mammary gland cancer metastasis. Therefore, we aimed to analyze the inflammatory response in 4T1-bearing mice treated with these compounds. Gene expression analysis of the splenocytes and regional lymph nodes demonstrated prevalence of the T helper lymphocytes (Th2) response with an increased activity of regulatory T (Treg) lymphocytes in mice treated with these compounds. We also observed an increased number of mature granulocytes and B lymphocytes and a decreased number of TCD4+, TCD4+CD25+, and TCD8+, as well as natural killer (NK) CD335+, cells in the blood of mice treated with calcitriol and its analogs. Among the splenocytes, we observed a significant decrease in NK CD335+ cells and an increase in TCD8+ cells. Calcitriol and its analogs decreased the levels of interleukin (IL)-1β and IL-10 and increased the level of interferon gamma (IFN-γ) in the plasma. In the tumor tissue, they caused an increase in the level of IL-10. Gene expression analysis of lung tissue demonstrated an increased level of osteopontin (Spp1) and transforming growth factor β (TGF-β) mRNA. The expression of Spp1 was also elevated in lymph nodes. Calcitriol and its analogs caused prevalence of tumor-conducive changes in the immune system of 4T1 tumor-bearing mice, despite the induction of some tumor-disadvantageous effects.
Collapse
Affiliation(s)
- Agata Pawlik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Marcin Nowak
- Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-3754 Wroclaw, Poland.
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Justyna Trynda
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Paweł Gretkierewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| |
Collapse
|
33
|
Welsh J. Vitamin D and breast cancer: Past and present. J Steroid Biochem Mol Biol 2018; 177:15-20. [PMID: 28746837 PMCID: PMC5780261 DOI: 10.1016/j.jsbmb.2017.07.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
The presence of the vitamin D receptor in mammary gland and breast cancer has been recognized since the early 1980s, and multiple pre-clinical studies have demonstrated that its ligand 1,25D modulates normal mammary gland development and sensitivity to carcinogenesis. Although studies have characterized many 1,25D responsive targets in normal mammary cells and in breast cancers, validation of relevant targets that regulate cell cycle, apoptosis, autophagy and differentiation, particularly in vivo, has been challenging. Vitamin D deficiency is common in breast cancer patients and some evidence suggests that low vitamin D status enhances the risk for disease development or progression. Model systems of carcinogenesis have provided evidence that both VDR expression and 1,25D actions change with transformation but clinical data regarding vitamin D responsiveness of established tumors is limited and inconclusive. Because breast cancer is heterogeneous, analysis of VDR actions in specific molecular subtypes of the disease is necessary to clarify the conflicting data. Genomic, proteomic and metabolomic analyses of in vitro and in vivo model systems is also warranted to comprehensively understand the network of vitamin D regulated pathways in the context of breast cancer heterogeneity.
Collapse
Affiliation(s)
- JoEllen Welsh
- University at Albany Cancer Research Center, 1 Discovery Drive, Rensselaer, NY 12061, United States.
| |
Collapse
|
34
|
Abstract
Cancer stem cells (CSCs) represent the root of many solid tumors including ovarian cancer. Eradication of CSCs represents a novel cancer therapeutic strategy. Calcitriol, also known as 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is an active metabolite of vitamin D, functioning as a potent steroid hormone. Calcitriol has shown anti-tumor effects in various cancers by regulating multiple signaling pathways. It has been reported that calcitriol can regulate the properties of normal and CSCs. However, the effect of calcitriol on the ovarian cancer growth and ovarian CSCs is still unclear. Here, by using a mouse subcutaneous xenograft model generated with human ovarian cancer cells, we have demonstrated that administration of calcitriol is able to strikingly delay the tumor growth. Calcitriol treatment can also deplete the ovarian CSC population characterized by ALDH+ and CD44+CD117+; decrease their capacity to form sphere under the CSC culture condition, and reduce the frequency of tumor-initiating cells, as evaluated by in vivo limiting dilution analysis. Mechanistic investigation revealed that calcitriol depletes CSCs via the nuclear vitamin D receptor (VDR)-mediated inhibition of the Wnt pathway. Furthermore, the activation of VDR pathway is more sensitive to calcitriol in ovarian CSCs than in non-CSCs, although the expression levels of VDR are comparable. Taken together, our data indicate that calcitriol is able to deplete the ovarian CSC population by inhibiting their Wnt signaling pathway, consequently, impeding the growth of xenograft tumors.
Collapse
|
35
|
Anisiewicz A, Pawlik A, Filip-Psurska B, Turlej E, Dzimira S, Milczarek M, Gdesz K, Papiernik D, Jarosz J, Kłopotowska D, Kutner A, Mazur A, Wietrzyk J. Unfavorable effect of calcitriol and its low-calcemic analogs on metastasis of 4T1 mouse mammary gland cancer. Int J Oncol 2017; 52:103-126. [PMID: 29115583 PMCID: PMC5743363 DOI: 10.3892/ijo.2017.4185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022] Open
Abstract
Low vitamin D status is considered as a risk factor for breast cancer and has prognostic significance. Furthermore, vitamin D deficiency increases after adjuvant cancer therapy, which alters bone metabolism increasing the risk of osteoporosis. It is now postulated that vitamin D supplementation in breast cancer treatment delays the recurrence of cancer thereby extending survival. We evaluated the impact of calcitriol and its low-calcemic analogs, PRI-2191 and PRI-2205, on the tumor growth, angiogenesis, and metastasis of 4T1 mouse mammary gland cancer. Gene expression analysis related to cancer invasion/metastasis, real-time PCR, ELISA, western blotting, and histochemical studies were performed. In vitro studies were conducted to compare the effects of calcitriol and its analogs on 4T1 and 67NR cell proliferation and expression of selected proteins. Calcitriol and its analogs increased lung metastasis without influencing the growth of primary tumor. The levels of plasma 17β-estradiol and transforming growth factor β (TGFβ) were found to be elevated after treatment. Moreover, the results showed that tumor blood perfusion improved and osteopontin (OPN) levels increased, whereas vascular endothelial growth factor (VEGF) and TGFβ levels decreased in tumors from treated mice. All the studied treatments resulted in increased collagen content in the tumor tissue in the early step of tumor progression, and calcitriol caused an increase in collagen content in lung tissue. In addition, in vitro proliferation of 4T1 tumor cells was not found to be affected by calcitriol or its analogs in contrast to non-metastatic 67NR cells. Calcitriol and its analogs enhanced the metastatic potential of 4T1 mouse mammary gland cancer by inducing the secretion of OPN probably via host cells. In addition, OPN tumor overexpression prevailed over the decreasing tumor TGFβ level and blood vessel normalization via tumor VEGF deprivation induced by calcitriol and its analogs. Moreover, the increased plasma TGFβ and 17β-estradiol levels contributed to the facilitation of metastatic process.
Collapse
Affiliation(s)
- Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Agata Pawlik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Stanisław Dzimira
- Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Katarzyna Gdesz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Diana Papiernik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Joanna Jarosz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Dagmara Kłopotowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Andrzej Kutner
- Department of Pharmacology, Pharmaceutical Research Institute, 01-793 Warsaw, Poland
| | - Andrzej Mazur
- Université Clermont Auvergne, INRA, UNH, F-63000 Clermont-Ferrand, France
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| |
Collapse
|
36
|
Welsh J. Function of the vitamin D endocrine system in mammary gland and breast cancer. Mol Cell Endocrinol 2017; 453:88-95. [PMID: 28579119 PMCID: PMC5538720 DOI: 10.1016/j.mce.2017.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/24/2022]
Abstract
The nuclear receptor for 1α,25-dihydroxycholecalciferol (1,25D), the active form of vitamin D, has anti-tumor actions in many tissues. The vitamin D receptor (VDR) is expressed in normal mammary gland and in many human breast cancers suggesting it may represent an important tumor suppressor gene in this tissue. When activated by 1,25D, VDR modulates multiple cellular pathways including those related to energy metabolism, terminal differentiation and inflammation. There is compelling pre-clinical evidence that alterations in vitamin D status affect breast cancer development and progression, while clinical and epidemiological data are suggestive but not entirely consistent. The demonstration that breast cells express CYP27B1 (which converts the precursor vitamin D metabolite 25D to the active metabolite 1,25D) and CYP24A1 (which degrades both 25D and 1,25D) provides insight into the difficulties inherent in using dietary vitamin D, sun exposure and/or serum biomarkers of vitamin D status to predict disease outcomes. Emerging evidence suggests that the normally tight balance between CYP27B1 and CYP24A1 becomes deregulated during cancer development, leading to abrogation of the tumor suppressive effects triggered by VDR. Research aimed at understanding the mechanisms that govern uptake, storage, metabolism and actions of vitamin D steroids in normal and neoplastic breast tissue remain an urgent priority.
Collapse
Affiliation(s)
- JoEllen Welsh
- University at Albany Cancer Research Center, 1 Discovery Drive, Rensselaer, NY 12144, United States.
| |
Collapse
|
37
|
Louka ML, Fawzy AM, Naiem AM, Elseknedy MF, Abdelhalim AE, Abdelghany MA. Vitamin D and K signaling pathways in hepatocellular carcinoma. Gene 2017; 629:108-116. [PMID: 28764978 DOI: 10.1016/j.gene.2017.07.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy, and is now the six most common in between malignancies. Early diagnosis of HCC with prompt treatment increases the opportunity of patients to survive. With the advances in understanding the molecular biology of HCC, new therapeutic strategies to treat HCC have emerged. There is a growing consensus that vitamins are important for the control of various cancers. Biochemical evidence clearly indicates that HCC cells are responsive to the inhibitory effect of vitamin D, vitamin D analogues and vitamin K. In this review, we summarize the mechanisms used by vitamin D and K to influence the development of HCC and the latest development of vitamin analogues for potential HCC therapy.
Collapse
Affiliation(s)
- Manal L Louka
- Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Ahmed M Fawzy
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Abdelrahman M Naiem
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Mustafa F Elseknedy
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Ahmed E Abdelhalim
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Mohamed A Abdelghany
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| |
Collapse
|
38
|
O'Brien KM, Sandler DP, Taylor JA, Weinberg CR. Serum Vitamin D and Risk of Breast Cancer within Five Years. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:077004. [PMID: 28728134 PMCID: PMC5744694 DOI: 10.1289/ehp943] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Vitamin D is an environmental and dietary agent with known anticarcinogenic effects, but protection against breast cancer has not been established. OBJECTIVE We evaluated the association between baseline serum 25-hydroxyvitamin D [25(OH)D] levels, supplemental vitamin D use, and breast cancer incidence over the subsequent 5 y of follow-up. METHODS From 2003-2009, the Sister Study enrolled 50,884 U.S. women 35-74 y old who had a sister with breast cancer but had never had breast cancer themselves. Using liquid chromatography-mass spectrometry, we measured 25(OH)D in serum samples from 1,611 women who later developed breast cancer and from 1,843 randomly selected cohort participants. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for the risk of developing breast cancer using Cox proportional hazards models. RESULTS We found that 25(OH)D levels were associated with a 21% lower breast cancer hazard (highest versus lowest quartile: adjusted ; CI: 0.63, 0.98). Analysis of the first 5 y of follow-up for all 50,884 Sister Study participants showed that self-reported vitamin D supplementation was associated with an 11% lower hazard [ (CI: 0.81, 0.99)]. These associations were particularly strong among postmenopausal women [ (CI: 0.57, 0.93) and (CI: 0.74, 0.93), respectively]. CONCLUSIONS In this cohort of women with elevated risk, high serum 25(OH)D levels and regular vitamin D supplement use were associated with lower rates of incident, postmenopausal breast cancer over 5 y of follow-up. These results may help to establish clinical benchmarks for 25(OH)D levels; in addition, they support the hypothesis that vitamin D supplementation is useful in breast cancer prevention. https://doi.org/10.1289/EHP943.
Collapse
Affiliation(s)
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health , Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health , Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | |
Collapse
|
39
|
Moukayed M, Grant WB. The roles of UVB and vitamin D in reducing risk of cancer incidence and mortality: A review of the epidemiology, clinical trials, and mechanisms. Rev Endocr Metab Disord 2017; 18:167-182. [PMID: 28213657 DOI: 10.1007/s11154-017-9415-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Global cancer incidence and mortality rates are high and increasing. Thus, it is imperative to find novel solutions to preventing cancer incidence and treating it at an affordable yet efficacious manner. The solar UVB-vitamin D-cancer hypothesis was first proposed in 1980 based on a geographical ecological study. Since then, numerous ecological and observational studies as well as studies of mechanisms have provided support for the hypothesis. However, observational studies have not provided consistent support, in part due to using a single blood draw from any season to use for serum 25-hydroxyvitamin D [25(OH)D] concentration in prospective studies with long follow-up times. Case-controls studies, in which blood is drawn near time of diagnosis, and prospective studies in which blood is drawn in the sunnier half of the year, are more likely to find significant inverse relations between 25(OH)D and cancer incidence. Three vitamin D plus calcium clinical trials have found significant reduction in all-cancer incidence. This paper reviews the evidence for vitamin D in reducing incidence of and increasing survival from breast, colorectal, lung, ovarian, pancreatic, and prostate cancer. The epidemiological evidence provides strong support for all of these types of cancer except for non-aggressive prostate cancer. Studies of the cellular mechanisms of vitamin D action in different cancer cell types, strongly indicate that vitamin D can exert protective and anti-tumorigenic activities that would retard cellular transformation, hyperplasia and cancer progression. Based on the scientific evidence reviewed in this paper, individuals and health providers can consider increasing 25(OH)D concentrations through sensible sun exposure and/or vitamin D supplementation to reduce risk of and, in conjunction with standard care, treat cancer. Public health acceptance of vitamin D for cancer prevention and treatment requires stronger support from vitamin D clinical trials.
Collapse
Affiliation(s)
- Meis Moukayed
- School of Arts and Sciences, American University in Dubai, P.O. Box 28282, Dubai, United Arab Emirates
| | - William B Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA, 94164-1603, USA.
| |
Collapse
|
40
|
Bailleul-Dubois J, Bidan N, Le Bourhis X, Lagadec C. Effet de la radiothérapie sur les cellules souches cancéreuses de cancer du sein : résistance, reprogrammation et traitements. ONCOLOGIE 2017. [DOI: 10.1007/s10269-017-2699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
41
|
Duffy MJ, Murray A, Synnott NC, O'Donovan N, Crown J. Vitamin D analogues: Potential use in cancer treatment. Crit Rev Oncol Hematol 2017; 112:190-197. [PMID: 28325259 DOI: 10.1016/j.critrevonc.2017.02.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/15/2016] [Accepted: 02/14/2017] [Indexed: 01/06/2023] Open
Abstract
The vitamin D receptor (VDR) is a member of the thyroid-steroid family of nuclear transcription factors. Following binding of the active form of vitamin D, i.e., 1,25(OH)2D3 (also known as calcitriol) and interaction with co-activators and co-repressors, VDR regulates the expression of several different genes. Although relatively little work has been carried out on VDR in human cancers, several epidemiological studies suggest that low circulating levels of vitamin D are associated with both an increased risk of developing specific cancer types and poor outcome in patients with specific diagnosed cancers. These associations apply especially in colorectal and breast cancer. Consistent with these findings, calcitriol as well as several of its synthetic analogues have been shown to inhibit tumor cell growth in vitro and in diverse animal model systems. Indeed, some of these vitamin D analogues with low calcemic inducing activity (e.g., EB1089, inecalcitol, paricalcitol) have progressed to clinical trials in patients with cancer. Preliminary results from these trials suggest that these vitamin D analogues have minimal toxicity, but clear evidence of efficacy remains to be shown. Although evidence of efficacy for mono-treatment with vitamin D analogues is currently lacking, several studies have reported that supplementation with calcitriol or the presence of high endogenous circulating levels of vitamin D enhances response to standard therapies.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland; UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | - Alyson Murray
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland; UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Naoise C Synnott
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland; UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
42
|
Lei SF, Yang DH, Wang MW. A historic study that opened a new chapter in nutritional science. Acta Pharmacol Sin 2016; 37:1641-1644. [PMID: 27867188 DOI: 10.1038/aps.2016.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022] Open
|
43
|
Diet-derived 25-hydroxyvitamin D3 activates vitamin D receptor target gene expression and suppresses EGFR mutant non-small cell lung cancer growth in vitro and in vivo. Oncotarget 2016; 7:995-1013. [PMID: 26654942 PMCID: PMC4808047 DOI: 10.18632/oncotarget.6493] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/15/2015] [Indexed: 12/24/2022] Open
Abstract
Epidemiologic studies implicate vitamin D status as a factor that influences growth of EGFR mutant lung cancers. However, laboratory based evidence of the biological effect of vitamin D in this disease is lacking. To fill this knowledge gap, we determined vitamin D receptor (VDR) expression in human lung tumors using a tissue microarray constructed of lung cancer cases from never-smokers (where EGFR gene mutations are prevalent). Nuclear VDR was detected in 19/19 EGFR mutant tumors. Expression tended to be higher in tumors with EGFR exon 19 deletions than those with EGFR L858R mutations. To study anti-proliferative activity and signaling, EGFR mutant lung cancer cells were treated with the circulating metabolite of vitamin D, 25-hydroxyvitamin D3 (25D3). 25D3 inhibited clonogenic growth in a dose-dependent manner. CYP27B1 encodes the 1α-hydroxylase (1αOHase) that converts 25D3 to the active metabolite, 1,25-dihydroxyvitamin D3 (1,25D3). Studies employing VDR siRNA, CYP27B1 zinc finger nucleases, and pharmacologic inhibitors of the vitamin D pathway indicate that 25D3 regulates gene expression in a VDR-dependent manner but does not strictly require 1αOHase-mediated conversion of 25D3 to 1,25D3. To determine the effects of modulating serum 25D3 levels on growth of EGFR mutant lung tumor xenografts, mice were fed diets containing 100 or 10,000 IU vitamin D3/kg. High dietary vitamin D3 intake resulted in elevated serum 25D3 and significant inhibition of tumor growth. No toxic effects of supplementation were observed. These results identify EGFR mutant lung cancer as a vitamin D-responsive disease and diet-derived 25D3 as a direct VDR agonist and therapeutic agent.
Collapse
|
44
|
Thakkar A, Wang B, Picon-Ruiz M, Buchwald P, Ince TA. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat 2016; 157:77-90. [PMID: 27120467 PMCID: PMC4869778 DOI: 10.1007/s10549-016-3807-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022]
Abstract
Anti-estrogen and anti-HER2 treatments have been among the first and most successful examples of targeted therapy for breast cancer (BC). However, the treatment of triple-negative BC (TNBC) that lack estrogen receptor expression or HER2 amplification remains a major challenge. We previously discovered that approximately two-thirds of TNBCs express vitamin D receptor (VDR) and/or androgen receptor (AR) and hypothesized that TNBCs co-expressing AR and VDR (HR2-av TNBC) could be treated by targeting both of these hormone receptors. To evaluate the feasibility of VDR/AR-targeted therapy in TNBC, we characterized 15 different BC lines and identified 2 HR2-av TNBC lines and examined the changes in their phenotype, viability, and proliferation after VDR and AR-targeted treatment. Treatment of BC cell lines with VDR or AR agonists inhibited cell viability in a receptor-dependent manner, and their combination appeared to inhibit cell viability additively. Moreover, cell viability was further decreased when AR/VDR agonist hormones were combined with chemotherapeutic drugs. The mechanisms of inhibition by AR/VDR agonist hormones included cell cycle arrest and apoptosis in TNBC cell lines. In addition, AR/VDR agonist hormones induced differentiation and inhibited cancer stem cells (CSCs) measured by reduction in tumorsphere formation efficiency, high aldehyde dehydrogenase activity, and CSC markers. Surprisingly, we found that AR antagonists inhibited proliferation of most BC cell lines in an AR-independent manner, raising questions regarding their mechanism of action. In summary, AR/VDR-targeted agonist hormone therapy can inhibit HR2-av TNBC through multiple mechanisms in a receptor-dependent manner and can be combined with chemotherapy.
Collapse
Affiliation(s)
- A Thakkar
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami, Miami, FL, USA
| | - B Wang
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - M Picon-Ruiz
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - P Buchwald
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - Tan A Ince
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
- , Biomedical Research Building, Room 926, 1501 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|