1
|
Jiang Y, Shen X, Zhi F, Wen Z, Gao Y, Xu J, Yang B, Bai Y. An overview of arsenic trioxide-involved combined treatment algorithms for leukemia: basic concepts and clinical implications. Cell Death Discov 2023; 9:266. [PMID: 37500645 PMCID: PMC10374529 DOI: 10.1038/s41420-023-01558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Arsenic trioxide is a first-line treatment drug for acute promyelocytic leukemia, which is also effective for other kinds of leukemia. Its side effects, however, limit its clinical application, especially for patients with complex leukemia symptoms. Combination therapy can effectively alleviate these problems. This review summarizes the research progress on the combination of arsenic trioxide with anticancer drugs, vitamin and vitamin analogs, plant products, and other kinds of drugs in the treatment of leukemia. Additionally, the new progress in arsenic trioxide-induced cardiotoxicity was summarized. This review aims to provide new insights for the rational clinical application of arsenic trioxide.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fengnan Zhi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengchao Wen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Gao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences (2019RU070), Harbin, China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
2
|
Takahashi S. Combination Therapies with Kinase Inhibitors for Acute Myeloid Leukemia Treatment. Hematol Rep 2023; 15:331-346. [PMID: 37367084 DOI: 10.3390/hematolrep15020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/10/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Targeting kinase activity is considered to be an attractive therapeutic strategy to overcome acute myeloid leukemia (AML) since aberrant activation of the kinase pathway plays a pivotal role in leukemogenesis through abnormal cell proliferation and differentiation block. Although clinical trials for kinase modulators as single agents remain scarce, combination therapies are an area of therapeutic interest. In this review, the author summarizes attractive kinase pathways for therapeutic targets and the combination strategies for these pathways. Specifically, the review focuses on combination therapies targeting the FLT3 pathways, as well as PI3K/AKT/mTOR, CDK and CHK1 pathways. From a literature review, combination therapies with the kinase inhibitors appear more promising than monotherapies with individual agents. Therefore, the development of efficient combination therapies with kinase inhibitors may result in effective therapeutic strategies for AML.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
3
|
Narayanan J, Tamilanban T, Kumar PS, Guru A, Muthupandian S, Kathiravan MK, Arockiaraj J. Role and mechanistic actions of protein kinase inhibitors as an effective drug target for cancer and COVID. Arch Microbiol 2023; 205:238. [PMID: 37193831 PMCID: PMC10188327 DOI: 10.1007/s00203-023-03559-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
Kinases can be grouped into 20 families which play a vital role as a regulator of neoplasia, metastasis, and cytokine suppression. Human genome sequencing has discovered more than 500 kinases. Mutations of the kinase itself or the pathway regulated by kinases leads to the progression of diseases such as Alzheimer's, viral infections, and cancers. Cancer chemotherapy has made significant leaps in recent years. The utilization of chemotherapeutic agents for treating cancers has become difficult due to their unpredictable nature and their toxicity toward the host cells. Therefore, targeted therapy as a therapeutic option against cancer-specific cells and toward the signaling pathways is a valuable avenue of research. SARS-CoV-2 is a member of the Betacoronavirus genus that is responsible for causing the COVID pandemic. Kinase family provides a valuable source of biological targets against cancers and for recent COVID infections. Kinases such as tyrosine kinases, Rho kinase, Bruton tyrosine kinase, ABL kinases, and NAK kinases play an important role in the modulation of signaling pathways involved in both cancers and viral infections such as COVID. These kinase inhibitors consist of multiple protein targets such as the viral replication machinery and specific molecules targeting signaling pathways for cancer. Thus, kinase inhibitors can be used for their anti-inflammatory, anti-fibrotic activity along with cytokine suppression in cases of COVID. The main goal of this review is to focus on the pharmacology of kinase inhibitors for cancer and COVID, as well as ideas for future development.
Collapse
Affiliation(s)
- J Narayanan
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - P Senthil Kumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, 600077, India.
| | - Saravanan Muthupandian
- AMR and Nanomedicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India.
| | - M K Kathiravan
- 209, Dr APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Illangeswaran RSS, Jebanesan DZP, Sivakumar KK, Vidhyadharan RT, Rajamani BM, Janet NB, David E, Velayudhan SR, Mathews V, Balasubramanian P. Chemotherapeutic drugs elicit stemness and metabolic alteration to mediate acquired drug-resistant phenotype in acute myeloid leukemia cell lines. Leuk Res 2023; 128:107054. [PMID: 36906941 DOI: 10.1016/j.leukres.2023.107054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Chemotherapy resistance leading to disease relapse is a significant barrier in treating acute myeloid leukemia (AML). Metabolic adaptations have been shown to contribute to therapy resistance. However, little is known about whether specific therapies cause specific metabolic changes. We established cytarabine-resistant (AraC-R) and Arsenic trioxide-resistant (ATO-R) AML cell lines, displaying distinct cell surface expression and cytogenetic abnormalities. Transcriptomic analysis revealed a significant difference in the expression profiles of ATO-R and AraC-R cells. Geneset enrichment analysis showed AraC-R cells rely on OXPHOS, while ATO-R cells on glycolysis. ATO-R cells were also enriched for stemness gene signatures, whereas AraC-R cells were not. The mito stress and glycolytic stress tests confirmed these findings. The distinct metabolic adaptation of AraC-R cells increased sensitivity to the OXPHOS inhibitor venetoclax. Cytarabine resistance was circumvented in AraC-R cells by combining Ven and AraC. In vivo, ATO-R cells showed increased repopulating potential, leading to aggressive leukemia compared to the parental and AraC-R. Overall, our study shows that different therapies can cause different metabolic changes and that these metabolic dependencies can be used to target chemotherapy-resistant AML.
Collapse
Affiliation(s)
| | | | | | | | | | - Nancy Beryl Janet
- Department of Haematology, Christian Medical College, Vellore, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Shaji Ramachandran Velayudhan
- Department of Haematology, Christian Medical College, Vellore, India; Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
5
|
The GSK3β/Mcl-1 axis is regulated by both FLT3-ITD and Axl and determines the apoptosis induction abilities of FLT3-ITD inhibitors. Cell Death Dis 2023; 9:44. [PMID: 36739272 PMCID: PMC9899255 DOI: 10.1038/s41420-023-01317-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) patients with FLT3-ITD mutations are associated with poor prognosis. FLT3-ITD inhibitors are developed and result in transient disease remission, but generally resistance develops. We propose that resistance occurs due to apoptosis evasion. We compared the abilities of five clinically used FLT3-ITD inhibitors, namely, midostaurin, crenolanib, gilteritinib, quizartinib, and sorafenib, to induce apoptosis. These drugs inhibit FLT3-ITD and induce apoptosis. Apoptosis induction is associated with GSK3β activation, Mcl-1 downregulation, and Bim upregulation. Sorafenib-resistant MOLM-13/sor cells have the secondary D835Y mutation and increased Axl signaling pathway with cross-resistance to quizartinib. Gilteritinib and crenolanib inhibit both FLT3-ITD and Axl and induce apoptosis in MOLM-13/sor cells, in which they activate GSK3β and downregulate Mcl-1. Inactivation of GSK3β through phosphorylation and inhibitors blocks apoptosis and Mcl-1 reduction. The Axl/GSK3β/Mcl-1 axis works as a feedback mechanism to attenuate apoptosis of FLT3-ITD inhibition. Homoharringtonine decreases the protein levels of Mcl-1, FLT3-ITD, and Axl. Moreover, it synergistically induces apoptosis with gilteritinib in vitro and prolongs survival of MOLM-13/sor xenografts. The GSK3β/Mcl-1 axis works as the hub of FLT3-ITD inhibitors and plays a critical role in resistance against FLT3-ITD AML-targeted therapy.
Collapse
|
6
|
Yuan W, Zhang S, Zhu H. Advances in clinical studies of FLT3 inhibitors in acute myeloid leukemia. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:507-514. [PMID: 37202100 DOI: 10.3724/zdxbyxb-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy. AML patients with FLT3 mutations tend to have a high relapse rate and poor outcome, so FLT3 gene has become an important target for AML treatment, and a series of FLT3 inhibitors have been developed. According to the characteristics of FLT3 inhibitors, they can be divided into first-generation FLT3 inhibitors and second-generation FLT3 inhibitors. So far, totally eight FLT3 inhibitors have been undergone clinical trials and only three were approved for the treatment of AML patients, including Midostourin, Quizartinib and Gilteritinib. FLT3 inhibitors can improve the response rate of patients by combining with standard chemotherapy; in the follow-up maintenance treatment, FLT3 inhibitors can also reduce the disease recurrence rate and improve the overall prognosis of patients. However, the primary drug resistance caused by the bone marrow microenvironment, as well as secondary resistance caused by other mutations may result in poor efficacy of FLT3 inhibitors. For such patients, the combination of FLT3 inhibitor with other drugs may reduce the occurrence of drug resistance and improve the subsequent efficacy of patients. This article reviews the current status of FLT3 inhibitors in clinical research of AML patients and the treatment of FLT3-resistant patients to provide reference for clinicians.
Collapse
Affiliation(s)
- Wei Yuan
- 1. Medical College of China Three Gorges University, Yichang 443000, Hubei Province, China
- 2. Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Shizhong Zhang
- 1. Medical College of China Three Gorges University, Yichang 443000, Hubei Province, China
- 2. Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Honghu Zhu
- 3. Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
7
|
Li H, Yu Y, Liu Y, Luo Z, Law BYK, Zheng Y, Huang X, Li W. Ursolic acid enhances the antitumor effects of sorafenib associated with Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis in human cancer. Pharmacol Res 2022; 182:106306. [PMID: 35714823 DOI: 10.1016/j.phrs.2022.106306] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 02/09/2023]
Abstract
As a broad-spectrum oral small molecule inhibitor targeting multikinase, sorafenib is currently approved for the clinical treatment of several types of cancer as a single agent. A considerable number of clinical trial results have indicated that combination therapies involving sorafenib have been shown to improve treatment efficacy and may lead to novel therapeutic applications. Ursolic acid (UA), a natural pentacyclic triterpene compound extracted from a great variety of traditional medicinal plants and most fruits and vegetables, exhibits a wide range of therapeutic potential, including against cancer, diabetes, brain disease, liver disease, cardiovascular diseases, and sarcopenia. In the present study, we investigated the antitumor effects of sorafenib in combination with ursolic acid and found that the two agents displayed significant synergistic antitumor activity in in vitro and in vivo tumor xenograft models. Sorafenib/UA induced selective apoptotic death and ferroptosis in various cancer cells by evoking a dramatic accumulation of intracellular lipid reactive oxygen species (ROS). Mechanistically, the combination treatment promoted Mcl-1 degradation, which regulates apoptosis. However, decreasing the protein level of SLC7A11 plays a critical role in sorafenib/UA-induced cell ferroptosis. Therefore, these results suggest that the synergistic antitumor effects of sorafenib combined with ursolic acid may involve the induction of Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis. Our findings may offer a novel effective therapeutic strategy for tumor treatment.
Collapse
Affiliation(s)
- Han Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - You Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhihong Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Yi Zheng
- Central Laboratory, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Xing Huang
- Center for Evidence-Based and Translational Medicine, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Hoang DH, Buettner R, Valerio M, Ghoda L, Zhang B, Kuo YH, Rosen ST, Burnett J, Marcucci G, Pullarkat V, Nguyen LXT. Arsenic Trioxide and Venetoclax Synergize against AML Progenitors by ROS Induction and Inhibition of Nrf2 Activation. Int J Mol Sci 2022; 23:6568. [PMID: 35743010 PMCID: PMC9223383 DOI: 10.3390/ijms23126568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 01/25/2023] Open
Abstract
Venetoclax (VEN) in combination with hypomethylating agents induces disease remission in patients with de novo AML, however, most patients eventually relapse. AML relapse is attributed to the persistence of drug-resistant leukemia stem cells (LSCs). LSCs need to maintain low intracellular levels of reactive oxygen species (ROS). Arsenic trioxide (ATO) induces apoptosis via upregulation of ROS-induced stress to DNA-repair mechanisms. Elevated ROS levels can trigger the Nrf2 antioxidant pathway to counteract the effects of high ROS levels. We hypothesized that ATO and VEN synergize in targeting LSCs through ROS induction by ATO and the known inhibitory effect of VEN on the Nrf2 antioxidant pathway. Using cell fractionation, immunoprecipitation, RNA-knockdown, and fluorescence assays we found that ATO activated nuclear translocation of Nrf2 and increased transcription of antioxidant enzymes, thereby attenuating the induction of ROS by ATO. VEN disrupted ATO-induced Nrf2 translocation and augmented ATO-induced ROS, thus enhancing apoptosis in LSCs. Using metabolic assays and electron microscopy, we found that the ATO+VEN combination decreased mitochondrial membrane potential, mitochondria size, fatty acid oxidation and oxidative phosphorylation, all of which enhanced apoptosis of LSCs derived from both VEN-sensitive and VEN-resistant AML primary cells. Our results indicate that ATO and VEN cooperate in inducing apoptosis of LSCs through potentiation of ROS induction, suggesting ATO+VEN is a promising regimen for treatment of VEN-sensitive and -resistant AML.
Collapse
Affiliation(s)
- Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Ralf Buettner
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Melissa Valerio
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Ya-Huei Kuo
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Steven T. Rosen
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - John Burnett
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Vinod Pullarkat
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| |
Collapse
|
9
|
Artesunate improves venetoclax plus cytarabine AML cell targeting by regulating the Noxa/Bim/Mcl-1/p-Chk1 axis. Cell Death Dis 2022; 13:379. [PMID: 35443722 PMCID: PMC9021233 DOI: 10.1038/s41419-022-04810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Venetoclax plus cytarabine therapy is approved for elderly acute myeloid leukemia (AML) patients and needs further improvement. We studied the mechanisms of venetoclax plus cytarabine treatment and searched for a third agent to enhance their effects. Cytarabine induces S phase arrest-mediated DNA damage with activation of DNA replication checkpoint kinase 1 (Chk1) through phosphorylation, while venetoclax induces B cell lymphoma 2 (Bcl-2)-interacting mediator of cell death (Bim)-mediated apoptotic DNA damage. Myeloid cell leukemia-1 (Mcl-1) plays negative roles in both events by sequestering Bim and accelerating Chk1 phosphorylation. Venetoclax releases Bim from Bcl-2 with increased Bim binding to Mcl-1. Artesunate, an antimalaria drug, induces Noxa to replace Bim from Mcl-1 and induces synergistic apoptosis with venetoclax accompanied with Mcl-1 reduction. Silencing Mcl-1 or adding venetoclax/artesunate diminishes the cytarabine resistance pathway p-Chk1. The triple combination exhibits S phase arrest with enhanced DNA damage, improves AML colony formation inhibition, and prolongs survival of two mice xenograft models compared to the venetoclax/cytarabine dual combination. Artesunate serves as a bridge for venetoclax and cytarabine combination by Noxa and Bim-mediated apoptosis and Mcl-1 reduction. We provide a new triple combination for AML treatment by targeting the Noxa/Mcl-1/Bim axis to reverse Mcl-1/p-Chk1 resistance of cytarabine therapy.
Collapse
|
10
|
Gao X, Deng B, Ran S, Li S. The effect of GSK-3β in arsenic-induced apoptosis of malignant tumor cells: a systematic review and meta-analysis. Toxicol Mech Methods 2022; 32:477-487. [PMID: 35272572 DOI: 10.1080/15376516.2022.2051654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Arsenic has been reported to induce apoptosis in malignant tumor cells. Therefore, it may be regarded as a treatment for cancers. The mitochondrial apoptosis pathway, mediated by GSK-3β, plays an important role in tumor cell apoptosis. Nonetheless, the regulation of GSK-3β by arsenic remains controversial. MATERIALS AND METHODS We included 19 articles, which conducts the role of GSK-3β in the process of arsenic-induced tumor cell apoptosis by the meta-analysis. RESULTS Compared with that of control group, the expression of GSK-3β (SMD= -0.92, 95% CI (-1.78, -0.06)), p-Akt (SMD= -5.46,95% CI (-8.67, -2.24)) were increased in the arsenic intervention group. Meanwhile, the combined treatment of arsenic and Akt agonists can inhibit p-GSK-3β. Using the dose and time subgroup analysis, it was shown that the low-dose (<5 μmol/L) and sub-chronic (>24 h) arsenic exposure could inhibit the expression of p-Akt (P < 0.05). In the subgroup analysis of GSK-3β sites, arsenic could inhibit p-Akt and GSK-3β (Ser9) (SMD = -0.95, 95% CI (-1.56, -0.33)). There was a positive dose-response relationship between arsenic and p-GSK-3β when the dose of arsenic was less than 8 μmol/L. The expression of Mcl-1 and pro-caspase-3 were decreased, while the loss of mitochondrial membrane potential and cleaved-caspase-3 increased significantly when arsenic stimulated GSK-3β (Ser9) (P < 0.05). CONCLUSION The study revealed that arsenic could induce tumor cell apoptosis, by inhibiting p-Akt/GSK-3β, and triggering the Mcl-1-dependent mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Xin Gao
- Department of Public Health, School of Medicine, Shihezi University, Xinjiang, China
| | - Bin Deng
- Department of Public Health, School of Medicine, Shihezi University, Xinjiang, China
| | - Shanshan Ran
- Department of Public Health, School of Medicine, Shihezi University, Xinjiang, China
| | - Shugang Li
- Department of Public Health, School of Medicine, Shihezi University, Xinjiang, China.,School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Han Y, Zhang H, Wang S, Li B, Xing K, Shi Y, Cao H, Zhang J, Tong T, Zang J, Guan L, Gao X, Wang Y, Liu D, Huang M, Jing Y, Zhao L. Optimization of 4,6-Disubstituted Pyrido[3,2- d]pyrimidines as Dual MNK/PIM Inhibitors to Inhibit Leukemia Cell Growth. J Med Chem 2021; 64:13719-13735. [PMID: 34515481 DOI: 10.1021/acs.jmedchem.1c01084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitogen-activated protein kinase-interacting kinases (MNKs) and provirus integration in maloney murine leukemia virus kinases (PIMs) are downstream enzymes of cell proliferation signaling pathways associated with the resistance of tyrosine kinase inhibitors. MNKs and PIMs have complementary effects to regulate cap-dependent translation of oncoproteins. Dual inhibitors of MNKs and PIMs have not been developed. We developed a novel 4,6-disubstituted pyrido[3,2-d]pyrimidine compound 21o with selective inhibition of MNKs and PIMs. The IC50's of 21o to inhibit MNK1 and MNK2 are 1 and 7 nM and those to inhibit PIM1, PIM2, and PIM3 are 43, 232, and 774 nM, respectively. 21o inhibits the growth of myeloid leukemia K562 and MOLM-13 cells with GI50's of 2.1 and 1.2 μM, respectively. 21o decreases the levels of p-eIF4E and p-4EBP1, the downstream products of MNKs and PIMs, as well as cap-dependent proteins c-myc, cyclin D1, and Mcl-1. 21o inhibits the growth of MOLM-13 cell xenografts without causing evident toxicity. 21o represents an innovative dual MNK/PIM inhibitor with a good pharmacokinetic profile.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huimin Zhang
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuxiang Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kun Xing
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuntao Shi
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongxue Cao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tong Tong
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jie Zang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihong Guan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxiao Gao
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuetong Wang
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongkui Jing
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
12
|
Antileukemic efficacy of a potent artemisinin combined with sorafenib and venetoclax. Blood Adv 2021; 5:711-724. [PMID: 33560385 DOI: 10.1182/bloodadvances.2020003429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Artemisinins are active against human leukemia cell lines and have low clinical toxicity in worldwide use as antimalarials. Because multiagent combination regimens are necessary to cure fully evolved leukemias, we sought to leverage our previous finding that artemisinin analogs synergize with kinase inhibitors, including sorafenib (SOR), by identifying additional synergistic antileukemic drugs with low toxicity. Screening of a targeted antineoplastic drug library revealed that B-cell lymphoma 2 (BCL2) inhibitors synergize with artemisinins, and validation assays confirmed that the selective BCL2 inhibitor, venetoclax (VEN), synergized with artemisinin analogs to inhibit growth and induce apoptotic cell death of multiple acute leukemia cell lines in vitro. An oral 3-drug "SAV" regimen (SOR plus the potent artemisinin-derived trioxane diphenylphosphate 838 dimeric analog [ART838] plus VEN) killed leukemia cell lines and primary cells in vitro. Leukemia cells cultured in ART838 had decreased induced myeloid leukemia cell differentiation protein (MCL1) levels and increased levels of DNA damage-inducible transcript 3 (DDIT3; GADD153) messenger RNA and its encoded CCATT/enhancer-binding protein homologous protein (CHOP), a key component of the integrated stress response. Thus, synergy of the SAV combination may involve combined targeting of MCL1 and BCL2 via discrete, tolerable mechanisms, and cellular levels of MCL1 and DDIT3/CHOP may serve as biomarkers for action of artemisinins and SAV. Finally, SAV treatment was tolerable and resulted in deep responses with extended survival in 2 acute myeloid leukemia (AML) cell line xenograft models, both harboring a mixed lineage leukemia gene rearrangement and an FMS-like receptor tyrosine kinase-3 internal tandem duplication, and inhibited growth in 2 AML primagraft models.
Collapse
|
13
|
Cho H, Jang JE, Eom JI, Jeung HK, Chung H, Kim JS, Cheong JW, Min YH. Arsenic trioxide synergistically promotes the antileukaemic activity of venetoclax by downregulating Mcl-1 in acute myeloid leukaemia cells. Exp Hematol Oncol 2021; 10:28. [PMID: 33858507 PMCID: PMC8051086 DOI: 10.1186/s40164-021-00221-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The evasion of apoptosis through dysregulated Bcl-2 family members is a hallmark of leukaemia stem cells (LSCs) in acute myeloid leukaemia (AML). Therefore, targeting Bcl-2 with venetoclax has been suggested as an attractive strategy for inducing apoptosis in AML LSCs. However, the selective inhibition of Bcl-2 in AML often leads to upregulation of Mcl-1, another dominant anti-apoptotic Bcl-2 family protein conferring venetoclax resistance. METHODS We assessed the combined effect of venetoclax and arsenic trioxide (ATO) on leukaemic cell viability, apoptosis, combination index, and cell cycle in the human LSC-like KG1 and KG1a cells. The synergistic effect of venetoclax and ATO on apoptosis was also examined in primary CD34+ and CD34+CD38- LSCs from the bone marrow (BM) of AML patients, and compared with those from healthy donors. RESULTS Venetoclax efficiently impaired cell viability and dose-dependently promoted apoptosis when combined with ATO; their synergism was aptly represented by the combination index. The combination of venetoclax and ATO impaired cell cycle progression by restricting cells within the sub-G1 phase and facilitating caspase-dependent apoptotic cell death associated with the loss of mitochondrial membrane potential, while sparing healthy BM haematopoietic stem cells. Mechanistically, ATO mitigated venetoclax-induced upregulation of Mcl-1 by the inhibition of AKT and ERK, along with activation of GSK-3β. This led to the Mcl-1 destabilisation, triggering Noxa and Bim to facilitate apoptosis and the consequent activation of the apoptosis executioner protein Bak. Moreover, the combination promoted phosphorylation of ATM, Chk2, p38, and H2AX, indicating an active DNA damage response. CONCLUSIONS Our findings demonstrate the synergistic, preferential antileukaemic effects of venetoclax and ATO on LSCs, providing a rationale for preclinical and clinical trials by combining these agents already being used in clinical practice to treat acute leukaemia.
Collapse
Affiliation(s)
- Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Eun Jang
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Ju-In Eom
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hoi-Kyung Jeung
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Seok Kim
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - June-Won Cheong
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoo Hong Min
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
14
|
Wang Z, Cai J, Cheng J, Yang W, Zhu Y, Li H, Lu T, Chen Y, Lu S. FLT3 Inhibitors in Acute Myeloid Leukemia: Challenges and Recent Developments in Overcoming Resistance. J Med Chem 2021; 64:2878-2900. [PMID: 33719439 DOI: 10.1021/acs.jmedchem.0c01851] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene are often present in newly diagnosed acute myeloid leukemia (AML) patients with an incidence rate of approximately 30%. Recently, many FLT3 inhibitors have been developed and exhibit positive preclinical and clinical effects against AML. However, patients develop resistance soon after undergoing FLT3 inhibitor treatment, resulting in short durable responses and poor clinical effects. This review will discuss the main mechanisms of resistance to clinical FLT3 inhibitors and summarize the emerging strategies that are utilized to overcome drug resistance. Basically, medicinal chemistry efforts to develop new small-molecule FLT3 inhibitors offer a direct solution to this problem. Other potential strategies include the combination of FLT3 inhibitors with other therapies and the development of multitarget inhibitors. It is hoped that this review will provide inspiring insights into the discovery of new AML therapies that can eventually overcome the resistance to current FLT3 inhibitors.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jiongheng Cai
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jie Cheng
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Wenqianzi Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yifan Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| |
Collapse
|
15
|
Fang T, Liu L, Liu W. Network pharmacology-based strategy for predicting therapy targets of Tripterygium wilfordii on acute myeloid leukemia. Medicine (Baltimore) 2020; 99:e23546. [PMID: 33327305 PMCID: PMC7738111 DOI: 10.1097/md.0000000000023546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This is a study on the potential therapeutic targets and pharmacological mechanism of Tripterygium wilfordii (TW) in acute myeloid leukemia (AML) based on network pharmacology.Active components of TW were obtained by network pharmacology through oral bioavailability, drug-likeness filtration. Comparative analysis was used to investigate the overlapping genes between active ingredient's targets and AML treatment-related targets. Using STRING database to analyze interactions among overlapping genes. Both KEGG pathway analysis and Gene Ontology enrichment analysis were conducted in DAVID. These genes were analyzed for survival in OncoLnc database.We screened 53 active ingredients; the results of comparative analysis showed that 8 active ingredients had an effect on AML treatment. On the basis of the active ingredients and overlapping genes, we constructed the Drug-Compounds-Genes-Disease Network. Survival analysis of overlapping genes indicated that some targets possessed a significant influence on patients' survival and prognosis. The enrichment analysis showed that the main pathways of targets were Toll-like receptor signaling pathway, NF-kappa B signaling pathway, and HIF-1 signaling pathway.This study, using a network pharmacologic approach, provides another strategy that can help us to understand the mechanisms by which TW treats AML comprehensively.
Collapse
Affiliation(s)
- Tingting Fang
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University
| | - Lanqin Liu
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University
| | - Wenjun Liu
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University
- Birth Defects Clinical Research Center of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
16
|
Hu X, Cai J, Zhu J, Lang W, Zhong J, Zhong H, Chen F. Arsenic trioxide potentiates Gilteritinib-induced apoptosis in FLT3-ITD positive leukemic cells via IRE1a-JNK-mediated endoplasmic reticulum stress. Cancer Cell Int 2020; 20:250. [PMID: 32565734 PMCID: PMC7298957 DOI: 10.1186/s12935-020-01341-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Acute myeloid leukemia (AML) patients with FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) have a high relapse rate and poor prognosis. This study aims to explore the underlying mechanism of combining Gilteritinib with ATO at low concentration in the treatment of FLT3-ITD positive leukemias. Methods We used both in vitro and in vivo studies to investigate the effects of combination of Gilteritinib with ATO at low concentration on FLT3-ITD positive leukemias, together with the underlying molecular mechanisms of these processes. Results Combination of Gilteritinib with ATO showed synergistic effects on inhibiting proliferation, increasing apoptosis and attenuating invasive ability in FLT3-ITD-mutated cells and reducing tumor growth in nude mice. Results of western blot indicated that Gilteritinib increased a 160KD form of FLT3 protein on the surface of cell membrane. Detection of endoplasmic reticulum stress marker protein revealed that IRE1a and its downstream signal phosphorylated JNK were suppressed in Gilteritinib-treated FLT3-ITD positive cells. The downregulation of IRE1a induced by Gilteritinib was reversed with addition of ATO. Knockdown of IRE1a diminished the combinatorial effects of Gilteritinib plus ATO treatment and combination of tunicamycin (an endoplasmic reticulum pathway activator) with Gilteritinib achieved the similar effect as treatment with Gilteritinib plus ATO. Conclusions Thus, ATO at low concentration potentiates Gilteritinib-induced apoptosis in FLT3-ITD positive leukemic cells via IRE1a-JNK signal pathway, targeting IRE1a to cooperate with Gilteritinib may serve as a new theoretical basis on FLT3-ITD mutant AML treatment.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Jianyi Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Wenjing Lang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| |
Collapse
|
17
|
Li S, Ren Q. Effects of Arsenic on wnt/β-catenin Signaling Pathway: A Systematic Review and Meta-analysis. Chem Res Toxicol 2020; 33:1458-1467. [PMID: 32307979 DOI: 10.1021/acs.chemrestox.0c00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We aimed to systematically evaluate the regulatory effect of arsenic on wnt/β-catenin signaling pathway and to provide theoretical basis for revealing the mechanism of the relationship between arsenic and cell proliferation. The meta-analysis was carried out using Revman5.2 and Stata13.0 to describe the differences between groups with standard mean difference. We found in normal cells that the levels of wnt3a, β-catenin, glycogen synthase kinase-3β phosphorylated at serine 9 (p-GSK-3β(Ser9)), cyclinD1, proto-oncogene c-myc, and vascular endothelial growth factor (VEGF) in the arsenic intervention group were higher than those in the control group, and the level of glycogen synthase kinase-3β (GSK-3β) was lower than that in the control group (P < 0.05, respectively). Subgroup analysis showed that for a long time period (>24 h), the level of β-catenin in the arsenic intervention group was higher than that in the control group, and the level of GSK-3β of the same long-time period (>24 h) with low-dose (≤5 μM) intervention was lower than those in the control group (P < 0.05, respectively). In cancer cells, the levels of β-catenin, cyclinD1, c-myc, and VEGF in the arsenic intervention group were lower than those in the control group, while the level of GSK-3β in the arsenic intervention group was higher than that in the control group (P < 0.05, respectively). Subgroup analysis showed that the levels of β-catenin, cyclinD1, and c-myc in the high-dose (>5 μM) arsenic intervention group were lower than those in the control group, and the levels of β-catenin and cyclinD1 in the high-dose (>5 μM) arsenic intervention group were lower than those in the low-dose (≤5 μM) arsenic intervention group (P < 0.05, respectively). In addition, the regulation of arsenic on β-catenin was dose-dependent in the range of arsenic concentration from 0 to 7.5 μM. This study revealed that arsenic could upregulate wnt/β-catenin signaling pathway in normal cells and downregulate it in cancer cells, and its effect was affected by time and dose.
Collapse
Affiliation(s)
- Shugang Li
- Department of Child, Adolescent Health and Maternal Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qingxin Ren
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang China
| |
Collapse
|
18
|
Pottier C, Fresnais M, Gilon M, Jérusalem G, Longuespée R, Sounni NE. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers (Basel) 2020; 12:cancers12030731. [PMID: 32244867 PMCID: PMC7140093 DOI: 10.3390/cancers12030731] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are key regulatory signaling proteins governing cancer cell growth and metastasis. During the last two decades, several molecules targeting RTKs were used in oncology as a first or second line therapy in different types of cancer. However, their effectiveness is limited by the appearance of resistance or adverse effects. In this review, we summarize the main features of RTKs and their inhibitors (RTKIs), their current use in oncology, and mechanisms of resistance. We also describe the technological advances of artificial intelligence, chemoproteomics, and microfluidics in elaborating powerful strategies that could be used in providing more efficient and selective small molecules inhibitors of RTKs. Finally, we discuss the interest of therapeutic combination of different RTKIs or with other molecules for personalized treatments, and the challenge for effective combination with less toxic and off-target effects.
Collapse
Affiliation(s)
- Charles Pottier
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium;
- Correspondence:
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, 69120 Heidelberg, Germany; (M.F.); (R.L.)
- German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marie Gilon
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
| | - Guy Jérusalem
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium;
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, 69120 Heidelberg, Germany; (M.F.); (R.L.)
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
| |
Collapse
|
19
|
Liu XJ, Wang LN, Zhang ZH, Liang C, Li Y, Luo JS, Peng CJ, Zhang XL, Ke ZY, Huang LB, Tang YL, Luo XQ. Arsenic trioxide induces autophagic degradation of the FLT3-ITD mutated protein in FLT3-ITD acute myeloid leukemia cells. J Cancer 2020; 11:3476-3482. [PMID: 32284743 PMCID: PMC7150460 DOI: 10.7150/jca.29751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
The prognosis of acute myeloid leukemia (AML) with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutations is poor. Some studies, including our previous study, have indicated that arsenic trioxide (ATO) exhibited significant anti-carcinogenic activity in FLT3-ITD AML cells and explored the possibility of targeting the FLT3-ITD protein for degradation as a therapy. Autophagy is a critical mechanism of the anti-leukemic effects of ATO. In this study, we explored the therapeutic efficacy of ATO treatment in a mouse model bearing FLT3-ITD AML and found that ATO significantly reduced the leukemic burden in bone marrow and spleen. We also found that autophagy was responsible for, at least in part, the degradation of the FLT3-ITD protein by ATO. After ATO treatment, MV4-11 cells showed complete autophagic flux. The autophagy inhibitor bafilomycin A or down-regulation of the key autophagy genes Atg5 and Atg7 reversed the FLT3 degradation induced by ATO. We also found that p62/SQSTM1 delivered FLT3-ITD proteins to the lysosome, where they were subsequently degraded. These results indicate that ATO can induce autophagic degradation of the FLT3-ITD mutated protein in FLT3-ITD AML.
Collapse
Affiliation(s)
- Xiao-Jian Liu
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Na Wang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zu-Han Zhang
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Cong Liang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Li
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie-Si Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chun-Jin Peng
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Li Zhang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Yong Ke
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Bin Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan-Lai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue-Qun Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
20
|
Haghi A, Salami M, Mohammadi Kian M, Nikbakht M, Mohammadi S, Chahardouli B, Rostami SH, Malekzadeh K. Effects of Sorafenib and Arsenic Trioxide on U937 and KG-1 Cell Lines: Apoptosis or Autophagy? CELL JOURNAL 2019; 22:253-262. [PMID: 31863650 PMCID: PMC6947003 DOI: 10.22074/cellj.2020.6728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Objective Acute myeloid leukemia (AML) is a clonal disorder of hemopoietic progenitor cells. The Raf serine/threonine (Ser/Thr) protein kinase isoforms including B-Raf and RAF1, are the upstream in the MAPK cascade that play essential functions in regulating cellular proliferation and survival. Activated autophagy-related genes have a dual role in both cell death and cell survival in cancer cells. The cytotoxic activities of arsenic trioxide (ATO) were widely assessed in many cancers. Sorafenib is known as a multikinase inhibitor which acts through suppression of Ser/Thr kinase Raf that was reported to have a key role in tumor cell signaling, proliferation, and angiogenesis. In this study, we examined the combination effect of ATO and sorafenib in AML cell lines. Materials and Methods In this experimental study, we studied in vitro effects of ATO and sorafenib on human leukemia cell lines. The effective concentrations of compounds were determined by MTT assay in both single and combination treatments. Apoptosis was evaluated by annexin-V FITC staining. Finally, mRNA levels of apoptotic and autophagy genes were evaluated using real-time polymerase chain reaction (PCR). Results Data demonstrated that sorafenib, ATO, and their combination significantly increase the number of apoptotic cells. We found that the combination of ATO and sorafenib significantly reduces the viability of U937 and KG-1 cells. The expression level of selective autophagy genes, ULK1 and Beclin1 decreased but LC3-II increased in U937. Conclusion The expression levels of apoptotic and autophagy activator genes were increased in response to treatment. The crosstalk between apoptosis and autophagy is a complicated mechanism and further investigations seem to be necessary.
Collapse
Affiliation(s)
- Atousa Haghi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdieh Salami
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Mohammadi Kian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikbakht
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Saeed Mohammadi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Bahram Chahardouli
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - S Haharbano Rostami
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kianoosh Malekzadeh
- Molecular Medicine Research Center (MMRC), Hormozgan University of Medical Science (HUMS), Bandar Abbass, Iran
| |
Collapse
|
21
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
22
|
Wang WT, Han C, Sun YM, Chen ZH, Fang K, Huang W, Sun LY, Zeng ZC, Luo XQ, Chen YQ. Activation of the Lysosome-Associated Membrane Protein LAMP5 by DOT1L Serves as a Bodyguard for MLL Fusion Oncoproteins to Evade Degradation in Leukemia. Clin Cancer Res 2019; 25:2795-2808. [PMID: 30651276 DOI: 10.1158/1078-0432.ccr-18-1474] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/11/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite many attempts to understand mixed-lineage leukemia (MLL leukemia), effective therapies for this disease remain limited. We identified a lysosome-associated membrane protein (LAMP) family member, LAMP5, that is specifically and highly expressed in patients with MLL leukemia. The purpose of the study was to demonstrate the functional relevance and clinical value of LAMP5 in the disease. EXPERIMENTAL DESIGN We first recruited a large cohort of leukemia patients to validate LAMP5 expression and evaluate its clinical value. We then performed in vitro and in vivo experiments to investigate the functional relevance of LAMP5 in MLL leukemia progression or maintenance. RESULTS LAMP5 was validated as being specifically and highly expressed in patients with MLL leukemia and was associated with a poor outcome. Functional studies showed that LAMP5 is a novel autophagic suppressor and protects MLL fusion proteins from autophagic degradation. Specifically targeting LAMP5 significantly promoted degradation of MLL fusion proteins and inhibited MLL leukemia progression in both an animal model and primary cells. We further revealed that LAMP5 is a direct target of the H3K79 histone methyltransferase DOT1L. Downregulating LAMP5 with a DOT1L inhibitor enhanced the selective autophagic degradation of MLL oncoproteins and extended survival in vivo; this observation was especially significant when combining DOT1L inhibitors with LAMP5 knockdown. CONCLUSIONS This study demonstrates that LAMP5 serves as a "bodyguard" for MLL fusions to evade degradation and is the first to link H3K79 methylation to autophagy regulation, highlighting the potential of LAMP5 as a therapeutic target for MLL leukemia.
Collapse
Affiliation(s)
- Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Zhen-Hua Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Xue-Qun Luo
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Li J, Yang L, Shen R, Gong L, Tian Z, Qiu H, Shi Z, Gao L, Sun H, Zhang G. Self-nanoemulsifying system improves oral absorption and enhances anti-acute myeloid leukemia activity of berberine. J Nanobiotechnology 2018; 16:76. [PMID: 30290822 PMCID: PMC6172716 DOI: 10.1186/s12951-018-0402-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recently, we found that berberine (BBR) exerts anti-acute myeloid leukemia activity, particularly toward high-risk and relapsed/refractory acute myeloid leukemia MV4-11 cells in vitro. However, the poor water solubility and low bioavailability observed with oral BBR administration has limited its clinical use. Therefore, we design and develop a novel oil-in-water self-nanoemulsifying system for BBR (BBR SNE) to improve oral bioavailability and enhance BBR efficacy against acute myeloid leukemia by greatly improving its solubility. RESULTS This system (size 23.50 ± 1.67 nm, zeta potential - 3.35 ± 0.03 mV) was prepared with RH40 (surfactant), 1,2-propanediol (co-surfactant), squalene (oil) and BBR using low-energy emulsification methods. The system loaded BBR successfully according to thermal gravimetric, differential scanning calorimetry, and Fourier transform infrared spectroscopy analyses. The release profile results showed that BBR SNE released BBR more slowly than BBR solution. The relative oral bioavailability of this novel system in rabbits was significantly enhanced by 3.41-fold over that of BBR. Furthermore, Caco-2 cell monolayer transport studies showed that this system could help enhance permeation and prevent efflux of BBR. Importantly, mice with BBR SNE treatment had significantly longer survival time than BBR-treated mice (P < 0.001) in an MV4-11 engrafted leukemia murine model. CONCLUSIONS These studies confirmed that BBR SNE is a promising therapy for acute myeloid leukemia.
Collapse
Affiliation(s)
- Jieping Li
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Li Yang
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Rui Shen
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Li Gong
- Department of Clinical Laboratory, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120 People’s Republic of China
| | - Zhiqiang Tian
- Army Military Medical University of Chinese PLA, Chongqing, 400038 People’s Republic of China
| | - Huarong Qiu
- Air Force Military Medical University of Chinese PLA, Xi’an, 710000 Shanxi People’s Republic of China
| | - Zhe Shi
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Lichen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Hongwu Sun
- Army Military Medical University of Chinese PLA, Chongqing, 400038 People’s Republic of China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
24
|
Nagai K, Hou L, Li L, Nguyen B, Seale T, Shirley C, Ma H, Levis M, Ghiaur G, Duffield A, Small D. Combination of ATO with FLT3 TKIs eliminates FLT3/ITD+ leukemia cells through reduced expression of FLT3. Oncotarget 2018; 9:32885-32899. [PMID: 30250637 PMCID: PMC6152471 DOI: 10.18632/oncotarget.25972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/02/2022] Open
Abstract
Acute myeloid leukemia (AML) patients with FLT3/ITD mutations have a poor prognosis. Monotherapy with selective FLT3 tyrosine kinase inhibitors (TKIs) have shown transient and limited efficacy due to the development of resistance. Arsenic trioxide (ATO, As2O3) has been proven effective in treating acute promyelocytic leukemia (APL) and has shown activity in some cases of refractory and relapsed AML and other hematologic malignances. We explored the feasibility of combining FLT3 TKIs with ATO in the treatment of FLT3/ITD+ leukemias. The combination of FLT3 TKIs with ATO showed synergistic effects in reducing proliferation, viability and colony forming ability, and increased apoptosis in FLT3/ITD+ cells and primary patient samples. In contrast, no cooperativity was observed against wild-type FLT3 leukemia cells. ATO reduced expression of FLT3 RNA and its upstream transcriptional regulators (HOXA9, MEIS1), and induced poly-ubiquitination and degradation of the FLT3 protein, partly through reducing its binding with USP10. ATO also synergizes with FLT3 TKIs to inactivate FLT3 autophosphorylation and phosphorylation of its downstream signaling targets, including STAT5, AKT and ERK. Furthermore, ATO combined with sorafenib, a FLT3 TKI, in vivo reduced growth of FLT3/ITD+ leukemia cells in NSG recipients. In conclusion, these results suggest that ATO is a potential candidate to study in clinical trials in combination with FLT3 TKIs to improve the treatment of FLT3/ITD+ leukemia.
Collapse
Affiliation(s)
- Kozo Nagai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lihong Hou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bao Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tessa Seale
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney Shirley
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hayley Ma
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabriel Ghiaur
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Duffield
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Small
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|