1
|
Zhou Q, Greene LA. Dpep Inhibits Cancer Cell Growth and Survival via Shared and Context-Dependent Transcriptome Perturbations. Cancers (Basel) 2023; 15:5318. [PMID: 38001578 PMCID: PMC10669862 DOI: 10.3390/cancers15225318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Dpep is a cell-penetrating peptide targeting transcription factors ATF5, CEBPB, and CEBPD, and that selectively promotes the apoptotic death of multiple tumor cell types in vitro and in vivo. As such, it is a potential therapeutic. To better understand its mechanism of action, we used PLATE-seq to compare the transcriptomes of six cancer cell lines of diverse origins before and after Dpep exposure. This revealed a context-dependent pattern of regulated genes that was unique to each line, but that exhibited a number of elements that were shared with other lines. This included the upregulation of pro-apoptotic genes and tumor suppressors as well as the enrichment of genes associated with responses to hypoxia and interferons. Downregulated transcripts included oncogenes and dependency genes, as well as enriched genes associated with different phases of the cell cycle and with DNA repair. In each case, such changes have the potential to lie upstream of apoptotic cell death. We also detected the regulation of unique as well as shared sets of transcription factors in each line, suggesting that Dpep may initiate a cascade of transcriptional responses that culminate in cancer cell death. Such death thus appears to reflect context-dependent, yet shared, disruption of multiple cellular pathways as well as of individual survival-relevant genes.
Collapse
Affiliation(s)
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA;
| |
Collapse
|
2
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis 2022; 9:981-999. [PMID: 35685455 PMCID: PMC9170601 DOI: 10.1016/j.gendis.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activating transcription factors, ATFs, are a group of bZIP transcription factors that act as homodimers or heterodimers with a range of other bZIP factors. In general, ATFs respond to extracellular signals, indicating their important roles in maintaining homeostasis. The ATF family includes ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7. Consistent with the diversity of cellular processes reported to be regulated by ATFs, the functions of ATFs are also diverse. ATFs play an important role in cell proliferation, apoptosis, differentiation and inflammation-related pathological processes. The expression and phosphorylation status of ATFs are also related to neurodegenerative diseases and polycystic kidney disease. Various miRNAs target ATFs to regulate cancer proliferation, apoptosis, autophagy, sensitivity and resistance to radiotherapy and chemotherapy. Moreover, ATFs are necessary to maintain cell redox homeostasis. Therefore, deepening our understanding of the regulation and function of ATFs will provide insights into the basic regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into genomic responses through transcription factors. Under pathological conditions, especially in cancer biology and response to treatment, the characterization of ATF dysfunction is important for understanding how to therapeutically utilize ATF2 or other pathways controlled by transcription factors. In this review, we will demonstrate how ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 function in promoting or suppressing cancer development and identify their roles in tumour immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenling Zhang
- Corresponding author. Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, Hunan 410013, PR China.
| |
Collapse
|
3
|
Paerhati P, Liu J, Jin Z, Jakoš T, Zhu S, Qian L, Zhu J, Yuan Y. Advancements in Activating Transcription Factor 5 Function in Regulating Cell Stress and Survival. Int J Mol Sci 2022; 23:ijms23137129. [PMID: 35806136 PMCID: PMC9266924 DOI: 10.3390/ijms23137129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Activating transcription factor 5 (ATF5) belongs to the activating transcription factor/cyclic adenosine monophosphate (cAMP) response element-binding protein family of basic region leucine zipper transcription factors. ATF5 plays an important role in cell stress regulation and is involved in cell differentiation and survival, as well as centrosome maintenance and development. Accumulating evidence demonstrates that ATF5 plays an oncogenic role in cancer by regulating gene expressions involved in tumorigenesis and tumor survival. Recent studies have indicated that ATF5 may also modify the gene expressions involved in other diseases. This review explores in detail the regulation of ATF5 expression and signaling pathways and elucidates the role of ATF5 in cancer biology. Furthermore, an overview of putative therapeutic strategies that can be used for restoring aberrant ATF5 activity in different cancer types is provided.
Collapse
Affiliation(s)
- Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Tanja Jakoš
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Shunyin Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Z.); (L.Q.)
| | - Lan Qian
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Z.); (L.Q.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
- Correspondence:
| |
Collapse
|
4
|
Dahlmann M, Monks A, Harris ED, Kobelt D, Osterland M, Khaireddine F, Herrmann P, Kemmner W, Burock S, Walther W, Shoemaker RH, Stein U. Combination of Wnt/β-Catenin Targets S100A4 and DKK1 Improves Prognosis of Human Colorectal Cancer. Cancers (Basel) 2021; 14:cancers14010037. [PMID: 35008201 PMCID: PMC8750436 DOI: 10.3390/cancers14010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metastasis is directly linked to colorectal cancer (CRC) patient survival. Wnt signaling through β-catenin plays a key role. Metastasis-inducing S100A4 is a Wnt/β-catenin target gene and a prognostic biomarker for CRC and other cancer types. We aimed to identify S100A4-dependent expression alterations to better understand CRC progression and metastasis for improved patient survival. S100A4-induced transcriptome arrays, confirmatory studies in isogenic CRC cell lines with defined β-catenin genotypes, and functional metastasis studies were performed. S100A4-regulated transcriptome examination revealed the transcriptional cross-regulation of metastasis-inducing S100A4 with Wnt pathway antagonist Dickkopf-1 (DKK1). S100A4 overexpression down-regulated DKK1, S100A4 knock-down increased DKK1. Recombinant DKK1 reduced S100A4 expression and S100A4-mediated cell migration. In xenografted mice, systemic S100A4-shRNA application increased intratumoral DKK1. The inverse correlation of S100A4 and DKK1 was confirmed in five independent publicly available CRC expression datasets. Combinatorial analysis of S100A4 and DKK1 in two additional independent CRC patient cohorts improved prognosis of overall and metastasis-free survival. The newly discovered transcriptional cross-regulation of Wnt target S100A4 and Wnt antagonist DKK1 is predominated by an S100A4-induced Wnt signaling feedback loop, increasing cell motility and metastasis risk. S100A4 and DKK1 combination improves the identification of CRC patients at high risk.
Collapse
Affiliation(s)
- Mathias Dahlmann
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Anne Monks
- Molecular Pharmacology Laboratory, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD 21702, USA; (A.M.); (E.D.H.)
| | - Erik D. Harris
- Molecular Pharmacology Laboratory, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD 21702, USA; (A.M.); (E.D.H.)
| | - Dennis Kobelt
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Marc Osterland
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Fadi Khaireddine
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Pia Herrmann
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Wolfgang Kemmner
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Susen Burock
- Charité Comprehensive Cancer Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Invalidenstraße 80, 10117 Berlin, Germany;
| | - Wolfgang Walther
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Robert H. Shoemaker
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute-Frederick, Building 440, Frederick, MD 21702, USA;
| | - Ulrike Stein
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
- German Cancer Consortium, 69121 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
5
|
Zhou Q, Sun X, Pasquier N, Jefferson P, Nguyen TTT, Siegelin MD, Angelastro JM, Greene LA. Cell-Penetrating CEBPB and CEBPD Leucine Zipper Decoys as Broadly Acting Anti-Cancer Agents. Cancers (Basel) 2021; 13:cancers13102504. [PMID: 34065488 PMCID: PMC8161188 DOI: 10.3390/cancers13102504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The gene-regulatory factors ATF5, CEBPB and CEBPD promote survival, growth, metastasis and treatment resistance of a range of cancer cell types. Presently, no drugs target all three at once. Here, with the aim of treating cancers, we designed novel cell-penetrating peptides that interact with and inactivate all three. The peptides Bpep and Dpep kill a range of cancer cell types in culture and in animals. In animals with tumors, they also significantly increase survival time. In contrast, they do not affect survival of non-cancer cells and have no apparent side effects in animals. The peptides work in combination with other anti-cancer treatments. Mechanism studies of how the peptides kill cancer cells indicate a decrease in survival proteins and increase in death proteins. These studies support the potential of Bpep and Dpep as novel, safe agents for the treatment of a variety of cancer types, both as mono- and combination therapies. Abstract Transcription factors are key players underlying cancer formation, growth, survival, metastasis and treatment resistance, yet few drugs exist to directly target them. Here, we characterized the in vitro and in vivo anti-cancer efficacy of novel synthetic cell-penetrating peptides (Bpep and Dpep) designed to interfere with the formation of active leucine-zipper-based dimers by CEBPB and CEBPD, transcription factors implicated in multiple malignancies. Both peptides similarly promoted apoptosis of multiple tumor lines of varying origins, without such effects on non-transformed cells. Combined with other treatments (radiation, Taxol, chloroquine, doxorubicin), the peptides acted additively to synergistically and were fully active on Taxol-resistant cells. The peptides suppressed expression of known direct CEBPB/CEBPD targets IL6, IL8 and asparagine synthetase (ASNS), supporting their inhibition of transcriptional activation. Mechanisms by which the peptides trigger apoptosis included depletion of pro-survival survivin and a required elevation of pro-apoptotic BMF. Bpep and Dpep significantly slowed tumor growth in mouse models without evident side effects. Dpep significantly prolonged survival in xenograft models. These findings indicate the efficacy and potential of Bpep and Dpep as novel agents to treat a variety of cancers as mono- or combination therapies.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Xiotian Sun
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Nicolas Pasquier
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Parvaneh Jefferson
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Trang T. T. Nguyen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - James M. Angelastro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
- Correspondence:
| |
Collapse
|
6
|
Hu M, Wang B, Qian D, Wang M, Huang R, Wei L, Li L, Zhang L, Liu DX. Human cytomegalovirus immediate-early protein promotes survival of glioma cells through interacting and acetylating ATF5. Oncotarget 2018; 8:32157-32170. [PMID: 28473657 PMCID: PMC5458275 DOI: 10.18632/oncotarget.17150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV), a widespread beta-herpes virus, infects a high percentage of gliomas. HCMV is specifically detected in human gliomas at a low level of expression raises the possibility that it may regulate the malignant phenotype in a chronic manner. Although HCMV is not recognized as an oncogenic virus, it might dysregulate signaling pathways involved in initiation and promotion of malignancy.Here, our immunohistochemical staining reveals that nucleus staining of the HCMV 86-kDa immediate-early protein (IE86) is markedly increased in GBM (58.56%) compared with that in nontumorous samples (4.20%) and low-grade glioma(19.56%). IE86 staining positively correlates with the staining of activating transcription factor 5 (ATF5) which is essential for glioma cell viability and proliferation suggesting that HCMV IE86 could have important implications in glioma biology. Moreover, we find that the IE86 overexpression enhances glioma cell's growth in vitro and in vivo. We demonstrate that IE86 protein physically interacts with, and acetylates ATF5 thereby promoting glioma cell survival. Therefore, our findings illustrate the biological significance of HCMV infection in accelerating glioma progression, and provide novel evidence that HCMV infection may serve as a therapeutic target in human glioma.
Collapse
Affiliation(s)
- Ming Hu
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Bin Wang
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Dongmeng Qian
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Mengyuan Wang
- College of life sciences, Qingdao University, Qingdao 266071, China
| | - Rui Huang
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Li Wei
- The Hospital of People's Liberation Army, Weifang 261000, China
| | - Ling Li
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Li Zhang
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - David X Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 992082, USA
| |
Collapse
|
7
|
Yuan Y, Gaither K, Kim E, Liu E, Hu M, Lengel K, Qian D, Xu Y, Wang B, Knipprath H, Liu DX. SUMO2/3 modification of activating transcription factor 5 (ATF5) controls its dynamic translocation at the centrosome. J Biol Chem 2018; 293:2939-2948. [PMID: 29326161 DOI: 10.1074/jbc.ra117.001151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Indexed: 11/06/2022] Open
Abstract
Activating transcription factor 5 (ATF5) is a member of the ATF/cAMP response element-binding protein family of transcription factors. ATF5 regulates stress responses and cell survival, proliferation, and differentiation and also plays a role in viral infections, cancer, diabetes, schizophrenia, and the olfactory system. Moreover, it was found to also have a critical cell cycle-dependent structural function at the centrosome. However, the mechanism that controls the localization of ATF5 at the centrosome is unclear. Here we report that ATF5 is small ubiquitin-like modifier (SUMO) 2/3-modified at a conserved SUMO-targeting consensus site in various types of mammalian cells. We found that SUMOylation of ATF5 is elevated in the G1 phase of the cell cycle and diminished in the G2/M phase. ATF5 SUMOylation disrupted the interaction of ATF5 with several centrosomal proteins and dislodged ATF5 from the centrosome at the end of the M phase. Of note, blockade of ATF5 SUMOylation deregulated the centrosome cycle, impeded ATF5 translocation from the centrosome, and caused genomic instability and G2/M arrest in HeLa cells. Our results indicate that ATF5 SUMOylation is an essential mechanism that regulates ATF5 localization and function at the centrosome.
Collapse
Affiliation(s)
- Yunsheng Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99202; School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Kari Gaither
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99202
| | - Eugene Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99202
| | - Edward Liu
- Mead High School, Spokane, Washington 99218
| | - Ming Hu
- Department of Microbiology, College of Life Sciences, Qingdao University, Shandong 266071, China
| | - Kathy Lengel
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99202; Department of Biochemistry, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033
| | - Dongmeng Qian
- Department of Microbiology, College of Life Sciences, Qingdao University, Shandong 266071, China
| | - Yidi Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99202
| | - Bin Wang
- Department of Microbiology, College of Life Sciences, Qingdao University, Shandong 266071, China
| | - Henning Knipprath
- Department of Chemistry, Whitworth University, Spokane, Washington 99208
| | - David X Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99202.
| |
Collapse
|
8
|
Sears TK, Angelastro JM. The transcription factor ATF5: role in cellular differentiation, stress responses, and cancer. Oncotarget 2017; 8:84595-84609. [PMID: 29137451 PMCID: PMC5663623 DOI: 10.18632/oncotarget.21102] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Activating transcription factor 5 (ATF5) is a cellular prosurvival transcription factor within the basic leucine zipper (bZip) family that is involved in cellular differentiation and promotes cellular adaptation to stress. Recent studies have characterized the oncogenic role of ATF5 in the development of several different types of cancer, notably glioblastoma. Preclinical assessment of a systemically deliverable dominant-negative ATF5 (dnATF5) biologic has found that targeting ATF5 results in tumor regression and tumor growth inhibition of glioblastoma xenografts in mouse models. In this review, we comprehensively and critically detail the current scientific literature on ATF5 in the context of cellular differentiation, survival, and response to stressors in normal tissues. Furthermore, we will discuss how the prosurvival role of ATF5 aides in cancer development, followed by current advances in targeting ATF5 using dominant-negative biologics, and perspectives on future research.
Collapse
Affiliation(s)
- Thomas K Sears
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, 95616 CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, 95616 CA, USA
| |
Collapse
|
9
|
Umemura M, Ogura T, Matsuzaki A, Nakano H, Takao K, Miyakawa T, Takahashi Y. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice. Front Behav Neurosci 2017; 11:125. [PMID: 28744205 PMCID: PMC5504141 DOI: 10.3389/fnbeh.2017.00125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/15/2017] [Indexed: 12/27/2022] Open
Abstract
Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/-) mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders.
Collapse
Affiliation(s)
- Mariko Umemura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life SciencesHachioji, Japan
| | - Tae Ogura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life SciencesHachioji, Japan
| | - Ayako Matsuzaki
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life SciencesHachioji, Japan
| | - Haruo Nakano
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life SciencesHachioji, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Japan.,Life Science Research Center, University of ToyamaToyama, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Japan.,Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Japan
| | - Yuji Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life SciencesHachioji, Japan
| |
Collapse
|
10
|
Mitochondrial dysfunction in cancer: Potential roles of ATF5 and the mitochondrial UPR. Semin Cancer Biol 2017; 47:43-49. [PMID: 28499833 DOI: 10.1016/j.semcancer.2017.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
Mitochondria form a cellular network of organelles, or cellular compartments, that efficiently couple nutrients to energy production in the form of ATP. As cancer cells rely heavily on glycolysis, historically mitochondria and the cellular pathways in place to maintain mitochondrial activities were thought to be more relevant to diseases observed in non-dividing cells such as muscles and neurons. However, more recently it has become clear that cancers rely heavily on mitochondrial activities including lipid, nucleotide and amino acid synthesis, suppression of mitochondria-mediated apoptosis as well as oxidative phosphorylation (OXPHOS) for growth and survival. Considering the variety of conditions and stresses that cancer cell mitochondria may incur such as hypoxia, reactive oxygen species and mitochondrial genome mutagenesis, we examine potential roles for a mitochondrial-protective transcriptional response known as the mitochondrial unfolded protein response (UPRmt) in cancer cell biology.
Collapse
|
11
|
Ben-Shmuel S, Rashed R, Rostoker R, Isakov E, Shen-Orr Z, LeRoith D. Activating Transcription Factor-5 Knockdown Reduces Aggressiveness of Mammary Tumor Cells and Attenuates Mammary Tumor Growth. Front Endocrinol (Lausanne) 2017; 8:173. [PMID: 28785242 PMCID: PMC5519529 DOI: 10.3389/fendo.2017.00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Activating transcription factor-5 (ATF5) is an anti-apoptotic factor and has been implicated in enhancing the survival of cancer cells under stress and in regulating the autophagy process. Targeting ATF5 in anticancer therapy may be particularly attractive because of its differential role in cancer cells than in non-transformed cells, thus allowing specificity of the treatment. Using the delivery of short hairpin RNA vectors into the Mvt1 and Met1 cell lines, we tested the role of ATF5 in the development of mammary tumors in vivo and in regulating proliferation and migration of these cells in vitro. In this study, we demonstrate that knockdown of ATF5 (ATF5-KD) in both cell lines results in a decreased tumor volume and weight, as well as in a reduced proliferation rate and migratory potential of the cells. In addition, ATF5-KD led to an increased autophagy flux and a shift in the sub-populations comprising Mvt1 cells from the aggressive CD24-positive cells toward less aggressive CD24-negative cells. Taken together, these findings suggest that ATF5 plays an important role in enhancing mammary tumor cells overall aggressiveness and in promoting mammary tumor growth and emphasize the possible benefit of anti-ATF5 therapy in breast cancer patients, particularly, against tumors characterized with the positive expression of cell surface CD24.
Collapse
Affiliation(s)
- Sarit Ben-Shmuel
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Medical Center, Haifa, Israel
| | - Rola Rashed
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Medical Center, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ran Rostoker
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Medical Center, Haifa, Israel
| | - Elina Isakov
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Medical Center, Haifa, Israel
| | - Zila Shen-Orr
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Medical Center, Haifa, Israel
| | - Derek LeRoith
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Medical Center, Haifa, Israel
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Derek LeRoith,
| |
Collapse
|
12
|
Hua XM, Wang J, Qian DM, Song JY, Chen H, Zhu XL, Zhou R, Zhao YD, Zhou XZ, Li L, Zhang L, Song XX, Wang B. DNA methylation level of promoter region of activating transcription factor 5 in glioma. J Zhejiang Univ Sci B 2016; 16:757-62. [PMID: 26365117 DOI: 10.1631/jzus.b1500067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcription factors, which represent an important class of proteins that play key roles in controlling cellular proliferation and cell cycle modulation, are attractive targets for cancer therapy. Previous researches have shown that the expression level of activating transcription factor 5 (ATF5) was frequently increased in glioma and its acetylation level was related to glioma. The purposes of this study were to explore the methylation level of ATF5 in clinical glioma tissues and to explore the effect of ATF5 methylation on the expression of ATF5 in glioma. Methylation of the promoter region of ATF5 was assayed by bisulfite-specific polymerase chain reaction (PCR) sequencing analysis in 35 cases of glioma and 5 normal tissues. Quantitative real-time PCR (qRT-PCR) was also performed to detect ATF5 mRNA expression in 35 cases of glioma and 5 normal tissues. Clinical data were collected from the patients and analyzed. The percentages of methylation of the ATF5 gene in the promoter region in healthy control, patients with well-differentiated glioma, and those with poorly differentiated glioma were 87.78%, 73.89%, and 47.70%, respectively. Analysis of the methylation status of the promoter region of the ATF5 gene showed a gradually decreased methylation level in poorly differentiated glioma, well-differentiated glioma, and normal tissues (P<0.05). There was also a significant difference between well-differentiated glioma and poorly differentiated glioma (P<0.05). ATF5 mRNA expression in glioma was significantly higher than that in the normal tissues (P<0.05). This study provides the first evidence that the methylation level of ATF5 decreased, and its mRNA expression was evidently up-regulated in glioma.
Collapse
Affiliation(s)
- Xiao-min Hua
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Juan Wang
- Department of Biotechnology, Binzhou Medical College, Yantai 264003, China
| | - Dong-meng Qian
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Jing-yi Song
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Hao Chen
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Xiu-li Zhu
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Rui Zhou
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Yu-dan Zhao
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Xiu-zhi Zhou
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Ling Li
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Li Zhang
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Xu-xia Song
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Bin Wang
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| |
Collapse
|
13
|
Karpel-Massler G, Horst BA, Shu C, Chau L, Tsujiuchi T, Bruce JN, Canoll P, Greene LA, Angelastro JM, Siegelin MD. A Synthetic Cell-Penetrating Dominant-Negative ATF5 Peptide Exerts Anticancer Activity against a Broad Spectrum of Treatment-Resistant Cancers. Clin Cancer Res 2016; 22:4698-711. [PMID: 27126996 DOI: 10.1158/1078-0432.ccr-15-2827] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/09/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE Despite significant progress in cancer research, many tumor entities still have an unfavorable prognosis. Activating transcription factor 5 (ATF5) is upregulated in various malignancies and promotes apoptotic resistance. We evaluated the efficacy and mechanisms of the first described synthetic cell-penetrating inhibitor of ATF5 function, CP-d/n-ATF5-S1. EXPERIMENTAL DESIGN Preclinical drug testing was performed in various treatment-resistant cancer cells and in vivo xenograft models. RESULTS CP-d/n-ATF5-S1 reduced the transcript levels of several known direct ATF5 targets. It depleted endogenous ATF5 and induced apoptosis across a broad panel of treatment-refractory cancer cell lines, sparing non-neoplastic cells. CP-d/n-ATF5-S1 promoted tumor cell apoptotic susceptibility in part by reducing expression of the deubiquitinase Usp9X and led to diminished levels of antiapoptotic Bcl-2 family members Mcl-1 and Bcl-2. In line with this, CP-d/n-ATF5-S1 synergistically enhanced tumor cell apoptosis induced by the BH3-mimetic ABT263 and the death ligand TRAIL. In vivo, CP-d/n-ATF5-S1 attenuated tumor growth as a single compound in glioblastoma, melanoma, prostate cancer, and triple receptor-negative breast cancer xenograft models. Finally, the combination treatment of CP-d/n-ATF5-S1 and ABT263 significantly reduced tumor growth in vivo more efficiently than each reagent on its own. CONCLUSIONS Our data support the idea that CP-d/n-ATF5-S1, administered as a single reagent or in combination with other drugs, holds promise as an innovative, safe, and efficient antineoplastic agent against treatment-resistant cancers. Clin Cancer Res; 22(18); 4698-711. ©2016 AACR.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Basil A Horst
- Department of Dermatology, Columbia University Medical Center, New York, New York
| | - Chang Shu
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Lily Chau
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Takashi Tsujiuchi
- Department of Neurosurgery, Columbia University Medical Center, New York, New York
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, New York
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Lloyd A Greene
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - James M Angelastro
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, California.
| | - Markus D Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
14
|
Madarampalli B, Yuan Y, Liu D, Lengel K, Xu Y, Li G, Yang J, Liu X, Lu Z, Liu DX. ATF5 Connects the Pericentriolar Materials to the Proximal End of the Mother Centriole. Cell 2015. [PMID: 26213385 DOI: 10.1016/j.cell.2015.06.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although it is known that the centrioles play instructive roles in pericentriolar material (PCM) assembly and that the PCM is essential for proper centriole formation, the mechanism that governs centriole-PCM interaction is poorly understood. Here, we show that ATF5 forms a characteristic 9-fold symmetrical ring structure in the inner layer of the PCM outfitting the proximal end of the mother centriole. ATF5 controls the centriole-PCM interaction in a cell-cycle- and centriole-age-dependent manner. Interaction of ATF5 with polyglutamylated tubulin (PGT) on the mother centriole and with PCNT in the PCM renders ATF5 as a required molecule in mother centriole-directed PCM accumulation and in PCM-dependent centriole formation. ATF5 depletion blocks PCM accumulation at the centrosome and causes fragmentation of centrioles, leading to the formation of multi-polar mitotic spindles and genomic instability. These data show that ATF5 is an essential structural protein that is required for the interaction between the mother centriole and the PCM.
Collapse
Affiliation(s)
- Bhanupriya Madarampalli
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Yunsheng Yuan
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Dan Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Kathleen Lengel
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Yidi Xu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Guangfu Li
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Jinming Yang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Xinyuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David X Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA.
| |
Collapse
|
15
|
Piña MJ, Alex SM, Arias FJ, Santos M, Rodriguez-Cabello JC, Ramesan RM, Sharma CP. Elastin-like recombinamers with acquired functionalities for gene-delivery applications. J Biomed Mater Res A 2015; 103:3166-78. [DOI: 10.1002/jbm.a.35455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Maria J. Piña
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | - Susan M. Alex
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| | - Francisco J. Arias
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | - Mercedes Santos
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | | | - Rekha M. Ramesan
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| | - Chandra P. Sharma
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| |
Collapse
|
16
|
Sriram KK, Yeh JW, Lin YL, Chang YR, Chou CF. Direct optical mapping of transcription factor binding sites on field-stretched λ-DNA in nanofluidic devices. Nucleic Acids Res 2014; 42:e85. [PMID: 24753422 PMCID: PMC4041428 DOI: 10.1093/nar/gku254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mapping transcription factor (TF) binding sites along a DNA backbone is crucial in understanding the regulatory circuits that control cellular processes. Here, we deployed a method adopting bioconjugation, nanofluidic confinement and fluorescence single molecule imaging for direct mapping of TF (RNA polymerase) binding sites on field-stretched single DNA molecules. Using this method, we have mapped out five of the TF binding sites of E. coli RNA polymerase to bacteriophage λ-DNA, where two promoter sites and three pseudo-promoter sites are identified with the corresponding binding frequency of 45% and 30%, respectively. Our method is quick, robust and capable of resolving protein-binding locations with high accuracy (∼ 300 bp), making our system a complementary platform to the methods currently practiced. It is advantageous in parallel analysis and less prone to false positive results over other single molecule mapping techniques such as optical tweezers, atomic force microscopy and molecular combing, and could potentially be extended to general mapping of protein–DNA interaction sites.
Collapse
Affiliation(s)
- K K Sriram
- Nano Science and Technology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan Department of Engineering and System Science, National Tsing Hua University, ESS New Building, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan Institute of Physics, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Jia-Wei Yeh
- Institute of Physics, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Yii-Lih Lin
- Nano Science and Technology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan Institute of Physics, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Daan, Taipei 10617, Taiwan
| | - Yi-Ren Chang
- Institute of Physics, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Chia-Fu Chou
- Institute of Physics, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan Research Centre for Applied Sciences, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan Genomic Research Centre, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
17
|
Veyrac A, Besnard A, Caboche J, Davis S, Laroche S. The transcription factor Zif268/Egr1, brain plasticity, and memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:89-129. [PMID: 24484699 DOI: 10.1016/b978-0-12-420170-5.00004-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The capacity to remember our past experiences and organize our future draws on a number of cognitive processes that allow our brain to form and store neural representations that can be recalled and updated at will. In the brain, these processes require mechanisms of neural plasticity in the activated circuits, brought about by cellular and molecular changes within the neurons activated during learning. At the cellular level, a wealth of experimental data accumulated in recent years provides evidence that signaling from synapses to nucleus and the rapid regulation of the expression of immediate early genes encoding inducible, regulatory transcription factors is a key step in the mechanisms underlying synaptic plasticity and the modification of neural networks required for the laying down of memories. In the activated neurons, these transcriptional events are thought to mediate the activation of selective gene programs and subsequent synthesis of proteins, leading to stable functional and structural remodeling of the activated networks, so that the memory can later be reactivated upon recall. Over the past few decades, novel insights have been gained in identifying key transcriptional regulators that can control the genomic response of synaptically activated neurons. Here, as an example of this approach, we focus on one such activity-dependent transcription factor, Zif268, known to be implicated in neuronal plasticity and memory formation. We summarize current knowledge about the regulation and function of Zif268 in different types of brain plasticity and memory processes.
Collapse
Affiliation(s)
- Alexandra Veyrac
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| | - Antoine Besnard
- Harvard Stem Cell Institute, Harvard Medical School, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jocelyne Caboche
- INSERM, UMRS 952, Physiopathologie des Maladies du Système Nerveux Central, Paris, France; CNRS, UMR7224, Physiopathologie des Maladies du Système Nerveux Central, Paris, France; UPMC University Paris 6, Paris, France
| | - Sabrina Davis
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| | - Serge Laroche
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| |
Collapse
|
18
|
Wu L, Zhang X, Che Y, Zhang Y, Tang S, Liao Y, Na R, Xiong X, Liu L, Li Q. A cellular response protein induced during HSV-1 infection inhibits viral replication by interacting with ATF5. SCIENCE CHINA-LIFE SCIENCES 2013; 56:1124-33. [PMID: 24302293 DOI: 10.1007/s11427-013-4569-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/05/2013] [Indexed: 01/24/2023]
Abstract
Studies of herpes simplex virus type 1 (HSV-1) infection have shown that many known and unknown cellular molecules involved in viral proliferation are up-regulated following HSV-1 infection. In this study, using two-dimensional polyacrylamide gel electrophoresis, we found that the expression of the HSV-1 infection response repressive protein (HIRRP, GI 16552881) was up-regulated in human L02 cells infected with HSV-1. HIRRP, an unknown protein, was initially localized in the cytoplasm and then translocated into the nucleus of HSV-1-infected cells. Further analysis showed that HIRRP represses HSV-1 proliferation by inhibiting transcription of the viral genome by interacting with the cellular transcription factor, ATF5, via its N-terminal domain. ATF5 represses the transcription of many host genes but can also act as an activator of genes containing a specific motif. We found that ATF5 promotes the proliferation of HSV-1 via a potential mechanism by which ATF5 enhances the transcription of viral genes during the course of an HSV-1 infection; HIRRP then induces feedback repression of this transcription by interacting with ATF5.
Collapse
Affiliation(s)
- LianQiu Wu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
p300-dependent acetylation of activating transcription factor 5 enhances C/EBPβ transactivation of C/EBPα during 3T3-L1 differentiation. Mol Cell Biol 2013; 34:315-24. [PMID: 24216764 DOI: 10.1128/mcb.00956-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Adipogenesis is a multistep process by which 3T3-L1 preadipocytes differentiate into mature adipocytes through mitotic clonal expansion (MCE) and terminal differentiation. The CCAAT/enhancer-binding protein β (C/EBPβ) is an important transcription factor that takes part in both of these processes. C/EBPβ not only transactivates C/EBPα and the peroxisome proliferator-activated receptor γ (PPARγ), which cause 3T3-L1 preadipocytes to enter terminal adipocyte differentiation, but also is required to activate cell cycle genes necessary for MCE. The identification of potential cofactors of C/EBPβ will help to explain how C/EBPβ undertakes these specialized roles during the different stages of adipogenesis. In this study, we found that activating transcription factor 5 (ATF5) can bind to the promoter of C/EBPα via its direct interaction with C/EBPβ (which is mediated via the p300-dependent acetylation of ATF5), leading to enhanced C/EBPβ transactivation of C/EBPα. We also show that p300 is important for the interaction of ATF5 with C/EBPβ as well as for the binding activity of this complex on the C/EBPα promoter. Consistent with these findings, overexpression of ATF5 and an acetylated ATF5 mimic both promoted 3T3-L1 adipocyte differentiation, whereas short interfering RNA-mediated ATF5 downregulation inhibited this process. Furthermore, we show that the elevated expression of ATF5 is correlated with an obese phenotype in both mice and humans. In summary, we have identified ATF5 as a new cofactor of C/EBPβ and examined how C/EBPβ and ATF5 (acetylated by a p300-dependent mechanism) regulate the transcription of C/EBPα.
Collapse
|
20
|
Torres-Peraza JF, Engel T, Martín-Ibáñez R, Sanz-Rodríguez A, Fernández-Fernández MR, Esgleas M, Canals JM, Henshall DC, Lucas JJ. Protective neuronal induction of ATF5 in endoplasmic reticulum stress induced by status epilepticus. Brain 2013; 136:1161-76. [DOI: 10.1093/brain/awt044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
21
|
Leong DT, Abraham MC, Gupta A, Lim TC, Chew FT, Hutmacher DW. ATF5, a possible regulator of osteogenic differentiation in human adipose-derived stem cells. J Cell Biochem 2012; 113:2744-53. [DOI: 10.1002/jcb.24150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Kilberg MS, Balasubramanian M, Fu L, Shan J. The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr 2012; 3:295-306. [PMID: 22585903 PMCID: PMC3649461 DOI: 10.3945/an.112.001891] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammals exhibit multiple adaptive mechanisms that sense and respond to fluctuations in dietary nutrients. Consumption of reduced total dietary protein or a protein diet that is deficient in 1 or more of the essential amino acids triggers wide-ranging changes in feeding behavior and gene expression. At the level of individual cells, dietary protein deficiency is manifested as amino acid (AA) deprivation, which activates the AA response (AAR). The AAR is composed of a collection of signal transduction pathways that terminate in specific transcriptional programs designed to catalyze adaptation to the nutrient stress or, ultimately, undergo apoptosis. Independently of the AAR, endoplasmic reticulum stress activates 3 signaling pathways, collectively referred to as the unfolded protein response. The transcription factor activating transcription factor 4 is one of the terminal transcriptional mediators for both the AAR and the unfolded protein response, leading to a significant degree of overlap with regard to the target genes for these stress pathways. Over the past 5 y, research has revealed that the basic leucine zipper superfamily of transcription factors plays the central role in the AAR. Formation of both homo- and heterodimers among the activating transcription factor, CCAAT enhancer-binding protein, and FOS/JUN families of basic leucine zipper proteins forms the nucleus of a highly integrated transcription factor network that determines the initiation, magnitude, and duration of the cellular response to dietary protein or AA limitation.
Collapse
|
23
|
Liu X, Liu D, Qian D, Dai J, An Y, Jiang S, Stanley B, Yang J, Wang B, Liu X, Liu DX. Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells. J Biol Chem 2012; 287:19599-609. [PMID: 22528486 DOI: 10.1074/jbc.m112.363622] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nucleophosmin (NPM1/B23) and the activating transcription factor 5 (ATF5) are both known to subject to cell type-dependent regulation. NPM1 is expressed weakly in hepatocytes and highly expressed in hepatocellular carcinomas (HCC) with a clear correlation between enhanced NPM1 expression and increased tumor grading and poor prognosis, whereas in contrast, ATF5 is expressed abundantly in hepatocytes and down-regulated in HCC. Re-expression of ATF5 in HCC inhibits cell proliferation. We report here that using an unbiased approach, tandem affinity purification (TAP) followed with mass spectrometry (MS), we identified NPM1 as a novel ATF5-interacting protein. Unlike many other NPM1-interacting proteins that interact with the N-terminal oligomerization domain of NPM1, ATF5 binds via its basic leucine zipper to the C-terminal region of NPM1 where its nucleolar localization signal is located. NPM1 association with ATF5, whose staining patterns partially overlap in the nucleoli, promotes ATF5 protein degradation through proteasome-dependent and caspase-dependent pathways. NPM1-c, a mutant NPM1 that is defective in nucleolar localization, failed to stimulate ATF5 polyubiquitination and was unable to down-regulate ATF5. NPM1 interaction with ATF5 displaces HSP70, a known ATF5-interacting protein, from ATF5 protein complexes and antagonizes its role in stabilization of ATF5 protein. NPM1-promoted ATF5 down-regulation diminished ATF5-mediated repression of cAMP-responsive element-dependent gene transcription and abrogates ATF5-induced G(2)/M cell cycle blockade and inhibition of cell proliferation in HCC cells. Our study establishes a mechanistic link between elevated NPM1 expression and depressed ATF5 in HCC and suggests that regulation of ATF5 by NPM1 plays an important role in the proliferation and survival of HCC.
Collapse
Affiliation(s)
- Xijun Liu
- Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Avella DM, Li G, Schell TD, Liu D, Zhang SSM, Lou X, Berg A, Kimchi ET, Tagaram HRS, Yang Q, Shereef S, Garcia LS, Kester M, Isom HC, Rountree CB, Staveley-O’Carroll KF. Regression of established hepatocellular carcinoma is induced by chemoimmunotherapy in an orthotopic murine model. Hepatology 2012; 55:141-52. [PMID: 21898502 PMCID: PMC3243781 DOI: 10.1002/hep.24652] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED The high rate of mortality and frequent incidence of recurrence associated with hepatocellular carcinoma (HCC) reveal the need for new therapeutic approaches. In this study we evaluated the efficacy of a novel chemoimmunotherapeutic strategy to control HCC and investigated the underlying mechanism that increased the antitumor immune response. We developed a novel orthotopic mouse model of HCC through seeding of tumorigenic hepatocytes from SV40 T antigen (Tag) transgenic MTD2 mice into the livers of syngeneic C57BL/6 mice. These MTD2-derived hepatocytes form Tag-expressing HCC tumors specifically within the liver. This approach provides a platform to test therapeutic strategies and antigen-specific immune-directed therapy in an immunocompetent murine model. Using this model we tested the efficacy of a combination of oral sunitinib, a small molecule multitargeted receptor tyrosine kinase (RTK) inhibitor, and adoptive transfer of tumor antigen-specific CD8(+) T cells to eliminate HCC. Sunitinib treatment alone promoted a transient reduction in tumor size. Sunitinib treatment combined with adoptive transfer of tumor antigen-specific CD8(+) T cells led to elimination of established tumors without recurrence. In vitro studies revealed that HCC growth was inhibited through suppression of STAT3 signaling. In addition, sunitinib treatment of tumor-bearing mice was associated with suppression of STAT3 and a block in T-cell tolerance. CONCLUSION These findings indicate that sunitinib inhibits HCC tumor growth directly through the STAT3 pathway and prevents tumor antigen-specific CD8(+) T-cell tolerance, thus defining a synergistic chemoimmunotherapeutic approach for HCC.
Collapse
Affiliation(s)
- Diego M. Avella
- Department of Surgery, Division of Surgical Oncology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Guangfu Li
- Department of Surgery, Division of Surgical Oncology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Todd D. Schell
- Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Dai Liu
- Department of Surgery, Division of Surgical Oncology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Molecular Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Samuel Shao-Min Zhang
- Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Xi Lou
- Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Arthur Berg
- Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Eric T. Kimchi
- Department of Surgery, Division of Surgical Oncology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Hephzibah Rani S. Tagaram
- Department of Surgery, Division of Surgical Oncology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Qing Yang
- Department of Surgery, Division of Surgical Oncology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Radiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Serene Shereef
- Department of Surgery, Division of Surgical Oncology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Luis S. Garcia
- Department of Surgery, Division of Surgical Oncology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Mark Kester
- Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Harriet C. Isom
- Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - C. Bart Rountree
- Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, Division of Surgical Oncology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Address Correspondence and request for reprints: Kevin F. Staveley-O’Carroll, M.D., Ph.D., 500 University Drive, H070, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, Tel: (717) 531-7405, Fax: (717)531-3649,
| |
Collapse
|
25
|
ATF5 polymorphisms influence ATF function and response to treatment in children with childhood acute lymphoblastic leukemia. Blood 2011; 118:5883-90. [PMID: 21972289 DOI: 10.1182/blood-2011-05-355560] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Asparaginase is a standard and critical component in the therapy of childhood acute lymphoblastic leukemia. Asparagine synthetase (ASNS) and the basic region leucine zipper activating transcription factor 5 (ATF5) and arginosuccinate synthase 1 (ASS1) have been shown to mediate the antileukemic effect of asparaginase and to display variable expression between leukemia cells that are resistant and sensitive to treatment. Fourteen polymorphisms in the regulatory and coding regions of these genes were investigated for an association with acute lymphoblastic leukemia outcome. Lower event-free survival (EFS) was associated with ATF5 T1562C, tandem-repeat ASNS polymorphism, derived haplotype, and ASS1 G1343T and G34T substitutions (P ≤ .03). Associations were limited to patients who received Escherichia coli asparaginase. Variations that sustained correction for multiple testing (ATF5 T1562C, P = .005; ASNS tandem-repeat and related haplotype, P ≤ .01) were subsequently analyzed in the replication cohort. The E coli-dependent association of the ATF5 T1562 allele with reduced EFS was confirmed (P = .01). A gene-reporter assay showed that the haplotype tagged by T1562 had higher promoter activity (P ≤ .01). The remaining regulatory polymorphisms also appeared to affect ATF5 function; 2 additional high-activity haplotypes were identified (P ≤ .02) and were further corroborated by quantitative mRNA analysis in lymphoblastoid cell lines. The ATF5-regulated increase in ASNS expression in response to more efficacious E coli-induced asparagine depletion may explain our observed results.
Collapse
|
26
|
KONG XIANGHENG, MENG WENJIAN, ZHOU ZONGGUANG, LI YUAN, ZHOU BIN, WANG RONG, ZHAN LAN. Overexpression of activating transcription factor 5 in human rectal cancer. Exp Ther Med 2011; 2:827-831. [PMID: 22977583 PMCID: PMC3440731 DOI: 10.3892/etm.2011.295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/31/2011] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to investigate the relationship between the expression of activating transcription factor 5 (ATF5) and clinicopathological features in human rectal cancer. Relative quantitative real-time RT-PCR and immunohistochemical staining were used to detect ATF5 mRNA and protein expression in 92 paired samples of rectal cancer and distant normal tissues. Immunohistochemical staining of the matched rectal tissue samples revealed that the positive expression rate of the ATF5 protein in rectal cancer was significantly higher compared to that in the normal tissue. Furthermore, the expression of ATF5 in poorly differentiated cancers was higher compared to that in well to moderately differentiated cancers (P=0.013). However, there was no significant association between ATF5 protein expression and patient age, gender, histological tumor type, cell differentiation, invasive depth, lymph node metastasis or distant metastasis (P>0.05). However, to our surprise, there was no difference in the relative mRNA expression levels of ATF5 between normal tissues and rectal cancers. Our findings indicate that overexpression of ATF5 protein may be an important biomarker of the degree of malignancy, and increased expression may be related to the post-transcriptional regulation of ATF5 in rectal cancer tissues.
Collapse
Affiliation(s)
- XIANGHENG KONG
- Institute of Digestive Surgery
- Departments of Gastrointestinal Surgery, and
| | - WENJIAN MENG
- Institute of Digestive Surgery
- Departments of Gastrointestinal Surgery, and
| | - ZONGGUANG ZHOU
- Institute of Digestive Surgery
- Departments of Gastrointestinal Surgery, and
| | - YUAN LI
- Institute of Digestive Surgery
| | | | - RONG WANG
- Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.
China
| | - LAN ZHAN
- Institute of Digestive Surgery
- Departments of Gastrointestinal Surgery, and
| |
Collapse
|
27
|
p300-Dependent ATF5 acetylation is essential for Egr-1 gene activation and cell proliferation and survival. Mol Cell Biol 2011; 31:3906-16. [PMID: 21791614 DOI: 10.1128/mcb.05887-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
ATF5 has been shown to be a critical regulator of cell proliferation and survival; however, the underlying mechanism remains largely unknown. We demonstrate here that ATF5 interacts with the transcriptional coactivator p300, which acetylates ATF5 at lysine-29 (K29), which in turn enhances the interaction between ATF5 and p300 and binding of the ATF5/p300 complex to the ATF5 response element (ARE) region of the Egr-1 promoter. ARE-bound ATF5/p300 acetylates lysine-14 (K14) of nucleosomal histone H3 at both the ARE and serum response element (SRE) of the Egr-1 promoter, which facilitates binding of extracellular signal-regulated kinase (ERK)-phosphorylated Elk-1 to the SRE, activating the Egr-1 promoter. Interference of p300-dependent acetylation of ATF5 or nucleosomal histone H3 or blockade of ERK-dependent Elk-1 phosphorylation abrogates ATF5-dependent Egr-1 activation and cell proliferation and survival. These findings assign a central role for the ATF5/p300 complex in ATF5 function and suggest that coordinated actions by ATF5, p300, Elk-1, and ERK/mitogen-activated protein kinase (MAPK) are essential for ATF5-dependent Egr-1 activation and cell proliferation and survival.
Collapse
|
28
|
Arias A, Lamé MW, Santarelli L, Hen R, Greene LA, Angelastro JM. Regulated ATF5 loss-of-function in adult mice blocks formation and causes regression/eradication of gliomas. Oncogene 2011; 31:739-51. [PMID: 21725368 PMCID: PMC3277917 DOI: 10.1038/onc.2011.276] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Glioblastomas are among the most incurable cancers. Our past findings indicated that glioblastoma cells, but not neurons or glia, require the transcription factor ATF5 (activating transcription factor 5) for survival. However, it was unknown whether interference with ATF5 function can prevent or promote regression/eradication of malignant gliomas in vivo. To address this issue, we created a mouse model by crossing a human glial fibrillary acidic protein (GFAP) promoter-tetracycline transactivator mouse line with tetracycline operon-dominant negative-ATF5 (d/n-ATF5) mice to establish bi-transgenic mice. In this model, d/n-ATF5 expression is controlled by doxycycline and the promoter for GFAP, a marker for stem/progenitor cells as well as gliomas. Endogenous gliomas were produced with high efficiency by retroviral delivery of platelet-derived growth factor (PDGF)-B and p53-short hairpin RNA (shRNA) in adult bi-transgenic mice in which expression of d/n-ATF5 was spatially and temporally regulated. Induction of d/n-ATF5 before delivery of PDGF-B/p53-shRNA virus greatly reduced the proportion of mice that formed tumors. Moreover, d/n-ATF5 induction after tumor formation led to regression/eradication of detectable gliomas without evident damage to normal brain cells in all 24 mice assessed.
Collapse
Affiliation(s)
- A Arias
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The oncoprotein BCR-ABL transforms myeloid progenitor cells and is responsible for the development of chronic myeloid leukemia (CML). In transformed cells, BCR-ABL suppresses apoptosis as well as autophagy, a catabolic process in which cellular components are degraded by the lysosomal machinery. The mechanism by which BCR-ABL suppresses autophagy is not known. Here we report that in both mouse and human BCR-ABL-transformed cells, activating transcription factor 5 (ATF5), a prosurvival factor, suppresses autophagy but does not affect apoptosis. We find that BCR-ABL, through PI3K/AKT/FOXO4 signaling, transcriptionally up-regulates ATF5 expression and that ATF5, in turn, stimulates transcription of mammalian target of rapamycin (mTOR; also called mechanistic target of rapamycin), a well-established master negative-regulator of autophagy. Previous studies have shown that the BCR-ABL inhibitor imatinib mesylate induces both apoptosis and autophagy, and that the resultant autophagy modulates the efficiency by which imatinib kills BCR-ABL-transformed cells. We demonstrate that imatinib-induced autophagy is because of inhibition of the BCR-ABL/PI3K/AKT/FOXO4/ATF5/mTOR pathway that we have identified in this study.
Collapse
|
30
|
Sheng Z, Evans SK, Green MR. An activating transcription factor 5-mediated survival pathway as a target for cancer therapy? Oncotarget 2011; 1:457-60. [PMID: 21311102 DOI: 10.18632/oncotarget.100914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Genes that are highly expressed in cancer cells and are essential for their viability are attractive targets for the development of novel cancer therapeutics. Activating transcription factor 5 (ATF5) is an anti-apoptotic protein that is highly expressed in malignant glioma but not normal brain tissues, and is essential for glioma cell survival. Recent work has revealed an essential survival pathway mediated by ATF5 in malignant glioma; pharmacological inhibition of this pathway leads to tumor regression in mice. ATF5 is also highly expressed in a variety of other cancers, and preliminary studies have shown that the ATF5-mediated survival pathway is active in diverse human cancer cell lines. Targeting this pathway may therefore have therapeutic implications for the treatment of a wide range of cancers. In this perspective, we summarize recent advances in ATF5 research, focusing on its role in promoting cancer and its potential as a target for cancer therapy.
Collapse
Affiliation(s)
- Zhi Sheng
- Howard Hughes Medical Institute, Program in Gene Function, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
31
|
Li G, Xu Y, Guan D, Liu Z, Liu DX. HSP70 protein promotes survival of C6 and U87 glioma cells by inhibition of ATF5 degradation. J Biol Chem 2011; 286:20251-9. [PMID: 21521685 DOI: 10.1074/jbc.m110.211771] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although both the heat shock protein 70 (HSP70) and the activating transcription factor 5 (ATF5) have been shown to promote cell survival of transformed cells but not survival of non-transformed cells, the relationship of the two molecules is unknown. Here we show that HSP70 and ATF5 are concomitantly up-regulated upon transient but down-regulated over prolonged cellular stress and apoptotic stimulation in the rat C6 glioma and human U87 glioma cells. HSP70 interacts strongly with the N-terminal activation domain of ATF5, which is expected to be rigid and uniquely structured under physiological conditions because of extraordinary high concentration (over 25%) of proline residues. Binding of HSP70 to ATF5 is an ATP-driven process and requires functional ATPase on the nucleotide binding domain of the HSP70 molecule. Overexpression of HSP70 dramatically stabilizes the ATF5 protein, which is otherwise subject to rapid degradation, facilitated by both proteasome-dependent and caspase-dependent processes, whereas HSP70 depletion leads to acceleration of ATF5 degradation and transcription repression of Bcl-2 and Egr-1, which are downstream targets of ATF5 in C6 and U87 glioma cells. Our data reveal an essential role for HSP70 in maintaining high levels of ATF5 expression in glioma cells and support the conclusion that ATF5 is an important substrate protein of HSP70 that mediates HSP70-promoted cell survival in glioma cells.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
32
|
Dluzen D, Li G, Tacelosky D, Moreau M, Liu DX. BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in a cell type-dependent manner. J Biol Chem 2011; 286:7705-13. [PMID: 21212266 DOI: 10.1074/jbc.m110.207639] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATF5 loss of function has been shown previously to cause apoptotic cell death in glioblastoma and breast cancer cells but not in non-transformed astrocytes and human breast epithelial cells. The mechanism for the cell type-dependent survival function of ATF5 is unknown. We report here that the anti-apoptotic factor BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in C6 glioma cells and MCF-7 breast cancer cells. ATF5 binds to an ATF5-specific regulatory element that is downstream of and adjacent to the negative regulatory element in the BCL-2 P2 promoter, stimulating BCL-2 expression. Highlighting the critical role of BCL-2 in ATF5-dependent cancer cell survival, expression of BCL-2 blocks death of C6 and MCF-7 cells induced by dominant-negative ATF5, and depletion of BCL-2 impairs ATF5-promoted cell survival. Moreover, we found that BCL-2 expression is not regulated by ATF5 in non-transformed rat astrocytes, mouse embryonic fibroblasts, and human breast epithelial cells, where expression of BCL-2 but not ATF5 is required for cell survival. These findings identify BCL-2 as an essential mediator for the cancer-specific cell survival function of ATF5 in glioblastoma and breast cancer cells and provide direct evidence that the cell type-specific function of ATF5 derives from differential regulation of downstream targets by ATF5 in different types of cells.
Collapse
Affiliation(s)
- Douglas Dluzen
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
33
|
Liu X, Yang JM, Zhang SS, Liu XY, Liu DX. Induction of cell cycle arrest at G1 and S phases and cAMP-dependent differentiation in C6 glioma by low concentration of cycloheximide. BMC Cancer 2010; 10:684. [PMID: 21159181 PMCID: PMC3009684 DOI: 10.1186/1471-2407-10-684] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 12/15/2010] [Indexed: 01/09/2023] Open
Abstract
Background Differentiation therapy has been shown effective in treatment of several types of cancer cells and may prove to be effective in treatment of glioblastoma multiforme, the most common and most aggressive primary brain tumor. Although extensively used as a reagent to inhibit protein synthesis in mammalian cells, whether cycloheximide treatment leads to glioma cell differentiation has not been reported. Methods C6 glioma cell was treated with or without cycloheximide at low concentrations (0.5-1 μg/ml) for 1, 2 and 3 days. Cell proliferation rate was assessed by direct cell counting and colony formation assays. Apoptosis was assessed by Hoechst 33258 staining and FACS analysis. Changes in several cell cycle regulators such as Cyclins D1 and E, PCNA and Ki67, and several apoptosis-related regulators such as p53, p-JNK, p-AKT, and PARP were determined by Western blot analysis. C6 glioma differentiation was determined by morphological characterization, immunostaining and Western blot analysis on upregulation of GFAP and o p-STAT3 expression, and upregulation of intracellular cAMP. Results Treatment of C6 cell with low concentration of cycloheximide inhibited cell proliferation and depleted cells at both G2 and M phases, suggesting blockade at G1 and S phases. While no cell death was observed, cells underwent profound morphological transformation that indicated cell differentiation. Western blotting and immunostaining analyses further indicated that changes in expression of several cell cycle regulators and the differentiation marker GFAP were accompanied with cycloheximide-induced cell cycle arrest and cell differentiation. Increase in intracellular cAMP, a known promoter for C6 cell differentiation, was found to be elevated and required for cycloheximide-promoted C6 cell differentiation. Conclusion Our results suggest that partial inhibition of protein synthesis in C6 glioma by low concentration of cycloheximide induces cell cycle arrest at G1 and M phases and cAMP-dependent cell differentiation.
Collapse
Affiliation(s)
- Xijun Liu
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
34
|
Sheng Z, Evans SK, Green MR. An activating transcription factor 5-mediated survival pathway as a target for cancer therapy? Oncotarget 2010; 1:457-460. [PMID: 21311102 PMCID: PMC3069685 DOI: 10.18632/oncotarget.180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/25/2022] Open
Abstract
Genes that are highly expressed in cancer cells and are essential for their viability are attractive targets for the development of novel cancer therapeutics. Activating transcription factor 5 (ATF5) is an anti-apoptotic protein that is highly expressed in malignant glioma but not normal brain tissues, and is essential for glioma cell survival. Recent work has revealed an essential survival pathway mediated by ATF5 in malignant glioma; pharmacological inhibition of this pathway leads to tumor regression in mice. ATF5 is also highly expressed in a variety of other cancers, and preliminary studies have shown that the ATF5-mediated survival pathway is active in diverse human cancer cell lines. Targeting this pathway may therefore have therapeutic implications for the treatment of a wide range of cancers. In this perspective, we summarize recent advances in ATF5 research, focusing on its role in promoting cancer and its potential as a target for cancer therapy.
Collapse
|
35
|
Wei Y, Ge Y, Zhou F, Chen H, Cui C, Liu D, Yang Z, Wu G, Gu J, Jiang J. Identification and characterization of the promoter of human ATF5 gene. J Biochem 2010; 148:171-8. [DOI: 10.1093/jb/mvq047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|