1
|
Laurin BJ, Treffy R, Connelly JM, Straza M, Mueller WM, Krucoff MO. Mesenchymal-Type Genetic Mutations Are Likely Prerequisite for Glioblastoma Multiforme to Metastasize Outside the Central Nervous System: An Original Case Series and Systematic Review of the Literature. World Neurosurg 2024:S1878-8750(24)01687-5. [PMID: 39419169 DOI: 10.1016/j.wneu.2024.09.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive and prevalent type of malignant brain tumor, yet it metastasizes outside the central nervous system (CNS) in only 0.4% of cases. Little is known about what enables this subset of GBMs to take root outside the CNS, but genetic mutations likely play a role. METHODS We conducted a PRISMA-compliant systematic review of metastatic GBM wherein we reviewed 3579 search results and 1080 abstracts, analyzing data from 139 studies and 211 unique patients. In addition, we describe 4 cases of patients with pathologically confirmed GBM metastases outside the CNS treated at our institution. RESULTS We found that metastases were discovered near previous surgical sites in at least 36.9% of cases. Other sites of metastasis included bone (47.9%), lung (25.6%), lymph nodes (25.1%), scalp (19.2%), and liver (14.2%). On average, metastases were diagnosed 12.1 months after the most recent resection, and the mean survival from discovery was 5.7 months. In our patients, primary GBM lesions showed mutations in NF1, TERT, TP53, CDK4, and RB1/PTEN genes. Unique to the metastatic lesions were amplifications in genes such as p53 and PDGFRA/KIT, as well as increased vimentin and Ki-67 expression. CONCLUSIONS There is strong evidence that GBMs acquire novel mutations to survive outside the CNS. In some cases, tumor cells likely mutate after seeding scalp tissue during surgery, and in others, they mutate and spread without surgery. Future studies and genetic profiling of primary and metastatic lesions may help uncover the mechanisms of spread.
Collapse
Affiliation(s)
- Bryce J Laurin
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Randall Treffy
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jennifer M Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Straza
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Max O Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Lee B, Hwang S, Bae H, Choi KH, Suh YL. Diagnostic utility of genetic alterations in distinguishing IDH-wildtype glioblastoma from lower-grade gliomas: Insight from next-generation sequencing analysis of 479 cases. Brain Pathol 2024; 34:e13234. [PMID: 38217295 PMCID: PMC11328351 DOI: 10.1111/bpa.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
The accurate diagnosis and classification of gliomas are essential for appropriate treatment planning and prognosis prediction. This study aimed to investigate the molecular diagnostics of IDH-wildtype diffuse astrocytic gliomas and identify potential genetic variants that could differentiate glioblastoma (GBM) from lower-grade gliomas when DNA methylation analysis is not feasible. In total, 479 H3-and IDH-wildtype diffuse astrocytic gliomas were included in this study. All the cases were diagnosed according to the 2021 World Health Organization (WHO) classification of central nervous system (CNS) tumors. Panel sequencing data were collected, and clinicopathological information was retrieved from medical records. Genetic alterations and histological findings were analyzed to determine their diagnostic utility and prognostic implications. Out of 479 cases, 439 (91.6%) were diagnosed with GBM, including 28 cases that were molecularly diagnosed as GBM. However, 40 (8.4%) cases could not be classified according to the 2021 WHO classification and were diagnosed as lower-grade diffuse astrocytic glioma, IDH-wildtype, not elsewhere classified (LGNEC). In addition to the three genetic alterations included in the diagnostic criteria of GBM, PTEN and EGFR mutations were found to be enriched in GBM. Patients harboring mTOR pathway mutations demonstrated a more favorable prognosis and often exhibited morphology resembling subependymal giant cell astrocytoma, along with a high tumor mutational burden. Among patients with mTOR pathway mutations, those lacking molecular diagnostic features of GBM exhibited outstanding survival outcomes, even in the presence of grade 4 histology. Integration of molecular features enhanced the diagnostic accuracy of IDH-wildtype gliomas. Some molecular alterations enriched in GBM offer valuable insights for molecular diagnosis and glioma classification. Furthermore, high-grade diffuse astrocytic gliomas featuring mTOR pathway mutations in the absence of molecular diagnostic features of GBM could represent more favorable tumor types distinct from GBM.
Collapse
Affiliation(s)
- Boram Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soohyun Hwang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyunsik Bae
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Pathology center, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Kyue-Hee Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeon-Lim Suh
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Kabirova E, Ryzhkova A, Lukyanchikova V, Khabarova A, Korablev A, Shnaider T, Nuriddinov M, Belokopytova P, Smirnov A, Khotskin NV, Kontsevaya G, Serova I, Battulin N. TAD border deletion at the Kit locus causes tissue-specific ectopic activation of a neighboring gene. Nat Commun 2024; 15:4521. [PMID: 38806452 PMCID: PMC11133455 DOI: 10.1038/s41467-024-48523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra. We used genome editing in mice to delete the TADs boundaries at the Kit locus and characterized chromatin folding and gene expression in pure cultures of fibroblasts, mast cells, and melanocytes. We found that although Kit is highly active in both mast cells and melanocytes, deletion of the TAD boundary between the Kit and Kdr genes results in ectopic activation only in melanocytes. Thus, the epigenetic landscape, namely the mutual arrangement of enhancers and actively transcribing genes, is important for predicting the consequences of the TAD boundaries removal. We also found that mice without a TAD border between the Kit and Kdr genes have a phenotypic manifestation of the mutation - a lighter coloration. Thus, the data obtained shed light on the principles of interaction between the 3D chromatin organization and epigenetic marks in the regulation of gene activity.
Collapse
Affiliation(s)
- Evelyn Kabirova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | - Anna Khabarova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Alexey Korablev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | - Irina Serova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
4
|
Kim KH, Migliozzi S, Koo H, Hong JH, Park SM, Kim S, Kwon HJ, Ha S, Garofano L, Oh YT, D'Angelo F, Kim CI, Kim S, Lee JY, Kim J, Hong J, Jang EH, Mathon B, Di Stefano AL, Bielle F, Laurenge A, Nesvizhskii AI, Hur EM, Yin J, Shi B, Kim Y, Moon KS, Kwon JT, Lee SH, Lee SH, Gwak HS, Lasorella A, Yoo H, Sanson M, Sa JK, Park CK, Nam DH, Iavarone A, Park JB. Integrated proteogenomic characterization of glioblastoma evolution. Cancer Cell 2024; 42:358-377.e8. [PMID: 38215747 PMCID: PMC10939876 DOI: 10.1016/j.ccell.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/11/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Proteomics Core Facility, Research Core Center, Research Institute, National Cancer Center, Goyang, Korea
| | - Simona Migliozzi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Harim Koo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jun-Hee Hong
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seung Min Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Sooheon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hyung Joon Kwon
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seokjun Ha
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Luciano Garofano
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Young Taek Oh
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fulvio D'Angelo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chan Il Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seongsoo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Ji Yoon Lee
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jiwon Kim
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jisoo Hong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Eun-Hae Jang
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Bertrand Mathon
- Service de Neurochirurgie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| | - Anna-Luisa Di Stefano
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France; Department of Neurology, Foch Hospital, Suresnes, France
| | - Franck Bielle
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Alice Laurenge
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | | | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jinlong Yin
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Youngwook Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Jeong Taik Kwon
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Shin Heon Lee
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung Hoon Lee
- Department of Neurosurgery, Eulji University School of Medicine, Daejeon, Korea
| | - Ho Shin Gwak
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Anna Lasorella
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Heon Yoo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Marc Sanson
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France.
| | - Jason K Sa
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.
| | - Chul-Kee Park
- Deparment of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery and Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery and Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Department of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| |
Collapse
|
5
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|
6
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
7
|
Goenka A, Song X, Tiek D, Iglesia RP, Lu M, Zeng C, Horbinski C, Zhang W, Hu B, Cheng SY. Oncogenic long noncoding RNA LINC02283 enhances PDGF receptor A-mediated signaling and drives glioblastoma tumorigenesis. Neuro Oncol 2023; 25:1592-1604. [PMID: 36988488 PMCID: PMC10479875 DOI: 10.1093/neuonc/noad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) regulate the etiology of complex diseases and cancers, including glioblastoma (GBM). However, lncRNA-based therapies are limited because the mechanisms of action of many lncRNAs with their binding partners are not completely understood. METHODS We used transcriptomic and genomic data to analyze correlations between LINC02283 and PDGFRA (platelet-derived growth factor receptor A). The biological functions of the novel lncRNA were assessed in vivo using patient-derived glioma stem-like cells (GSCs), and orthotopic GBM xenografts. Immunoblotting, qRT-PCR, RNA pull down, crosslinked RNA immunoprecipitation, fluorescence in situ hybridization, and antisense oligo-mediated knockdown were performed to explore the regulation of LINC02283 on PDGFRA signaling. Expression of LINC02283 in clinical samples was assessed using pathologically diagnosed GBM patient samples. RESULTS We identified a novel oncogenic lncRNA, LINC02283, that is highly expressed in the PDGFRA mutation-driven cohort of glioma patients and associated with worse prognosis. LINC02283 gene co-amplifies with the PDGFRA locus and shows high correlation with PDGFRA expression. Deprivation of LINC02283 in GSCs with PDGFRA amplification mutation, attenuated tumorigenicity and enhanced survival in orthotopic GBM xenograft models, while overexpression of LINC02283 in GSCs with wild-type PDGFRA, enhances PDGFRA signaling, and decreases survival. Further, LINC02283 interacts with PDGFRA to enhance its signaling and that of its downstream targets AKT and ERK, thus promoting oncogenesis in GBM. CONCLUSIONS Our results provide strong evidence of LINC02283 as a regulator of PDGFRA oncogenic activity and GBM malignancy and support the potential of lncRNAs as possible therapeutic targets.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA
| | - Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA
| | - Rebeca Piatniczka Iglesia
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA
- Master of Biotechnology Program, Northwestern University, Evanston, Illinois, USA
| | - Chang Zeng
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Chicago, Illinois, USA
| | - Craig Horbinski
- The Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA
- Department of Pathology, Chicago, Illinois, USA
- Department of Neurological Surgery, Chicago, Illinois, USA
| | - Wei Zhang
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Chicago, Illinois, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Carlotto BS, Trevisan P, Provenzi VO, Soares FP, Rosa RFM, Varella-Garcia M, Zen PRG. PDGFRA, KIT, and KDR Gene Amplification in Glioblastoma: Heterogeneity and Clinical Significance. Neuromolecular Med 2023; 25:441-450. [PMID: 37610648 PMCID: PMC10514169 DOI: 10.1007/s12017-023-08749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
Glioblastoma (GBM) is the most frequent tumor of the central nervous system, and its heterogeneity is a challenge in treatment. This study examined tumoral heterogeneity involving PDGFRA, KIT, and KDR gene amplification (GA) in 4q12 and its association with clinical parameters. Specimens from 22 GBM cases with GA for the 4q12 amplicon detected by FISH were investigated for homogeneous or heterogeneous coamplification patterns, diffuse or focal distribution of cells harboring GA throughout tumor sections, and pattern of clustering of fluorescence signals. Sixteen cases had homogenously amplification for all three genes (45.5%), for PDGFRA and KDR (22.7%), or only for PDGFRA (4.6%); six cases had heterogeneous GA patterns, with subpopulations including GA for all three genes and for two genes - PDGFRA and KDR (13.6%), or GA for all three and for only one gene - PDGFRA (9.1%) or KIT (4.6%). In 6 tumors (27.3%), GA was observed in focal tumor areas, while in the remaining 16 tumors (72.7%) it was diffusely distributed throughout the pathological specimen. Amplification was universally expressed as double minutes and homogenously stained regions. Coamplification of all three genes PDGFRA, KIT, and KDR, age ≥ 60 years, and total tumor resection were statistically associated with poor prognosis. FISH proved effective for detailed interpretation of molecular heterogeneity. The study uncovered an even more diverse range of amplification patterns involving the 4q12 oncogenes in GBM than previously described, thus highlighting a complex tumoral heterogeneity to be considered when devising more effective therapies.
Collapse
Affiliation(s)
- Bianca Soares Carlotto
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS Brazil
| | - Patricia Trevisan
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS Brazil
- Colorado Genetics Laboratory, Department of Pathology, School of Medicine, University of Colorado, Aurora, CO USA
| | | | | | - Rafael Fabiano Machado Rosa
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS Brazil
- Department of Internal Medicine, Clinical Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, RS Brazil
| | - Marileila Varella-Garcia
- Department of Medicine, Medical Oncology Division, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Paulo Ricardo Gazzola Zen
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS Brazil
- Department of Internal Medicine, Clinical Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, RS Brazil
| |
Collapse
|
9
|
Yin J, Yin W, Zheng L, Li Y, Luo C, Zhang S, Duan L, Zhou H, Cheng K, Lang J, Xu K. Anlotinib as Monotherapy or Combination Therapy for Recurrent High-Grade Glioma: A Retrospective Study. Clin Med Insights Oncol 2023; 17:11795549231175714. [PMID: 37435019 PMCID: PMC10331188 DOI: 10.1177/11795549231175714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/26/2023] [Indexed: 07/13/2023] Open
Abstract
Background Anlotinib is a multi-target anti-angiogenic agent. The retrospective study was conducted to evaluate the safety and effectiveness of anlotinib as monotherapy or combination therapy for the treatment of recurrent high-grade gliomas. Methods In this retrospective study, patients with recurrent high-grade glioma (according to the 2021 World Health Organization classification as levels III-IV) at Sichuan Cancer Hospital from June 2019 to June 2022 were included. The patients were divided into an anlotinib-monotherapy group and an anlotinib-combination group, and received oral anlotinib 8 to 12 mg once a day, with 2 weeks on/1 week off. The primary endpoint was progression-free survival (PFS). The Secondary endpoints included overall survival (OS), 6-month PFS rate, objective response rate (ORR), and disease control rate (DCR). Also, adverse events were evaluated using the National Cancer Institute's Common Terminology Criteria for Adverse Events (CTCAE version 5.0). Results A total of 29 patients (including 20 glioblastomas, 1 diffuse midline glioma, 5 anaplastic astrocytoma, and 3 anaplastic oligodendroglioma) were included in this study. Of these, 34.48% of the patients were treated with anlotinib alone and 65.52% with anlotinib combination therapy. The median follow-up time was 11.6 months (95% confidence interval [CI]: 9.4-15.7). The median PFS was 9.4 months (95% CI: 6.5-12.3), and the 6-month PFS rate was 62.1%. The median OS was 12.7 months (95% CI: 9.7-15.7), and the 12-month OS rate was 48.3%. Evaluation of treatment response was performed according to RANO (response assessment in neuro-oncology, RANO) criteria, including 21 partial response, 6 stable disease, and 2 PFS events. The ORR and DCR were 72.4%, and 93.1%, respectively. Grade III AEs occurred in 2 patients, and the others were less than grade III. The most common AE was thrombocytopenia, with an incidence rate of 31.0%. All AEs were alleviated and controlled by symptomatic treatment. No treatment-related deaths occurred. Conclusion Anlotinib had a low incidence of AEs and good safety in the treatment of recurrent high-grade glioma. Moreover, it showed good short-term effectiveness and significantly prolonged the PFS of patients, which may become a promising therapeutic option for recurrent high-grade glioma and lay a foundation for further clinical studies.
Collapse
Affiliation(s)
- Jun Yin
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wenya Yin
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Clinical Medical College, Chengdu Medical College, Chengdu, China
| | - Linlin Zheng
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yimin Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shuo Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Duan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Clinical Medical College, Chengdu Medical College, Chengdu, China
| | - Hang Zhou
- Department of Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Cheng
- Department of Pharmacy, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ke Xu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, Silvestris N, Di Pietro M, Fadda G, Tuccari G, Ieni A. Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents. Cancers (Basel) 2023; 15:cancers15092622. [PMID: 37174088 PMCID: PMC10177137 DOI: 10.3390/cancers15092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The present review focuses on the phenomenon of autophagy, a catabolic cellular process, which allows for the recycling of damaged organelles, macromolecules, and misfolded proteins. The different steps able to activate autophagy start with the formation of the autophagosome, mainly controlled by the action of several autophagy-related proteins. It is remarkable that autophagy may exert a double role as a tumour promoter and a tumour suppressor. Herein, we analyse the molecular mechanisms as well as the regulatory pathways of autophagy, mainly addressing their involvement in human astrocytic neoplasms. Moreover, the relationships between autophagy, the tumour immune microenvironment, and glioma stem cells are discussed. Finally, an excursus concerning autophagy-targeting agents is included in the present review in order to obtain additional information for the better treatment and management of therapy-resistant patients.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Martina Di Pietro
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| |
Collapse
|
11
|
GÖKER BAGCA B, GÖDE S, TURHAL G, ÖZATEŞ NP, VERAL A, GÜNDÜZ C, AVCI ÇB. Nadir paranazal sinüs kanserlerinde yeni tanımlanan reseptör tirozin kinaz mutasyonları ve potansiyel fonksiyonel etkileri. EGE TIP DERGISI 2023. [DOI: 10.19161/etd.1262612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Amaç: Paranazal sinüs kanserleri oldukça nadir görülen heterojen bir hastalık grubudur. Maksiler sinüs skuamoz hücreli karsinomu, paranazal sinüs kanserlerinin anatomik ve histolojik olarak en
yaygın alt tipidir. Bu kanserin genetik profiline dair bilginin sınırlı olması, hastaların hedefli tedavi seçeneklerinden yararlanamamasına neden olmaktadır. Çalışmamızda bu nadir kanserdeki reseptör tirozin kinaz mutasyonlarının tanımlanması ve mutasyonların olası fonksiyonel etkilerinin tahmin edilmesi amaçlanmıştır.
Gereç ve Yöntem: Bu amaçla 30 olgunun tümörüne ait FFPE dokulardan DNA izolasyonu gerçekleştirildi, olguların mutasyon profili yeni nesil sekanslama yöntemi ve biyoinformatik
değerlendirme ile belirlendi. Belirlenen patojenik/ olası patojenik varyantların fonksiyonel etkileri farklı in silico araçlar yardımıyla tahminlendi.
Bulgular: Olgularının tamamında en az bir adet patojenik/olası patojenik KIT, PDFGRA ve RETmutasyonu belirlendi. KIT geninin katalitik bölgesindeki mutasyonların kinaz aktivitesini arttıracağı
tahmin edildi. PDFGRA genindeki p.P567P ve p.D1074D mutasyonları, 30 olgunun tamamında ve SRA veritabanından elde edilen normal dokulara ait okumaların tümünde belirlendi.
Sonuç: Reseptör tirozin kinaz mutasyonlarının paranazal sinüs kanserlerinde de önemli rol oynayabileceğinin belirlenmiş olması özellikle artmış kinaz aktivitesini hedefleyen tedavi yaklaşımlarını
bu olguların erişimine sunma potansiyeli taşıması bakımından oldukça önemlidir.
Collapse
Affiliation(s)
- Bakiye GÖKER BAGCA
- Aydın Adnan Menderes Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, Aydın, Türkiye
| | - Sercan GÖDE
- Ege Üniversitesi, Tıp Fakültesi, Kulak Burun Boğaz Anabilim Dalı, İzmir, Türkiye
| | - Göksel TURHAL
- Ege Üniversitesi, Tıp Fakültesi, Kulak Burun Boğaz Anabilim Dalı, İzmir, Türkiye
| | - Neslihan Pınar ÖZATEŞ
- Harran Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, Şanlıurfa, Türkiye
| | - Ali VERAL
- Ege Üniversitesi, Tıp Fakültesi, Patoloji Anabilim Dalı, İzmir, Türkiye
| | - Cumhur GÜNDÜZ
- Ege Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, İzmir, Türkiye
| | - Çığır Biray AVCI
- Ege Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, İzmir, Türkiye
| |
Collapse
|
12
|
Naryzhny S, Legina O. Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses. BIOMEDITSINSKAYA KHIMIYA 2022; 68:309-320. [DOI: 10.18097/pbmc20226805309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the interrelationship between the brain and the gut has become an area of high scientific interest. The intestine is responsible not only for digestion, as it contains millions of neurons, its own immune system, and affects the emotional and cognitive processes. The relationship between the gut and the brain suggests that the processes carried out by the gut microbiota play a significant role in the regulation of brain function, and vice versa. A special role here is played by intercellular tight junctions (TJ), where the zonulin protein holds an important place. Zonulin, an unprocessed precursor of mature haptoglobin, is the only physiological modulator of intercellular TJ that can reversibly regulate the permeability of the intestinal (IB) and blood-brain (BBB) barriers in the human body. BBB disruption and altered microbiota composition are associated with many diseases, including neurological disorders and neuroinflammation. That is, there is a gut-brain axis (GBA) — a communication system through which the brain modulates the functions of the gastrointestinal tract (GIT) and vice versa. GBA is based on neuronal, endocrine, and immunological mechanisms that are interconnected at the organismal, organ, cellular, and molecular levels.
Collapse
Affiliation(s)
- S.N. Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| | - O.K. Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| |
Collapse
|
13
|
Lee J, Kim E, Chong K, Ryu SW, Kim C, Choi K, Kim JH, Choi C. Atypical induction of HIF-1α expression by pericellular Notch1 signaling suffices for the malignancy of glioblastoma multiforme cells. Cell Mol Life Sci 2022; 79:537. [PMID: 36183290 PMCID: PMC9527190 DOI: 10.1007/s00018-022-04529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022]
Abstract
Contact-based pericellular interactions play important roles in cancer progression via juxtacrine signaling pathways. The present study revealed that hypoxia-inducible factor-1α (HIF-1α), induced even in non-hypoxic conditions by cell-to-cell contact, was a critical cue responsible for the malignant characteristics of glioblastoma multiforme (GBM) cells through Notch1 signaling. Densely cultured GBM cells showed enhanced viability and resistance to temozolomide (TMZ) compared to GBM cells at a low density. Ablating Notch1 signaling by a γ-secretase inhibitor or siRNA transfection resensitized resistant GBM cells to TMZ treatment and decreased their viability under dense culture conditions. The expression of HIF-1α was significantly elevated in highly dense GBM cells even under non-hypoxic conditions. Atypical HIF-1α expression was associated with the Notch1 signaling pathway in both GBM and glioblastoma stem cells (GSC). Proteasomal degradation of HIF-1α was prevented by binding with Notch1 intracellular domain (NICD), which translocated to the nuclei of GBM cells. Silencing Notch1 signaling using a doxycycline-inducible Notch1 RNA-interfering system or treatment with chetomin, a HIF pathway inhibitor, retarded tumor development with a significant anti-cancer effect in a murine U251-xenograft model. Using GBM patient tissue microarray analysis, a significant increase in HIF-1α expression was identified in the group with Notch1 expression compared to the group without Notch1 expression among those with positive HIF-1α expression. Collectively, these findings highlight the critical role of cell-to-cell contact-dependent signaling in GBM progression. They provide a rationale for targeting HIF-1α signaling even in a non-hypoxic microenvironment.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Applied Life Science, Sustainable Agriculture Research Institute (SARI), Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju-do, 63243, Republic of Korea.
| | - Eunsoo Kim
- ILIAS Biologics Inc, 40-20, Techno 6-ro, Yuseong-gu, Daejeon, 34014, Republic of Korea
| | - Kyuha Chong
- Department of Neurosurgery, Korea University Guro Hospital, Korea University Medicine, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
- Laboratory of Photo-Theranosis and Bioinformatics for Tumors, Department of Neurosurgery, Samsung Medical Center, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Seung-Wook Ryu
- ILIAS Biologics Inc, 40-20, Techno 6-ro, Yuseong-gu, Daejeon, 34014, Republic of Korea
| | - Chungyeul Kim
- Department of Pathology, Korea University Guro Hospital, Korea University Medicine, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Kyungsun Choi
- ILIAS Biologics Inc, 40-20, Techno 6-ro, Yuseong-gu, Daejeon, 34014, Republic of Korea
| | - Jae-Hoon Kim
- Department of Applied Life Science, Sustainable Agriculture Research Institute (SARI), Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju-do, 63243, Republic of Korea
| | - Chulhee Choi
- ILIAS Biologics Inc, 40-20, Techno 6-ro, Yuseong-gu, Daejeon, 34014, Republic of Korea.
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
14
|
Bibak B, Shakeri F, Keshavarzi Z, Mollazadeh H, Javid H, Jalili-Nik M, Sathyapalan T, Afshari AR, Sahebkar A. Anticancer mechanisms of Berberine: a good choice for glioblastoma multiforme therapy. Curr Med Chem 2022; 29:4507-4528. [PMID: 35209812 DOI: 10.2174/0929867329666220224112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
The most typical malignant brain tumor, glioblastoma multiforme (GBM), seems to have a grim outcome, despite the intensive multi-modality interventions. Literature suggests that biologically active phytomolecules may exert anticancer properties by regulating several signaling pathways. Berberine, an isoquinoline alkaloid, has various pharmacological applications to combat severe diseases like cancer. Mechanistically, Berberine inhibits cell proliferation and invasion, suppresses tumor angiogenesis, and induces cell apoptosis. The effect of the antitumoral effect of Berberine in GBM is increasingly recognized. This review sheds new light on the regulatory signaling mechanisms of Berberine in various cancer, proposing its potential role as a therapeutic agent for GBM. .
Collapse
Affiliation(s)
- Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Javid
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Sun S, Li X, Qu B, Xie K, Li J, Miao J. Association of the VEGFR2 single nucleotide polymorphism rs2305948 with glioma risk. Medicine (Baltimore) 2022; 101:e28454. [PMID: 35029892 PMCID: PMC8735747 DOI: 10.1097/md.0000000000028454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/06/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Many studies have reported a relationship between the vascular endothelial growth factor receptor 2 single nucleotide polymorphism (SNP) rs2305948 and glioma, but their conclusions have been controversial. A meta-analysis was performed to assess the association between rs2305948 and glioma susceptibility. METHODS Inclusion criteria and a strategy for screening of original literature were created. Eligible articles on the correlation between the SNP rs2305948 and glioma were identified in the PubMed, Embase, Web of Science, Cochrane Library, CNKI and Wanfang databases. After extracting the data, Stata 12. 0 software was used to perform statistical analysis under 5 genetic models and to calculate the combined odds ratio (OR) value and its 95% confidence interval (CI). RESULTS Four case-control studies including 1595 cases and 1657 controls were entered into the study. The overall analysis showed that no obvious association existed between rs2305948 and glioma risk (allele: OR = 1.20, 95% CI = 0.93-1.54, P = .162; dominant: OR = 1.17, 95% CI = 0.93-1.46, P = .174; recessive: OR = 1.72, 95% CI = 0.94-3.15, P = .076; heterozygous: OR = 1.11, 95% CI = 0.94-1.30, P = .226; homozygous: OR = 1.74, 95% CI = 0.92-3.29, P = .088). The subgroup analysis suggested that the SNP rs2305948 was related to glioma susceptibility under allele, dominant, recessive and homozygote models in the Asian population (allele: OR = 1.34, 95% CI = 1.16-1.55, P < .001; recessive: OR = 2.24, 95% CI = 1.49-3.36, P < .001; homozygous: OR = 2.32, 95% CI = 1.54-3.50, P < .001). CONCLUSION The vascular endothelial growth factor receptor 2 rs2305948 gene polymorphism may be related to glioma susceptibility in the Asian population. However, the association is not clear in non-Asian populations, for which there has been less research.
Collapse
Affiliation(s)
- Shushu Sun
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, China
| | - Xiaotian Li
- Department of Neurosurgery, Weifang People's Hospital, Weifang, China
| | - Bingkun Qu
- Department of Neurosurgery, Weifang People's Hospital, Weifang, China
| | - Kunming Xie
- Department of Neurosurgery, Weifang People's Hospital, Weifang, China
| | - Jinlei Li
- Department of Neurosurgery, Weifang People's Hospital, Weifang, China
| | - Junjie Miao
- Department of Neurosurgery, Weifang People's Hospital, Weifang, China
| |
Collapse
|
16
|
Hwang EI, Sayour EJ, Flores CT, Grant G, Wechsler-Reya R, Hoang-Minh LB, Kieran MW, Salcido J, Prins RM, Figg JW, Platten M, Candelario KM, Hale PG, Blatt JE, Governale LS, Okada H, Mitchell DA, Pollack IF. The current landscape of immunotherapy for pediatric brain tumors. NATURE CANCER 2022; 3:11-24. [PMID: 35121998 DOI: 10.1038/s43018-021-00319-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Pediatric central nervous system tumors are the most common solid malignancies in childhood, and aggressive therapy often leads to long-term sequelae in survivors, making these tumors challenging to treat. Immunotherapy has revolutionized prospects for many cancer types in adults, but the intrinsic complexity of treating pediatric patients and the scarcity of clinical studies of children to inform effective approaches have hampered the development of effective immunotherapies in pediatric settings. Here, we review recent advances and ongoing challenges in pediatric brain cancer immunotherapy, as well as considerations for efficient clinical translation of efficacious immunotherapies into pediatric settings.
Collapse
Affiliation(s)
- Eugene I Hwang
- Division of Oncology, Brain Tumor Institute, Children's National Hospital, Washington, DC, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Catherine T Flores
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Gerald Grant
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Robert Wechsler-Reya
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lan B Hoang-Minh
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | | | | | - Robert M Prins
- Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John W Figg
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University and CCU Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Kate M Candelario
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Paul G Hale
- Children's Brain Trust, Coral Springs, FL, USA
| | - Jason E Blatt
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Lance S Governale
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Duane A Mitchell
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Qin A, Musket A, Musich PR, Schweitzer JB, Xie Q. Receptor tyrosine kinases as druggable targets in glioblastoma: Do signaling pathways matter? Neurooncol Adv 2021; 3:vdab133. [PMID: 34806012 PMCID: PMC8598918 DOI: 10.1093/noajnl/vdab133] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor without effective therapies. Since bevacizumab was FDA approved for targeting vascular endothelial growth factor receptor 2 (VEGFR2) in adult patients with recurrent GBM, targeted therapy against receptor tyrosine kinases (RTKs) has become a new avenue for GBM therapeutics. In addition to VEGFR, the epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), hepatocyte growth factor receptor (HGFR/MET), and fibroblast growth factor receptor (FGFR) are major RTK targets. However, results from clinical Phase II/III trials indicate that most RTK-targeting therapeutics including tyrosine kinase inhibitors (TKIs) and neutralizing antibodies lack clinical efficacy, either alone or in combination. The major challenge is to uncover the genetic RTK alterations driving GBM initiation and progression, as well as to elucidate the mechanisms toward therapeutic resistance. In this review, we will discuss the genetic alterations in these 5 commonly targeted RTKs, the clinical trial outcomes of the associated RTK-targeting therapeutics, and the potential mechanisms toward the resistance. We anticipate that future design of new clinical trials with combination strategies, based on the genetic alterations within an individual patient’s tumor and mechanisms contributing to therapeutic resistance after treatment, will achieve durable remissions and improve outcomes in GBM patients.
Collapse
Affiliation(s)
- Anna Qin
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Anna Musket
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Phillip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - John B Schweitzer
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Qian Xie
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
18
|
Cui M, Gao X, Chi Y, Zhang M, Lin H, Chen H, Sun C, Ma X. Molecular Alterations and Their Correlation With the Survival of Glioblastoma Patients With Corpus Callosum Involvement. Front Neurosci 2021; 15:701426. [PMID: 34393714 PMCID: PMC8361605 DOI: 10.3389/fnins.2021.701426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose: To explore molecular alterations and their correlation with the survival of patients with glioblastoma (GBM) with corpus callosum (CC) involvement (ccGBM). Methods: Electronic medical records were reviewed for glioma patients tested for molecular alterations and treated at our hospital between January 2016 and July 2020. ccGBM was compared to GBM without CC involvement (non-ccGBM) to identify differences in molecular alterations. Clinical outcomes and survival were compared between ccGBM and non-ccGBM patients, as well as among patients with ccGBM with different molecular alteration statuses. ccGBM was also compared to diffuse midline glioma (DMG) to clarify their correlation in molecular alterations, the progression-free survival (PFS), and overall survival (OS). Results: Thirty ccGBM and 88 non-ccGBM patients were included. PDGFRA amplification (PDGFRAamp, 33.3 vs. 9.1%, P = 0.004) and missense mutation (PDGFRAmut, 20.0 vs. 3.4%, P = 0.011) both had higher incidences in ccGBM than in non-ccGBM. PDGFRA alteration was associated with the occurrence of ccGBM (OR = 4.91 [95% CI: 1.55–15.52], P = 0.007). ccGBM with PDGFRAamp resulted in a shorter median PFS (8.6 vs. 13.5 months, P = 0.025) and OS (12.4 vs. 17.9 months, P = 0.022) than non-ccGBM with PDGFRAnon-amp. ccGBM with PDGFRAamp combined with PDGFRAmut (PDGFRAamp-mut) had a shorter median PFS (7.6 vs. 8.9 months, P = 0.022) and OS (9.6 vs. 17.8 months, P = 0.006) than non-ccGBM with wild-type PDGFRA and no amplification (PDGFRA-w, non-amp). Compared to ccGBM with PDGFRA-w, non-amp, ccGBM with PDGFRAamp and PDGFRAamp-mut both had a shorter median PFS and OS (P < 0.05). The hazard ratios (HRs) of PDGFRAamp for PFS and OS in ccGBM were 3.08 (95% CI: 1.02–9.35, P = 0.047) and 5.07 (1.52–16.89, P = 0.008), respectively, and the HRs of PDGFRAamp-mut for PFS and OS were 13.16 (95% CI: 3.19–54.40, P < 0.001) and 16.36 (2.66–100.70, P = 0.003). ccGBM may have similar incidences of PDGFRAamp or mut (PDGFRAamp/mut) as DMG, and they also had similar median PFS (10.9 vs. 9.0 months, P = 0.558) and OS (16.8 vs. 11.5 months, P = 0.510). Conclusion:PDGFRA alterations are significantly associated with the occurrence and poor prognosis of ccGBM. ccGBM with PDGFRAamp/mut may be classified as a single subtype of GBM that has a similar survival rate to DMG. PDGFR inhibitors may be a promising treatment method for ccGBM.
Collapse
Affiliation(s)
- Meng Cui
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xin Gao
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yihong Chi
- Department of Information Technology, Xian Janssen Pharmaceutical Ltd., Beijing, China
| | - Meng Zhang
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hepu Lin
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hewen Chen
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Caihong Sun
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaodong Ma
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Makino Y, Arakawa Y, Yoshioka E, Shofuda T, Kawauchi T, Terada Y, Tanji M, Kanematsu D, Mineharu Y, Miyamoto S, Kanemura Y. Prognostic stratification for IDH-wild-type lower-grade astrocytoma by Sanger sequencing and copy-number alteration analysis with MLPA. Sci Rep 2021; 11:14408. [PMID: 34257410 PMCID: PMC8277860 DOI: 10.1038/s41598-021-93937-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
The characteristics of IDH-wild-type lower-grade astrocytoma remain unclear. According to cIMPACT-NOW update 3, IDH-wild-type astrocytomas with any of the following factors show poor prognosis: combination of chromosome 7 gain and 10 loss (+ 7/- 10), and/or EGFR amplification, and/or TERT promoter (TERTp) mutation. Multiplex ligation-dependent probe amplification (MLPA) can detect copy number alterations at reasonable cost. The purpose of this study was to identify a precise, cost-effective method for stratifying the prognosis of IDH-wild-type astrocytoma. Sanger sequencing, MLPA, and quantitative methylation-specific PCR were performed for 42 IDH-wild-type lower-grade astrocytomas surgically treated at Kyoto University Hospital, and overall survival was analysed for 40 patients who underwent first surgery. Of the 42 IDH-wild-type astrocytomas, 21 were classified as grade 4 using cIMPACT-NOW update 3 criteria and all had either TERTp mutation or EGFR amplification. Kaplan-Meier analysis confirmed the prognostic significance of cIMPACT-NOW criteria, and World Health Organization grade was also prognostic. Cox regression hazard model identified independent significant prognostic indicators of PTEN loss (risk ratio, 9.75; p < 0.001) and PDGFRA amplification (risk ratio, 13.9; p = 0.002). The classification recommended by cIMPACT-NOW update 3 could be completed using Sanger sequencing and MLPA. Survival analysis revealed PTEN and PDGFRA were significant prognostic factors for IDH-wild-type lower-grade astrocytoma.
Collapse
Affiliation(s)
- Yasuhide Makino
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Ema Yoshioka
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Tomoko Shofuda
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Takeshi Kawauchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Yukinori Terada
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Masahiro Tanji
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Daisuke Kanematsu
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan.
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.
| |
Collapse
|
20
|
Shepherd DJ, Miller TE, Forst DA, Jones P, Nardi V, Martinez-Lage M, Stemmer-Rachamimov A, Gonzalez RG, Iafrate AJ, Ritterhouse LL. Mosaicism for Receptor Tyrosine Kinase Activation in a Glioblastoma Involving Both PDGFRA Amplification and NTRK2 Fusion. Oncologist 2021; 26:919-924. [PMID: 34041811 DOI: 10.1002/onco.13835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
Rearrangements involving the neurotrophic receptor tyrosine kinase (NTRK) gene family have been reported in diverse tumor types, and NTRK-targeted therapies have recently been approved. In this article, we report a case of a 26-year-old man with an NTRK2-rearranged isocitrate dehydrogenase-wild-type glioblastoma who showed a robust but temporary response to the NTRK inhibitor larotrectinib. Rebiopsy after disease progression showed elimination of the NTRK2-rearranged tumor cell clones, with secondary emergence of a PDGFRA-amplified subclone. Retrospective examination of the initial biopsy material confirmed rare cells harboring PDGFRA amplification. Although mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma has been previously described, mosaicism involving a fusion gene driver event has not. This case highlights the potential efficacy of NTRK-targeted treatment in glioblastoma and the implications of molecular heterogeneity in the setting of targeted therapy. KEY POINTS: This case highlights the efficacy of the NTRK inhibitor larotrectinib in treating NTRK-rearranged glioblastoma. This is the first case to demonstrate mosaicism in glioblastoma involving both a fusion gene and amplification for receptor tyrosine kinases. Intratumoral heterogeneity in glioblastoma has significant implications for tumor resistance to targeted therapies.
Collapse
Affiliation(s)
- Daniel J Shepherd
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tyler E Miller
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Deborah A Forst
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pamela Jones
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Martinez-Lage
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ramon G Gonzalez
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren L Ritterhouse
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Zheng X, Amos CI, Frost HR. Cancer prognosis prediction using somatic point mutation and copy number variation data: a comparison of gene-level and pathway-based models. BMC Bioinformatics 2020; 21:467. [PMID: 33081688 PMCID: PMC7574407 DOI: 10.1186/s12859-020-03791-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Genomic profiling of solid human tumors by projects such as The Cancer Genome Atlas (TCGA) has provided important information regarding the somatic alterations that drive cancer progression and patient survival. Although researchers have successfully leveraged TCGA data to build prognostic models, most efforts have focused on specific cancer types and a targeted set of gene-level predictors. Less is known about the prognostic ability of pathway-level variables in a pan-cancer setting. To address these limitations, we systematically evaluated and compared the prognostic ability of somatic point mutation (SPM) and copy number variation (CNV) data, gene-level and pathway-level models for a diverse set of TCGA cancer types and predictive modeling approaches. RESULTS We evaluated gene-level and pathway-level penalized Cox proportional hazards models using SPM and CNV data for 29 different TCGA cohorts. We measured predictive accuracy as the concordance index for predicting survival outcomes. Our comprehensive analysis suggests that the use of pathway-level predictors did not offer superior predictive power relative to gene-level models for all cancer types but had the advantages of robustness and parsimony. We identified a set of cohorts for which somatic alterations could not predict prognosis, and a unique cohort LGG, for which SPM data was more predictive than CNV data and the predictive accuracy is good for all model types. We found that the pathway-level predictors provide superior interpretative value and that there is often a serious collinearity issue for the gene-level models while pathway-level models avoided this issue. CONCLUSION Our comprehensive analysis suggests that when using somatic alterations data for cancer prognosis prediction, pathway-level models are more interpretable, stable and parsimonious compared to gene-level models. Pathway-level models also avoid the issue of collinearity, which can be serious for gene-level somatic alterations. The prognostic power of somatic alterations is highly variable across different cancer types and we have identified a set of cohorts for which somatic alterations could not predict prognosis. In general, CNV data predicts prognosis better than SPM data with the exception of the LGG cohort.
Collapse
Affiliation(s)
- Xingyu Zheng
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.
- Department of Medicine, Institute for Clinical and Translational Research, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - H Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
22
|
Xu P, Xia Y, Wang Y, Qi Y, Qi C, He Y, Chang J. The conjugation of targeted therapy and image-guided phototdynamic therapy of cancer in vitro and in vivo. Bioorg Chem 2020; 100:103822. [PMID: 32446121 DOI: 10.1016/j.bioorg.2020.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 11/17/2022]
Abstract
Integration of multi-functional diagnosis and treatment competencies can improve effect of the drug and its visual distribution to the location of tumor focus site, and play a pivotal role by visualizing the tumor size in the assessment of chemotherapy. With the objective of developing integrated multi-therapeutic and diagnostic agent that could target the kinase receptor with high expression in tumor cells, herein, a biologically releasable drug-drug conjugate compound 9 with dual therapeutic and diagnostic effects was designed, synthesized and evaluated for pharmacodynamics and diagnostic functions in vitro and in vivo. The results of antitumor effects evaluations and compound 9 visual imaging indicated that compound 9 not only improved the anti-proliferative activity of chemotherapy and photodynamic treatment (PDT) in vitro and in vivo compared with those of compound 8 and PpIX but also allowed the photodynamic diagnosis (PDD). The present study verified a facile and effective strategy using a drug-drug conjugate to integrate diagnosis and multi-therapies, showing its potential a candidate clinical drug.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China; Experimental Chemistry Center, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Yanhui Xia
- Peking University Third Hospital, Beijing 100083, PR China; Experimental Chemistry Center, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Yaping Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China; Experimental Chemistry Center, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Yue Qi
- Experimental Chemistry Center, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| | - Chuanmin Qi
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China; Chinese Academy of Medical Science, Beijing 100041, PR China; Experimental Chemistry Center, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| | - Yong He
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| | - Jin Chang
- Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecule Science. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
23
|
Kim JO, Kim HN, Kim KH, Baek EJ, Park JY, Ha K, Heo DR, Seo MD, Park SG. Development and characterization of a fully human antibody targeting SCF/c-kit signaling. Int J Biol Macromol 2020; 159:66-78. [PMID: 32437800 DOI: 10.1016/j.ijbiomac.2020.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022]
Abstract
CD117/c-kit, a tyrosine kinase receptor, plays a critical role in hematopoiesis, pigmentation, and fertility. The overexpression and activation of c-kit are thought to promote tumor growth and have been reported in various cancers, including leukemia, glioblastoma and mastocytosis. To disrupt the SCF/c-kit signaling axis in cancer, we generated a c-kit antagonist human antibody (NN2101) that binds to domain 2/3 of c-kit. This completely blocked the SCF-mediated phosphorylation of c-kit and inhibited TF-1 cell proliferation, erythroleukemia. In addition, the examination of binding affinity using surface plasmon resonance (SPR) assay showed that NN2101 can bind to c-kit of monkeys (KD = 2.92 × 10-10 M), rats (KD = 1.68 × 10-6 M), mice (KD = 11.5 × 10-9 M), and humans (KD = 2.83 × 10-12 M). We showed that NN2101 does not cause antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The immunogenicity of NN2101 was similar to that of bevacizumab. Furthermore, the crystal structure of NN2101 Fab was determined and the structure of NN2101 Fab:c-kit complex was modeled. Structural information, as well as mutagenesis results, revealed that NN2101 can bind to the SCF-binding regions of c-kit. Collectively, we generated a c-kit neutralizing human antibody (NN2101) for the treatment of erythroleukemia and characterized its biophysical properties. NN2101 can potentially be used as a therapeutic antibody to treat different cancers.
Collapse
Affiliation(s)
- Jin-Ock Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Ha-Neul Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Kwang-Hyeok Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Eun Ji Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Jeong-Yang Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Kyungsoo Ha
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea
| | - Deok Rim Heo
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea; College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong 28160, Republic of Korea
| | - Min-Duk Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Novelty Nobility, 227 Unjung-ro, Seongnam-si, Gyeonggi-do 13477, Republic of Korea.
| | - Sang Gyu Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Novelty Nobility, 227 Unjung-ro, Seongnam-si, Gyeonggi-do 13477, Republic of Korea.
| |
Collapse
|
24
|
Le Joncour V, Filppu P, Hyvönen M, Holopainen M, Turunen SP, Sihto H, Burghardt I, Joensuu H, Tynninen O, Jääskeläinen J, Weller M, Lehti K, Käkelä R, Laakkonen P. Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization. EMBO Mol Med 2020; 11:emmm.201809034. [PMID: 31068339 PMCID: PMC6554674 DOI: 10.15252/emmm.201809034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The current clinical care of glioblastomas leaves behind invasive, radio‐ and chemo‐resistant cells. We recently identified mammary‐derived growth inhibitor (MDGI/FABP3) as a biomarker for invasive gliomas. Here, we demonstrate a novel function for MDGI in the maintenance of lysosomal membrane integrity, thus rendering invasive glioma cells unexpectedly vulnerable to lysosomal membrane destabilization. MDGI silencing impaired trafficking of polyunsaturated fatty acids into cells resulting in significant alterations in the lipid composition of lysosomal membranes, and subsequent death of the patient‐derived glioma cells via lysosomal membrane permeabilization (LMP). In a preclinical model, treatment of glioma‐bearing mice with an antihistaminergic LMP‐inducing drug efficiently eradicated invasive glioma cells and secondary tumours within the brain. This unexpected fragility of the aggressive infiltrating cells to LMP provides new opportunities for clinical interventions, such as re‐positioning of an established antihistamine drug, to eradicate the inoperable, invasive, and chemo‐resistant glioma cells from sustaining disease progression and recurrence.
Collapse
Affiliation(s)
- Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maija Hyvönen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Holopainen
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - S Pauliina Turunen
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Harri Sihto
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Isabel Burghardt
- Department of Neurology and Brain Tumour Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Heikki Joensuu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Oncology, Helsinki University Hospital, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland
| | | | - Michael Weller
- Department of Neurology and Brain Tumour Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland .,Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Liu Z, Wang X, Yang G, Zhong C, Zhang R, Ye J, Zhong Y, Hu J, Ozal B, Zhao S. Construction of lncRNA-associated ceRNA networks to identify prognostic lncRNA biomarkers for glioblastoma. J Cell Biochem 2020; 121:3502-3515. [PMID: 32277520 DOI: 10.1002/jcb.29625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
Abstract
Long noncoding RNAs (lncRNAs) serve as competitive endogenous RNAs (ceRNAs) that play significant regulatory roles in the pathogenesis of tumors. However, the role of lncRNAs, especially the lncRNA-related ceRNA regulatory network, in glioblastoma (GBM) has not been fully elucidated. The goal of the current study was to construct lncRNA-microRNA-mRNA-related ceRNA networks for further investigation of their mechanism of action in GBM. We downloaded data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases and identified differential lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) associated with GBM. A ceRNA network was constructed and analyzed to examine the relationship between lncRNAs and patients' overall survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) were used to analyze the related mRNAs to indirectly explain the mechanism of action of lncRNAs. The potential effective drugs for the treatment of GBM were identified using the connectivity map (CMap). After integrated analysis, we obtained a total of 210 differentially expressed lncRNAs, 90 differentially expressed miRNAs, and 2508 differentially expressed mRNAs (DEmRNAs) from the TCGA and GEO databases. Using these differential genes, we constructed a lncRNA-associated ceRNA network. Six lncRNAs in the ceRNA network were associated with the overall survival of patients with GBM. Through KEGG analysis, it was found that the DEmRNAs involved in the network are related to cancer-associated pathways, for instance, mitogen-activated protein kinase and Ras signaling pathways. CMap analysis revealed four small-molecule compounds that could be used as drugs for the treatment of GBM. In this study, a multi-database joint analysis was used to construct a lncRNA-related ceRNA network to help identify the regulatory functions of lncRNAs in the pathogenesis of GBM.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Laboratory of Neurosurgery, Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Laboratory of Neurosurgery, Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Laboratory of Neurosurgery, Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chen Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Laboratory of Neurosurgery, Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruotian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Laboratory of Neurosurgery, Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang, China
| | - Junyi Ye
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Laboratory of Neurosurgery, Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingqiang Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Laboratory of Neurosurgery, Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang, China
| | - Junlong Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Laboratory of Neurosurgery, Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang, China
| | - Beylerli Ozal
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Laboratory of Neurosurgery, Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang, China.,Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Laboratory of Neurosurgery, Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
26
|
Dai J, Yang L, Xu T, Si L, Cui C, Sheng X, Chi Z, Mao L, Lian B, Tang B, Bai X, Zhou L, Li S, Wang X, Yan X, Kong Y, Guo J. A Functional Synonymous Variant in PDGFRA Is Associated with Better Survival in Acral Melanoma. J Cancer 2020; 11:2945-2956. [PMID: 32226509 PMCID: PMC7086247 DOI: 10.7150/jca.43010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/18/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: Polymorphisms of genes in the platelet-derived growth factor (PDGF) signaling pathway have been found to predict cutaneous melanoma (CM) survival, but their clinical effects in acral melanoma (AM) patients have not been explored. The aim of this study was to characterize the functional effect of the tag single-nucleotide polymorphism (SNP) rs2228230:C>T and assess its association with clinical outcomes in AM patients. Methods: The effect of rs2228230:C>T on mRNA structures and codon usage values were evaluated using in silico analyses. PDGF receptor alpha (PDGFRA) expression vectors with the rs2228230:C or rs2228230:T allele were constructed to evaluate the expression and signaling activity of PDGFRA. The expression of PDGFRA in AM samples was measured using in situ RNAscope hybridization and immunohistochemical staining. The association of the rs2228230 genotype with survival was analyzed in two independent AM cohorts. Results: In silico analyses indicated that the rs2228230:T allele increases the minimum free energy and reduces synonymous codon usage. The rs2228230:T allele decreased the expression of PDGFRA by reducing the stability of its mRNA and protein as well as the signaling activity of the MAPK and PI3K/AKT pathways. PDGFRA mRNA and protein expression was significantly reduced in AM tissues with the rs2228230:T allele. The progression-free survival and overall survival of AM patients with the rs2228230:T allele were significantly longer than those of patients with the CC genotype. Conclusion: Our study indicated that rs2228230:T can reduce the expression of PDGFRA and downstream signaling activity and is associated with better survival in AM patients.
Collapse
Affiliation(s)
- Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Lu Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China.,Department of Radiology, Peking University Shougang Hospital, Beijing 100144, China
| | - Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Li Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Siming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xieqiao Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
27
|
Shin K, Shin H, Cho HJ, Kang H, Lee JK, Seo YJ, Shin YJ, Kim D, Koo H, Kong DS, Seol HJ, Lee JI, Lee HW, Nam DH. Sphere-Forming Culture for Expanding Genetically Distinct Patient-Derived Glioma Stem Cells by Cellular Growth Rate Screening. Cancers (Basel) 2020; 12:cancers12030549. [PMID: 32120790 PMCID: PMC7139415 DOI: 10.3390/cancers12030549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Diffusely infiltrating gliomas (DIGs) are difficult to completely resect and are associated with a high rate of tumor relapse and progression from low- to high-grade glioma. In particular, optimized short-term culture-enriching patient-derived glioma stem cells (GSCs) are essential for customizing the therapeutic strategy based on clinically feasible in vitro drug screening for a wide range of DIGs, owing to the high inter-tumoral heterogeneity. Herein, we constructed a novel high-throughput culture condition screening platform called ‘GFSCAN’, which evaluated the cellular growth rates of GSCs for each DIG sample in 132 serum-free combinations, using 13 previously reported growth factors closely associated with glioma aggressiveness. In total, 72 patient-derived GSCs with available genomic profiles were tested in GFSCAN to explore the association between cellular growth rates in specific growth factor combinations and genomic/molecular backgrounds, including isocitrate dehydrogenase 1 (IDH1) mutation, chromosome arm 1p and 19q co-deletion, ATRX chromatin remodeler alteration, and transcriptional subtype. GSCs were clustered according to the dependency on epidermal growth factor and basic fibroblast growth factor (E&F), and isocitrate dehydrogenase 1 (IDH1) wild-type GSCs showed higher E&F dependencies than IDH1 mutant GSCs. More importantly, we elucidated optimal combinations for IDH1 mutant glioblastoma and lower grade glioma GSCs with low dependencies on E&F, which could be an aid in clinical decision-making for these DIGs. Thus, we demonstrated the utility of GFSCAN in personalizing in vitro cultivation to nominate personalized therapeutic options, in a clinically relevant time frame, for individual DIG patients, where standard clinical options have been exhausted.
Collapse
Affiliation(s)
- Kayoung Shin
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul 06531, Korea; (K.S.); (H.K.)
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea; (H.S.); (H.J.C.); (Y.J.S.); (Y.J.S.); (D.K.)
| | - Hyemi Shin
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea; (H.S.); (H.J.C.); (Y.J.S.); (Y.J.S.); (D.K.)
- Precision Medicine Research Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Hee Jin Cho
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea; (H.S.); (H.J.C.); (Y.J.S.); (Y.J.S.); (D.K.)
- Precision Medicine Research Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Hyunju Kang
- Graduate School of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Korea; (H.K.); (J.-K.L.)
| | - Jin-Ku Lee
- Graduate School of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Korea; (H.K.); (J.-K.L.)
| | - Yun Jee Seo
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea; (H.S.); (H.J.C.); (Y.J.S.); (Y.J.S.); (D.K.)
| | - Yong Jae Shin
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea; (H.S.); (H.J.C.); (Y.J.S.); (Y.J.S.); (D.K.)
| | - Donggeon Kim
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea; (H.S.); (H.J.C.); (Y.J.S.); (Y.J.S.); (D.K.)
| | - Harim Koo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul 06531, Korea; (K.S.); (H.K.)
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea; (H.S.); (H.J.C.); (Y.J.S.); (Y.J.S.); (D.K.)
| | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea; (D.-S.K.); (H.J.S.); (J.-I.L.)
| | - Ho Jun Seol
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea; (D.-S.K.); (H.J.S.); (J.-I.L.)
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea; (D.-S.K.); (H.J.S.); (J.-I.L.)
| | - Hye Won Lee
- Department of Hospital Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (H.W.L.); (D.-H.N.); Tel.: +82-31-5189-8531 (H.W.L.); +82-2-2148-3497 (D.-H.N.); Fax: +82-2-2148-9829 (H.W.L.); +82-2-2149-9829 (D.-H.N.)
| | - Do-Hyun Nam
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul 06531, Korea; (K.S.); (H.K.)
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea; (H.S.); (H.J.C.); (Y.J.S.); (Y.J.S.); (D.K.)
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea; (D.-S.K.); (H.J.S.); (J.-I.L.)
- Correspondence: (H.W.L.); (D.-H.N.); Tel.: +82-31-5189-8531 (H.W.L.); +82-2-2148-3497 (D.-H.N.); Fax: +82-2-2148-9829 (H.W.L.); +82-2-2149-9829 (D.-H.N.)
| |
Collapse
|
28
|
Vivian J, Eizenga JM, Beale HC, Vaske OM, Paten B. Bayesian Framework for Detecting Gene Expression Outliers in Individual Samples. JCO Clin Cancer Inform 2020; 4:160-170. [PMID: 32097024 PMCID: PMC7053807 DOI: 10.1200/cci.19.00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Many antineoplastics are designed to target upregulated genes, but quantifying upregulation in a single patient sample requires an appropriate set of samples for comparison. In cancer, the most natural comparison set is unaffected samples from the matching tissue, but there are often too few available unaffected samples to overcome high intersample variance. Moreover, some cancer samples have misidentified tissues of origin or even composite-tissue phenotypes. Even if an appropriate comparison set can be identified, most differential expression tools are not designed to accommodate comparisons to a single patient sample. METHODS We propose a Bayesian statistical framework for gene expression outlier detection in single samples. Our method uses all available data to produce a consensus background distribution for each gene of interest without requiring the researcher to manually select a comparison set. The consensus distribution can then be used to quantify over- and underexpression. RESULTS We demonstrate this method on both simulated and real gene expression data. We show that it can robustly quantify overexpression, even when the set of comparison samples lacks ideally matched tissue samples. Furthermore, our results show that the method can identify appropriate comparison sets from samples of mixed lineage and rediscover numerous known gene-cancer expression patterns. CONCLUSION This exploratory method is suitable for identifying expression outliers from comparative RNA sequencing (RNA-seq) analysis for individual samples, and Treehouse, a pediatric precision medicine group that leverages RNA-seq to identify potential therapeutic leads for patients, plans to explore this method for processing its pediatric cohort.
Collapse
Affiliation(s)
- John Vivian
- Computational Genomics Laboratory, University of California, Santa Cruz, Santa Cruz, CA
| | - Jordan M. Eizenga
- Computational Genomics Laboratory, University of California, Santa Cruz, Santa Cruz, CA
| | - Holly C. Beale
- Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Olena M. Vaske
- Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Benedict Paten
- Computational Genomics Laboratory, University of California, Santa Cruz, Santa Cruz, CA
| |
Collapse
|
29
|
Ko EA, Lee H, Sanders KM, Koh SD, Zhou T. Expression of Alpha-type Platelet-derived Growth Factor Receptor-influenced Genes Predicts Clinical Outcome in Glioma. Transl Oncol 2019; 13:233-240. [PMID: 31869747 PMCID: PMC6933209 DOI: 10.1016/j.tranon.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alpha-type platelet-derived growth factor receptor (PDGFRα) is a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. PDGFRα plays an important role in the regulation of several biological processes and contributes to the pathophysiology of a broad range of human cancers, including glioma. Here, we hypothesize that the genes directly or indirectly influenced by PDGFRα might be useful for prognosis in glioma. METHODS By comparing the genome-wide gene expression pattern between PDGFRα+ and PDGFRα- cells from human oligodendrocyte progenitor, we defined the genes potentially influenced by PDGFRα. RESULTS The PDGFRα-influenced genes are strongly associated with cancer-related pathways. We subsequently developed a prognostic gene signature derived from the PDGFRα-influenced genes. This gene signature is able to predict clinical outcome of glioma. This signature is also independent of traditional prognostic factors of glioma. Resampling tests indicate that the prognostic power of this gene signature outperforms random gene sets selected from human genome. More importantly, this signature is superior to the random gene signatures selected from glioma related genes. CONCLUSIONS Despite the absence of clear elucidation of molecular mechanisms, this study suggests the vital role of PDGFRα in carcinogenesis. Furthermore, the PDGFRα-based gene signature provides a promising prognostic tool for glioma and validates PDGFRα as a novel and effective therapeutic target in human cancers.
Collapse
Affiliation(s)
- Eun-A Ko
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Haeyeong Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
30
|
d'Angelo M, Castelli V, Benedetti E, Antonosante A, Catanesi M, Dominguez-Benot R, Pitari G, Ippoliti R, Cimini A. Theranostic Nanomedicine for Malignant Gliomas. Front Bioeng Biotechnol 2019; 7:325. [PMID: 31799246 PMCID: PMC6868071 DOI: 10.3389/fbioe.2019.00325] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Brain tumors mainly originate from glial cells and are classified as gliomas. Malignant gliomas represent an incurable disease; indeed, after surgery and chemotherapy, recurrence appears within a few months, and mortality has remained high in the last decades. This is mainly due to the heterogeneity of malignant gliomas, indicating that a single therapy is not effective for all patients. In this regard, the advent of theranostic nanomedicine, a combination of imaging and therapeutic agents, represents a strategic tool for the management of malignant brain tumors, allowing for the detection of therapies that are specific to the single patient and avoiding overdosing the non-responders. Here, recent theranostic nanomedicine approaches for glioma therapy are described.
Collapse
Affiliation(s)
- Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Reyes Dominguez-Benot
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Golonko A, Lewandowska H, Świsłocka R, Jasińska U, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem 2019; 181:111512. [DOI: 10.1016/j.ejmech.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
32
|
Kaya Terzi N, Yılmaz İ, Öz AB. The Applicability of Haarlem Integrated Diagnostic System in Diffuse Glial Tumors and Molecular Methods Affecting Prognosis. Balkan Med J 2019; 36:222-228. [PMID: 30592195 PMCID: PMC6636649 DOI: 10.4274/balkanmedj.galenos.2018.2018.1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: With the help of genetic studies, it is possible to obtain information about diagnosis and prognosis of glial tumors. Aims: To categorize the cases according to the new World Health Organization Central Nervous System classification by reconsidering the histologic features of oligodendrogliomas, astrocytomas and oligoastrocytomas. We also evaluated whether these genetic features have prognostic significance. Study Design: Diagnostic accuracy study. Methods: Between the years 2011 and 2016, 60 gliomas were examined. Archival material from the Department of Pathology was used for histopathological, immunohistochemical, and molecular analyses. All the cases were classified and graded according to the new 2016 World Health Organization criteria. IDH1 (R132H), alpha thalassemia/mental retardation syndrome, and p53 antibodies were applied immunohistochemically. The 1p/19q status and platelet-derived growth factor receptor-α/CEP4 amplification were evaluated by fluorescence in situ hybridization. After molecular tests, if the diagnosis of oligodendroglioma or astrocytoma is not diagnosed, case should be diagnosed as oligoastrocytoma. Sensitivity, specificity, positive predictive level, negative predictive level, and accuracy rate were evaluated in accordance with the specified threshold levels. Results: Except for 1 case (3.7%), all cases of grade 2 and grade 3 oligoastrocytoma were diagnosed with astrocytoma or oligodendroglioma without any change of grade. Except for 2 case (6.8%), all cases of grade 2 and grade 3 oligodendroglioma were diagnosed oligodendroglioma. All astrocytomas (100%) were given same diagnosis. There is no specific or sensitive test for the diagnosis of oligoastrocytoma. However, 1p/19q codeletion was spesific (100%) and sensitive (100%) for oligodendroglioma. ATRX and p53 mutation showed high spesificity (100% and 95.1% respectively) for diagnosing astrocytoma. Platelet-derived growth factor receptor-α/ CEP4 was not detected in any of the cases. There was association between isocitrate dehydrogenase mutation and 1p/19q loss with longer survival (respectively p=0.147 and p=0.178). Conclusion: In grade 2 and grade 3 glial tumors, pathological diagnosis is not possible only by histological examination. Overall, there was a diagnosis change in 28 cases (46.6%). Especially in cases of oligoastrocytoma, the diagnosis is changed by molecular tests.
Collapse
Affiliation(s)
- Neslihan Kaya Terzi
- Department of Pathology, İstanbul Sultan Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - İsmail Yılmaz
- Department of Pathology, İstanbul Sultan Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Ayşim Büge Öz
- Department of Pathology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
33
|
Dong Z, Zhong X, Lei Q, Chen F, Cui H. Transcriptional activation of SIRT6 via FKHRL1/FOXO3a inhibits the Warburg effect in glioblastoma cells. Cell Signal 2019; 60:100-113. [PMID: 31004738 DOI: 10.1016/j.cellsig.2019.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and malignant form of brain tumors. However, its molecular mechanisms of tumorigenesis and cancer development remains to elucidate. Here, we reported FKHRL1, also called as FOXO3a, was an anti-cancer factor that inhibited the Warburg effect in GBM. Clinical data analysis revealed that FKHRL1 expression was positively correlated with the prognosis of patients with GBM. FKHRL1 silencing promoted glycolysis and cell growth of HEB gliocytes. Besides, FKHRL1 expression was tightly correlated with the expression of SIRT6 and a cluster of glycolytic genes that controlling the Warburg effect in glioma samples. Interestingly, the expression of SIRT6 was reduced after FKHRL1 knockdown, while its expression was upregulated when FKHRL1 was overexpressed in human U251 GBM cell line. In addition, SIRT6 restoration recovered the upregulated aerobic glycolysis induced by FKHRL1 knockdown. Meanwhile, SIRT6 knockdown also rescued the decrease of glucose metabolism induced by FKHRL1 overexpression. Luciferase assay and chromatin immunoprecipitation (ChIP) assay revealed that FKHRL1 bound to the promoter region of SIRT6 and enhanced its expression. Both in vitro and in vivo experiments further confirmed that FKHRL1-SIRT6 axis played a pivotal role in cell metabolism and tumor growth. Our results indicate that FKHRL1-SIRT6 axis regulates cell metabolism and may provide clues for GBM treatment.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
| | - Xiaoxia Zhong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
| | - Qian Lei
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
34
|
In Silico Integration Approach Reveals Key MicroRNAs and Their Target Genes in Follicular Thyroid Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2725192. [PMID: 31032340 PMCID: PMC6458921 DOI: 10.1155/2019/2725192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/21/2019] [Accepted: 03/11/2019] [Indexed: 11/18/2022]
Abstract
To better understand the molecular mechanism for the pathogenesis of follicular thyroid carcinoma (FTC), this study aimed at identifying key miRNAs and their target genes associated with FTC, as well as analyzing their interactions. Based on the gene microarray data GSE82208 and microRNA dataset GSE62054, the differentially expressed genes (DEGs) and microRNAs (DEMs) were obtained using R and SAM software. The common DEMs from R and SAM were fed to three different bioinformatic tools, TargetScan, miRDB, and miRTarBase, respectively, to predict their biological targets. With DEGs intersected with target genes of DEMs, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed through the DAVID database. Then a protein-protein interaction (PPI) network was constructed by STRING. Finally, the module analysis for PPI network was performed by MCODE and BiNGO. A total of nine DEMs were identified, and their function might work through regulating hub genes in the PPI network especially KIT and EGFR. KEGG analysis showed that intersection genes were enriched in the PI3K-Akt signaling pathway and microRNAs in cancer. In conclusion, the study of miRNA-mRNA network would offer molecular support for differential diagnosis between malignant FTC and benign FTA, providing new insights into the potential targets for follicular thyroid carcinoma diagnosis and treatment.
Collapse
|
35
|
Jin F, Xie T, Huang X, Zhao X. Berberine inhibits angiogenesis in glioblastoma xenografts by targeting the VEGFR2/ERK pathway. PHARMACEUTICAL BIOLOGY 2018; 56:665-671. [PMID: 31070539 PMCID: PMC6319470 DOI: 10.1080/13880209.2018.1548627] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 05/27/2023]
Abstract
CONTEXT Berberine is used in traditional Chinese medicine for thousands of years with recent reports of its anticancer activity. OBJECTIVE To test antiangiogenic effects of berberine on human glioblastoma and clarify involvement of the VEGFR2/ERK pathway. MATERIALS AND METHODS Cell viability, proliferation and migration assays were performed to determine in vitro antiangiogenic effects of berberine (6.25-200 μmol/L, 6-48 h). Ectopic and orthotopic xenograft models in BALB/c nude mice were induced to determine antitumour and antiangiogenic effects of berberine (50 mg/kg by oral gavage for 28 days) or vehicle control (carboxymethylcellulose sodium). RESULTS Berberine inhibited cell viability (IC50 of 42 and 32 μmol/L, respectively) and proliferation of U87 and U251 human glioblastoma cell lines. Berberine (50 μmol/L) inhibited cell migration of HUVEC by 67.50 ± 8.14% in the Transwell assay and tube formation of HUVEC by 73.00 ± 11.12% in the Matrigel assay. In the ectopic xenograft model, tumour weight was significantly decreased by 50 mg/kg of berberine (401.2 ± 71.5 mg vs. 860.7 ± 117.1 mg in vehicle group, p ˂ 0.001). Berberine significantly decreased haemoglobin content (28.81 ± 3.64 μg/mg vs. 40.84 ± 5.15 μg/mg in vehicle group, p ˂ 0.001) and CD31 mRNA expression in tumour tissue. In the orthotopic xenograft model, berberine (50 mg/kg) significantly improved the survival rate of mice (p = 0.0078). Berberine inhibited (p ˂ 0.001) the phosphorylation of VEGFR2 and ERK. DISCUSSION AND CONCLUSIONS Berberine inhibited angiogenesis in glioblastoma xenografts by targeting the VEGFR2/ERK pathway. Our work sheds new light on complementary and alternative therapy for glioblastoma.
Collapse
Affiliation(s)
- Fa Jin
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Tao Xie
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Xiaoguang Huang
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Xinde Zhao
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat Genet 2018; 50:1399-1411. [DOI: 10.1038/s41588-018-0209-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
37
|
Ramos AD, Magge RS, Ramakrishna R. Molecular Pathogenesis and Emerging Treatment for Glioblastoma. World Neurosurg 2018; 116:495-504. [DOI: 10.1016/j.wneu.2018.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
|
38
|
Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med 2018; 62:75-88. [DOI: 10.1016/j.mam.2017.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
39
|
Calabretta S, Vogel G, Yu Z, Choquet K, Darbelli L, Nicholson TB, Kleinman CL, Richard S. Loss of PRMT5 Promotes PDGFRα Degradation during Oligodendrocyte Differentiation and Myelination. Dev Cell 2018; 46:426-440.e5. [DOI: 10.1016/j.devcel.2018.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
|
40
|
The Influence of EGFR Inactivation on the Radiation Response in High Grade Glioma. Int J Mol Sci 2018; 19:ijms19010229. [PMID: 29329222 PMCID: PMC5796178 DOI: 10.3390/ijms19010229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022] Open
Abstract
Lack of effectiveness of radiation therapy may arise from different factors such as radiation induced receptor tyrosine kinase activation and cell repopulation; cell capability to repair radiation induced DNA damage; high grade glioma (HGG) tumous heterogeneity, etc. In this study, we analyzed the potential of targeting epidermal growth factor receptor (EGFR) in inducing radiosensitivity in two human HGG cell lines (11 and 15) that displayed similar growth patterns and expressed the receptor protein at the cell surface. We found that 15 HGG cells that express more EGFR at the cell surface were more sensitive to AG556 (an EGFR inhibitor), compared to 11 HGG cells. Although in line 15 the effect of the inhibitor was greater than in line 11, it should be noted that the efficacy of this small-molecule EGFR inhibitor as monotherapy in both cell lines has been modest, at best. Our data showed a slight difference in the response to radiation of the HGG cell lines, three days after the treatment, with line 15 responding better than line 11. However, both cell lines responded to ionizing radiation in the same way, seven days after irradiation. EGFR inhibition induced radiosensitivity in 11 HGG cells, while, in 15 HGG cells, the effect of AG556 treatment on radiation response was almost nonexistent.
Collapse
|
41
|
Heldin CH, Lennartsson J, Westermark B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med 2018; 283:16-44. [PMID: 28940884 DOI: 10.1111/joim.12690] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelet-derived growth factor (PDGF) isoforms and their receptors have important roles during embryogenesis, particularly in the development of various mesenchymal cell types in different organs. In the adult, PDGF stimulates wound healing and regulates tissue homeostasis. However, overactivity of PDGF signalling is associated with malignancies and other diseases characterized by excessive cell proliferation, such as fibrotic conditions and atherosclerosis. In certain tumours, genetic or epigenetic alterations of the genes for PDGF ligands and receptors drive tumour cell proliferation and survival. Examples include the rare skin tumour dermatofibrosarcoma protuberance, which is driven by autocrine PDGF stimulation due to translocation of a PDGF gene, and certain gastrointestinal stromal tumours and leukaemias, which are driven by constitute activation of PDGF receptors due to point mutations and formation of fusion proteins of the receptors, respectively. Moreover, PDGF stimulates cells in tumour stroma and promotes angiogenesis as well as the development of cancer-associated fibroblasts, both of which promote tumour progression. Inhibitors of PDGF signalling may thus be of clinical usefulness in the treatment of certain tumours.
Collapse
Affiliation(s)
- C-H Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - J Lennartsson
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - B Westermark
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Bo L, Wei B, Wang Z, Kong D, Gao Z, Miao Z. Identification of key genes in glioma CpG island methylator phenotype via network analysis of gene expression data. Mol Med Rep 2017; 16:9503-9511. [PMID: 29152649 PMCID: PMC5780009 DOI: 10.3892/mmr.2017.7834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Gene expression data were analysed using bioinformatic tools to demonstrate molecular mechanisms underlying the glioma CpG island methylator phenotype (CIMP). A gene expression data set (accession no. GSE30336) was downloaded from Gene Expression Omnibus, including 36 CIMP+ and 16 CIMP- glioma samples. Differential analysis was performed for CIMP+ vs. CIMP‑ samples using the limma package in R. Functional enrichment analysis was subsequently conducted for differentially expressed genes (DEGs) using Database for Annotation, Visualization and Integration Discovery. Protein‑protein interaction (PPI) networks were constructed for upregulated and downregulated genes with information from STRING. MicroRNAs (miRNAs) targeting DEGs were also predicted using WebGestalt. A total of 439 DEGs were identified, including 214 upregulated and 198 downregulated genes. The upregulated genes were involved in extracellular matrix organisation, defence and immune response, collagen fibril organisation and regulation of cell motion and the downregulated genes in cell adhesion, sensory organ development, regulation of system process, neuron differentiation and membrane organisation. A PPI network containing 134 nodes and 314 edges was constructed from the upregulated genes, whereas a PPI network consisting of 85 nodes and 80 edges was obtained from the downregulated genes. miRNAs regulating upregulated and downregulated genes were predicted, including miRNA‑124a and miRNA‑34a. Numerous key genes associated with glioma CIMP were identified in the present study. These findings may advance the understanding of glioma and facilitate the development of appropriate therapies.
Collapse
Affiliation(s)
- Lijuan Bo
- Department of Infections, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhanfeng Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Daliang Kong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zheng Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhuang Miao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
43
|
Zaky W, Manton C, Miller CP, Khatua S, Gopalakrishnan V, Chandra J. The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities. Cancer Metastasis Rev 2017; 36:617-633. [PMID: 29071526 DOI: 10.1007/s10555-017-9700-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nearly 20 years ago, the concept of targeting the proteasome for cancer therapy began gaining momentum. This concept was driven by increased understanding of the biology/structure and function of the 26S proteasome, insight into the role of the proteasome in transformed cells, and the synthesis of pharmacological inhibitors with clinically favorable features. Subsequent in vitro, in vivo, and clinical testing culminated in the FDA approval of three proteasome inhibitors-bortezomib, carfilzomib, and ixazomib -for specific hematological malignancies. However, despite in vitro and in vivo studies pointing towards efficacy in solid tumors, clinical responses broadly have been evasive. For brain tumors, a malignancy in dire need of new approaches both in adult and pediatric patients, this has also been the case. Elucidation of proteasome-dependent processes in specific types of brain tumors, the evolution of newer proteasome targeting strategies, and the use of proteasome inhibitors in combination strategies will clarify how these agents can be leveraged more effectively to treat central nervous system malignancies. Since brain tumors represent a heterogeneous subset of solid tumors, and in particular, pediatric brain tumors possess distinct biology from adult brain tumors, tailoring of proteasome inhibitor-based strategies to specific subtypes of these tumors will be critical for advancing care for affected patients, and will be discussed in this review.
Collapse
Affiliation(s)
- Wafik Zaky
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Christa Manton
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Claudia P Miller
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Soumen Khatua
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Joya Chandra
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Li Y, He ZC, Zhang XN, Liu Q, Chen C, Zhu Z, Chen Q, Shi Y, Yao XH, Cui YH, Zhang X, Wang Y, Kung HF, Ping YF, Bian XW. Stanniocalcin-1 augments stem-like traits of glioblastoma cells through binding and activating NOTCH1. Cancer Lett 2017; 416:66-74. [PMID: 29196129 DOI: 10.1016/j.canlet.2017.11.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/20/2017] [Accepted: 11/25/2017] [Indexed: 12/29/2022]
Abstract
Glioblastoma (GBM) is a fatal tumor and comprises heterogeneous cells in which a subpopulation with stem cell-like properties is included. Cancer cells with stem cell-like properties account for tumor initiation, drug resistance and recurrence. To identify and characterize specific factors in regulating stem-like traits is critical for GBM therapeutic. Here, we showed that Stanniocalcin-1 (STC1), a secretory glycoprotein, functions as a novel stimulator for stem-like traits of GBM cells. We found STC1 was prominently expressed in glioma spheres which are mainly comprised of glioma stem-like cells. The stem-like traits of GBM cells, as determined by the expression of stem cell markers, tumor-sphere formation efficiency and colony-forming ability, were enhanced by STC1 overexpression and inhibited by STC1 knockdown. Furthermore, introduction of STC1 enhanced tumorigenesis in vivo while knockdown of STC1 showed reverse effect. Finally, we demonstrated that STC1 interacted with the extracellular domain of NOTCH1 to activate NOTCH1-SOX2 signaling pathway, by which STC1 augmented the stem-like traits of GBM cells. Taken together, our data herein indicate that STC1 is a novel non-canonical NOTCH ligand and acts as a crucial regulator of stemness in GBM.
Collapse
Affiliation(s)
- Yong Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xiao-Ning Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Zheng Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Qian Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Hsiang-Fu Kung
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China.
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China.
| |
Collapse
|
45
|
Kanaan R, Strange C. Use of multitarget tyrosine kinase inhibitors to attenuate platelet-derived growth factor signalling in lung disease. Eur Respir Rev 2017; 26:26/146/170061. [PMID: 29070579 PMCID: PMC9488848 DOI: 10.1183/16000617.0061-2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/05/2017] [Indexed: 02/07/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) play a fundamental role in the embryonic development of the lung. Aberrant PDGF signalling has been documented convincingly in a large variety of pulmonary diseases, including idiopathic pulmonary arterial hypertension, lung cancer and lung fibrosis. Targeting PDGF signalling has been proven to be effective in these diseases. In clinical practice, the most effective way to block PDGF signalling is to inhibit the activity of the intracellular PDGFR kinases. Although the mechanism of action of such drugs is not specific for PDGF signalling, the medications have a broad therapeutic index that allows clinical use. The safety profile and therapeutic opportunities of these and future medications that target PDGFs and PDGFRs are reviewed. An increasing role for PDGF signalling inhibitors in clinical trials for the treatment of various pulmonary diseaseshttp://ow.ly/buaI30f9HcN
Collapse
Affiliation(s)
- Rana Kanaan
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Dept of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Charlie Strange
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Dept of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
46
|
Azar S, Leventoux N, Ripoll C, Rigau V, Gozé C, Lorcy F, Bauchet L, Duffau H, Guichet PO, Rothhut B, Hugnot JP. Cellular and molecular characterization of IDH1-mutated diffuse low grade gliomas reveals tumor heterogeneity and absence of EGFR/PDGFRα activation. Glia 2017; 66:239-255. [PMID: 29027701 DOI: 10.1002/glia.23240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022]
Abstract
Diffuse low grade gliomas (DLGG, grade II gliomas) are slowly-growing brain tumors that often progress into high grade gliomas. Most tumors have a missense mutation for IDH1 combined with 1p19q codeletion in oligodendrogliomas or ATRX/TP53 mutations in astrocytomas. The phenotype of tumoral cells, their environment and the pathways activated in these tumors are still ill-defined and are mainly based on genomics and transcriptomics analysis. Here we used freshly-resected tumors to accurately characterize the tumoral cell population and their environment. In oligodendrogliomas, cells express the transcription factors MYT1, Nkx2.2, Olig1, Olig2, Sox8, four receptors (EGFR, PDGFRα, LIFR, PTPRZ1) but not the co-receptor NG2 known to be expressed by oligodendrocyte progenitor cells. A variable fraction of cells also express the more mature oligodendrocytic markers NOGO-A and MAG. DLGG cells are also stained for the young-neuron marker doublecortin (Dcx) which is also observed in oligodendrocytic cells in nontumoral human brain. In astrocytomas, MYT1, PDGFRα, PTPRZ1 were less expressed whereas Sox9 was prominent over Sox8. The phenotype of DLGG cells is overall maintained in culture. Phospho-array screening showed the absence of EGFR and PDGFRα phosphorylation in DLGG but revealed the strong activation of p44/42 MAPK/ERK which was present in a fraction of tumoral cells but also in nontumoral cells. These results provide evidence for the existence of close relationships between the cellular phenotype and the mutations found in DLGG. The slow proliferation of these tumors may be associated with the absence of activation of PDGFRα/EGFR receptors.
Collapse
Affiliation(s)
- S Azar
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France
| | - N Leventoux
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,CHU Montpellier, Pathology Department, Hôpital Gui de Chauliac, Montpellier, France
| | - C Ripoll
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France
| | - V Rigau
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,CHU Montpellier, Pathology Department, Hôpital Gui de Chauliac, Montpellier, France
| | - C Gozé
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,CHU Montpellier, Genetics Department, Hôpital Gui de Chauliac, Montpellier, France
| | - F Lorcy
- CHU Montpellier, Pathology Department, Hôpital Gui de Chauliac, Montpellier, France
| | - L Bauchet
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,CHU Montpellier, Surgery Department, Hôpital Gui de Chauliac, Montpellier, France
| | - H Duffau
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,CHU Montpellier, Surgery Department, Hôpital Gui de Chauliac, Montpellier, France
| | - P O Guichet
- LNEC Inserm U1084 1 rue Georges Bonnet 86022 Poitiers Cedex, France
| | - B Rothhut
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France
| | - J P Hugnot
- Institute for Neurosciences of Montpellier Inserm U1051, Saint Eloi Hospital, 80 av Augustin Fliche 34091 Montpellier Cedex 05, France.,University of Montpellier, Faculty of Sciences, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
47
|
Randomized phase II trial comparing axitinib with the combination of axitinib and lomustine in patients with recurrent glioblastoma. J Neurooncol 2017; 136:115-125. [DOI: 10.1007/s11060-017-2629-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/30/2017] [Indexed: 01/29/2023]
|
48
|
Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data. Med Oncol 2017; 34:182. [PMID: 28952134 DOI: 10.1007/s12032-017-1043-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 09/22/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to identify key genes associated with gliomas and glioblastoma and to explore the related signaling pathways. Gene expression profiles of three glioma stem cell line samples, three normal astrocyte samples, three astrocyte overexpressing 4 iPSC-inducing and oncogenic factors (myc(T58A), OCT-4, p53DD, and H-Ras(G12V)) samples, three astrocyte overexpressing 7 iPSC-inducing and oncogenic factors (OCT4, H-Ras(G12V), myc(T58A), p53DD, cyclin D1, CDK4(RC24) and hTERT) samples and three glioblastoma cell line samples were downloaded from the ArrayExpress database (accession: E-MTAB-4771). The differentially expressed genes (DEGs) in gliomas and glioblastoma were identified using FDR and t tests, and protein-protein interaction (PPI) networks for these DEGs were constructed using the protein interaction network analysis. The GeneTrail2 1.5 tool was used to identify potentially enriched biological processes among the DEGs using gene ontology (GO) terms and to identify the related pathways using the Kyoto Encyclopedia of Genes and Genomes, Reactome and WikiPathways pathway database. In addition, crucial modules of the constructed PPI networks were identified using the PEWCC1 plug-in, and their topological properties were analyzed using NetworkAnalyzer, both available from Cytoscape. We also constructed microRNA-target gene regulatory network and transcription factor-target gene regulatory network for these DEGs were constructed using the miRNet and binding and expression target analysis. We identified 200 genes that could potentially be involved in the gliomas and glioblastoma. Among them, bioinformatics analysis identified 137 up-regulated and 63 down-regulated DEGs in gliomas and glioblastoma. The significant enriched pathway (PI3K-Akt) for up-regulated genes such as COL4A1, COL4A2, EGFR, FGFR1, LAPR6, MYC, PDGFA, SPP1 were selected as well as significant GO term (ear development) for up-regulated genes such as CELSR1, CHRNA9, DDR1, FGFR1, GLI2, LGR5, SOX2, TSHR were selected, while the significant enriched pathway (amebiasis) for down-regulated gene such as COL3A1, COL5A2, LAMA2 were selected as well as significant GO term (RNA polymerase II core promoter proximal region sequence-specific binding (5) such as MEIS2, MEOX2, NR2E1, PITX2, TFAP2B, ZFPM2 were selected. Importantly, MYC and SOX2 were hub proteins in the up-regulated PPI network, while MET and CDKN2A were hub proteins in the down-regulated PPI network. After network module analysis, MYC, FGFR1 and HOXA10 were selected as the up-regulated coexpressed genes in the gliomas and glioblastoma, while SH3GL3 and SNRPN were selected as the down-regulated coexpressed genes in the gliomas and glioblastoma. MicroRNA hsa-mir-22-3p had a regulatory effect on the most up DEGs, including VSNL1, while hsa-mir-103a-3p had a regulatory effect on the most down DEGs, including DAPK1. Transcription factor EZH2 had a regulatory effect on the both up and down DEGs, including CD9, CHI3L1, MEIS2 and NR2E1. The DEGs, such as MYC, FGFR1, CDKN2A, HOXA10 and MET, may be used for targeted diagnosis and treatment of gliomas and glioblastoma.
Collapse
|
49
|
An aptamer-based targeted delivery of miR-26a protects mice against chemotherapy toxicity while suppressing tumor growth. Blood Adv 2017; 1:1107-1119. [PMID: 29296753 DOI: 10.1182/bloodadvances.2017004705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/25/2017] [Indexed: 12/27/2022] Open
Abstract
The efficacy of traditional chemotherapy is limited by its toxicity, especially with regard to hematopoiesis. Here we show that miR-26a plays a critical role in protecting mice against chemotherapy-induced myeloid suppression by targeting a proapoptotic protein (Bak1) in hematopoietic stem/progenitor cells (HSPCs). Because c-Kit is expressed at high levels in HSPCs, we designed a microRNA-aptamer chimera that contains miR-26a mimic and c-Kit-targeting aptamer and successfully delivered miR-26a into HSPCs to attenuate toxicity of 5' fluorouracil (5-FU) and carboplatin. Meanwhile, our in silico analysis revealed widespread and prognosis-associated downregulation of miR-26a in advanced breast cancer and also showed that KIT is overexpressed among basal-like breast cancer cells and that such expression is associated with poor prognosis. Importantly, the miR-26a aptamer effectively repressed tumor growth in vivo and synergized with 5-FU or carboplatin in cancer therapy in the mouse breast cancer models. Thus, targeted delivery of miR-26a suppresses tumor growth while protecting the host against myelosuppression by chemotherapy.
Collapse
|
50
|
Lenting K, Verhaak R, Ter Laan M, Wesseling P, Leenders W. Glioma: experimental models and reality. Acta Neuropathol 2017; 133:263-282. [PMID: 28074274 PMCID: PMC5250671 DOI: 10.1007/s00401-017-1671-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
In theory, in vitro and in vivo models for human gliomas have great potential to not only enhance our understanding of glioma biology, but also to facilitate the development of novel treatment strategies for these tumors. For reliable prediction and validation of the effects of different therapeutic modalities, however, glioma models need to comply with specific and more strict demands than other models of cancer, and these demands are directly related to the combination of genetic aberrations and the specific brain micro-environment gliomas grow in. This review starts with a brief introduction on the pathological and molecular characteristics of gliomas, followed by an overview of the models that have been used in the last decades in glioma research. Next, we will discuss how these models may play a role in better understanding glioma development and especially in how they can aid in the design and optimization of novel therapies. The strengths and weaknesses of the different models will be discussed in light of genotypic, phenotypic and metabolic characteristics of human gliomas. The last part of this review provides some examples of how therapy experiments using glioma models can lead to deceptive results when such characteristics are not properly taken into account.
Collapse
Affiliation(s)
- Krissie Lenting
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Roel Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - William Leenders
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|