1
|
Lian J, Zhuang H, Li F, Pei R, Chen D, Ye P, Li S, Wang T, Cao J, Yuan J, Yu Z, Lu Y. High expression of EBP is an adverse prognostic factor for de novo acute myeloid leukemia. Hematology 2024; 29:2381171. [PMID: 39087796 DOI: 10.1080/16078454.2024.2381171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease, for which identifying reliable prognostic markers is critical for accurate clinical prognosis and treatment optimization. The inhibition of emopamil-binding protein gene (EBP) expression has been demonstrated to induce cancer cell death via depleting downstream sterols. Nevertheless, no comprehensive studies have been conducted specifically in tumors, including AML. METHOD Herein, survival analyses were performed on the dataset obtained from The Cancer Genome Atlas (TCGA). Besides, the EBP levels were quantified using real-time qPCR in a cohort of 120 AML patients, and the value of EBP was further assessed using our clinical data. RESULTS Patients with high EBP expression had worse overall survival (OS) and event-free survival (EFS) than patients with low EBP expression, both in the TCGA dataset and our clinical data. Additionally, white blood cell (WBC) counts were higher in patients with high EBP expression (P = 0.032). Moreover, in patients with intermediate-risk AML, it was discovered that elevated EBP expression was linked to a worse EFS (P = 0.038). Multivariate analysis demonstrated that high EBP expression was an independent prognostic factor in AML patients and was associated with a shorter OS and EFS (OS: P = 0.041; EFS: P = 0.017). Furthermore, the data revealed that transplantation in the high-EBP group led to an improvement in survival (OS: P = 0.001; EFS: P = 0.001). The same benefit was also observed in intermediate-risk AML patients (OS: P = 0.026; EFS: P = 0.026). CONCLUSION Collectively, our findings indicated that high expression of EBP in AML patients was an adverse prognostic factor, but transplantation had the otential to alleviate its negative effects.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Female
- Male
- Middle Aged
- Prognosis
- Adult
- Aged
- Biomarkers, Tumor
- Young Adult
- RNA-Binding Proteins
- Adaptor Proteins, Signal Transducing
Collapse
Affiliation(s)
- Jiaying Lian
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| | - Haihui Zhuang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| | - Fenglin Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| | - Dong Chen
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| | - Peipei Ye
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| | - Shuangyue Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| | - Tiantian Wang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| | - Junjie Cao
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| | - Jiaojiao Yuan
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| | - Zhuruohan Yu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, People's Republic of China
- Institute of Hematology, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
2
|
Li X, Xu M, Chen Y, Zhai Y, Li J, Zhang N, Yin J, Wang L. Metabolomics for hematologic malignancies: Advances and perspective. Medicine (Baltimore) 2024; 103:e39782. [PMID: 39312378 PMCID: PMC11419435 DOI: 10.1097/md.0000000000039782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
With the use of advanced technology, metabolomics allows for a thorough examination of metabolites and other small molecules found in biological specimens, blood, and tissues. In recent years, metabolomics has been recognized that is closely related to the development of malignancies in the hematological system. Alterations in metabolomic pathways and networks are important in the pathogenesis of hematologic malignancies and can also provide a theoretical basis for early diagnosis, efficacy evaluation, accurate staging, and individualized targeted therapy. In this review, we summarize the progress of metabolomics, including glucose metabolism, amino acid metabolism, and lipid metabolism in lymphoma, myeloma, and leukemia through specific mechanisms and pathways. The research of metabolomics gives a new insight and provides therapeutic targets for the treatment of patients with hematologic malignancies.
Collapse
Affiliation(s)
- Xinglan Li
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, PR China
| | - Mengyu Xu
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, PR China
| | - Yanying Chen
- Hematology Laboratory, Linyi People’s Hospital, Linyi, PR China
| | - Yongqing Zhai
- Department of Orthopedics, Linyi People’s Hospital, Linyi, PR China
| | - Junhong Li
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, PR China
| | - Ning Zhang
- Department of Anesthesiology, Linyi People’s Hospital, Linyi, PR China
| | - Jiawei Yin
- Central Laboratory, Linyi People’s Hospital, Linyi, PR China
- Key Laboratory of Tumor Biology, Linyi, PR China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, PR China
| | - Lijuan Wang
- Central Laboratory, Linyi People’s Hospital, Linyi, PR China
- Key Laboratory of Tumor Biology, Linyi, PR China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, PR China
- Department of Hematology, Linyi People’s Hospital, Linyi, PR China
| |
Collapse
|
3
|
Wang Z, Liu M, Yang Q. Glutamine and leukemia research: progress and clinical prospects. Discov Oncol 2024; 15:391. [PMID: 39215845 PMCID: PMC11365919 DOI: 10.1007/s12672-024-01245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Leukemia is an abnormal proliferation of white blood cells that occurs in bone marrow and expands through the blood. It arises from dysregulated differentiation, uncontrolled growth, and inhibition of apoptosis. Glutamine (GLN) is a "conditionally essential" amino acid that promotes growth and proliferation of leukemic cells. Recently, details about the role of GLN and its metabolism in the diagnosis and treatment of acute myeloid, chronic lymphocytic, and acute lymphoblastic leukemia have emerged. The uptake of GLN by leukemia cells and the dynamic changes of glutamine-related indexes in leukemia patients may be able to assist in determining whether the condition of leukemia is in a state of progression, remission or relapse. Utilizing the possible differences in GLN metabolism in different subtypes of leukemia may help to differentiate between different subtypes of leukemia, thus providing a basis for accurate diagnosis. Targeting GLN metabolism in leukemia requires simultaneous blockade of multiple metabolic pathways without interfering with the normal cellular and immune functions of the body to achieve effective leukemia therapy. The present review summarizes recent advances, possible applications, and clinical perspectives of GLN metabolism in leukemia. In particular, it focuses on the prospects of GLN metabolism in the diagnosis and treatment of acute myeloid leukemia. The review provides new directions and hints at potential roles for future clinical treatments and studies.
Collapse
Affiliation(s)
- Zexin Wang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China.
| | - Miao Liu
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| | - Qiang Yang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| |
Collapse
|
4
|
Chen M, Shen C, Chen Y, Chen Z, Zhou K, Chen Y, Li W, Zeng C, Qing Y, Wu D, Xu C, Tang T, Che Y, Qin X, Xu Z, Wang K, Leung K, Sau L, Deng X, Hu J, Wu Y, Chen J. Metformin synergizes with gilteritinib in treating FLT3-mutated leukemia via targeting PLK1 signaling. Cell Rep Med 2024; 5:101645. [PMID: 39019012 PMCID: PMC11293342 DOI: 10.1016/j.xcrm.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/15/2024] [Accepted: 06/14/2024] [Indexed: 07/19/2024]
Abstract
Fms-like tyrosine kinase 3 (FLT3) mutations, present in over 30% of acute myeloid leukemia (AML) cases and dominated by FLT3-internal tandem duplication (FLT3-ITD), are associated with poor outcomes in patients with AML. While tyrosine kinase inhibitors (TKIs; e.g., gilteritinib) are effective, they face challenges such as drug resistance, relapse, and high costs. Here, we report that metformin, a cheap, safe, and widely used anti-diabetic agent, exhibits a striking synergistic effect with gilteritinib in treating FLT3-ITD AML. Metformin significantly sensitizes FLT3-ITD AML cells (including TKI-resistant ones) to gilteritinib. Metformin plus gilteritinib (low dose) dramatically suppresses leukemia progression and prolongs survival in FLT3-ITD AML mouse models. Mechanistically, the combinational treatment cooperatively suppresses polo-like kinase 1 (PLK1) expression and phosphorylation of FLT3/STAT5/ERK/mTOR. Clinical analysis also shows improved survival rates in patients with FLT3-ITD AML taking metformin. Thus, the metformin/gilteritinib combination represents a promising and cost-effective treatment for patients with FLT3-mutated AML, particularly for those with low income/affordability.
Collapse
Affiliation(s)
- Meiling Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| | - Yi Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Yuanzhong Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chengwu Zeng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
| | - Tingting Tang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yuan Che
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Zhaoxu Xu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lillian Sau
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China.
| | - Yong Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
5
|
Wang Z, An Y, Wang J, Lu J. Deciphering the mechanism of HM43239 inhibiting the mutant F691L resistant to gilteritinib in FMS-like tyrosine kinase 3. J Biomol Struct Dyn 2024; 42:5817-5826. [PMID: 37382586 DOI: 10.1080/07391102.2023.2229447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
FMS-like tyrosine kinase (FLT3) has become the legitimate molecular therapeutic target for acute myeloid leukemia therapy. Though FLT3 inhibitors have impact on disease progression, drug resistance induced by secondary point mutations is the primary mechanism and urgent to overcome. Herein, we sought to decipher the mechanism of HM43239 inhibiting the mutant F691L resistant to gilteritinib in FLT3. A series of molecular modeling studies, including molecular dynamics (MD) simulation, dynamic cross-correlation (DCC) analysis, binding free energy (MM-GBSA) and docking study were explored to elucidate the differential tolerance mechanisms of two inhibitors to the same mutant. The F691L mutation had relatively larger effect on gilteritinib than HM43239, which showed as the changed and fixed conformation, respectively. These observations rationalized that the binding affinity of gilteritinib decreased more than that of HM43239 in the F691L mutant.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Pharmacy, Jinzhou Medical University, Linghe District, Jinzhou, China
| | - Yu An
- Department of Open Education, Jinzhou Open University, Linghe District, Jinzhou, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenhe District, Shenyang, China
| | - Jinghua Lu
- College of Pharmacy, Jinzhou Medical University, Linghe District, Jinzhou, China
| |
Collapse
|
6
|
Cai X, Liu Y, Li H, Que Y, Xiao M, Wang Y, Wang X, Li D. XPO1 inhibition displays anti-leukemia efficacy against DNMT3A-mutant acute myeloid leukemia via downregulating glutathione pathway. Ann Hematol 2024; 103:2311-2322. [PMID: 38519605 DOI: 10.1007/s00277-024-05706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Acute myeloid leukemia (AML) patients with DNA methyltransferase 3A (DNMT3A) mutation display poor prognosis, and targeted therapy is not available currently. Our previous study identified increased expression of Exportin1 (XPO1) in DNMT3AR882H AML patients. Therefore, we further investigated the therapeutic effect of XPO1 inhibition on DNMT3AR882H AML. Three types of DNMT3AR882H AML cell lines were generated, and XPO1 was significantly upregulated in all DNMT3AR882H cells compared with the wild-type (WT) cells. The XPO1 inhibitor selinexor displayed higher potential in the inhibition of proliferation, promotion of apoptosis, and blockage of the cell cycle in DNMT3AR882H cells than WT cells. Selinexor also significantly inhibited the proliferation of subcutaneous tumors in DNMT3AR882H AML model mice. Primary cells with DNMT3A mutations were more sensitive to selinexor in chemotherapy-naive AML patients. RNA sequencing of selinexor treated AML cells revealed that the majority of metabolic pathways were downregulated after selinexor treatment, with the most significant change in the glutathione metabolic pathway. Glutathione inhibitor L-Buthionine-(S, R)-sulfoximine (BSO) significantly enhanced the apoptosis-inducing effect of selinexor in DNMT3AWT/DNMT3AR882H AML cells. In conclusion, our work reveals that selinexor displays anti-leukemia efficacy against DNMT3AR882H AML via downregulating glutathione pathway. Combination of selinexor and BSO provides novel therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Xiaoya Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Liu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimei Que
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Liu HT, Zhao Y, Wang HC, Liu QL. METTL3-mediated m 6A methylation of SLC38A1 stimulates cervical cancer growth. Biochem Biophys Res Commun 2024; 716:150039. [PMID: 38701556 DOI: 10.1016/j.bbrc.2024.150039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Department of Medical Genetics, Zibo Maternal and Child Health Hospital, Zibo, 255000, China.
| | - Yun Zhao
- Department of Gynecology, Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| | - Hong-Cai Wang
- Department of Gynecology, Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| | - Qing-Ling Liu
- Department of Clinical Laboratory, Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| |
Collapse
|
8
|
Lu MJ, Busquets J, Impedovo V, Wilson CN, Chan HR, Chang YT, Matsui W, Tiziani S, Cambronne XA. SLC25A51 decouples the mitochondrial NAD +/NADH ratio to control proliferation of AML cells. Cell Metab 2024; 36:808-821.e6. [PMID: 38354740 PMCID: PMC10990793 DOI: 10.1016/j.cmet.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
SLC25A51 selectively imports oxidized NAD+ into the mitochondrial matrix and is required for sustaining cell respiration. We observed elevated expression of SLC25A51 that correlated with poorer outcomes in patients with acute myeloid leukemia (AML), and we sought to determine the role SLC25A51 may serve in this disease. We found that lowering SLC25A51 levels led to increased apoptosis and prolonged survival in orthotopic xenograft models. Metabolic flux analyses indicated that depletion of SLC25A51 shunted flux away from mitochondrial oxidative pathways, notably without increased glycolytic flux. Depletion of SLC25A51 combined with 5-azacytidine treatment limits expansion of AML cells in vivo. Together, the data indicate that AML cells upregulate SLC25A51 to decouple mitochondrial NAD+/NADH for a proliferative advantage by supporting oxidative reactions from a variety of fuels. Thus, SLC25A51 represents a critical regulator that can be exploited by cancer cells and may be a vulnerability for refractory AML.
Collapse
Affiliation(s)
- Mu-Jie Lu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Jonathan Busquets
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Valeria Impedovo
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Crystal N Wilson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Hsin-Ru Chan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yu-Tai Chang
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - William Matsui
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - Xiaolu A Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Bae KH, Lai F, Chen Q, Kurisawa M. Potentiating Gilteritinib Efficacy Using Nanocomplexation with a Hyaluronic Acid-Epigallocatechin Gallate Conjugate. Polymers (Basel) 2024; 16:225. [PMID: 38257023 PMCID: PMC10818662 DOI: 10.3390/polym16020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Acute myeloid leukemia carrying FMS-like tyrosine kinase receptor-3 (FLT3) mutations is a fatal blood cancer with a poor prognosis. Although the FLT3 inhibitor gilteritinib has recently been approved, it still suffers from limited efficacy and relatively high nonresponse rates. In this study, we report the potentiation of gilteritinib efficacy using nanocomplexation with a hyaluronic acid-epigallocatechin gallate conjugate. The self-assembly, colloidal stability, and gilteritinib loading capacity of the nanocomplex were characterized by reversed-phase high-performance liquid chromatography and dynamic light scattering technique. Flow cytometric analysis revealed that the nanocomplex efficiently internalized into FLT3-mutated leukemic cells via specific interactions between the surface-exposed hyaluronic acid and CD44 receptor overexpressed on the cells. Moreover, this nanocomplex was found to induce an eradication of the leukemic cells in a synergistic manner by elevating the levels of reactive oxygen species and caspase-3/7 activities more effectively than free gilteritinib. This study may provide a useful strategy to design nanomedicines capable of augmenting the therapeutic efficacy of FLT3 inhibitors for effective leukemia therapy.
Collapse
Affiliation(s)
- Ki Hyun Bae
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore;
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos #08-01, Singapore 138669, Singapore
| | - Fritz Lai
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, The Proteos, Singapore 138673, Singapore; (F.L.); (Q.C.)
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, The Proteos, Singapore 138673, Singapore; (F.L.); (Q.C.)
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Motoichi Kurisawa
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos #08-01, Singapore 138669, Singapore
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| |
Collapse
|
10
|
Tyagi A, Jaggupilli A, Ly S, Yuan B, El-Dana F, Hegde VL, Anand V, Kumar B, Puppala M, Yin Z, Wong STC, Mollard A, Vankayalapati H, Foulks JM, Warner SL, Daver N, Borthakur G, Battula VL. TP-0184 inhibits FLT3/ACVR1 to overcome FLT3 inhibitor resistance and hinder AML growth synergistically with venetoclax. Leukemia 2024; 38:82-95. [PMID: 38007585 DOI: 10.1038/s41375-023-02086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
We identified activin A receptor type I (ACVR1), a member of the TGF-β superfamily, as a factor favoring acute myeloid leukemia (AML) growth and a new potential therapeutic target. ACVR1 is overexpressed in FLT3-mutated AML and inhibition of ACVR1 expression sensitized AML cells to FLT3 inhibitors. We developed a novel ACVR1 inhibitor, TP-0184, which selectively caused growth arrest in FLT3-mutated AML cell lines. Molecular docking and in vitro kinase assays revealed that TP-0184 binds to both ACVR1 and FLT3 with high affinity and inhibits FLT3/ACVR1 downstream signaling. Treatment with TP-0184 or in combination with BCL2 inhibitor, venetoclax dramatically inhibited leukemia growth in FLT3-mutated AML cell lines and patient-derived xenograft models in a dose-dependent manner. These findings suggest that ACVR1 is a novel biomarker and plays a role in AML resistance to FLT3 inhibitors and that FLT3/ACVR1 dual inhibitor TP-0184 is a novel potential therapeutic tool for AML with FLT3 mutations.
Collapse
Affiliation(s)
- Anudishi Tyagi
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Appalaraju Jaggupilli
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stanley Ly
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Yuan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fouad El-Dana
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Venkatesh L Hegde
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Anand
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mamta Puppala
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Alexis Mollard
- University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | | | | | - Naval Daver
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Bolkun L, Pienkowski T, Sieminska J, Godzien J, Pietrowska K, Kłoczko J, Wierzbowska A, Moniuszko M, Ratajczak M, Kretowski A, Ciborowski M. Metabolomic profile of acute myeloid leukaemia parallels of prognosis and response to therapy. Sci Rep 2023; 13:21809. [PMID: 38071228 PMCID: PMC10710498 DOI: 10.1038/s41598-023-48970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The heterogeneity of acute myeloid leukemia (AML), a complex hematological malignancy, is caused by mutations in myeloid cells affecting their differentiation and proliferation. Thus, various cytogenetic alterations in AML cells may be characterized by a unique metabolome and require different treatment approaches. In this study, we performed untargeted metabolomics to assess metabolomics differences between AML patients and healthy controls, AML patients with different treatment outcomes, AML patients in different risk groups based on the 2017 European LeukemiaNet (ELN) recommendations for the diagnosis and management of AML, AML patients with and without FLT3-ITD mutation, and a comparison between patients with FLT3-ITD, CBF-AML (Core binding factor acute myelogenous leukemia), and MLL AML (mixed-lineage leukemia gene) in comparison to control subjects. Analyses were performed in serum samples using liquid chromatography coupled with mass spectrometry (LC-MS). The obtained metabolomics profiles exhibited many alterations in glycerophospholipid and sphingolipid metabolism and allowed us to propose biomarkers based on each of the above assessments as an aid for diagnosis and eventual classification, allowing physicians to choose the best-suited treatment approach. These results highlight the application of LC-MS-based metabolomics of serum samples as an aid in diagnostics and a potential minimally invasive prognostic tool for identifying various cytogenetic and treatment outcomes of AML.
Collapse
Affiliation(s)
- Lukasz Bolkun
- Department of Hematology, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Julia Sieminska
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Joanna Godzien
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Karolina Pietrowska
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Janusz Kłoczko
- Department of Hematology, Medical University of Bialystok, 15-276, Bialystok, Poland
| | | | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland.
| |
Collapse
|
12
|
Yang P, Li J, Zhang T, Ren Y, Zhang Q, Liu R, Li H, Hua J, Wang WA, Wang J, Zhou H. Ionizing radiation-induced mitophagy promotes ferroptosis by increasing intracellular free fatty acids. Cell Death Differ 2023; 30:2432-2445. [PMID: 37828085 PMCID: PMC10657348 DOI: 10.1038/s41418-023-01230-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Ferroptosis is a type of cell death characterized by the accumulation of intracellular iron and an increase in hazardous lipid peroxides. Ferroptosis and autophagy are closely related. Ionizing radiation is a frequently used cancer therapy to kill malignancies. We found that ionizing radiation induces both ferroptosis and autophagy and that there is a form of mutualism between the two processes. Ionizing radiation also causes lipid droplets to form in proximity to damaged mitochondria, which, through the action of mitophagy, results in the degradation of the peridroplet mitochondria by lysosomes and the consequent release of free fatty acids and a significant increase in lipid peroxidation, thus promoting ferroptosis. Ionizing radiation has a stronger, fatal effect on cells with a high level of mitophagy, and this observation suggests a novel strategy for tumor treatment.
Collapse
Affiliation(s)
- Pengfei Yang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Jin Li
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Renmin Hospital of Wuhan Economic and Technological Development Zone, Wuhan, China
| | - Tianyi Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ruifeng Liu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Haining Li
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Wen-An Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
| | - Heng Zhou
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- School of Public Health, Yangzhou University, Yangzhou, China.
| |
Collapse
|
13
|
Perrone S, Imperatore S, Sucato G, Notarianni E, Corbingi A, Andriola C, Napolitano M, Pulsoni A, Molica M. Gilteritinib and the risk of intracranial hemorrhage: a case series of a possible, under-reported side effect. Ann Hematol 2023; 102:3025-3030. [PMID: 37606693 PMCID: PMC10567884 DOI: 10.1007/s00277-023-05392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023]
Abstract
Gilteritinib is currently approved for patients with relapsed/refractory AML with FLT3 mutations, based on the positive results of the pivotal ADMIRAL study. In ADMIRAL trial, no increased risk of bleeding was reported, but in the previous dose finding study, a single event of intracranial hemorrhage (ICH) was registered after exposure to subtherapeutic doses of gilteritinib. Here, we report the first case series on five ICHs diagnosed in patients with FLT3-mutated AML, occurred within the first month of exposure to gilteritinib. Our cohort included 24 patients treated in three Italian centers. Most of these ICH cases were non-severe and self-limiting, while one was fatal. This link with ICHs remains in any case uncertain for the presence of active AML. We further reported that an analysis of the post-marketing surveillance data (EudraVigilance) retrieved other 11 cases of ICHs present in the database after gilteritinib treatment. A causality assessment was performed according to the Dx3 method to evaluate the possibility that ICHs might be an actual side effect of gilteritinib. In conclusion, further research is needed to elucidate the potential role of gilteritinib in the pathogenesis of ICHs.
Collapse
Affiliation(s)
- Salvatore Perrone
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, "Sapienza," Via A. Canova, 04100, Latina, Italy
| | - Stefano Imperatore
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, "Sapienza," Via A. Canova, 04100, Latina, Italy
| | - Giuseppe Sucato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Ermanno Notarianni
- Diagnostic and Interventional Unit, "Santa Maria Goretti" Hospital, Via Antonio Canova, Latina, Italy
| | - Andrea Corbingi
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, "Sapienza," Via A. Canova, 04100, Latina, Italy
| | - Costanza Andriola
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, "Sapienza," Via A. Canova, 04100, Latina, Italy
| | - Mariasanta Napolitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Alessandro Pulsoni
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, "Sapienza," Via A. Canova, 04100, Latina, Italy.
| | - Matteo Molica
- Department of Hematology-Oncology, Azienda Ospedaliera Pugliese-Ciaccio, Catanzaro, Italy
| |
Collapse
|
14
|
Sabatier M, Birsen R, Lauture L, Mouche S, Angelino P, Dehairs J, Goupille L, Boussaid I, Heiblig M, Boet E, Sahal A, Saland E, Santos JC, Armengol M, Fernández-Serrano M, Farge T, Cognet G, Simonetta F, Pignon C, Graffeuil A, Mazzotti C, Avet-Loiseau H, Delos O, Bertrand-Michel J, Chedru A, Dembitz V, Gallipoli P, Anstee NS, Loo S, Wei AH, Carroll M, Goubard A, Castellano R, Collette Y, Vergez F, Mansat-De Mas V, Bertoli S, Tavitian S, Picard M, Récher C, Bourges-Abella N, Granat F, Kosmider O, Sujobert P, Colsch B, Joffre C, Stuani L, Swinnen JV, Guillou H, Roué G, Hakim N, Dejean AS, Tsantoulis P, Larrue C, Bouscary D, Tamburini J, Sarry JE. C/EBPα Confers Dependence to Fatty Acid Anabolic Pathways and Vulnerability to Lipid Oxidative Stress-Induced Ferroptosis in FLT3-Mutant Leukemia. Cancer Discov 2023; 13:1720-1747. [PMID: 37012202 DOI: 10.1158/2159-8290.cd-22-0411] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Although transcription factor CCAAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role in cell and metabolic homeostasis is largely unknown in cancer. Here, multiomics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated the fatty acid synthase (FASN)-stearoyl-CoA desaturase (SCD) axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased monounsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application. SIGNIFICANCE FLT3 mutations are found in 30% of AML cases and are actionable by tyrosine kinase inhibitors. Here, we discovered that C/EBPα regulates FA biosynthesis and protection from lipid redox stress downstream mutant-FLT3 signaling, which confers a vulnerability to ferroptosis upon FLT3 inhibition with therapeutic potential in AML. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Rudy Birsen
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - Laura Lauture
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Sarah Mouche
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Paolo Angelino
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Léa Goupille
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Ismael Boussaid
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Maël Heiblig
- Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
- CIRI, Inserm U1111 CNRS 5308, Université Lyon 1, Lyon, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Juliana C Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marc Armengol
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Guillaume Cognet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Federico Simonetta
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Corentin Pignon
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Antoine Graffeuil
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Céline Mazzotti
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Hervé Avet-Loiseau
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Océane Delos
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, University Paul Sabatier, Toulouse, France
| | - Justine Bertrand-Michel
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, University Paul Sabatier, Toulouse, France
| | - Amélie Chedru
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Vilma Dembitz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Natasha S Anstee
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sun Loo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Armelle Goubard
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Rémy Castellano
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Yves Collette
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - François Vergez
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Véronique Mansat-De Mas
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Sarah Bertoli
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Suzanne Tavitian
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Muriel Picard
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service de Réanimation, Toulouse, France
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | | | - Fanny Granat
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Olivier Kosmider
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
- CIRI, Inserm U1111 CNRS 5308, Université Lyon 1, Lyon, France
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Carine Joffre
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, University Paul Sabatier, Toulouse, France
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Nawad Hakim
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Inserm UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse, France
| | - Anne S Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Inserm UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse, France
| | - Petros Tsantoulis
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Clément Larrue
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Didier Bouscary
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - Jerome Tamburini
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| |
Collapse
|
15
|
Chen Y, Zou Z, Găman MA, Xu L, Li J. NADPH oxidase mediated oxidative stress signaling in FLT3-ITD acute myeloid leukemia. Cell Death Discov 2023; 9:208. [PMID: 37391442 DOI: 10.1038/s41420-023-01528-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The internal tandem duplication of the juxtamembrane domain of the FMS-like tyrosine kinase 3 (FLT3-ITD) is the most common genetic change in acute myeloid leukemia (AML), and about 30% of all AMLs harbor a FLT3-ITD mutation. Even though FLT3 inhibitors have displayed encouraging effects in FLT3-ITD-mutated AML, the extent of the clinical response to these compounds is cut short due to the rapid development of drug resistance. Evidence has shown that FLT3-ITD triggered activation of oxidative stress signaling may exert a pivotal role in drug resistance. The downstream pathways of FLT3-ITD, including STAT5, PI3K/AKT, and RAS/MAPK, are considered to be major oxidative stress signaling pathways. These downstream pathways can inhibit apoptosis and promote proliferation and survival by regulating apoptosis-related genes and promoting the generation of reactive oxygen species (ROS) through NADPH oxidase (NOX) or other mechanisms. Appropriate levels of ROS may promote proliferation, but high levels of ROS can lead to oxidative damage to the DNA and increase genomic instability. In addition, post-translational modifications of FLT3-ITD and changes in its subcellular localization can affect downstream signaling which may also be one of the mechanisms leading to drug resistance. In this review, we summarized the research progress on NOX mediated oxidative stress signaling and its relationship with drug resistance in FLT3-ITD AML, and discuss the possible new targets in FLT3-ITD signal blocking to reverse drug resistance in FLT3-ITD-mutated AML.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Zhenyou Zou
- Institute of Psychosis Prevention, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, 542005, China.
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
16
|
Xiao Y, Hu B, Guo Y, Zhang D, Zhao Y, Chen Y, Li N, Yu L. Targeting Glutamine Metabolism as an Attractive Therapeutic Strategy for Acute Myeloid Leukemia. Curr Treat Options Oncol 2023:10.1007/s11864-023-01104-0. [PMID: 37249801 PMCID: PMC10356674 DOI: 10.1007/s11864-023-01104-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2023] [Indexed: 05/31/2023]
Abstract
OPINION STATEMENT Relapse after chemotherapy and hematopoietic stem cell transplantation leads to adverse prognosis for acute myeloid leukemia (AML) patients. As a "conditionally essential amino acid," glutamine contributes to the growth and proliferation of AML cells. Glutamine-target strategies as new treatment approaches have been widely explored in AML treatment to improve outcome. Glutamine-target strategies including depletion of systemic glutamine and application of glutamine uptake inhibitors, glutamine antagonists/analogues, and glutaminase inhibitors. Because glutamine metabolism involved in multiple pathways in cells and each pathway of glutamine metabolism has many regulatory factors, therefore, AML therapy targeting glutamine metabolism should focus on how to inhibit multiple metabolic pathways without affecting normal cells and host immune to achieve effective treatment for AML.
Collapse
Affiliation(s)
- Yan Xiao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Bingbing Hu
- Reproductive Medicine Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Na Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
17
|
Timofeeva N, Ayres ML, Baran N, Santiago-O’Farrill JM, Bildik G, Lu Z, Konopleva M, Gandhi V. Preclinical investigations of the efficacy of the glutaminase inhibitor CB-839 alone and in combinations in chronic lymphocytic leukemia. Front Oncol 2023; 13:1161254. [PMID: 37228498 PMCID: PMC10203524 DOI: 10.3389/fonc.2023.1161254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Chronic lymphocytic leukemia (CLL) cells are metabolically flexible and adapt to modern anticancer treatments. Bruton tyrosine kinase (BTK) and B-cell lymphoma-2 (BCL-2) inhibitors have been widely used to treat CLL, but CLL cells become resistant to these treatments over time. CB-839 is a small-molecule glutaminase-1 (GLS-1) inhibitor that impairs glutamine use, disrupts downstream energy metabolism, and impedes the elimination of reactive oxygen species. Methods To investigate the in vitro effects of CB-839 on CLL cells, we tested CB-839 alone and in combination with ibrutinib, venetoclax, or AZD-5991 on the HG-3 and MEC-1 CLL cell lines and on primary CLL lymphocytes. Results We found that CB-839 caused dose-dependent decreases in GLS-1 activity and glutathione synthesis. CB-839-treated cells also showed increased mitochondrial superoxide metabolism and impaired energy metabolism, which were reflected in decreases in the oxygen consumption rate and depletion of the adenosine triphosphate pool and led to the inhibition of cell proliferation. In the cell lines, CB-839 combined with venetoclax or AZD-5991, but not with ibrutinib, demonstrated synergism with an increased apoptosis rate and cell proliferation inhibition. In the primary lymphocytes, no significant effects of CB-839 alone or in combination with venetoclax, ibrutinib, or AZD-5991 were observed. Discussion Our findings suggest that CB-839 has limited efficacy in CLL treatment and shows limited synergy in combination with widely used CLL drugs.
Collapse
Affiliation(s)
- Natalia Timofeeva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mary L. Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Janice M. Santiago-O’Farrill
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gamze Bildik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
18
|
Anderson R, Pladna KM, Schramm NJ, Wheeler FB, Kridel S, Pardee TS. Pyruvate Dehydrogenase Inhibition Leads to Decreased Glycolysis, Increased Reliance on Gluconeogenesis and Alternative Sources of Acetyl-CoA in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15020484. [PMID: 36672433 PMCID: PMC9857304 DOI: 10.3390/cancers15020484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease characterized by poor outcomes and therapy resistance. Devimistat is a novel agent that inhibits pyruvate dehydrogenase complex (PDH). A phase III clinical trial in AML patients combining devimistat and chemotherapy was terminated for futility, suggesting AML cells were able to circumvent the metabolic inhibition of devimistat. The means by which AML cells resist PDH inhibition is unknown. AML cell lines treated with devimistat or deleted for the essential PDH subunit, PDHA, showed a decrease in glycolysis and decreased glucose uptake due to a reduction of the glucose transporter GLUT1 and hexokinase II. Both devimistat-treated and PDHA knockout cells displayed increased sensitivity to 2-deoxyglucose, demonstrating reliance on residual glycolysis. The rate limiting gluconeogenic enzyme phosphoenolpyruvate carboxykinase 2 (PCK2) was significantly upregulated in devimistat-treated cells, and its inhibition increased sensitivity to devimistat. The gluconeogenic amino acids glutamine and asparagine protected AML cells from devimistat. Non-glycolytic sources of acetyl-CoA were also important with fatty acid oxidation, ATP citrate lyase (ACLY) and acyl-CoA synthetase short chain family member 2 (ACSS2) contributing to resistance. Finally, devimistat reduced fatty acid synthase (FASN) activity. Taken together, this suggests that AML cells compensate for PDH and glycolysis inhibition by gluconeogenesis for maintenance of essential glycolytic intermediates and fatty acid oxidation, ACLY and ACSS2 for non-glycolytic production of acetyl-CoA. Strategies to target these escape pathways should be explored in AML.
Collapse
Affiliation(s)
- Rebecca Anderson
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Kristin M. Pladna
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Nathaniel J. Schramm
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Frances B. Wheeler
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Steven Kridel
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Timothy S. Pardee
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
- Cornerstone Pharmaceuticals Inc., Cranbury, NJ 08512, USA
- Correspondence: ; Tel.: +1-336-716-5847; Fax: +1-336-716-5687
| |
Collapse
|
19
|
Wang M, Zhao A, Li M, Niu T. Amino acids in hematologic malignancies: Current status and future perspective. Front Nutr 2023; 10:1113228. [PMID: 37032776 PMCID: PMC10076797 DOI: 10.3389/fnut.2023.1113228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
In recent years, growing emphasis has been placed on amino acids and their role in hematologic malignancies. Cancer cell metabolism is altered during tumorigenesis and development to meet expanding energetic and biosynthetic demands. Amino acids not only act as energy-supplying substances, but also play a vital role via regulating key signaling pathways, modulating epigenetic factors and remodeling tumor microenvironment. Targeting amino acids may be an effective therapeutic approach to address the current therapeutic challenges. Here, we provide an updated overview of mechanisms by which amino acids facilitate tumor development and therapy resistance. We also summarize novel therapies targeting amino acids, focusing on recent advances in basic research and their potential clinical implications.
Collapse
|
20
|
Buelow DR, Bhatnagar B, Orwick SJ, Jeon JY, Eisenmann ED, Stromatt JC, Pabla NS, Blachly JS, Baker SD, Blaser BW. BMX kinase mediates gilteritinib resistance in FLT3-mutated AML through microenvironmental factors. Blood Adv 2022; 6:5049-5060. [PMID: 35797240 PMCID: PMC9631628 DOI: 10.1182/bloodadvances.2022007952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the clinical benefit associated with gilteritinib in relapsed/refractory acute myeloid leukemia (AML), most patients eventually develop resistance through unknown mechanisms. To delineate the mechanistic basis of resistance to gilteritinib, we performed targeted sequencing and scRNASeq on primary FLT3-ITD-mutated AML samples. Co-occurring mutations in RAS pathway genes were the most common genetic abnormalities, and unresponsiveness to gilteritinib was associated with increased expression of bone marrow-derived hematopoietic cytokines and chemokines. In particular, we found elevated expression of the TEK-family kinase, BMX, in gilteritinib-unresponsive patients pre- and post-treatment. BMX contributed to gilteritinib resistance in FLT3-mutant cell lines in a hypoxia-dependent manner by promoting pSTAT5 signaling, and these phenotypes could be reversed with pharmacological inhibition and genetic knockout. We also observed that inhibition of BMX in primary FLT3-mutated AML samples decreased chemokine secretion and enhanced the activity of gilteritinib. Collectively, these findings indicate a crucial role for microenvironment-mediated factors modulated by BMX in the escape from targeted therapy and have implications for the development of novel therapeutic interventions to restore sensitivity to gilteritinib.
Collapse
Affiliation(s)
- Daelynn R. Buelow
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Bhavana Bhatnagar
- West Virginia University Cancer Institute, Department of Hematology and Medical Oncology, Wheeling, WV; and
| | - Shelley J. Orwick
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jae Yoon Jeon
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jack C. Stromatt
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Navjot Singh Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - James S. Blachly
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Bradley W. Blaser
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
21
|
Wu S, Edwards H, Wang D, Liu S, Qiao X, Carter J, Wang Y, Taub JW, Wang G, Ge Y. Inhibition of Mcl-1 Synergistically Enhances the Antileukemic Activity of Gilteritinib and MRX-2843 in Preclinical Models of FLT3-Mutated Acute Myeloid Leukemia. Cells 2022; 11:2752. [PMID: 36078163 PMCID: PMC9455003 DOI: 10.3390/cells11172752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (FLT3-ITD) mutations occur in about 25% of all acute myeloid leukemia (AML) patients and confer a poor prognosis. FLT3 inhibitors have been developed to treat patients with FLT3-mutated AML and have shown promise, though the acquisition of resistance occurs, highlighting the need for combination therapies to prolong the response to FLT3 inhibitors. In this study, we investigated the selective Mcl-1 inhibitor AZD5991 in combination with the FLT3 inhibitors gilteritinib and MRX-2843. The combinations synergistically induce apoptosis in AML cell lines and primary patient samples. The FLT3 inhibitors downregulate c-Myc transcripts through the suppression of the MEK/ERK and JAK2/STAT5 pathways, resulting in the decrease in c-Myc protein. This suppression of c-Myc plays an important role in the antileukemic activity of AZD5991. Interestingly, the suppression of c-Myc enhances AZD5991-inudced cytochrome c release and the subsequent induction of apoptosis. AZD5991 enhances the antileukemic activity of the FLT3 inhibitors gilteritinib and MRX-2843 against FLT3-mutated AML in vitro, warranting further development.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun 130021, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Deying Wang
- The Tumor Center of the First Hospital of Jilin University, Changchun 130021, China
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jenna Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yue Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jeffrey W. Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
22
|
Zhao Q, Wu ZE, Li B, Li F. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. Pharmacol Ther 2022; 237:108256. [DOI: 10.1016/j.pharmthera.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
|
23
|
Zhou S, Yang B, Xu Y, Gu A, Peng J, Fu J. Understanding gilteritinib resistance to FLT3-F691L mutation through an integrated computational strategy. J Mol Model 2022; 28:247. [PMID: 35932378 DOI: 10.1007/s00894-022-05254-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) serves as an important drug target for acute myeloid leukemia (AML), and gene mutations of FLT3 have been closely associated with AML patients with an incidence rate of ~ 30%. However, the mechanism of the clinically relevant F691L gatekeeper mutation conferred resistance to the drug gilteritinib remained poorly understood. In this study, multiple microsecond molecular dynamics (MD) simulations, end-point free energy calculations, and dynamic correlated and network analyses were performed to investigate the molecular basis of gilteritinib resistance to the FLT3-F691L mutation. The simulations revealed that the resistant mutation largely induced the conformational changes of the activation loop (A-loop), the phosphate-binding loop, and the helix αC of the FLT3 protein. The binding abilities of the gilteritinib to the wild-type and the F691L mutant were different through the binding free energy prediction. The simulation results further indicated that the driving force to determine the binding affinity of gilteritinib was derived from the differences in the energy terms of electrostatic and van der Waals interactions. Moreover, the per-residue free energy decomposition suggested that the four residues (Phe803, Gly831, Leu832, and Ala833) located at the A-loop of FLT3 had a significant impact on the binding affinity of gilteritinib to the F691L mutant. This study may provide useful information for the design of novel FLT3 inhibitors specially targeting the F691L gatekeeper mutant.
Collapse
Affiliation(s)
- Shibo Zhou
- Department of Radiology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Bo Yang
- Department of Radiology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Yufeng Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Aihua Gu
- Department of Medicine, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Juan Peng
- Department of Ultrasonography, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Jinfeng Fu
- Department of Radiology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
24
|
Sun CY, Talukder M, Cao D, Chen CW. Gilteritinib Enhances Anti-Tumor Efficacy of CDK4/6 Inhibitor, Abemaciclib in Lung Cancer Cells. Front Pharmacol 2022; 13:829759. [PMID: 35814226 PMCID: PMC9262324 DOI: 10.3389/fphar.2022.829759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Abemaciclib is a cyclin-dependent kinases 4/6 (CDK4/6) inhibitor approved for the treatment of metastatic breast cancer. Preclinical studies suggest that abemaciclib has the potential for lung cancer treatment. However, several clinical trials demonstrate that monotherapy with abemaciclib has no obvious superiority than erlotinib to treat lung cancer patients, limiting its therapeutic options for lung cancer treatment. Here, we show that the US Food and Drug Administration (FDA)-approved drug, gilteritinib, enhances the cytotoxicity of abemaciclib through inducing apoptosis and senescence in lung cancer cells. Interestingly, abemaciclib in combination with gilteritinib leads to excessive accumulation of vacuoles in lung cancer cells. Mechanistically, combined abemaciclib and gilteritinib induces complete inactivation of AKT and retinoblastoma (Rb) pathways in lung cancer cells. In addition, RNA-sequencing data demonstrate that combination of abemaciclib and gilteritinib treatment induces G2 phase cell-cycle arrest, inhibits DNA replication, and leads to reduction in homologous recombination associated gene expressions. Of note, abemaciclib-resistant lung cancer cells are more sensitive to gilteritinib treatment. In a mouse xenograft model, combined abemaciclib and gilteritinib is more effective than either drug alone in suppressing tumor growth and appears to be well tolerated. Together, our findings support the combination of abemaciclib with gilteritinib as an effective strategy for the treatment of lung cancer, suggesting further evaluation of their efficacy is needed in a clinical trial.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Milton Talukder
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Di Cao
- State Key Laboratory of Oncology in South China, Department of Radiology, Sun Yat-Sen University Cancer Center, Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Cun-Wu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- *Correspondence: Cun-Wu Chen,
| |
Collapse
|
25
|
Inaba H, van Oosterwijk JG, Panetta JC, Li L, Buelow DR, Blachly JS, Shurtleff S, Pui CH, Ribeiro RC, Rubnitz JE, Pounds S, Baker SD. Preclinical and Pilot Study of Type I FLT3 Tyrosine Kinase Inhibitor, Crenolanib, with Sorafenib in Acute Myeloid Leukemia and FLT3-Internal Tandem Duplication. Clin Cancer Res 2022; 28:2536-2546. [PMID: 35344039 PMCID: PMC9197875 DOI: 10.1158/1078-0432.ccr-21-4450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the safety, activity, and emergence of FLT3-kinase domain (KD) mutations with combination therapy of crenolanib and sorafenib in acute myeloid leukemia (AML) with FLT3-internal tandem duplication (ITD). PATIENTS AND METHODS After in vitro and xenograft efficacy studies using AML cell lines that have FLT3-ITD with or without FLT3-KD mutation, a pilot study was performed with crenolanib (67 mg/m2/dose, three times per day on days 1-28) and two dose levels of sorafenib (150 and 200 mg/m2/day on days 8-28) in 9 pediatric patients with refractory/relapsed FLT3-ITD-positive AML. Pharmacokinetic, pharmacodynamic, and FLT3-KD mutation analysis were done in both preclinical and clinical studies. RESULTS The combination of crenolanib and sorafenib in preclinical models showed synergy without affecting pharmacokinetics of each agent, inhibited p-STAT5 and p-ERK for up to 8 hours, and led to significantly better leukemia response (P < 0.005) and survival (P < 0.05) compared with single agents. Fewer FLT3-KD mutations emerged with dose-intensive crenolanib (twice daily) and low-intensity sorafenib (three times/week) compared with daily crenolanib or sorafenib (P < 0.05). The crenolanib and sorafenib combination was tolerable without dose-limiting toxicities, and three complete remissions (one with incomplete count recovery) and one partial remission were observed in 8 evaluable patients. Median crenolanib apparent clearance showed a nonsignificant decrease during treatment (45.0, 40.5, and 20.3 L/hour/m2 on days 1, 7, and 14, respectively) without drug-drug interaction. Only 1 patient developed a FLT3-KD mutation (FLT3 F691L). CONCLUSIONS The combination of crenolanib and sorafenib was tolerable with antileukemic activities and rare emergence of FLT3-TKD mutations, which warrants further investigation.
Collapse
Affiliation(s)
- Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - John C. Panetta
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lie Li
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Daelynn R. Buelow
- College of Pharmacy, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - James S. Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sharyn D. Baker
- College of Pharmacy, Department of Internal Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
26
|
Baran N, Lodi A, Dhungana Y, Herbrich S, Collins M, Sweeney S, Pandey R, Skwarska A, Patel S, Tremblay M, Kuruvilla VM, Cavazos A, Kaplan M, Warmoes MO, Veiga DT, Furudate K, Rojas-Sutterin S, Haman A, Gareau Y, Marinier A, Ma H, Harutyunyan K, Daher M, Garcia LM, Al-Atrash G, Piya S, Ruvolo V, Yang W, Shanmugavelandy SS, Feng N, Gay J, Du D, Yang JJ, Hoff FW, Kaminski M, Tomczak K, Eric Davis R, Herranz D, Ferrando A, Jabbour EJ, Emilia Di Francesco M, Teachey DT, Horton TM, Kornblau S, Rezvani K, Sauvageau G, Gagea M, Andreeff M, Takahashi K, Marszalek JR, Lorenzi PL, Yu J, Tiziani S, Hoang T, Konopleva M. Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nat Commun 2022; 13:2801. [PMID: 35589701 PMCID: PMC9120040 DOI: 10.1038/s41467-022-30396-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/25/2022] [Indexed: 01/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target.
Collapse
Affiliation(s)
- Natalia Baran
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Alessia Lodi
- grid.89336.370000 0004 1936 9924Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Yogesh Dhungana
- grid.240871.80000 0001 0224 711XSt. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Shelley Herbrich
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Meghan Collins
- grid.89336.370000 0004 1936 9924Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Shannon Sweeney
- grid.89336.370000 0004 1936 9924Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Renu Pandey
- grid.89336.370000 0004 1936 9924Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Anna Skwarska
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Shraddha Patel
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Mathieu Tremblay
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Vinitha Mary Kuruvilla
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Antonio Cavazos
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Mecit Kaplan
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Marc O. Warmoes
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Diogo Troggian Veiga
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Ken Furudate
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.257016.70000 0001 0673 6172Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori Japan
| | - Shanti Rojas-Sutterin
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Andre Haman
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Yves Gareau
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Anne Marinier
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Helen Ma
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Karine Harutyunyan
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - May Daher
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Luciana Melo Garcia
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Gheath Al-Atrash
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Sujan Piya
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Vivian Ruvolo
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Wentao Yang
- grid.240871.80000 0001 0224 711XDepartment of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Sriram Saravanan Shanmugavelandy
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ningping Feng
- grid.240145.60000 0001 2291 4776TRACTION Platform, Therapeutics Discovery Division, University of Texas M. D. Anderson Cancer Center, Houston, USA
| | - Jason Gay
- grid.240145.60000 0001 2291 4776TRACTION Platform, Therapeutics Discovery Division, University of Texas M. D. Anderson Cancer Center, Houston, USA
| | - Di Du
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jun J. Yang
- grid.240871.80000 0001 0224 711XDepartment of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Fieke W. Hoff
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Marcin Kaminski
- grid.240871.80000 0001 0224 711XDepartment of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Katarzyna Tomczak
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - R. Eric Davis
- grid.240145.60000 0001 2291 4776Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Daniel Herranz
- grid.430387.b0000 0004 1936 8796Rutgers Robert Wood Johnson Medical School, Cancer Institute of New Jersey, New Brunswick, NJ USA
| | - Adolfo Ferrando
- grid.21729.3f0000000419368729Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY USA
| | - Elias J. Jabbour
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - M. Emilia Di Francesco
- grid.240145.60000 0001 2291 4776Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - David T. Teachey
- grid.25879.310000 0004 1936 8972Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA USA
| | - Terzah M. Horton
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Baylor College of Medicine, Houston, TX USA
| | - Steven Kornblau
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Katayoun Rezvani
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Guy Sauvageau
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada
| | - Mihai Gagea
- grid.240145.60000 0001 2291 4776Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Michael Andreeff
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Koichi Takahashi
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Joseph R. Marszalek
- grid.240145.60000 0001 2291 4776TRACTION Platform, Therapeutics Discovery Division, University of Texas M. D. Anderson Cancer Center, Houston, USA
| | - Philip L. Lorenzi
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jiyang Yu
- grid.240871.80000 0001 0224 711XDepartment of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Stefano Tiziani
- grid.89336.370000 0004 1936 9924Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Trang Hoang
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer, The University of Montreal, Montréal, QC Canada ,grid.14848.310000 0001 2292 3357Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC Canada
| | - Marina Konopleva
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
27
|
Role of Amino Acid Transporter SNAT1/SLC38A1 in Human Melanoma. Cancers (Basel) 2022; 14:cancers14092151. [PMID: 35565278 PMCID: PMC9099705 DOI: 10.3390/cancers14092151] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Malignant melanoma originates from melanocytes. Due to its high metastatic potential and its increasing incidence, it is one of the most aggressive types of cancer. Cancer cells generally exhibit an elevated metabolism, consequently adapting their expression of transport proteins to meet the increased demand of nutrients, such as amino acids. The aim of this study was to analyze the expression and function of the amino acid transporter SNAT1 in human melanoma. In addition, we wanted to determine its role in development and progression of malignant melanoma. We revealed that SNAT1 is overexpressed in melanoma tissue samples, as well as primary and metastatic cell lines. Moreover, we were able to show that SNAT1 plays an important role in forcing proliferation, colony formation, migration and invasion, and inhibiting senescence of melanoma cells. Amino acid transporters like SNAT1 are therefore promising targets for the development of novel therapeutic strategies against melanoma. Abstract The tumor metabolism is an important driver of cancer cell survival and growth, as rapidly dividing tumor cells exhibit a high demand for energetic sources and must adapt to microenvironmental changes. Therefore, metabolic reprogramming of cancer cells and the associated deregulation of nutrient transporters are a hallmark of cancer cells. Amino acids are essential for cancer cells to synthesize the necessary amount of protein, DNA, and RNA. Although cancer cells can synthesize glutamine de novo, most cancer cells show an increased uptake of glutamine from the tumor microenvironment. Especially SNAT1/SLC38A1, a member of the sodium neutral amino acid transporter (SNAT) family, plays an essential role during major net import of glutamine. In this study, we revealed a significant upregulation of SNAT1 expression in human melanoma tissue in comparison to healthy epidermis and an increased SNAT1 expression level in human melanoma cell lines when compared to normal human melanocytes (NHEMs). We demonstrated that functional inhibition of SNAT1 with α-(methylamino) isobutyric acid (MeAIB), as well as siRNA-mediated downregulation reduces cancer cell growth, cellular migration, invasion, and leads to induction of senescence in melanoma cells. Consequently, these results demonstrate that the amino acid transporter SNAT1 is essential for cancer growth, and indicates a potential target for cancer chemotherapy.
Collapse
|
28
|
Lin R, Xu Y, Xie S, Zhang Y, Wang H, Yi GZ, Huang G, Ni B, Song H, Wang Z, Qi ST, Liu Y. Recycling of SLC38A1 to the plasma membrane by DSCR3 promotes acquired temozolomide resistance in glioblastoma. J Neurooncol 2022; 157:15-26. [PMID: 35187626 DOI: 10.1007/s11060-022-03964-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a primary brain tumor with devastating prognosis. Although the O6-methylguanine-DNA methyltransferase (MGMT) leads to inherent temozolomide (TMZ) resistance, approximately half of GBMs were sufficient to confer acquired TMZ resistance, which express low levels of MGMT. The purpose of this study was to investigate the underlying mechanisms of the acquired TMZ resistance in MGMT-deficient GBM. METHODS The function of Down syndrome critical region protein 3 (DSCR3) on MGMT-deficient GBM was investigated in vitro and in an orthotopic brain tumor model in mice. Purification of plasma membrane proteins by membrane-cytoplasmic separation and subsequent label free-based quantitative proteomics were used to identified potential protein partners for DSCR3. Immunofluorescence was performed to show the reverse transport of solute carrier family 38 member 1 (SLC38A1) mediated by DSCR3. RESULTS DSCR3 is upregulated in MGMT-deficient GBM cells during TMZ treatment. Both DSCR3 and SLC38A1 were highly expressed in recurrent GBM patients. Silencing DSCR3 or SLC38A1 expression can increase TMZ sensitivity in MGMT-deficient GBM cells. Combination of proteomics and in vitro experiments show that DSCR3 directly binds internalized SLC38A1 to mediate its sorting into recycling pathway, which maintains the abundance on plasma membrane and enhances uptake of glutamine in MGMT-deficient GBM cells. CONCLUSIONS DSCR3 is a crucial regulator of acquired TMZ resistance in MGMT-deficient GBM. The DSCR3-dependent recycling of SLC38A1 maintains its abundance on plasma membrane, leading to tumor progression and acquired TMZ resistance in MGMT-deficient GBM.
Collapse
Affiliation(s)
- Rui Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yimin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Sidi Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yunxiao Zhang
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Guo-Zhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Bowen Ni
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Haimin Song
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ziyu Wang
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Song-Tao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| |
Collapse
|
29
|
Revealing the Mysteries of Acute Myeloid Leukemia: From Quantitative PCR through Next-Generation Sequencing and Systemic Metabolomic Profiling. J Clin Med 2022; 11:jcm11030483. [PMID: 35159934 PMCID: PMC8836582 DOI: 10.3390/jcm11030483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The efforts made in the last decade regarding the molecular landscape of acute myeloid leukemia (AML) have created the possibility of obtaining patients’ personalized treatment. Indeed, the improvement of accurate diagnosis and precise assessment of minimal residual disease (MRD) increased the number of new markers suitable for novel and targeted therapies. This progress was obtained thanks to the development of molecular techniques starting with real-time quantitative PCR (Rt-qPCR) passing through digital droplet PCR (ddPCR) and next-generation sequencing (NGS) up to the new attractive metabolomic approach. The objective of this surge in technological advances is a better delineation of AML clonal heterogeneity, monitoring patients without disease-specific mutation and designing customized post-remission strategies based on MRD assessment. In this context, metabolomics, which pertains to overall small molecules profiling, emerged as relevant access for risk stratification and targeted therapies improvement. In this review, we performed a detailed overview of the most popular modern methods used in hematological laboratories, pointing out their vital importance for MRD monitoring in order to improve overall survival, early detection of possible relapses and treatment efficacy.
Collapse
|
30
|
Deciphering the Role of Pyrvinium Pamoate in the Generation of Integrated Stress Response and Modulation of Mitochondrial Function in Myeloid Leukemia Cells through Transcriptome Analysis. Biomedicines 2021; 9:biomedicines9121869. [PMID: 34944685 PMCID: PMC8698814 DOI: 10.3390/biomedicines9121869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/15/2023] Open
Abstract
Pyrvinium pamoate, a widely-used anthelmintic agent, reportedly exhibits significant anti-tumor effects in several cancers. However, the efficacy and mechanisms of pyrvinium against myeloid leukemia remain unclear. The growth inhibitory effects of pyrvinium were tested in human AML cell lines. Transcriptome analysis of Molm13 myeloid leukemia cells suggested that pyrvinium pamoate could trigger an unfolded protein response (UPR)-like pathway, including responses to extracellular stimulus [p-value = 2.78 × 10-6] and to endoplasmic reticulum stress [p-value = 8.67 × 10-7], as well as elicit metabolic reprogramming, including sulfur compound catabolic processes [p-value = 2.58 × 10-8], and responses to a redox state [p-value = 5.80 × 10-5]; on the other hand, it could elicit a pyrvinium blunted protein folding function, including protein folding [p-value = 2.10 × 10-8] and an ATP metabolic process [p-value = 3.95 × 10-4]. Subsequently, pyrvinium was verified to induce an integrated stress response (ISR), demonstrated by activation of the eIF2α-ATF4 pathway and inhibition of mTORC1 signaling, in a dose- and time-dependent manner. Additionally, pyrvinium could co-localize with mitochondria and then decrease the mitochondrial basal oxidative consumption rate, ultimately dysregulating the mitochondrial function. Similar effects were observed in cabozantinib-resistant Molm13-XR cell lines. Furthermore, pyrvinium treatment retarded Molm13 and Molm13-XR xenograft tumor growth. Thus, we concluded that pyrvinium exerts anti-tumor activity, at least, via the modulation of the mitochondrial function and by triggering ISR.
Collapse
|