1
|
Ray P, Sedigh A, Confeld M, Alhalhooly L, Iduoku K, Casanola-Martin GM, Pham-The H, Rasulev B, Choi Y, Yang Z, Mallik S, Quadir M. Design and evaluation of nanoscale materials with programmed responsivity towards epigenetic enzymes. J Mater Chem B 2024; 12:9905-9920. [PMID: 39021201 DOI: 10.1039/d4tb00514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly(acetyl L-lysine) and poly(ethylene glycol) blocks. Under neutral pH conditions, they self-assemble into particles. The hydrodynamic diameters of particles were typically withing the range of 108-190 nm, depending on degree of acetylation of the hydrophobic block. However, their stability is compromised upon exposure to HDACs, depending on enzyme concentration and exposure time. Our investigation, utilizing HDAC8 as the model enzyme, revealed that the primary mechanism behind disassembly involves a decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine residues within the particles' hydrophobic domains. To elucidate the response mechanism, we encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably, this release was not triggered by denatured HDAC8, other proteolytic enzymes like trypsin, or the co-presence of HDAC8 and its inhibitor. We also demonstrated the biocompatibility and cellular effects of these materials in the context of drug delivery in different types of anticancer cell lines, such as MIA PaCa-2, PANC-1, cancer like stem cells (CSCs), and non-cancerous HPNE cells. We observed that the release of a model drug (such as a STAT3 pathway inhibitor, Napabucasin) can be loaded into these nanoparticles, with >90% of the dosage can be released over 3 h under the influence of HDAC8 enzyme in a controlled fashion. Further, we conducted a comprehensive computational study to unveil the possible interaction mechanism between enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone proteins, this research represents a pioneering step toward developing functional materials capable of harnessing the activity of epigenetic enzymes such as HDACs.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Abbas Sedigh
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Matthew Confeld
- Deapartment of Physics, North Dakota State University, Fargo, ND 58102, USA
| | - Lina Alhalhooly
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Kweeni Iduoku
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Gerardo M Casanola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Hai Pham-The
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Yongki Choi
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Zhongyu Yang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|
2
|
Malla S, Kumari K, García-Prieto CA, Caroli J, Nordin A, Phan TTT, Bhattarai DP, Martinez-Gamero C, Dorafshan E, Stransky S, Álvarez-Errico D, Saiki PA, Lai W, Lyu C, Lizana L, Gilthorpe JD, Wang H, Sidoli S, Mateus A, Lee DF, Cantù C, Esteller M, Mattevi A, Roman AC, Aguilo F. The scaffolding function of LSD1 controls DNA methylation in mouse ESCs. Nat Commun 2024; 15:7758. [PMID: 39237615 PMCID: PMC11377572 DOI: 10.1038/s41467-024-51966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1MUT) recovers the proliferation capability of mouse ESCs, yet the enzymatic activity of LSD1 is essential to ensure proper differentiation. Indeed, increased H3K4me1 in Lsd1 knockout (KO) mouse ESCs does not lead to major changes in global gene expression programs related to stemness. However, ablation of LSD1 but not LSD1MUT results in decreased DNMT1 and UHRF1 proteins coupled to global hypomethylation. We show that both LSD1 and LSD1MUT control protein stability of UHRF1 and DNMT1 through interaction with HDAC1 and the ubiquitin-specific peptidase 7 (USP7), consequently, facilitating the deacetylation and deubiquitination of DNMT1 and UHRF1. Our studies elucidate a mechanism by which LSD1 controls DNA methylation in mouse ESCs, independently of its lysine demethylase activity.
Collapse
Affiliation(s)
- Sandhya Malla
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kanchan Kumari
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Carlos A García-Prieto
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jonatan Caroli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Trinh T T Phan
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Devi Prasad Bhattarai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Carlos Martinez-Gamero
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Eshagh Dorafshan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Paulina Avovome Saiki
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Cong Lyu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ludvig Lizana
- Department of Physics, Integrated Science Lab, Umeå University, Umeå, Sweden
| | | | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andre Mateus
- Department of Chemistry, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Angel-Carlos Roman
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
3
|
Albakova Z. HSP90 multi-functionality in cancer. Front Immunol 2024; 15:1436973. [PMID: 39148727 PMCID: PMC11324539 DOI: 10.3389/fimmu.2024.1436973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
The 90-kDa heat shock proteins (HSP90s) are molecular chaperones essential for folding, unfolding, degradation and activity of a wide range of client proteins. HSP90s and their cognate co-chaperones are subject to various post-translational modifications, functional consequences of which are not fully understood in cancer. Intracellular and extracellular HSP90 family members (HSP90α, HSP90β, GRP94 and TRAP1) promote cancer by sustaining various hallmarks of cancer, including cell death resistance, replicative immortality, tumor immunity, angiogenesis, invasion and metastasis. Given the importance of HSP90 in tumor progression, various inhibitors and HSP90-based vaccines were developed for the treatment of cancer. Further understanding of HSP90 functions in cancer may provide new opportunities and novel therapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Chokan Limited Liability Partnership, Almaty, Kazakhstan
| |
Collapse
|
4
|
Ray P, Sedigh A, Confeld M, Alhalhooly L, Iduoku K, Casanola-Martin GM, Pham-The H, Rasulev B, Choi Y, Yang Z, Mallik S, Quadir M. Design and Evaluation of Nanoscale Materials with Programmed Responsivity towards Epigenetic Enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.585429. [PMID: 38586020 PMCID: PMC10996597 DOI: 10.1101/2024.03.26.585429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly (acetyl L-lysine) and poly(ethylene glycol) blocks. Under neutral pH conditions, they self-assemble into particles. However, their stability is compromised upon exposure to HDACs, depending on enzyme concentration and exposure time. Our investigation, utilizing HDAC8 as the model enzyme, revealed that the primary mechanism behind disassembly involves a decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine residues within the particles' hydrophobic domains. To elucidate the response mechanism, we encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably, this release was not triggered by denatured HDAC8, other proteolytic enzymes like trypsin, or the co-presence of HDAC8 and its inhibitor. We further demonstrated the biocompatibility and cellular effects of these materials and conducted a comprehensive computational study to unveil the possible interaction mechanism between enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone proteins, this research represents a pioneering step toward developing functional materials capable of harnessing the activity of epigenetic enzymes such as HDACs.
Collapse
|
5
|
Huang W, Zhu Q, Shi Z, Tu Y, Li Q, Zheng W, Yuan Z, Li L, Zu X, Hao Y, Chu B, Jiang Y. Dual inhibitors of DNMT and HDAC induce viral mimicry to induce antitumour immunity in breast cancer. Cell Death Discov 2024; 10:143. [PMID: 38490978 PMCID: PMC10943227 DOI: 10.1038/s41420-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
The existing conventional treatments for breast cancer, including immune checkpoint blockade, exhibit limited effects in some cancers, particularly triple-negative breast cancer. Epigenetic alterations, specifically DNMT and HDAC alterations, are implicated in breast cancer pathogenesis. We demonstrated that DNMTs and HDACs are overexpressed and positively correlated in breast cancer. The combination of DNMT and HDAC inhibitors has shown synergistic antitumour effects, and our previously designed dual DNMT and HDAC inhibitor (termed DNMT/HDACi) 15a potently inhibits breast cancer cell proliferation, migration, and invasion and induces apoptosis in vitro and in vivo. Mechanistically, 15a induces a viral mimicry response by promoting the expression of endogenous retroviral elements in breast cancer cells, thus increasing the intracellular level of double-stranded RNA to activate the RIG-I-MAVS pathway. This in turn promotes the production of interferons and chemokines and augments the expression of interferon-stimulated genes and PD-L1. The combination of 15a and an anti-PD-L1 antibody had an additive effect in vivo. These findings indicate that this DNMT/HDACi has immunomodulatory functions and enhances the effectiveness of immune checkpoint blockade therapy. A novel dual DNMT and HDAC inhibitor induces viral mimicry, which induces the accumulation of dsRNA to activate tumoral IFN signalling and cytokine production to enhance the immune response in breast cancer.
Collapse
Affiliation(s)
- Wenjun Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Qingyun Zhu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhichao Shi
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yao Tu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Qinyuan Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Wenwen Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zigao Yuan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yue Hao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Yuyang Jiang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Hu Q, Botuyan MV, Mer G. Identification of a conserved α-helical domain at the N terminus of human DNA methyltransferase 1. J Biol Chem 2024; 300:105775. [PMID: 38382673 PMCID: PMC10950863 DOI: 10.1016/j.jbc.2024.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
In vertebrates, DNA methyltransferase 1 (DNMT1) contributes to preserving DNA methylation patterns, ensuring the stability and heritability of epigenetic marks important for gene expression regulation and the maintenance of cellular identity. Previous structural studies have elucidated the catalytic mechanism of DNMT1 and its specific recognition of hemimethylated DNA. Here, using solution nuclear magnetic resonance spectroscopy and small-angle X-ray scattering, we demonstrate that the N-terminal region of human DNMT1, while flexible, encompasses a conserved globular domain with a novel α-helical bundle-like fold. This work expands our understanding of the structure and dynamics of DNMT1 and provides a structural framework for future functional studies in relation with this new domain.
Collapse
Affiliation(s)
- Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Department of Cancer Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
7
|
Louwies T, Greenwood-Van Meerveld B. Chronic stress increases DNA methylation of the GR promoter in the central nucleus of the amygdala of female rats. Neurogastroenterol Motil 2022; 34:e14377. [PMID: 35411658 DOI: 10.1111/nmo.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 02/08/2023]
Abstract
The central pathophysiological mechanisms underlying irritable bowel syndrome (IBS), a female-predominant gastrointestinal disorder characterized by abdominal pain and abnormal bowel habits, remain poorly understood. IBS patients often report that chronic stress exacerbates their symptoms. Brain imaging studies have revealed that the amygdala, a stress-responsive brain region, of IBS patients is overactive when compared to healthy controls. Previously, we demonstrated that downregulation of the glucocorticoid receptor (GR) in the central nucleus of the amygdala (CeA) underlies stress-induced visceral hypersensitivity in female rats. In the current study, we aimed to evaluate in the CeA of female rats whether chronic water avoidance stress (WAS) alters DNA methylation of the GR exon 17 promoter region, a region homologous to the human GR promoter. As histone deacetylase (HDAC) inhibitors are able to change DNA methylation, we also evaluated whether administration of the HDAC inhibitor trichostatin A (TSA) directly into the CeA prevented WAS-induced increases in DNA methylation of the GR exon 17 promoter. We found that WAS increased overall and specific CpG methylation of the GR promoter in the CeA of female rats, which persisted for up to 28 days. Administration of the TSA directly into the CeA prevented these stress-induced changes of DNA methylation at the GR promoter. Our results suggest that, in females, changes in DNA methylation are involved in the regulation of GR expression in the CeA. These changes in DNA methylation may contribute to the central mechanisms responsible for stress-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- Tijs Louwies
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|
8
|
Ohkouchi S, Kanehira M, Saigusa D, Ono M, Tazawa R, Terunuma H, Hirano T, Numakura T, Notsuda H, Inoue C, Saito-Koyama R, Tabata M, Irokawa T, Ogawa H, Kurosawa H, Okada Y. Metabolic and Epigenetic Regulation of SMAD7 by Stanniocalcin-1 (STC1) Ameliorates Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 67:320-333. [PMID: 35696344 DOI: 10.1165/rcmb.2021-0445oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As shown in our previous studies, the intratracheal-administration of stanniocalcin-1 (STC1) ameliorates pulmonary fibrosis by reducing oxidative and endoplasmic reticulum stress through the uncoupling of respiration in a bleomycin (BLM)-treated mouse model. However, the overall effect of STC1 on metabolism was not examined. Therefore, we first conducted a comprehensive metabolomics analysis to screen the overall metabolic changes induced by STC1 in an alveolar epithelial cell line using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). The results were subsequently validated in multiple alveolar epithelial and fibroblast cell lines by performing precise analyses of each substance. STC1 stimulated glycolysis, acetyl-CoA synthesis, and the methionine and cysteine-glutathione pathways, which are closely related to the uncoupling of respiration, modulation of epigenetics and reduction in oxidative stress. These results are consistent with our previous study. Subsequently, we focused on the inhibitory factor SMAD7, which exerts an antifibrotic effect and is susceptible to epigenetic regulation. STC1 upregulates SMAD7 in an uncoupling protein 2-dependent manner, induces demethylation of the SMAD7 promoter region and acetylation of the SMAD7 protein in human alveolar epithelial and fibroblast cell lines and a BLM-treated mouse model, and subsequently attenuates fibrosis. The antifibrotic effects of STC1 may partially depend on the regulation of SMAD7. In the evaluation using lung tissue from idiopathic pulmonary fibrosis patients, SMAD7 expression and acetylation were high in the alveolar structure-preserving region and low in the fibrotic region. The intratracheal-administration of STC1 may prevent the development of pulmonary fibrosis by regulating the metabolism-mediated epigenetic modification of SMAD7 in patients.
Collapse
Affiliation(s)
- Shinya Ohkouchi
- Tohoku University Graduate School of Medicine, Occupational Health, Sendai, Japan.,Institute of Devepolment, Aging and Cancer, Tohoku University, Department of Thoracic surgery, Sendai, Japan;
| | - Masahiko Kanehira
- University of Yamanashi, 38146, Center for Life Science Research, Kofu, Japan.,Institute of Devepolment, Aging and Cancer, Tohoku University, Department of Thoracic surgery, Sendai, Japan
| | - Daisuke Saigusa
- Teikyo University School of Medicine Graduate School of Medicine, 36906, Faculty of Pharma-Science, Itabashi-ku, Japan
| | - Manabu Ono
- Tohoku University Graduate School of Medicine, Department of Respiratory Medicine, Sendai, Japan
| | - Ryushi Tazawa
- Tokyo Medical and Dental University, 13100, Student Support and Health Administration Organization, Tokyo, Japan.,Niigata University, 12978, Medical and Dental Hospital, Niigata, Japan
| | | | - Taizou Hirano
- Tohoku University Graduate School of Medicine, Department of Respiratory Medicine, Sensai, Japan
| | - Tadahisa Numakura
- Tohoku University Graduate School of Medicine, Department of Respiratory Medicine, Sendai, Japan
| | - Hirotsugu Notsuda
- Institute of Devepolment, Aging and Cancer, Tohoku University, Department of Thoracic surgery, Sendai, Japan
| | - Chihiro Inoue
- Tohoku University Graduate School of Medicine, Department of Anatomic Pathology, Sendai, Japan
| | - Ryoko Saito-Koyama
- Tohoku University Graduate School of Medicine, Department of Anatomic Pathology, Sendai, Japan
| | - Masao Tabata
- Tohoku University Graduate School of Medicine, Occupational Health, Sendai, Japan
| | - Toshiya Irokawa
- Tohoku University Graduate School of Medicine, Occupational Health, Sendai, Japan
| | - Hiromasa Ogawa
- Tohoku University Graduate School of Medicine, Occupational Health, Sendai, Japan
| | - Hajime Kurosawa
- Tohoku University Graduate School of Medicine, Occupational Health, Sendai, Japan
| | - Yoshinori Okada
- Institute of Devepolment, Aging and Cancer, Tohoku University, Department of Thoracic surgery, Sendai, Japan
| |
Collapse
|
9
|
Manna PR, Ahmed AU, Molehin D, Narasimhan M, Pruitt K, Reddy PH. Hormonal and Genetic Regulatory Events in Breast Cancer and Its Therapeutics: Importance of the Steroidogenic Acute Regulatory Protein. Biomedicines 2022; 10:biomedicines10061313. [PMID: 35740335 PMCID: PMC9220045 DOI: 10.3390/biomedicines10061313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Estrogen promotes the development and survival of the majority of breast cancers (BCs). Aromatase is the rate-limiting enzyme in estrogen biosynthesis, and it is immensely expressed in both cancerous and non-cancerous breast tissues. Endocrine therapy based on estrogen blockade, by aromatase inhibitors, has been the mainstay of BC treatment in post-menopausal women; however, resistance to hormone therapy is the leading cause of cancer death. An improved understanding of the molecular underpinnings is the key to develop therapeutic strategies for countering the most prevalent hormone receptor positive BCs. Of note, cholesterol is the precursor of all steroid hormones that are synthesized in a variety of tissues and play crucial roles in diverse processes, ranging from organogenesis to homeostasis to carcinogenesis. The rate-limiting step in steroid biosynthesis is the transport of cholesterol from the outer to the inner mitochondrial membrane, a process that is primarily mediated by the steroidogenic acute regulatory (StAR) protein. Advances in genomic and proteomic technologies have revealed a dynamic link between histone deacetylases (HDACs) and StAR, aromatase, and estrogen regulation. We were the first to report that StAR is abundantly expressed, along with large amounts of 17β-estradiol (E2), in hormone-dependent, but not hormone-independent, BCs, in which StAR was also identified as a novel acetylated protein. Our in-silico analyses of The Cancer Genome Atlas (TCGA) datasets, for StAR and steroidogenic enzyme genes, revealed an inverse correlation between the amplification of the StAR gene and the poor survival of BC patients. Additionally, we reported that a number of HDAC inhibitors, by altering StAR acetylation patterns, repress E2 synthesis in hormone-sensitive BC cells. This review highlights the current understanding of molecular pathogenesis of BCs, especially for luminal subtypes, and their therapeutics, underlining that StAR could serve not only as a prognostic marker, but also as a therapeutic candidate, in the prevention and treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Correspondence: ; Tel.: +1-806-743-3573; Fax: +1-806-743-3143
| | - Ahsen U. Ahmed
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA;
| | - Deborah Molehin
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (D.M.); (K.P.)
| | - Madhusudhanan Narasimhan
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (D.M.); (K.P.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
10
|
Jurkowska RZ, Jeltsch A. Enzymology of Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:69-110. [DOI: 10.1007/978-3-031-11454-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Acetylated DNMT1 Downregulation and Related Regulatory Factors Influence Metastatic Melanoma Patients Survival. Cancers (Basel) 2021; 13:cancers13184691. [PMID: 34572918 PMCID: PMC8471314 DOI: 10.3390/cancers13184691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary DNA methyltransferase-1 (DNMT1) is a key epigenetic regulatory protein of gene expression in cutaneous melanoma. DNMT1 is acetylated by TIP60 promoting its degradation. This study demonstrated that DNMT1 and ac-DNMT1 protein levels were inversely correlated in stage III (n = 17) and stage IV (n = 164) metastatic melanoma tumors, and both influenced melanoma progression. Reduced TIP60 and USP7 protein expression levels were correlated with decreased ac-DNMT1 levels. Of clinical translational relevance, patients with high ac-DNMT1 protein levels, or high-acDNMT1 with concurrent low DNMT1, high TIP60, or high USP7 protein levels showed significantly better prognosis for 4-year melanoma-specific survival. These results suggested that ac-DNMT1 is a significant post-translational modification influencing advanced melanoma patient disease outcomes. Abstract The role of post-translational modifications (PTM) of the key epigenetic factor DNMT1 protein has not been well explored in cutaneous metastatic melanoma progression. The acetylated DNMT1 (ac-DNMT1) protein level was assessed using an anti-acetylated lysine antibody in a clinically annotated melanoma patient tumor specimen cohort. In this study, we showed that surgically resected tumors have significantly higher DNMT1 protein expression in metastatic melanoma (stage III metastasis n = 17, p = 0.0009; stage IV metastasis n = 164, p = 0.003) compared to normal organ tissues (n = 19). Additionally, reduced ac-DNMT1 protein levels were associated with melanoma progression. There was a significant inverse correlation between ac-DNMT1 and DNMT1 protein levels in stage IV metastatic melanoma (r = −0.18, p = 0.02, n = 164). Additionally, ac-DNMT1 protein levels were also significantly positively correlated with TIP60 (r = 0.6, p < 0.0001) and USP7 (r = 0.74, p < 0.0001) protein levels in stage IV metastatic melanoma (n = 164). Protein analysis in metastatic melanoma tumor tissues showed that with high ac-DNMT1 (p = 0.006, n = 59), or concurrent high ac-DNMT1 with low DNMT1 (p = 0.05, n = 27), or high TIP60 (p = 0.007, n = 41), or high USP7 (p = 0.01, n = 48) consistently showed better 4-year melanoma-specific survival (MSS). Multivariate Cox proportional hazard analysis showed that ac-DNMT1 level is a significant independent factor associated with MSS (HR, 0.994; 95% confidential interval (CI), 0.990–0.998; p = 0.002). These results demonstrated that low ac-DNMT1 levels may represent an important regulatory factor in controlling metastatic melanoma progression and a promising factor for stratifying aggressive stage IV metastasis.
Collapse
|
12
|
Recalde M, Gárate-Rascón M, Elizalde M, Azkona M, Latasa MU, Bárcena-Varela M, Sangro B, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. The splicing regulator SLU7 is required to preserve DNMT1 protein stability and DNA methylation. Nucleic Acids Res 2021; 49:8592-8609. [PMID: 34331453 PMCID: PMC8421144 DOI: 10.1093/nar/gkab649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023] Open
Abstract
Gene expression is finely and dynamically controlled through the tightly coordinated and interconnected activity of epigenetic modulators, transcription and splicing factors and post-translational modifiers. We have recently identified the splicing factor SLU7 as essential for maintaining liver cell identity and genome integrity and for securing cell division both trough transcriptional and splicing mechanisms. Now we uncover a new function of SLU7 controlling gene expression at the epigenetic level. We show that SLU7 is required to secure DNMT1 protein stability and a correct DNA methylation. We demonstrate that SLU7 is part in the chromatome of the protein complex implicated in DNA methylation maintenance interacting with and controlling the integrity of DNMT1, its adaptor protein UHRF1 and the histone methyl-transferase G9a at the chromatin level. Mechanistically, we found that SLU7 assures DNMT1 stability preventing its acetylation and degradation by facilitating its interaction with HDAC1 and the desubiquitinase USP7. Importantly, we demonstrate that this DNMT1 dependency on SLU7 occurs in a large panel of proliferating cell lines of different origins and in in vivo models of liver proliferation. Overall, our results uncover a novel and non-redundant role of SLU7 in DNA methylation and present SLU7 as a holistic regulator of gene expression.
Collapse
Affiliation(s)
- Miriam Recalde
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - María Gárate-Rascón
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - María Elizalde
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - María Azkona
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - M Ujue Latasa
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Marina Bárcena-Varela
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Bruno Sangro
- IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid 28029, Spain.,Hepatology Unit, Navarra University Clinic, Pamplona 31008, Spain
| | - Maite G Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid 28029, Spain
| | - Matías A Ávila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid 28029, Spain
| | - María Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid 28029, Spain
| |
Collapse
|
13
|
Flores-Toro J, Chun SK, Shin JK, Campbell J, Lichtenberger M, Chapman W, Zendejas I, Behrns K, Leeuwenburgh C, Kim JS. Critical Roles of Calpastatin in Ischemia/Reperfusion Injury in Aged Livers. Cells 2021; 10:1863. [PMID: 34440632 PMCID: PMC8394464 DOI: 10.3390/cells10081863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/02/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury unavoidably occurs during hepatic resection and transplantation. Aged livers poorly tolerate I/R during surgical treatment. Although livers have a powerful endogenous inhibitor of calpains, calpastatin (CAST), I/R activates calpains, leading to impaired autophagy, mitochondrial dysfunction, and hepatocyte death. It is unknown how I/R in aged livers affects CAST. Human and mouse liver biopsies at different ages were collected during in vivo I/R. Hepatocytes were isolated from 3-month- (young) and 26-month-old (aged) mice, and challenged with short in vitro simulated I/R. Cell death, protein expression, autophagy, and mitochondrial permeability transition (MPT) between the two age groups were compared. Adenoviral vector was used to overexpress CAST. Significant cell death was observed only in reperfused aged hepatocytes. Before the commencement of ischemia, CAST expression in aged human and mouse livers and mouse hepatocytes was markedly greater than that in young counterparts. However, reperfusion substantially decreased CAST in aged human and mouse livers. In hepatocytes, reperfusion rapidly depleted aged cells of CAST, cleaved autophagy-related protein 5 (ATG5), and induced defective autophagy and MPT onset, all of which were blocked by CAST overexpression. Furthermore, mitochondrial morphology was shifted toward an elongated shape with CAST overexpression. In conclusion, CAST in aged livers is intrinsically short-lived and lost after short I/R. CAST depletion contributes to age-dependent liver injury after I/R.
Collapse
Affiliation(s)
- Joseph Flores-Toro
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; (J.F.-T.); (S.-K.C.); (I.Z.); (K.B.)
| | - Sung-Kook Chun
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; (J.F.-T.); (S.-K.C.); (I.Z.); (K.B.)
| | - Jun-Kyu Shin
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.-K.S.); (J.C.); (M.L.); (W.C.)
| | - Joan Campbell
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.-K.S.); (J.C.); (M.L.); (W.C.)
| | - Melissa Lichtenberger
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.-K.S.); (J.C.); (M.L.); (W.C.)
| | - William Chapman
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.-K.S.); (J.C.); (M.L.); (W.C.)
| | - Ivan Zendejas
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; (J.F.-T.); (S.-K.C.); (I.Z.); (K.B.)
| | - Kevin Behrns
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; (J.F.-T.); (S.-K.C.); (I.Z.); (K.B.)
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32610, USA;
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; (J.F.-T.); (S.-K.C.); (I.Z.); (K.B.)
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.-K.S.); (J.C.); (M.L.); (W.C.)
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Liu Z, Xuan B, Tang S, Qian Z. Histone Deacetylase Inhibitor SAHA Induces Expression of Fatty Acid-Binding Protein 4 and Inhibits Replication of Human Cytomegalovirus. Virol Sin 2021; 36:1352-1362. [PMID: 34156645 DOI: 10.1007/s12250-021-00382-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase inhibitor that shows marked efficacy against many types of cancers and is approved to treat severe metastatic cutaneous T-cell lymphomas. In addition to its anticancer activity, SAHA has significant effects on the growth of many viruses. The effect of SAHA on replication of human cytomegalovirus (HCMV) has not, however, been investigated. Here, we showed that the replication of HCMV was significantly suppressed by treatment with SAHA at concentrations that did not show appreciable cytotoxicity. SAHA reduced transcription and protein levels of HCMV immediate early genes, showing that SAHA acts at an early stage in the viral life-cycle. RNA-sequencing data mining showed that numerous pathways and molecules were affected by SAHA. Interferon-mediated immunity was one of the most relevant pathways in the RNA-sequencing data, and we confirmed that SAHA inhibits HCMV-induced IFN-mediated immune responses using quantitative Real-time PCR (qRT-PCR). Fatty acid-binding protein 4 (FABP4), which plays a role in lipid metabolism, was identified by RNA-sequencing. We found that FABP4 expression was reduced by HCMV infection but increased by treatment with SAHA. We then showed that knockdown of FABP4 partially rescued the effect of SAHA on HCMV replication. Our data suggest that FABP4 contributes to the inhibitory effect of SAHA on HCMV replication.
Collapse
Affiliation(s)
- Zhongshun Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoqin Xuan
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shubing Tang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhikang Qian
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
15
|
Effect of the HDAC Inhibitor on Histone Acetylation and Methyltransferases in A2780 Ovarian Cancer Cells. ACTA ACUST UNITED AC 2021; 57:medicina57050456. [PMID: 34066975 PMCID: PMC8151761 DOI: 10.3390/medicina57050456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
Background andObjective: Epigenetic modifications are believed to play a significant role in the development of cancer progression, growth, differentiation, and cell death. One of the most popular histone deacetylases inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, can directly activate p21WAF1/CIP1 gene transcription through hyperacetylation of histones by a p53 independent mechanism. In the present investigation, we evaluated the correlation between histone modifications and DNA methyltransferase enzyme levels following SAHA treatments in A2780 ovarian cancer cells. Materials and Methods: Acetylation of histones and methyltransferases levels were analyzed using RT2 profiler PCR array, immunoblotting, and immunofluorescence methods in 2D and 3D cell culture systems. Results: The inhibition of histone deacetylases (HDAC) activities by SAHA can reduce DNA methyl transferases / histone methyl transferases (DNMTs/HMTs) levels through induction of hyperacetylation of histones. Immunofluorescence analysis of cells growing in monolayers and spheroids revealed significant up-regulation of histone acetylation preceding the above-described changes. Conclusions: Our results depict an interesting interplay between histone hyperacetylation and a decrease in methyltransferase levels in ovarian cancer cells, which may have a positive impact on the overall outcomes of cancer treatment.
Collapse
|
16
|
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 2021; 277:119504. [PMID: 33872660 DOI: 10.1016/j.lfs.2021.119504] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The role of genetic and epigenetic factors in tumor initiation and progression is well documented. Histone deacetylases (HDACs), histone methyl transferases (HMTs), and DNA methyl transferases. (DNMTs) are the main proteins that are involved in regulating the chromatin conformation. Among these, histone deacetylases (HDAC) deacetylate the histone and induce gene repression thereby leading to cancer. In contrast, histone acetyl transferases (HATs) that include GCN5, p300/CBP, PCAF, Tip 60 acetylate the histones. HDAC inhibitors are potent drug molecules that can induce acetylation of histones at lysine residues and induce open chromatin conformation at tumor suppressor gene loci and thus resulting in tumor suppression. The key processes regulated by HDAC inhibitors include cell-cycle arrest, chemo-sensitization, apoptosis induction, upregulation of tumor suppressors. Even though FDA approved drugs are confined mainly to haematological malignancies, the research on HDAC inhibitors in glioblastoma multiforme and triple negative breast cancer (TNBC) are providing positive results. Thus, several combinations of HDAC inhibitors along with DNA methyl transferase inhibitors and histone methyl transferase inhibitors are in clinical trials. This review focuses on how HDAC inhibitors regulate the expression of coding and non-coding genes with specific emphasis on their anti-cancer potential.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, Telangana, India
| | - Rajasekhar Reddy Manyam
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
17
|
Hegde M, Joshi MB. Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors. J Cancer Res Clin Oncol 2021; 147:937-971. [PMID: 33604794 PMCID: PMC7954751 DOI: 10.1007/s00432-021-03519-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Significant reprogramming of epigenome is widely described during pathogenesis of breast cancer. Transformation of normal cell to hyperplastic cell and to neoplastic phenotype is associated with aberrant DNA (de)methylation, which, through promoter and enhancer methylation changes, activates oncogenes and silence tumor suppressor genes in variety of tumors including breast. DNA methylation, one of the major epigenetic mechanisms is catalyzed by evolutionarily conserved isoforms namely, DNMT1, DNMT3A and DNMT3B in humans. Over the years, studies have demonstrated intricate and complex regulation of DNMT isoforms at transcriptional, translational and post-translational levels. The recent findings of allosteric regulation of DNMT isoforms and regulation by other interacting chromatin modifying proteins emphasizes functional integrity and their contribution for the development of breast cancer and progression. DNMT isoforms are regulated by several intrinsic and extrinsic parameters. In the present review, we have extensively performed bioinformatics analysis of expression of DNMT isoforms along with their transcriptional and post-transcriptional regulators such as transcription factors, interacting proteins, hormones, cytokines and dietary elements along with their significance during pathogenesis of breast tumors. Our review manuscript provides a comprehensive understanding of key factors regulating DNMT isoforms in breast tumor pathology and documents unsolved issues.
Collapse
Affiliation(s)
- Mangala Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
18
|
Chhabra R, Rockfield S, Guergues J, Nadeau OW, Hill R, Stevens SM, Nanjundan M. Global miRNA/proteomic analyses identify miRNAs at 14q32 and 3p21, which contribute to features of chronic iron-exposed fallopian tube epithelial cells. Sci Rep 2021; 11:6270. [PMID: 33737539 PMCID: PMC7973504 DOI: 10.1038/s41598-021-85342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant transformation of fallopian tube secretory epithelial cells (FTSECs) is a key contributing event to the development of high-grade serous ovarian carcinoma (HGSOC). Our recent findings implicate oncogenic transformative events in chronic iron-exposed FTSECs, including increased expression of oncogenic mediators, increased telomerase transcripts, and increased growth/migratory potential. Herein, we extend these studies by implementing an integrated transcriptomic and mass spectrometry-based proteomics approach to identify global miRNA and protein alterations, for which we also investigate a subset of these targets to iron-induced functional alterations. Proteomic analysis identified > 4500 proteins, of which 243 targets were differentially expressed. Sixty-five differentially expressed miRNAs were identified, of which 35 were associated with the “top” proteomic molecules (> fourfold change) identified by Ingenuity Pathway Analysis. Twenty of these 35 miRNAs are at the 14q32 locus (encoding a cluster of 54 miRNAs) with potential to be regulated by DNA methylation and histone deacetylation. At 14q32, miR-432-5p and miR-127-3p were ~ 100-fold downregulated whereas miR-138-5p was 16-fold downregulated at 3p21 in chronic iron-exposed FTSECs. Combinatorial treatment with methyltransferase and deacetylation inhibitors reversed expression of these miRNAs, suggesting chronic iron exposure alters miRNA expression via epigenetic alterations. In addition, PAX8, an important target in HGSOC and a potential miRNA target (from IPA) was epigenetically deregulated in iron-exposed FTSECs. However, both PAX8 and ALDH1A2 (another IPA-predicted target) were experimentally identified to be independently regulated by these miRNAs although TERT RNA was partially regulated by miR-138-5p. Interestingly, overexpression of miR-432-5p diminished cell numbers induced by long-term iron exposure in FTSECs. Collectively, our global profiling approaches uncovered patterns of miRNA and proteomic alterations that may be regulated by genome-wide epigenetic alterations and contribute to functional alterations induced by chronic iron exposure in FTSECs. This study may provide a platform to identify future biomarkers for early ovarian cancer detection and new targets for therapy.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Owen W Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Robert Hill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
19
|
Varela RB, Resende WR, Dal-Pont GC, Gava FF, Nadas GB, Tye SJ, Andersen ML, Quevedo J, Valvassori SS. Role of epigenetic regulatory enzymes in animal models of mania induced by amphetamine and paradoxical sleep deprivation. Eur J Neurosci 2020; 53:649-662. [PMID: 32735698 DOI: 10.1111/ejn.14922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 01/22/2023]
Abstract
It is known that bipolar disorder has a multifactorial aetiology where the interaction between genetic and environmental factors is responsible for its development. Because of this, epigenetics has been largely studied in psychiatric disorders. The present study aims to evaluate the effects of histone deacetylase inhibitors on epigenetic enzyme alterations in rats or mice submitted to animal models of mania induced by dextro-amphetamine or sleep deprivation, respectively. Adult male Wistar rats were subjected to 14 days of dextro-amphetamine administration, and from the eighth to the fourteenth day, the animals were treated with valproate and sodium butyrate in addition to dextro-amphetamine injections. Adult C57BL/6 mice received 7 days of valproate or sodium butyrate administration, being sleep deprived at the last 36 hr of the protocol. Locomotor and exploratory activities of rats and mice were evaluated in the open-field test, and histone deacetylase, DNA methyltransferase, and histone acetyltransferase activities were assessed in the frontal cortex, hippocampus, and striatum. Dextro-amphetamine and sleep deprivation induced hyperactivity and increased histone deacetylase and DNA methyltransferase activities in the animal's brain. Valproate and sodium butyrate were able to reverse hyperlocomotion induced by both animal models, as well as the alterations on histone deacetylase and DNA methyltransferase activities. There was a positive correlation between enzyme activities and number of crossings for both models. Histone deacetylase and DNA methyltransferase activities also presented a positive correlation between theirselves. These results suggest that epigenetics can play an important role in BD pathophysiology as well as in its treatment.
Collapse
Affiliation(s)
- Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriella B Nadas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
20
|
Yu X, Li H, Hu P, Qing Y, Wang X, Zhu M, Wang H, Wang Z, Xu J, Guo Q, Hui H. Natural HDAC-1/8 inhibitor baicalein exerts therapeutic effect in CBF-AML. Clin Transl Med 2020; 10:e154. [PMID: 32898337 PMCID: PMC7449246 DOI: 10.1002/ctm2.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although targeting histone deacetylases (HDACs) may be an effective strategy for core binding factor-acute myeloid leukemia (CBF-AML) harboring t(8;21) or inv(16), HDAC inhibitors are reported to be limited by drug-resistant characteristic. Our purpose is to evaluate the anti-leukemia effects of Baicalein on CBF-AML and clarify its underlying mechanism. METHODS Enzyme activity assay was used to measure the activity inhibition of HDACs. Rhodamine123 and RT-qPCR were employed to evaluate the distribution of drugs and the change of ATP-binding cassette (ABC) transporter genes. CCK8, Annexin V/PI, and FACS staining certified the effects of Baicalein on cell growth, apoptosis, and differentiation. Duolink and IP assay assessed the interaction between HDAC-1 and ubiquitin, HSP90 and AML1-ETO, and Ac-p53 and CBFβ-MYH11. AML cell lines and primary AML cells-bearing NOD/SCID mice models were used to evaluate the anti-leukemic efficiency and potential mechanism of Baicalein in vivo. RESULTS Baicalein showed HDAC-1/8 inhibition to trigger growth suppression and differentiation induction of AML cell lines and primary AML cells. Although the inhibitory action on HDAC-1 was mild, Baicalein could induce the degradation of HDAC-1 via ubiquitin proteasome pathway, thereby upregulating the acetylation of Histone H3 without promoting ABC transporter genes expression. Meanwhile, Baicalein increased the acetylation of HSP90 and lessened its connection to AML1/ETO, consequently leading to degradation of AML1-ETO in t(8;21)q(22;22) AML cells. In inv(16) AML cells, Baicalein possessed the capacity of apoptosis induction accompanied with p53-mediated apoptosis genes expression. Moreover, CBFβ-MYH11-bound p53 acetylation was restored via HDAC-8 inhibition induced by Baicalein contributing the diminishing of survival of CD34+ inv(16) AML cells. CONCLUSIONS These findings improved the understanding of the epigenetic regulation of Baicalein, and warrant therapeutic potential of Baicalein for CBF-AML.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
- Department of PharmacologySchool of medicine & Holostic integrative medicineNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Hui Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Po Hu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Yingjie Qing
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Xiangyuan Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Mengyuan Zhu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Hongzheng Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Zhanyu Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Jingyan Xu
- Department of HematologyThe Affiliated DrumTower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Qinglong Guo
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Hui Hui
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| |
Collapse
|
21
|
5-Azacytidine upregulates melatonin MT1 receptor expression in rat C6 glioma cells: oncostatic implications. Mol Biol Rep 2020; 47:4867-4873. [DOI: 10.1007/s11033-020-05482-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
|
22
|
Zhou C, Zhang C, Zhu H, Liu Z, Su H, Zhang X, Chen T, Zhong Y, Hu H, Xiong M, Zhou H, Xu Y, Zhang A, Zhang N. Allosteric Regulation of Hsp90α's Activity by Small Molecules Targeting the Middle Domain of the Chaperone. iScience 2020; 23:100857. [PMID: 32058968 PMCID: PMC6997908 DOI: 10.1016/j.isci.2020.100857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Hsp90 is a target for anti-cancer drug development. Both the conformational events tuned by ATP/ADP and co-chaperones and the chaperoning cycle timing are required for Hsp90's fully functional display. Interfering with either one of the conformational events or the cycle timing will down-regulate Hsp90's function. In this manuscript, non-covalent allosteric modulators (SOMCL-16-171 and SOMCL-16-175) targeting Hsp90α’s middle domain (Hsp90M) were developed for the first time. Multiple techniques were then applied to characterize the interactions between two active compounds and Hsp90α. Two loops and one α-helix (F349-N360, K443-E451, and D372-G387) in Hsp90M were identified responsible for the recognition of SOMCL-16-171 and SOMCL-16-175. Meanwhile, the binding of SOMCL-16-171 and SOMCL-16-175 to Hsp90M was demonstrated to allosterically modulate the structure and function of Hsp90α’s N-terminal domain. Finally, cellular assays were conducted to evaluate the cellular activity of SOMCL-16-175, and the results indicate that SOMCL-16-175 destabilizes Hsp90's client proteins and reduces cell viability. Allosteric modulators targeting Hsp90α's middle domain were developed for the first time Key elements in Hsp90M for the recognition of allosteric modulators were identified Compound SOMCL-16-175 promotes Hsp90α’s ATPase activity and reduces cell viability SOMCL-16-175 destabilizes Hsp90's clients without triggering heat shock response
Collapse
Affiliation(s)
- Chen Zhou
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chi Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongwen Zhu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Haixia Su
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xianglei Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tingting Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yan Zhong
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Huifang Hu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Muya Xiong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Naixia Zhang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
23
|
Steed KL, Jordan HR, Tollefsbol TO. SAHA and EGCG Promote Apoptosis in Triple-negative Breast Cancer Cells, Possibly Through the Modulation of cIAP2. Anticancer Res 2020; 40:9-26. [PMID: 31892549 DOI: 10.21873/anticanres.13922] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIM Inhibition of apoptosis is one of the hallmarks of cancer, and anti-apoptotic genes are often targets of genetic and epigenetic alterations. Cellular inhibitor of apoptosis 2 (cIAP2) has a role in degrading caspases by linking them to ubiquitin molecules, and is upregulated in triple-negative breast cancer (TNBC). Previous studies have demonstrated that cIAP2 may play a role in the epithelial-to-mesenchymal transition (EMT). MATERIALS AND METHODS Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, was administered to triple-negative breast cancer (TNBC) cells alone or in combination with epigallocatechin-3-gallate (EGCG), a DNA methyltransferase (DNMT) inhibitor isolated from green tea. RESULTS The compounds were able to decrease the expression of cIAP2 while increasing the expression of pro-apoptotic caspase 7. There were also changes in histone modifications, suggesting a role of epigenetic mechanisms in these changes in expression of cIAP2. These changes resulted in an increase in apoptosis. SAHA and EGCG were also capable of limiting TNBC cell migration across a fibronectin (FN) matrix. CONCLUSION SAHA and EGCG reduce the metastatic potential of TNBC by inducing the apoptotic pathway.
Collapse
Affiliation(s)
- Kayla L Steed
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, U.S.A.,School of Nursing, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Harrison R Jordan
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, U.S.A. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, U.S.A.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, U.S.A.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, U.S.A.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
24
|
Li L, Wang L, You QD, Xu XL. Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions. J Med Chem 2019; 63:1798-1822. [DOI: 10.1021/acs.jmedchem.9b00940] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Li Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
25
|
Najem SA, Khawaja G, Hodroj MH, Rizk S. Synergistic Effect of Epigenetic Inhibitors Decitabine and Suberoylanilide Hydroxamic Acid on Colorectal Cancer In vitro. Curr Mol Pharmacol 2019; 12:281-300. [DOI: 10.2174/1874467212666190313154531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 01/20/2023]
Abstract
Background:Colorectal Cancer (CRC) is a common cause of oncological deaths worldwide. Alterations of the epigenetic landscape constitute a well-documented hallmark of CRC phenotype. The accumulation of aberrant DNA methylation and histone acetylation plays a major role in altering gene activity and driving tumor onset, progression and metastasis.Objective:In this study, we evaluated the effect of Suberoylanilide Hydroxamic Acid (SAHA), a panhistone deacetylase inhibitor, and Decitabine (DAC), a DNA methyltransferase inhibitor, either alone or in combination, on Caco-2 human colon cancer cell line in vitro.Results:Our results showed that SAHA and DAC, separately, significantly decreased cell proliferation, induced apoptosis and cell cycle arrest of Caco-2 cell line. On the other hand, the sequential treatment of Caco-2 cells, first with DAC and then with SAHA, induced a synergistic anti-tumor effect with a significant enhancement of growth inhibition and apoptosis induction in Caco-2 cell line as compared to cells treated with either drug alone. Furthermore, the combination therapy upregulates protein expression levels of pro-apoptotic proteins Bax, p53 and cytochrome c, downregulates the expression of antiapoptotic Bcl-2 protein and increases the cleavage of procaspases 8 and 9; this suggests that the combination activates apoptosis via both the intrinsic and extrinsic pathways. Mechanistically, we demonstrated that the synergistic anti-neoplastic activity of combined SAHA and DAC involves an effect on PI3K/AKT and Wnt/β-catenin signaling.Conclusion:In conclusion, our results provide evidence for the profound anti-tumorigenic effect of sequentially combined SAHA and DAC in the CRC cell line and offer new insights into the corresponding underlined molecular mechanism.
Collapse
Affiliation(s)
- Sonia Abou Najem
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mohammad Hassan Hodroj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
26
|
Singh S, Sonkar SK, Sonkar GK, Mahdi AA. Diabetic kidney disease: A systematic review on the role of epigenetics as diagnostic and prognostic marker. Diabetes Metab Res Rev 2019; 35:e3155. [PMID: 30892801 DOI: 10.1002/dmrr.3155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/26/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Diabetic kidney disease is one of the most serious microvascular complications and among the leading causes of end stage renal disease. Persistently increasing albuminuria has been considered to be the central hallmark of nephropathy. However, albuminuria can indicate kidney damage for clinicians; it is not a specific biomarker for prediction of diabetic kidney disease prior to the onset of this devastating complication, and in fact all individuals with microalbuminuria do not progress to overt nephropathy. Controlled glycemia is unable to prevent nephropathy in all diabetic individuals indicating the role of other factors in progression of diabetic kidney disease. There are numerous cellular and molecular defects persisting prior to appearance of clinical symptoms. So, there is an urgent need to look for easy, novel, and accurate way to detect diabetic kidney disease prior to its beginning or at the infancy stage so that its progression can be slowed or arrested. It is now accepted that initiation and progression of diabetic kidney disease are a result of complex interactions between genetic and environmental factors. Environmental signals can alter the intracellular pathways by chromatin modifiers and regulate gene expression patterns leading to diabetes and its complications. In the present review, we have discussed a possible link between aberrant DNA methylation and altered gene expression in diabetic kidney disease. Drugs targeting to reverse epigenetic alteration can retard or stop the development of this devastating disease, just by breaking the chain of events occurring prior to the development of this microvascular complication in patients with diabetes.
Collapse
Affiliation(s)
- Sangeeta Singh
- Department of Biochemistry, King George's Medical University, U.P., Lucknow, India
| | | | | | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, U.P., Lucknow, India
| |
Collapse
|
27
|
Condelli V, Crispo F, Pietrafesa M, Lettini G, Matassa DS, Esposito F, Landriscina M, Maddalena F. HSP90 Molecular Chaperones, Metabolic Rewiring, and Epigenetics: Impact on Tumor Progression and Perspective for Anticancer Therapy. Cells 2019; 8:cells8060532. [PMID: 31163702 PMCID: PMC6627532 DOI: 10.3390/cells8060532] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 90 (HSP90) molecular chaperones are a family of ubiquitous proteins participating in several cellular functions through the regulation of folding and/or assembly of large multiprotein complexes and client proteins. Thus, HSP90s chaperones are, directly or indirectly, master regulators of a variety of cellular processes, such as adaptation to stress, cell proliferation, motility, angiogenesis, and signal transduction. In recent years, it has been proposed that HSP90s play a crucial role in carcinogenesis as regulators of genotype-to-phenotype interplay. Indeed, HSP90 chaperones control metabolic rewiring, a hallmark of cancer cells, and influence the transcription of several of the key-genes responsible for tumorigenesis and cancer progression, through either direct binding to chromatin or through the quality control of transcription factors and epigenetic effectors. In this review, we will revise evidence suggesting how this interplay between epigenetics and metabolism may affect oncogenesis. We will examine the effect of metabolic rewiring on the accumulation of specific metabolites, and the changes in the availability of epigenetic co-factors and how this process can be controlled by HSP90 molecular chaperones. Understanding deeply the relationship between epigenetic and metabolism could disclose novel therapeutic scenarios that may lead to improvements in cancer treatment.
Collapse
Affiliation(s)
- Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| |
Collapse
|
28
|
Xue B, Zhao J, Feng P, Xing J, Wu H, Li Y. Epigenetic mechanism and target therapy of UHRF1 protein complex in malignancies. Onco Targets Ther 2019; 12:549-559. [PMID: 30666134 PMCID: PMC6334784 DOI: 10.2147/ott.s192234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) functions as an epigenetic regulator recruiting PCNA, DNMT1, histone deacetylase 1, G9a, SuV39H, herpes virus-associated ubiquitin-specific protease, and Tat-interactive protein by multiple corresponding domains of DNA and H3 to maintain DNA methylation and histone modifications. Overexpression of UHRF1 has been found as a potential biomarker in various cancers resulting in either DNA hypermethylation or global DNA hypo-methylation, which participates in the occurrence, progression, and invasion of cancer. The role of UHRF1 in the reciprocal interaction between DNA methylation and histone modifications, the dynamic structural transformation of UHRF1 protein within epigenetic code replication machinery in epigenetic regulations, as well as modifications during cell cycle and chemotherapy targeting UHRF1 are evaluated in this study.
Collapse
Affiliation(s)
- Busheng Xue
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Jiansong Zhao
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Penghui Feng
- Department of Obstetrics and Gynecology-Reproductive Medical Center, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Jia Xing
- Department of Histology and Embryology, Basic Medicine College, China Medical University, Shenyang, People's Republic of China
| | - Hongliang Wu
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Yan Li
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| |
Collapse
|
29
|
Lewis KA, Jordan HR, Tollefsbol TO. Effects of SAHA and EGCG on Growth Potentiation of Triple-Negative Breast Cancer Cells. Cancers (Basel) 2018; 11:cancers11010023. [PMID: 30591655 PMCID: PMC6356328 DOI: 10.3390/cancers11010023] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer comprises approximately 15–20% of all breast cancers diagnosed and is nearly twice as common in black women than white women in the United States. We evaluated the effects of two epigenetic-modifying compounds on markers of growth potential in several triple-negative breast cancer cell lines. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor currently used in the treatment of cutaneous T cell lymphoma, was administered to triple-negative breast cancer cells alone or in combination with epigallocatechin-3-gallate (EGCG), a DNA methyltransferase (DNMT) inhibitor isolated from green tea. The compounds affected the expression of oncogenic miR-221/222 and tumor suppressors, p27 and PTEN, in addition to estrogen receptor alpha (ERα). E-cadherin expression was increased while N-cadherin was decreased, indicating a more epithelial phenotype. In addition, the activity of DNMTs was diminished with the treatments, and there was a significant enrichment of AcH3 within the promoter of p27 and PTEN, suggesting a role of epigenetic mechanisms for the aforementioned changes. These results translated to reduced migration of the triple-negative breast cancer cells with the treatments. Together, these findings support the role of SAHA and EGCG in limiting growth and proliferation of breast cancer cells.
Collapse
Affiliation(s)
- Kayla A Lewis
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA.
- School of Nursing, University of Alabama at Birmingham, 1701 University Blvd, Birmingham, AL 35294, USA.
| | - Harrison R Jordan
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA.
| |
Collapse
|
30
|
Taweechaipaisankul A, Jin JX, Lee S, Kim GA, Suh YH, Ahn MS, Park SJ, Lee BY, Lee BC. Improved early development of porcine cloned embryos by treatment with quisinostat, a potent histone deacetylase inhibitor. J Reprod Dev 2018; 65:103-112. [PMID: 30587665 PMCID: PMC6473109 DOI: 10.1262/jrd.2018-098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, the modification of the epigenetic status of somatic cell nuclear transfer (SCNT) embryos by treatment with histone deacetylase inhibitors (HDACis) has made it possible to alter
epigenetic traits and improve the developmental competence of these embryos. In the current study, we examined the effects of an HDACi, quisinostat (JNJ), on the in vitro
development of porcine cloned embryos and their epigenetic nuclear reprogramming status. SCNT embryos were cultured under various conditions, and we found that treatment with 100 nM JNJ for
24 h post activation could improve blastocyst formation rates compared to the control (P < 0.05). Therefore, this was chosen as the optimal condition and used for further investigations.
To explore the effects of JNJ on the nuclear reprogramming of early stage embryos and how it improved cloning efficiency, immunofluorescence staining and quantitative real-time PCR were
performed. From the pseudo-pronuclear to 2-cell stages, the levels of acetylation of histone 3 at lysine 9 (AcH3K9) and acetylation of histone 4 at lysine 12 (AcH4K12) increased, and global
DNA methylation levels revealed by anti-5-methylcytosine (5-mC) antibody staining were decreased in the JNJ-treated group compared to the control (P < 0.05). However, JNJ treatment failed
to alter AcH3K9, AcH4K12, or 5-mC levels at the 4-cell embryo stage. Moreover, JNJ treatment significantly upregulated the expression of the development-related genes OCT4,
SOX2, and NANOG, and reduced the expression of genes related to DNA methylation (DNMT1, DNMT3a, and
DNMT3b) and histone acetylation (HDAC1, HDAC2, and HDAC3). Together, these results suggest that treatment of SCNT
embryos with JNJ could promote their developmental competence by altering epigenetic nuclear reprogramming events.
Collapse
Affiliation(s)
- Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Heilongjiang 150030, China
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ho Suh
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Seok Ahn
- Department of Materials Science & Engineering, Yonsei University, Seoul 120749, Republic of Korea
| | - Se Jun Park
- Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byeong You Lee
- Department of Automotive Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
31
|
Overexpression of the steroidogenic acute regulatory protein in breast cancer: Regulation by histone deacetylase inhibition. Biochem Biophys Res Commun 2018; 509:476-482. [PMID: 30595381 DOI: 10.1016/j.bbrc.2018.12.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
Dysregulation of steroid biosynthesis has been implicated in the pathophysiology of a variety of cancers. One such common malignancy in women is breast cancer that is frequently promoted by estrogen overproduction. All steroid hormones are made from cholesterol, and the rate-limiting step in steroid biosynthesis is primarily mediated by the steroidogenic acute regulatory (StAR) protein. Whereas the involvement of StAR in the regulation steroid hormone biosynthesis is well established, its association to breast cancer remains obscure. Herein, we report that estrogen receptor positive breast cancer cell lines (MCF7, MDA-MB-361, and T-47D) displayed aberrant high expression of the StAR protein, concomitant with 17β-estradiol (E2) synthesis, when compared their levels with normal mammary epithelial (MCF10A and MCF12F) and triple negative breast cancer (MDA-MB-468, MDA-MB-231, and BT-549) cells. StAR was identified as a novel acetylated protein in MCF7 cells, in which liquid chromatography-tandem mass spectrometry analysis identified seven StAR acetyl lysine residues under basal and in response to histone deacetylase (HDAC) inhibition. A number of HDAC inhibitors were capable of diminishing StAR expression and E2 synthesis in MCF7 cells. The validity of StAR protein acetylation and its correlation to HDAC inhibition mediated steroid synthesis was demonstrated in adrenocortical tumor H295R cells. These findings provide novel insights that StAR protein is abundantly expressed in the most prevalent hormone sensitive breast cancer subtype, wherein inhibition of HDACs altered StAR acetylation patterns and decreased E2 levels, which may have important therapeutic implications in the prevention and treatment of this devastating disease.
Collapse
|
32
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
33
|
Abstract
In the last decade, epigenetic drugs (such as inhibitors of DNA methyltransferases and histone deacetylases) have been intensively used for cancer treatment. Their applications have shown high anticancer effectivity and tolerable side effects. However, they are unfortunately not effective in the treatment of some types and phenotypes of cancers. Nevertheless, several studies have demonstrated that problems of drug efficacy can be overcome through the combined application of therapeutic modulates. Therefore, combined applications of epigenetic agents with chemotherapy, radiation therapy, immunotherapy, oncolytic virotherapy and hyperthermia have been presented. This review summarizes and discusses the general principles of this approach, as introduced and supported by numerous examples. In addition, predictions of the future potential applications of this methodology are included.
Collapse
|
34
|
Shi Y, Jia Y, Zhao W, Zhou L, Xie X, Tong Z. Histone deacetylase inhibitors alter the expression of molecular markers in breast cancer cells via microRNAs. Int J Mol Med 2018; 42:435-442. [PMID: 29620153 DOI: 10.3892/ijmm.2018.3616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/25/2018] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) are able to suppress breast cancer cells in vitro and in vivo by altering the expression of estrogen receptor (ER), progesterone receptor (PR) or human epidermal growth factor receptor 2 (Her2/neu). Since HDACis can alter the expression of various microRNAs (miRNAs/miRs), the present study aimed to examine the role of miRNAs in the effects of HDACis on breast cancer cells. We first examined the mRNA expression of ER, PR, and Her2/neu using RT-PCR and the protein levels of ER, PR, and Her2/neu using western blot analysis in MDA-MB-231 and BT474 cells, after trichostatin A (TSA) or vorinostat (SAHA) treatment. We then conducted miRNA expression profiling using microarrays after BT474 cells were treated with TSA or SAHA. Finally, we examined the effects of synthetic miR-762 and miR-642a-3p inhibitors on SAHA-induced downregulation of Her2/neu and SAHA-induced apoptosis and PARP cleavage in BT474 cells. The results indicated that TSA and SAHA dose‑dependently enhanced the mRNA and protein expression levels of ER and PR in MDA‑MB‑231 and BT474 cells. In addition, the mRNA expression levels of Her2/neu were reduced in MDA‑MB‑231 cells, and the mRNA and protein expression levels of Her2/neu were reduced in BT474 cells in response to SAHA and TSA. Furthermore, treatment with TSA (0.2 µM) or SAHA (5.0 µM) induced a marked alteration in the expression of various miRNAs in BT474 cells. Notably, when cells were cotransfected with miR‑762 and miR‑642a‑3p inhibitors, SAHA‑induced downregulation of Her2/neu was inhibited, and SAHA‑induced apoptosis and poly (ADP‑ribose) polymerase cleavage were significantly reduced in BT474 cells. These results indicated that numerous HDACi‑induced miRNAs are required to downregulate Her2/neu levels and promote apoptosis of Her2‑overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Yehui Shi
- Department of Breast Oncology, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Yongsheng Jia
- Department of Breast Oncology, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Weipeng Zhao
- Department of Breast Oncology, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Liyan Zhou
- National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Xiaojuan Xie
- National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Zhongsheng Tong
- Department of Breast Oncology, Tianjin Medical University, Tianjin 300060, P.R. China
| |
Collapse
|
35
|
Wang S, Zhu L, Zuo W, Zeng Z, Huang L, Lin F, Lin R, Wang J, Lu J, Wang Q, Lin L, Dong H, Wu W, Zheng K, Cai J, Yang S, Ma Y, Ye S, Liu W, Yu Y, Tan J, Liu B. MicroRNA-mediated epigenetic targeting of Survivin significantly enhances the antitumor activity of paclitaxel against non-small cell lung cancer. Oncotarget 2018; 7:37693-37713. [PMID: 27177222 PMCID: PMC5122342 DOI: 10.18632/oncotarget.9264] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/26/2016] [Indexed: 12/25/2022] Open
Abstract
Elevated expression of Survivin correlates with poor prognosis, tumor recurrence, and drug resistance in various human cancers, including non-small cell lung cancer (NSCLC). The underlying mechanism of Survivin upregulation in cancer cells remains elusive. To date, no Survivin-targeted therapy has been approved for cancer treatment. Here, we explored the molecular basis resulting in Survivin overexpression in NSCLC and investigated the antitumor activity of the class I HDAC inhibitor entinostat in combination with paclitaxel. Our data showed that entinostat significantly enhanced paclitaxel-mediated anti-proliferative/anti-survival effects on NSCLC cells in vitro and in vivo. Mechanistically, entinostat selectively decreased expression of Survivin via induction of miR-203 (in vitro and in vivo) and miR-542-3p (in vitro). Moreover, analysis of NSCLC patient samples revealed that the expression levels of miR-203 were downregulated due to promoter hypermethylation in 45% of NSCLC tumors. In contrast, increased expression of both DNA methytransferase I (DNMT1) and Survivin was observed and significantly correlated with the reduced miR-203 in NSCLC. Collectively, these data shed new lights on the molecular mechanism of Survivin upregulation in NSCLC. Our findings also support that the combinatorial treatments of entinostat and paclitaxel will likely exhibit survival benefit in the NSCLC patients with overexpression of DNMT1 and/or Survivin. The DNMT1-miR-203-Survivin signaling axis may provide a new avenue for the development of novel epigenetic approaches to enhance the chemotherapeutic efficacy against NSCLC.
Collapse
Affiliation(s)
- Shuiliang Wang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Ling Zhu
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Weimin Zuo
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Zhiyong Zeng
- Department of Thoracic Surgery, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Lianghu Huang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Fengjin Lin
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Rong Lin
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jin Wang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jun Lu
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Qinghua Wang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Lingjing Lin
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Huiyue Dong
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Weizhen Wu
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Kai Zheng
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jinquan Cai
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shunliang Yang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Yujie Ma
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shixin Ye
- Department of Thoracic Surgery, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Wei Liu
- Department of Pathology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Yinghao Yu
- Department of Pathology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jianming Tan
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Bolin Liu
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
36
|
Booth L, Roberts JL, Kirkwood J, Poklepovic A, Dent P. Unconventional Approaches to Modulating the Immunogenicity of Tumor Cells. Adv Cancer Res 2018; 137:1-15. [PMID: 29405973 DOI: 10.1016/bs.acr.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For several years, it has been known that histone deacetylase inhibitors have the potential to alter the immunogenicity of tumor cells exposed to checkpoint inhibitory immunotherapy antibodies. HDAC inhibitors can rapidly reduce expression of PD-L1 and increase expression of MHCA in various tumor types that subsequently facilitate the antitumor actions of checkpoint inhibitors. Recently, we have discovered that drug combinations which cause a rapid and intense autophagosome formation also can modulate the expression of HDAC proteins that control tumor cell immunogenicity via their regulation of PD-L1 and MHCA. These drug combinations, in particular those using the irreversible ERBB1/2/4 inhibitor neratinib, can result in parallel in the internalization of growth factor receptors as well as fellow-traveler proteins such as mutant K-RAS and mutant N-RAS into autophagosomes. The drug-induced autophagosomes contain HDAC proteins/signaling proteins whose expression is subsequently reduced by lysosomal degradation processes. These findings argue that cancer therapies which strongly promote autophagosome formation and autophagic flux may facilitate the subsequent use of additional antitumor modalities using checkpoint inhibitor antibodies.
Collapse
Affiliation(s)
- Laurence Booth
- Virginia Commonwealth University, Richmond, VA, United States
| | - Jane L Roberts
- Virginia Commonwealth University, Richmond, VA, United States
| | - John Kirkwood
- University of Pittsburgh Cancer Institute Melanoma and Skin Cancer Program, Hillman Cancer Research Pavilion Laboratory, Pittsburgh, PA, United States
| | | | - Paul Dent
- Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
37
|
Harada T, Ohguchi H, Grondin Y, Kikuchi S, Sagawa M, Tai YT, Mazitschek R, Hideshima T, Anderson KC. HDAC3 regulates DNMT1 expression in multiple myeloma: therapeutic implications. Leukemia 2017; 31:2670-2677. [PMID: 28490812 PMCID: PMC5681897 DOI: 10.1038/leu.2017.144] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 12/14/2022]
Abstract
Epigenetic signaling pathways are implicated in tumorigenesis and therefore histone deacetylases (HDACs) represent novel therapeutic targets for cancers, including multiple myeloma (MM). Although non-selective HDAC inhibitors show anti-MM activities, unfavorable side effects limit their clinical efficacy. Isoform- and/or class-selective HDAC inhibition offers the possibility to maintain clinical activity while avoiding adverse events attendant to broad non-selective HDAC inhibition. We have previously reported that HDAC3 inhibition, either by genetic knockdown or selective inhibitor BG45, abrogates MM cell proliferation. Here we show that knockdown of HDAC3, but not HDAC1 or HDAC2, as well as BG45, downregulate expression of DNA methyltransferase 1 (DNMT1) mediating MM cell proliferation. DNMT1 expression is regulated by c-Myc, and HDAC3 inhibition triggers degradation of c-Myc protein. Moreover, HDAC3 inhibition results in hyperacetylation of DNMT1, thereby reducing the stability of DNMT1 protein. Combined inhibition of HDAC3 and DNMT1 with BG45 and DNMT1 inhibitor 5-azacytidine (AZA), respectively, triggers synergistic downregulation of DNMT1, growth inhibition and apoptosis in both MM cell lines and patient MM cells. Efficacy of this combination treatment is confirmed in a murine xenograft MM model. Our results therefore provide the rationale for combination treatment using HDAC3 inhibitor with DNMT1 inhibitor to improve patient outcome in MM.
Collapse
Affiliation(s)
- Takeshi Harada
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroto Ohguchi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yohann Grondin
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shohei Kikuchi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Morihiko Sagawa
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C. Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Young CS, Clarke KM, Kettyle LM, Thompson A, Mills KI. Decitabine-Vorinostat combination treatment in acute myeloid leukemia activates pathways with potential for novel triple therapy. Oncotarget 2017; 8:51429-51446. [PMID: 28881658 PMCID: PMC5584259 DOI: 10.18632/oncotarget.18009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/07/2017] [Indexed: 01/21/2023] Open
Abstract
Despite advancements in cancer therapeutics, acute myeloid leukemia patients over 60 years old have a 5-year survival rate of less than 8%. In an attempt to improve this, epigenetic modifying agents have been combined as therapies in clinical studies. In particular combinations with Decitabine and Vorinostat have had varying degrees of efficacy. This study therefore aimed to understand the underlying molecular mechanisms of these agents to identify potential rational epi-sensitized combinations. Combined Decitabine-Vorinostat treatment synergistically decreased cell proliferation, induced apoptosis, enhanced acetylation of histones and further decreased DNMT1 protein with HL-60 cells showing a greater sensitivity to the combined treatment than OCI-AML3. Combination therapy led to reprogramming of unique target genes including AXL, a receptor tyrosine kinase associated with cell survival and a poor prognosis in AML, which was significantly upregulated following treatment. Therefore targeting AXL following epi-sensitization with Decitabine and Vorinostat may be a suitable triple combination. To test this, cells were treated with a novel triple combination therapy including BGB324, an AXL specific inhibitor. Triple combination increased the sensitivity of OCI-AML3 cells to Decitabine and Vorinostat as shown through viability assays and significantly extended the survival of mice transplanted with pretreated OCI-AML3 cells, while bioluminescence imaging showed the decrease in disease burden following triple combination treatment. Further investigation is required to optimize this triple combination, however, these results suggest that AXL is a potential marker of response to Decitabine-Vorinostat combination treatment and offers a new avenue of epigenetic combination therapies for acute myeloid leukemia.
Collapse
Affiliation(s)
- Christine S. Young
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Kathryn M. Clarke
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Laura M. Kettyle
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander Thompson
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom
- Division of Cancer and Stem Cells, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ken I. Mills
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom
| |
Collapse
|
39
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that is involved in the activation of disparate client proteins. This implicates Hsp90 in diverse biological processes that require a variety of co-ordinated regulatory mechanisms to control its activity. Perhaps the most important regulator is heat shock factor 1 (HSF1), which is primarily responsible for upregulating Hsp90 by binding heat shock elements (HSEs) within Hsp90 promoters. HSF1 is itself subject to a variety of regulatory processes and can directly respond to stress. HSF1 also interacts with a variety of transcriptional factors that help integrate biological signals, which in turn regulate Hsp90 appropriately. Because of the diverse clientele of Hsp90 a whole variety of co-chaperones also regulate its activity and some are directly responsible for delivery of client protein. Consequently, co-chaperones themselves, like Hsp90, are also subject to regulatory mechanisms such as post translational modification. This review, looks at the many different levels by which Hsp90 activity is ultimately regulated.
Collapse
|
40
|
Cohen AL, Neumayer L, Boucher K, Factor RE, Shrestha G, Wade M, Lamb JG, Arbogast K, Piccolo SR, Riegert J, Schabel M, Bild AH, Werner TL. Window-of-Opportunity Study of Valproic Acid in Breast Cancer Testing a Gene Expression Biomarker. JCO Precis Oncol 2017; 1:1600011. [PMID: 32913974 PMCID: PMC7446454 DOI: 10.1200/po.16.00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose The anticancer activity of valproic acid (VPA) is attributed to the inhibition of histone deacetylase. We previously published the genomically derived sensitivity signature for VPA (GDSS-VPA), a gene expression biomarker that predicts breast cancer sensitivity to VPA in vitro and in vivo. We conducted a window-of-opportunity study that examined the tolerability of VPA and the ability of the GDSS-VPA to predict biologic changes in breast tumors after treatment with VPA. Patients and Methods Eligible women had untreated breast cancer with breast tumors larger than 1.5 cm. After a biopsy, women were given VPA for 7 to 12 days, increasing from 30 mg/kg/d orally divided into two doses per day to a maximum of 50 mg/kg/d. After VPA treatment, serum VPA level was measured and then breast surgery or biopsy was performed. Tumor proliferation was assessed by using Ki-67 immunohistochemistry. Histone acetylation of peripheral blood mononuclear cells was assessed by Western blot. Dynamic contrast-enhanced magnetic resonance imaging scans were performed before and after VPA treatment. Results Thirty women were evaluable. The median age was 54 years (range, 31-73 years). Fifty-two percent of women tolerated VPA at 50 mg/kg/d, but 10% missed more than two doses as a result of adverse events. Grade 3 adverse events included vomiting and diarrhea (one patient) and fatigue (one patient). The end serum VPA level correlated with a change in histone acetylation of peripheral blood mononuclear cells (ρ = 0.451; P = .024). Fifty percent of women (three of six) with triple-negative breast cancer had a Ki-67 reduction of at least 10% compared with 17% of other women. Women whose tumors had higher GDSS-VPA were more likely to have a Ki-67 decrease of at least 10% (area under the curve, 0.66). Conclusion VPA was well tolerated and there was a significant correlation between serum VPA levels and histone acetylation. VPA treatment caused a decrease in proliferation of breast tumors. The genomic biomarker correlated with decreased proliferation. Inhibition of histone deacetylase is a valid strategy for drug development in triple-negative breast cancer using gene expression biomarkers.
Collapse
Affiliation(s)
- Adam L Cohen
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - Leigh Neumayer
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - Ken Boucher
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - Rachel E Factor
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - Gajendra Shrestha
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - Mark Wade
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - John G Lamb
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - Kylee Arbogast
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - Stephen R Piccolo
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - Joanna Riegert
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - Matthias Schabel
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - Andrea H Bild
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| | - Theresa L Werner
- , , , , , , , , and , University of Utah; , , , , and , Huntsman Cancer Institute, Salt Lake City; , Brigham Young University, Provo, UT; , University of Arizona, Tucson, AZ; and , Advanced Imaging Research Center, Portland, OR
| |
Collapse
|
41
|
Berndsen RH, Abdul UK, Weiss A, Zoetemelk M, te Winkel MT, Dyson PJ, Griffioen AW, Nowak-Sliwinska P. Epigenetic approach for angiostatic therapy: promising combinations for cancer treatment. Angiogenesis 2017; 20:245-267. [DOI: 10.1007/s10456-017-9551-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/10/2017] [Indexed: 12/15/2022]
|
42
|
Wu Z, Mei X, Ying Z, Sun Y, Song J, Shi W. Ultraviolet B inhibition of DNMT1 activity via AhR activation dependent SIRT1 suppression in CD4+ T cells from systemic lupus erythematosus patients. J Dermatol Sci 2017; 86:230-237. [PMID: 28336124 DOI: 10.1016/j.jdermsci.2017.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previous studies have reported that ultraviolet B (UVB) inhibits DNA methyltransferase1 (DNMT1) activity in CD4+ T cells from systemic lupus erythematosus (SLE) patients. Silent mating type information regulation 2 homolog 1 (SIRT1) is a type of Class III histone deacetylases (HDACs), and has been reported to play roles in the pathogenesis of different autoimmune diseases and can modulate DNMT1 activity. Moreover, aryl hydrocarbon receptor (AhR) has been reported to link UVB with SLE. However, the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells remain largely unknown. OBJECTIVE To elucidate the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells. METHODS Twenty-two newly diagnosed active SLE patients and 30 healthy controls were enrolled in the study. CD4+ T cells were isolated, cultured and treated. DNMT1 activity assay, quantitative real-time PCR (qRT-PCR), Western blotting, RNA interference using small interfering RNA and Chromatin Immunoprecipitation (ChIP) assay were employed. RESULTS DNMT1 activity was inhibited in si-SIRT1-transfected CD4+ T cells, and increased by the established SIRT1 activator, SRT1720. Moreover, the mRNA and protein expression of SIRT1 were suppressed by UVB exposure in lupus CD4+ T cells. UVB-inhibited DNMT1 activity was reversed by SRT1720 in si-control-transfected lupus CD4+ T cells, but not in si-SIRT1-transfected lupus CD4 + T cells. Furthermore, AhR activation by VAF347 reduced the mRNA and protein expression of SIRT1. ChIP using an antibody against AhR in normal CD4+ T cells revealed a 16-fold stronger signal at the site about 1.6kb upstream from the translation start site of the SIRT1 promoter. Finally, UVB could activate AhR and inhibit the mRNA and protein expression of SIRT1. AhR knockdown abrogated the inhibition of UVB-mediated SIRT1 mRNA and protein expression and DNMT1 activity in lupus CD4+ T cells. CONCLUSION UVB suppressed SIRT1 expression via activating AhR, and subsequently inhibited DNMT1 activity in CD4+ T cells from SLE patients.
Collapse
Affiliation(s)
- Zhouwei Wu
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Xingyu Mei
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zuolin Ying
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yue Sun
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jun Song
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
43
|
Chrun ES, Modolo F, Vieira D, Borges-Júnior Á, Castro RG, Daniel FI. Immunoexpression of HDAC1, HDAC2, and HAT1 in actinic cheilitis and lip squamous cell carcinoma. Oral Dis 2017; 23:505-510. [PMID: 28107582 DOI: 10.1111/odi.12641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Acetylation and deacetylation are the most studied covalent histone modifications resulting in transcriptional regulation with histone deacetylases (HDAC) and histone acetyltransferases (HAT) as the main associated enzymes. These enzymes overexpression induces abnormal transcription of key genes that regulate important cellular functions, such as proliferation, cell cycle regulation, and apoptosis. Thus, the expression of different HATs and HDACs has been evaluated in various cancers. OBJECTIVE To investigate HDAC1, HDAC2 and HAT1 expression in lip squamous cell carcinoma (LSCC) and actinic cheilitis (AC) and to demonstrate their correlation with DNA metyltransferases (DNMTs). MATERIAL AND METHODS Thirty cases of lip squamous cell carcinoma (LSCC), thirty cases of actinic cheilitis (AC), and 28 cases of non-neoplastic epithelium as control were selected for immunohistochemical investigation. RESULTS Nuclear HDAC2 immunopositivity was significantly higher in AC (75.07% ± 29.70) when compared with LSCC (51.06% ± 39.02). HDAC1 and HAT1 nuclear immunostaining were higher in AC, with no statistical significance. When comparing data with our previous study, we found a positive correlation between HDAC1 X DNMT1/DNMT3b, HDAC2 X DNMT3b, and HAT1 X DNMT1/DNMT3b for certain studied groups. CONCLUSION This study showed higher levels of nuclear HDAC2 immunopositivity in AC, possibly indicating that this enzyme plays a key role in lip photocarcinogenesis early stages.
Collapse
Affiliation(s)
- E S Chrun
- Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - F Modolo
- Pathology Department and Dentistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Dsc Vieira
- Pathology Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Áls Borges-Júnior
- Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - R G Castro
- Dentistry Department, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - F I Daniel
- Pathology Department and Dentistry Graduate Program, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
44
|
Liu M, Wang J, Liu P. HPLC method development, validation, and impurity characterization of a potent antitumor nucleoside, T-dCyd (NSC 764276). J Pharm Biomed Anal 2016; 131:429-435. [PMID: 27661436 DOI: 10.1016/j.jpba.2016.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/27/2016] [Accepted: 08/28/2016] [Indexed: 11/15/2022]
Abstract
An HPLC method for the assay of an anticancer nucleoside, 4'-thio-2'-deoxycytidine (T-dCyd, NSC 764276), has been developed and validated. The stress testing of T-dCyd was carried out in accordance with ICH guidelines Q1A (R2) under acidic, alkaline, oxidative, thermolytic, and photolytic conditions. The separation of T-dCyd from its impurities and degradation products was achieved in 40min on a Luna® Phenyl-Hexyl column (150mm×4.6mm i.d., 3μm) with a gradient elution using ammonium phosphate buffer (pH 3.85) and methanol as the mobile phase. The gradient starts from 2% and ends at 80% of methanol. Detection is by UV at 282nm. LC-QTOF/MS was used to obtain mass data for characterization of impurities and degradation products. The proposed HPLC assay method was validated for specificity, linearity (concentration range 0.25-0.75mg/mL, r≥0.9998), accuracy (recovery 98.1-102.0%), precision (RSD≤1.5%), and sensitivity (LOD 0.1μg/mL). The developed method was suitable for the quality control and stability monitoring of the T-dCyd drug substance.
Collapse
Affiliation(s)
- Mingtao Liu
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA, 94025, USA
| | - Jennie Wang
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA, 94025, USA.
| | - Paul Liu
- Pharmaceutical Resources Branch, DCTD, NCI, 9609 Medical Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
45
|
Huang Y, Davidson NE. Targeting tumorigenicity of breast cancer stem-like cells using combination epigenetic therapy: something old and something new. J Thorac Dis 2016; 8:2971-2974. [PMID: 28066560 DOI: 10.21037/jtd.2016.11.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yi Huang
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA;; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nancy E Davidson
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA;; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Manna PR, Molehin D, Ahmed AU. Dysregulation of Aromatase in Breast, Endometrial, and Ovarian Cancers: An Overview of Therapeutic Strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:487-537. [PMID: 27865465 DOI: 10.1016/bs.pmbts.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens, which play crucial roles on a spectrum of developmental and physiological processes. The biological actions of estrogens are classically mediated by binding to two estrogen receptors (ERs), ERα and ERβ. Encoded by the cytochrome P450, family 19, subfamily A, polypeptide 1 (CYP19A1) gene, aromatase is expressed in a wide variety of tissues, as well as benign and malignant tumors, and is regulated in a pathway- and tissue-specific manner. Overexpression of aromatase, leading to elevated systemic levels of estrogen, is unequivocally linked to the pathogenesis and growth of a number malignancies, including breast, endometrium, and ovarian cancers. Aromatase inhibitors (AIs) are routinely used to treat estrogen-dependent breast cancers in postmenopausal women; however, their roles in endometrial and ovarian cancers remain obscure. While AI therapy is effective in hormone sensitive cancers, they diminish estrogen production throughout the body and, thus, generate undesirable side effects. Despite the effectiveness of AI therapy, resistance to endocrine therapy remains a major concern and is the leading cause of cancer death. Considerable advances, toward mitigating these issues, have evolved in conjunction with a number of histone deacetylase (HDAC) inhibitors for countering an assortment of diseases and cancers, including the aforesaid malignancies. HDACs are a family of enzymes that are frequently dysregulated in human tumors. This chapter will discuss the current understanding of aberrant regulation and expression of aromatase in breast, endometrial, and ovarian cancers, and potential therapeutic strategies for prevention and treatment of these life-threatening diseases.
Collapse
Affiliation(s)
- P R Manna
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States.
| | - D Molehin
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| | - A U Ahmed
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| |
Collapse
|
47
|
Ryu JM, Lee SH, Seong JK, Han HJ. Glutamine contributes to maintenance of mouse embryonic stem cell self-renewal through PKC-dependent downregulation of HDAC1 and DNMT1/3a. Cell Cycle 2016; 14:3292-305. [PMID: 26375799 DOI: 10.1080/15384101.2015.1087620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although glutamine (Gln) is not an essential amino acid, it is considered a critical substrate in many key metabolic processes that control a variety of physiological functions and are involved in regulating early embryonic development. Thus, we investigated the effect of Gln on regulation of mouse embryonic stem cell (mESC) self-renewal and related signaling pathways. Gln deprivation decreased Oct4 expression as well as expression of cell cycle regulatory proteins. However, Gln treatment retained the expression of cell cycle regulatory proteins and the Oct4 in mESCs, which were blocked by compound 968 (a glutaminase inhibitor). In addition, Gln stimulated PI3K/Akt pathway, which subsequently elicited PKCϵ translocation to membrane without an influx of intracellular Ca(2+). Inhibition of Akt and PKC blocked Gln-induced Oct4 expression and proliferation. Gln also stimulated mTOR phosphorylation in a time-dependent manner, which abolished by PKC inhibition. Furthermore, Gln increased the cellular population of both Oct4 and bromodeoxyuridine positive cells, suggesting that Gln regulates self-renewal ability of mESCs. Gln induced a decrease in HDAC1, but not in HDAC2, which were blocked by PKC inhibitors. Gln treatment resulted in an increase in global histone acetylation and methylation. In addition, Gln significantly reduced methylation of the Oct4 promoter region through decrease in DNMT1 and DNMT3a expression, which were blocked by PKC and HDAC inhibitors. In conclusion, Gln stimulates mESC proliferation and maintains mESC undifferentiation status through transcription regulation via the Akt, PKCϵ, and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jung Min Ryu
- a Department of Veterinary Physiology ; College of Veterinary Medicine, Seoul National University ; Seoul , Korea
| | - Sang Hun Lee
- b Medical Science Research Institute, Soonchunhyang University Seoul Hospital ; Seoul , Korea
| | - Je Kyung Seong
- c BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University ; Seoul , Korea.,d Department of Anatomy and Cell Biology ; Korea Mouse Phenotyping Center (KMPC), College of Veterinary Medicine, Seoul National University ; Seoul , Korea
| | - Ho Jae Han
- a Department of Veterinary Physiology ; College of Veterinary Medicine, Seoul National University ; Seoul , Korea.,c BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University ; Seoul , Korea
| |
Collapse
|
48
|
Jeltsch A, Jurkowska RZ. Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm. Nucleic Acids Res 2016; 44:8556-8575. [PMID: 27521372 PMCID: PMC5062992 DOI: 10.1093/nar/gkw723] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/08/2016] [Indexed: 12/23/2022] Open
Abstract
In mammals, DNA methylation is introduced by the DNMT1, DNMT3A and DNMT3B methyltransferases, which are all large multi-domain proteins containing a catalytic C-terminal domain and an N-terminal part with regulatory functions. Recently, two novel regulatory principles of DNMTs were uncovered. It was shown that their catalytic activity is under allosteric control of N-terminal domains with autoinhibitory function, the RFT and CXXC domains in DNMT1 and the ADD domain in DNMT3. Moreover, targeting and activity of DNMTs were found to be regulated in a concerted manner by interactors and posttranslational modifications (PTMs). In this review, we describe the structures and domain composition of the DNMT1 and DNMT3 enzymes, their DNA binding, catalytic mechanism, multimerization and the processes controlling their stability in cells with a focus on their regulation and chromatin targeting by PTMs, interactors and chromatin modifications. We propose that the allosteric regulation of DNMTs by autoinhibitory domains acts as a general switch for the modulation of the function of DNMTs, providing numerous possibilities for interacting proteins, nucleic acids or PTMs to regulate DNMT activity and targeting. The combined regulation of DNMT targeting and catalytic activity contributes to the precise spatiotemporal control of DNMT function and genome methylation in cells.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institute of Biochemistry, Pfaffenwaldring 55, Faculty of Chemistry, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Renata Z Jurkowska
- BioMed X Innovation Center, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| |
Collapse
|
49
|
Koh HB, Scruggs AM, Huang SK. Transforming Growth Factor-β1 Increases DNA Methyltransferase 1 and 3a Expression through Distinct Post-transcriptional Mechanisms in Lung Fibroblasts. J Biol Chem 2016; 291:19287-98. [PMID: 27405758 DOI: 10.1074/jbc.m116.723080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a fundamental epigenetic mark that plays a critical role in differentiation and is mediated by the actions of DNA methyltransferases (DNMTs). TGF-β1 is one of the most potent inducers of fibroblast differentiation, and although many of its actions on fibroblasts are well described, the ability of TGF-β1 to modulate DNA methylation in mesenchymal cells is less clear. Here, we examine the ability of TGF-β1 to modulate the expression of various DNMTs in primary lung fibroblasts (CCL210). TGF-β1 increased the protein expression, but not RNA levels, of both DNMT1 and DNMT3a. The increases in DNMT1 and DNMT3a were dependent on TGF-β1 activation of focal adhesion kinase and PI3K/Akt. Activation of mammalian target of rapamycin complex 1 by Akt resulted in increased protein translation of DNMT3a. In contrast, the increase in DNMT1 by TGF-β1 was not dependent on new protein synthesis and instead was due to decreased protein degradation. TGF-β1 treatment led to the phosphorylation and inactivation of glycogen synthase kinase-3β, which resulted in inhibition of DNMT1 ubiquitination and proteosomal degradation. The phosphorylation and inactivation of glycogen synthase kinase-3β was dependent on mammalian target of rapamycin complex 1. These results demonstrate that TGF-β1 increases expression of DNMT1 and DNMT3a through different post-transcriptional mechanisms. Because DNA methylation is critical to many processes including development and differentiation, for which TGF-β1 is known to be crucial, the ability of TGF-β1 to increase expression of both DNMT1 and DNMT3a demonstrates a novel means by which TGF-β1 may regulate DNA methylation in these cells.
Collapse
Affiliation(s)
- Hailey B Koh
- From the Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Anne M Scruggs
- From the Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Steven K Huang
- From the Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
50
|
Ansari J, Shackelford RE, El-Osta H. Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res 2016; 5:155-71. [PMID: 27186511 DOI: 10.21037/tlcr.2016.02.02] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer remains the number one cause of cancer-related deaths worldwide with 221,200 estimated new cases and 158,040 estimated deaths in 2015. Approximately 80% of cases are non-small cell lung cancer (NSCLC). The diagnosis is usually made at an advanced stage where the prognosis is poor and therapeutic options are limited. The evolution of lung cancer is a multistep process involving genetic, epigenetic, and environmental factor interactions that result in the dysregulation of key oncogenes and tumor suppressor genes, culminating in activation of cancer-related signaling pathways. The past decade has witnessed the discovery of multiple molecular aberrations that drive lung cancer growth, among which are epidermal growth factor receptor (EGFR) mutations and translocations involving the anaplastic lymphoma kinase (ALK) gene. This has translated into therapeutic agent developments that target these molecular alterations. The absence of targetable mutations in 50% of NSCLC cases and targeted therapy resistance development underscores the importance for developing alternative therapeutic strategies for treating lung cancer. Among these strategies, pharmacologic modulation of the epigenome has been used to treat lung cancer. Epigenetics approaches may circumvent the problem of tumor heterogeneity by affecting the expression of multiple tumor suppression genes (TSGs), halting tumor growth and survival. Moreover, it may be effective for tumors that are not driven by currently recognized druggable mutations. This review summarizes the molecular pathology of lung cancer epigenetic aberrations and discusses current efforts to target the epigenome with different pharmacological approaches. Our main focus will be on hypomethylating agents, histone deacetylase (HDAC) inhibitors, microRNA modulations, and the role of novel epigenetic biomarkers. Last, we will address the challenges that face this old-new strategy in treating lung cancer.
Collapse
Affiliation(s)
- Junaid Ansari
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Rodney E Shackelford
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Hazem El-Osta
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|