1
|
Gu W, Wu G, Chen G, Meng X, Xie Z, Cai S. Polyphenols alleviate metabolic disorders: the role of ubiquitin-proteasome system. Front Nutr 2024; 11:1445080. [PMID: 39188976 PMCID: PMC11345163 DOI: 10.3389/fnut.2024.1445080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic disorders include obesity, nonalcoholic fatty liver disease, insulin resistance and type 2 diabetes. It has become a major health issue around the world. Ubiquitin-proteasome system (UPS) is essential for nearly all cellular processes, functions as a primary pathway for intracellular protein degradation. Recent researches indicated that dysfunctions in the UPS may result in the accumulation of toxic proteins, lipotoxicity, oxidative stress, inflammation, and insulin resistance, all of which contribute to the development and progression of metabolic disorders. An increasing body of evidence indicates that specific dietary polyphenols ameliorate metabolic disorders by preventing lipid synthesis and transport, excessive inflammation, hyperglycemia and insulin resistance, and oxidative stress, through regulation of the UPS. This review summarized the latest research progress of natural polyphenols improving metabolic disorders by regulating lipid accumulation, inflammation, oxidative stress, and insulin resistance through the UPS. In addition, the possible mechanisms of UPS-mediated prevention of metabolic disorders are comprehensively proposed. We aim to provide new angle to the development and utilization of polyphenols in improving metabolic disorders.
Collapse
Affiliation(s)
- Wei Gu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Xianghui Meng
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Shanbao Cai
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
2
|
Zou Y, Zhang Y, Li M, Cao K, Song C, Zhang Z, Cai K, Geng D, Chen S, Wu Y, Zhang N, Sun G, Wang J, Zhang Y, Sun Y. Regulation of lipid metabolism by E3 ubiquitin ligases in lipid-associated metabolic diseases. Int J Biol Macromol 2024; 265:130961. [PMID: 38508558 DOI: 10.1016/j.ijbiomac.2024.130961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.
Collapse
Affiliation(s)
- Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Mohan Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Jing Wang
- Department of Hematology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
3
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
4
|
Avci D, Heidasch R, Costa M, Lüchtenborg C, Kale D, Brügger B, Lemberg MK. Intramembrane protease SPP defines a cholesterol-regulated abundance control of the mevalonate pathway enzyme squalene synthase. J Biol Chem 2024; 300:105644. [PMID: 38218226 PMCID: PMC10850959 DOI: 10.1016/j.jbc.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Intramembrane proteolysis regulates important processes such as signaling and transcriptional and posttranslational abundance control of proteins with key functions in metabolic pathways. This includes transcriptional control of mevalonate pathway genes, thereby ensuring balanced biosynthesis of cholesterol and other isoprenoids. Our work shows that, at high cholesterol levels, signal peptide peptidase (SPP) cleaves squalene synthase (SQS), an enzyme that defines the branching point for allocation of isoprenoids to the sterol and nonsterol arms of the mevalonate pathway. This intramembrane cleavage releases SQS from the membrane and targets it for proteasomal degradation. Regulation of this mechanism is achieved by the E3 ubiquitin ligase TRC8 that, in addition to ubiquitinating SQS in response to cholesterol levels, acts as an allosteric activator of SPP-catalyzed intramembrane cleavage of SQS. Cellular cholesterol levels increase in the absence of SPP activity. We infer from these results that, SPP-TRC8 mediated abundance control of SQS acts as a regulation step within the mevalonate pathway.
Collapse
Affiliation(s)
- Dönem Avci
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
| | - Ronny Heidasch
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Martina Costa
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Dipali Kale
- Biochemistry Center of Heidelberg University (BZH), Heidelberg, Germany
| | - Britta Brügger
- Biochemistry Center of Heidelberg University (BZH), Heidelberg, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Dickson AS, Pauzaite T, Arnaiz E, Ortmann BM, West JA, Volkmar N, Martinelli AW, Li Z, Wit N, Vitkup D, Kaser A, Lehner PJ, Nathan JA. A HIF independent oxygen-sensitive pathway for controlling cholesterol synthesis. Nat Commun 2023; 14:4816. [PMID: 37558666 PMCID: PMC10412576 DOI: 10.1038/s41467-023-40541-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023] Open
Abstract
Cholesterol biosynthesis is a highly regulated, oxygen-dependent pathway, vital for cell membrane integrity and growth. In fungi, the dependency on oxygen for sterol production has resulted in a shared transcriptional response, resembling prolyl hydroxylation of Hypoxia Inducible Factors (HIFs) in metazoans. Whether an analogous metazoan pathway exists is unknown. Here, we identify Sterol Regulatory Element Binding Protein 2 (SREBP2), the key transcription factor driving sterol production in mammals, as an oxygen-sensitive regulator of cholesterol synthesis. SREBP2 degradation in hypoxia overrides the normal sterol-sensing response, and is HIF independent. We identify MARCHF6, through its NADPH-mediated activation in hypoxia, as the main ubiquitin ligase controlling SREBP2 stability. Hypoxia-mediated degradation of SREBP2 protects cells from statin-induced cell death by forcing cells to rely on exogenous cholesterol uptake, explaining why many solid organ tumours become auxotrophic for cholesterol. Our findings therefore uncover an oxygen-sensitive pathway for governing cholesterol synthesis through regulated SREBP2-dependent protein degradation.
Collapse
Affiliation(s)
- Anna S Dickson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Esther Arnaiz
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Ochre-Bio Ltd, Hayakawa Building, Oxford Science Park, Edmund Halley Road, Oxford, OX4 4GB, UK
| | - Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Biosciences Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Institute for Molecular Systems Biology (IMSB), ETH Zürich, Zürich, Switzerland
- DISCO Pharmaceuticals Swiss GmbH, ETH Zürich, Zürich, Switzerland
| | - Anthony W Martinelli
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Zhaoqi Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tango Therapeutics, 201 Brookline Ave Suite 901, Boston, MA, USA
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
6
|
Maier CR, Hartmann O, Prieto-Garcia C, Al-Shami KM, Schlicker L, Vogel FCE, Haid S, Klann K, Buck V, Münch C, Schmitz W, Einig E, Krenz B, Calzado MA, Eilers M, Popov N, Rosenfeldt MT, Diefenbacher ME, Schulze A. USP28 controls SREBP2 and the mevalonate pathway to drive tumour growth in squamous cancer. Cell Death Differ 2023:10.1038/s41418-023-01173-6. [PMID: 37202505 DOI: 10.1038/s41418-023-01173-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
SREBP2 is a master regulator of the mevalonate pathway (MVP), a biosynthetic process that drives the synthesis of dolichol, heme A, ubiquinone and cholesterol and also provides substrates for protein prenylation. Here, we identify SREBP2 as a novel substrate for USP28, a deubiquitinating enzyme that is frequently upregulated in squamous cancers. Our results show that silencing of USP28 reduces expression of MVP enzymes and lowers metabolic flux into this pathway. We also show that USP28 binds to mature SREBP2, leading to its deubiquitination and stabilisation. USP28 depletion rendered cancer cells highly sensitive to MVP inhibition by statins, which was rescued by the addition of geranyl-geranyl pyrophosphate. Analysis of human tissue microarrays revealed elevated expression of USP28, SREBP2 and MVP enzymes in lung squamous cell carcinoma (LSCC) compared to lung adenocarcinoma (LADC). Moreover, CRISPR/Cas-mediated deletion of SREBP2 selectively attenuated tumour growth in a KRas/p53/LKB1 mutant mouse model of lung cancer. Finally, we demonstrate that statins synergise with a dual USP28/25 inhibitor to reduce viability of SCC cells. Our findings suggest that combinatorial targeting of MVP and USP28 could be a therapeutic strategy for the treatment of squamous cell carcinomas.
Collapse
Affiliation(s)
- Carina R Maier
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Oliver Hartmann
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Cristian Prieto-Garcia
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590, Frankfurt am Main, Germany
| | - Kamal M Al-Shami
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Lisa Schlicker
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Felix C E Vogel
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Silke Haid
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Kevin Klann
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590, Frankfurt am Main, Germany
| | - Viktoria Buck
- Institute of Pathology, Julius Maximilians University and Comprehensive Cancer Center (CCC) Mainfranken, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590, Frankfurt am Main, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Elias Einig
- Internal Medicine VIII-Clinical Tumor Biology, University of Tübingen, Otfried-Müller-Straße 14, 72076, Tübingen, Germany
| | - Bastian Krenz
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Nikita Popov
- Internal Medicine VIII-Clinical Tumor Biology, University of Tübingen, Otfried-Müller-Straße 14, 72076, Tübingen, Germany
| | - Mathias T Rosenfeldt
- Institute of Pathology, Julius Maximilians University and Comprehensive Cancer Center (CCC) Mainfranken, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Markus E Diefenbacher
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany.
| | - Almut Schulze
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Krshnan L, van de Weijer ML, Carvalho P. Endoplasmic Reticulum-Associated Protein Degradation. Cold Spring Harb Perspect Biol 2022; 14:a041247. [PMID: 35940909 PMCID: PMC9732900 DOI: 10.1101/cshperspect.a041247] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Misfolded, potentially toxic proteins in the lumen and membrane of the endoplasmic reticulum (ER) are eliminated by proteasomes in the cytosol through ER-associated degradation (ERAD). The ERAD process involves the recognition of substrates in the lumen and membrane of the ER, their translocation into the cytosol, ubiquitination, and delivery to the proteasome for degradation. These ERAD steps are performed by membrane-embedded ubiquitin-ligase complexes of different specificity that together cover a wide range of substrates. Besides misfolded proteins, ERAD further contributes to quality control by targeting unassembled and mislocalized proteins. ERAD also targets a restricted set of folded proteins to influence critical ER functions such as sterol biosynthesis, calcium homeostasis, or ER contacts with other organelles. This review describes the ubiquitin-ligase complexes and the principles guiding protein degradation by ERAD.
Collapse
Affiliation(s)
- Logesvaran Krshnan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
8
|
Venu VKP, Saifeddine M, Mihara K, Faiza M, Gorobets E, Flewelling AJ, Derksen DJ, Hirota SA, Marei I, Al-Majid D, Motahhary M, Ding H, Triggle CR, Hollenberg MD. Metformin Prevents Hyperglycemia-Associated, Oxidative Stress-Induced Vascular Endothelial Dysfunction: Essential Role for the Orphan Nuclear Receptor Human Nuclear Receptor 4A1 (Nur77). Mol Pharmacol 2021; 100:428-455. [PMID: 34452975 DOI: 10.1124/molpharm.120.000148] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/17/2021] [Indexed: 01/22/2023] Open
Abstract
Vascular pathology is increased in diabetes because of reactive-oxygen-species (ROS)-induced endothelial cell damage. We found that in vitro and in a streptozotocin diabetes model in vivo, metformin at diabetes-therapeutic concentrations (1-50 µM) protects tissue-intact and cultured vascular endothelial cells from hyperglycemia/ROS-induced dysfunction typified by reduced agonist-stimulated endothelium-dependent, nitric oxide-mediated vasorelaxation in response to muscarinic or proteinase-activated-receptor 2 agonists. Metformin not only attenuated hyperglycemia-induced ROS production in aorta-derived endothelial cell cultures but also prevented hyperglycemia-induced endothelial mitochondrial dysfunction (reduced oxygen consumption rate). These endothelium-protective effects of metformin were absent in orphan-nuclear-receptor Nr4a1-null murine aorta tissues in accord with our observing a direct metformin-Nr4a1 interaction. Using in silico modeling of metformin-NR4A1 interactions, Nr4a1-mutagenesis, and a transfected human embryonic kidney 293T cell functional assay for metformin-activated Nr4a1, we identified two Nr4a1 prolines, P505/P549 (mouse sequences corresponding to human P501/P546), as key residues for enabling metformin to affect mitochondrial function. Our data indicate a critical role for Nr4a1 in metformin's endothelial-protective effects observed at micromolar concentrations, which activate AMPKinase but do not affect mitochondrial complex-I or complex-III oxygen consumption rates, as does 0.5 mM metformin. Thus, therapeutic metformin concentrations requiring the expression of Nr4a1 protect the vasculature from hyperglycemia-induced dysfunction in addition to metformin's action to enhance insulin action in patients with diabetes. SIGNIFICANCE STATEMENT: Metformin improves diabetic vasodilator function, having cardioprotective effects beyond glycemic control, but its mechanism to do so is unknown. We found that metformin at therapeutic concentrations (1-50µM) prevents hyperglycemia-induced endothelial dysfunction by attenuating reactive oxygen species-induced damage, whereas high metformin (>250 µM) impairs vascular function. However, metformin's action requires the expression of the orphan nuclear receptor NR4A1/Nur77. Our data reveal a novel mechanism whereby metformin preserves diabetic vascular endothelial function, with implications for developing new metformin-related therapeutic agents.
Collapse
Affiliation(s)
- Vivek Krishna Pulakazhi Venu
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Mahmoud Saifeddine
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Koichiro Mihara
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Muniba Faiza
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Evgueni Gorobets
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Andrew J Flewelling
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Darren J Derksen
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Simon A Hirota
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Isra Marei
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Dana Al-Majid
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Majid Motahhary
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Hong Ding
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Chris R Triggle
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| | - Morley D Hollenberg
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology (V.K.P.V, M.S., K.M., M.M., S.A.H., M.D.H.), and Department of Medicine (M.D.H.), University of Calgary Cumming School of Medicine, Calgary AB, Canada; Alberta Children's Hospital Research Institute and Department of Chemistry, University of Calgary AB, Canada (E.G., A.J.F., D.D.); Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Al-Rayyan, Doha, Qatar (I. M., D. A-M., H.D., C.R.T.) and Bioinformatics (M.F.), Jamia Millia Islamia (Central University), Jaima Nagar, Okhla New Delhi, India
| |
Collapse
|
9
|
Li K, Yang P, Zhang Y, Zhang Y, Cao H, Liu P, Huang B, Xu S, Lai P, Lei G, Liu J, Tang Y, Bai X, Zou Z. DEPTOR Prevents Osteoarthritis Development Via Interplay With TRC8 to Reduce Endoplasmic Reticulum Stress in Chondrocytes. J Bone Miner Res 2021; 36:400-411. [PMID: 32916025 DOI: 10.1002/jbmr.4176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) stress has been shown to promote chondrocyte apoptosis and osteoarthritis (OA) progression, but the precise mechanisms via which ER stress is modulated in OA remain unclear. Here we report that DEP domain-containing mTOR-interacting protein (DEPTOR) negatively regulated ER stress and OA development independent of mTOR signaling. DEPTOR is ubiquitinated in articular chondrocytes and its expression is markedly reduced along with OA progression. Deletion of DEPTOR in chondrocytes significantly promoted destabilized medial meniscus (DMM) surgery-induced OA development, whereas intra-articular injection of lentivirus-expressing DEPTOR delayed OA progression in mice. Proteomics analysis revealed that DEPTOR interplayed with TRC8, which promoted TRC8 auto-ubiquitination and degraded by the ubiquitin-proteasome system (UPS) in chondrocytes. Loss of DEPTOR led to TRC8 accumulation and excessive ER stress, with subsequent chondrocyte apoptosis and OA progression. Importantly, an inhibitor of ER stress eliminated chondrocyte DEPTOR deletion-exacerbated OA in mice. Together, these findings establish a novel mechanism essential for OA pathogenesis, where decreasing DEPTOR in chondrocytes during OA progression relieves the auto-ubiquitination of TRC8, resulting in TRC8 accumulation, excessive ER stress, and OA progression. Targeting this pathway has promising therapeutic potential for OA treatment. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kai Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Panpan Yang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuwei Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - He Cao
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Peilin Liu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Song Xu
- Department of Orthopedics and Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pinglin Lai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yujin Tang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Scott NA, Sharpe LJ, Brown AJ. The E3 ubiquitin ligase MARCHF6 as a metabolic integrator in cholesterol synthesis and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158837. [PMID: 33049405 DOI: 10.1016/j.bbalip.2020.158837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
MARCHF6 is a large multi-pass E3 ubiquitin ligase embedded in the membranes of the endoplasmic reticulum. It participates in endoplasmic reticulum associated degradation, including autoubiquitination, and many of its identified substrates are involved in sterol and lipid metabolism. Post-translationally, MARCHF6 expression is attuned to cholesterol status, with high cholesterol preventing its degradation and hence boosting MARCHF6 levels. By modulating MARCHF6 activity, cholesterol may regulate other aspects of cell metabolism beyond the known repertoire. Whilst we have learnt much about MARCHF6 in the past decade, there are still many more mysteries to be unravelled to fully understand its regulation, substrates, and role in human health and disease.
Collapse
Affiliation(s)
- Nicola A Scott
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
12
|
van den Boomen DJH, Volkmar N, Lehner PJ. Ubiquitin-mediated regulation of sterol homeostasis. Curr Opin Cell Biol 2020; 65:103-111. [PMID: 32580085 DOI: 10.1016/j.ceb.2020.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022]
Abstract
Cholesterol is an essential component of mammalian membranes, and its homeostasis is strictly regulated, with imbalances causing atherosclerosis, Niemann Pick disease, and familial hypercholesterolemia. Cellular cholesterol supply is mediated by LDL-cholesterol import and de novo cholesterol biosynthesis, and both pathways are adjusted to cellular demand by the cholesterol-sensitive SREBP2 transcription factor. Cholesterol homeostasis is modulated by a wide variety of metabolic pathways and the ubiquitination machinery, in particular E3 ubiquitin ligases. In this article, we review recent progress in understanding the role of E3 ubiquitin ligases in the metabolic control of cellular sterol homeostasis.
Collapse
Affiliation(s)
- Dick J H van den Boomen
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
13
|
Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2019; 21:225-245. [DOI: 10.1038/s41580-019-0190-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
14
|
Docquier A, Pavlin L, Raibon A, Bertrand‐Gaday C, Sar C, Leibovitch S, Candau R, Bernardi H. eIF3f depletion impedes mouse embryonic development, reduces adult skeletal muscle mass and amplifies muscle loss during disuse. J Physiol 2019; 597:3107-3131. [DOI: 10.1113/jp277841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Aurélie Docquier
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| | - Laura Pavlin
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| | - Audrey Raibon
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| | | | - Chamroeun Sar
- Institut National de la Santé et de la Recherche Médicale, U‐583Institut des Neurosciences de MontpellierHôpital Saint Eloi Montpellier France
| | - Serge Leibovitch
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| | - Robin Candau
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| | - Henri Bernardi
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| |
Collapse
|
15
|
Zhang Y, Lu J, Ma J, Liu X. Insulin-induced gene 1 (INSIG1) inhibits HIV-1 production by degrading Gag via activity of the ubiquitin ligase TRC8. J Biol Chem 2018; 294:2046-2059. [PMID: 30563842 DOI: 10.1074/jbc.ra118.004630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/04/2018] [Indexed: 11/06/2022] Open
Abstract
Insulin-induced gene 1 (INSIG1) regulates sterol synthesis by mediating the activation of sterol regulatory element-binding protein (SREBP) and the degradation of the HMG-CoA reductase (HMGCR). INSIG1 is up-regulated during HIV-1 infection, but its role in HIV-1 infection is unknown. In this report, using pseudovirus production, protein overexpression, and gene knockouts, we found that INSIG1 inhibits HIV-1 production by accelerating the degradation of the HIV-1 Gag protein. Unlike the degradation of HMGCR via the E3 ubiquitin ligase autocrine motility factor receptor (AMFR), a process that depends on the proteasome, INSIG1 coordinated with another ligase, translocation in renal carcinoma chromosome 8 (TRC8), and promoted Gag degradation through the lysosome pathway. We conclude that INSIG1 functions as a sentinel responsive to HIV-1 production and inhibits HIV-1 replication by degrading Gag, a process occurring at intracellular membrane sites such as the endoplasmic reticulum and endosomes where both INSIG1 and Gag may be located.
Collapse
Affiliation(s)
- You Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Lu
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Ma
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinqi Liu
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Sharpe LJ, Howe V, Scott NA, Luu W, Phan L, Berk JM, Hochstrasser M, Brown AJ. Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation. J Biol Chem 2018; 294:2436-2448. [PMID: 30545937 DOI: 10.1074/jbc.ra118.005069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
The E3 ligase membrane-associated ring-CH-type finger 6 (MARCH6) is a polytopic enzyme bound to the membranes of the endoplasmic reticulum. It controls levels of several known protein substrates, including a key enzyme in cholesterol synthesis, squalene monooxygenase. However, beyond its own autodegradation, little is known about how MARCH6 itself is regulated. Using CRISPR/Cas9 gene-editing, MARCH6 overexpression, and immunoblotting, we found here that cholesterol stabilizes MARCH6 protein endogenously and in HEK293 cells that stably express MARCH6. Conversely, MARCH6-deficient HEK293 and HeLa cells lost their ability to degrade squalene monooxygenase in a cholesterol-dependent manner. The ability of cholesterol to boost MARCH6 did not seem to involve a putative sterol-sensing domain in this E3 ligase, but was abolished when either membrane extraction by valosin-containing protein (VCP/p97) or proteasomal degradation was inhibited. Furthermore, cholesterol-mediated stabilization was absent in two MARCH6 mutants that are unable to degrade themselves, indicating that cholesterol stabilizes MARCH6 protein by preventing its autodegradation. Experiments with chemical chaperones suggested that this likely occurs through a conformational change in MARCH6 upon cholesterol addition. Moreover, cholesterol reduced the levels of at least three known MARCH6 substrates, indicating that cholesterol-mediated MARCH6 stabilization increases its activity. Our findings highlight an important new role for cholesterol in controlling levels of proteins, extending the known repertoire of cholesterol homeostasis players.
Collapse
Affiliation(s)
- Laura J Sharpe
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| | - Vicky Howe
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| | - Nicola A Scott
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| | - Winnie Luu
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| | - Lisa Phan
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| | - Jason M Berk
- the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Mark Hochstrasser
- the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Andrew J Brown
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| |
Collapse
|
17
|
Cui X, Shen W, Wang G, Huang Z, Wen D, Yang Y, Liu Y, Cui L. Ring finger protein 152 inhibits colorectal cancer cell growth and is a novel prognostic biomarker. Am J Transl Res 2018; 10:3701-3712. [PMID: 30662620 PMCID: PMC6291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world. RING finger-related E3 ubiquitin ligases play a role in tumorigenesis and can function either as oncogenes or tumor suppressors based on their target proteins. Here, we show that the expression of RNF152, a ring finger protein, in CRC tissues was significantly reduced compared with adjacent non-cancerous tissues. High expression levels of RNF152 correlated with better prognosis in patients with colorectal cancer. Low expression of RNF152 correlated with lymphatic metastasis. Overexpression of RNF152 inhibited CRC cell proliferation both in vitro and in vivo by inactivating the mechanistic target of rapamycin complex 1 (mTORC1) and inducing autophagy and apoptotic cell death. This strong inhibition was dependent on the E3 ligase activity of RNF152. Ectopic expression of the RNF152-CS-mutant, which lacks E3 ligase activity, significantly restored the proliferation ability of CRC cells. Our findings showed that RNF152 inhibits colorectal cancer growth and may be a novel prognostic biomarker for the treatment of CRC.
Collapse
Affiliation(s)
- Ximao Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Wenbin Shen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Guanghui Wang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Guizhou Provincial People’s HospitalGuiyang, Guizhou, China
| | - Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Dongpeng Wen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical SciencesSuzhou, Jiangsu, China
| | - Yun Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Long Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
18
|
Wangeline MA, Vashistha N, Hampton RY. Proteostatic Tactics in the Strategy of Sterol Regulation. Annu Rev Cell Dev Biol 2018; 33:467-489. [PMID: 28992438 DOI: 10.1146/annurev-cellbio-111315-125036] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In eukaryotes, the synthesis and uptake of sterols undergo stringent multivalent regulation. Both individual enzymes and transcriptional networks are controlled to meet changing needs of the many sterol pathway products. Regulation is tailored by evolution to match regulatory constraints, which can be very different in distinct species. Nevertheless, a broadly conserved feature of many aspects of sterol regulation is employment of proteostasis mechanisms to bring about control of individual proteins. Proteostasis is the set of processes that maintain homeostasis of a dynamic proteome. Proteostasis includes protein quality control pathways for the detection, and then the correction or destruction, of the many misfolded proteins that arise as an unavoidable feature of protein-based life. Protein quality control displays not only the remarkable breadth needed to manage the wide variety of client molecules, but also extreme specificity toward the misfolded variants of a given protein. These features are amenable to evolutionary usurpation as a means to regulate proteins, and this approach has been used in sterol regulation. We describe both well-trod and less familiar versions of the interface between proteostasis and sterol regulation and suggest some underlying ideas with broad biological and clinical applicability.
Collapse
Affiliation(s)
- Margaret A Wangeline
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Nidhi Vashistha
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Randolph Y Hampton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
19
|
Stefanovic-Barrett S, Dickson AS, Burr SP, Williamson JC, Lobb IT, van den Boomen DJ, Lehner PJ, Nathan JA. MARCH6 and TRC8 facilitate the quality control of cytosolic and tail-anchored proteins. EMBO Rep 2018; 19:e45603. [PMID: 29519897 PMCID: PMC5934766 DOI: 10.15252/embr.201745603] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022] Open
Abstract
Misfolded or damaged proteins are typically targeted for destruction by proteasome-mediated degradation, but the mammalian ubiquitin machinery involved is incompletely understood. Here, using forward genetic screens in human cells, we find that the proteasome-mediated degradation of the soluble misfolded reporter, mCherry-CL1, involves two ER-resident E3 ligases, MARCH6 and TRC8. mCherry-CL1 degradation is routed via the ER membrane and dependent on the hydrophobicity of the substrate, with complete stabilisation only observed in double knockout MARCH6/TRC8 cells. To identify a more physiological correlate, we used quantitative mass spectrometry and found that TRC8 and MARCH6 depletion altered the turnover of the tail-anchored protein heme oxygenase-1 (HO-1). These E3 ligases associate with the intramembrane cleaving signal peptide peptidase (SPP) and facilitate the degradation of HO-1 following intramembrane proteolysis. Our results highlight how ER-resident ligases may target the same substrates, but work independently of each other, to optimise the protein quality control of selected soluble and tail-anchored proteins.
Collapse
Affiliation(s)
- Sandra Stefanovic-Barrett
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Anna S Dickson
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Stephen P Burr
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - James C Williamson
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Ian T Lobb
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Dick Jh van den Boomen
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Paul J Lehner
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Wang J, Tan M, Ge J, Zhang P, Zhong J, Tao L, Wang Q, Tong X, Qiu J. Lysosomal acid lipase promotes cholesterol ester metabolism and drives clear cell renal cell carcinoma progression. Cell Prolif 2018; 51:e12452. [PMID: 29569766 DOI: 10.1111/cpr.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/22/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Clear cell renal cell carcinoma (ccRCC) is characterized histologically by accumulation of cholesterol esters, cholesterol and other neutral lipids. Lysosomal acid lipase (LAL) is a critical enzyme involved in the cholesterol ester metabolism. Here, we sought to determine whether LAL could orchestrate metabolism of cholesterol esters in order to promote ccRCC progression. MATERIALS AND METHODS Quantitative reverse-transcription PCR and western blots were conducted to assess the expression of LAL in human ccRCC tissues. We analysed the relationship between LAL levels and patient survival using tissue microarrays. We used cell proliferation assays, colony formation assays, cell death assays, metabolic assays and xenograft tumour models to evaluate the biological function and underlying mechanisms. RESULTS LAL was up-regulated in ccRCC tissue. Tissue microarray analysis revealed higher levels of LAL in advanced grades of ccRCC, and high LAL expression indicated lower patient survival. Suppressing LAL expression not only blocked the utilization of cholesterol esters but also impaired proliferation and cellular survival. Furthermore, immunohistochemistry staining showed that LAL expression was correlated with Akt phosphorylation. Suppressing LAL expression decreased the phosphorylation level of Akt and Src and reduced the level of 14,15-epoxyeicosatrienoic acids in ccRCC cells. Supplement of 14,15-epoxyeicosatrienoic acids rescued proliferation in vitro and in vivo. CONCLUSIONS LAL promoted cell proliferation and survival via metabolism of epoxyeicosatrienoic acids and activation of the Src/Akt pathway.
Collapse
Affiliation(s)
- Jun Wang
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyue Tan
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jifu Ge
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Zhang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhong
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Le Tao
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong Wang
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xuemei Tong
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxin Qiu
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Gil-Ramírez A, Morales D, Soler-Rivas C. Molecular actions of hypocholesterolaemic compounds from edible mushrooms. Food Funct 2018; 9:53-69. [DOI: 10.1039/c7fo00835j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Edible mushrooms contain bioactive compounds able to modulate the expression of genes related to absorption, biosynthesis and transport of cholesterol and regulation of its homeostasis.
Collapse
Affiliation(s)
- Alicia Gil-Ramírez
- Department of Production and Characterization of Novel Foods
- CIAL – Research Institute in Food Science (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autonoma de Madrid
| | - Diego Morales
- Department of Production and Characterization of Novel Foods
- CIAL – Research Institute in Food Science (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autonoma de Madrid
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods
- CIAL – Research Institute in Food Science (UAM+CSIC)
- C/Nicolas Cabrera 9
- Campus de Cantoblanco
- Universidad Autonoma de Madrid
| |
Collapse
|
22
|
Zhang L, Rajbhandari P, Priest C, Sandhu J, Wu X, Temel R, Castrillo A, de Aguiar Vallim TQ, Sallam T, Tontonoz P. Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. eLife 2017; 6:e28766. [PMID: 29068315 PMCID: PMC5656429 DOI: 10.7554/elife.28766] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
Cholesterol homeostasis is maintained through concerted action of the SREBPs and LXRs. Here, we report that RNF145, a previously uncharacterized ER membrane ubiquitin ligase, participates in crosstalk between these critical signaling pathways. RNF145 expression is induced in response to LXR activation and high-cholesterol diet feeding. Transduction of RNF145 into mouse liver inhibits the expression of genes involved in cholesterol biosynthesis and reduces plasma cholesterol levels. Conversely, acute suppression of RNF145 via shRNA-mediated knockdown, or chronic inactivation of RNF145 by genetic deletion, potentiates the expression of cholesterol biosynthetic genes and increases cholesterol levels both in liver and plasma. Mechanistic studies show that RNF145 triggers ubiquitination of SCAP on lysine residues within a cytoplasmic loop essential for COPII binding, potentially inhibiting its transport to Golgi and subsequent processing of SREBP-2. These findings define an additional mechanism linking hepatic sterol levels to the reciprocal actions of the SREBP-2 and LXR pathways.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Christina Priest
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Xiaohui Wu
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Ryan Temel
- Saha Cardiovascular Research CenterUniversity of KentuckyLexingtonUnited States
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonUnited States
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto SolsCSIC-Universidad Autónoma de Madrid, Unidad de Biomedicina-Universidad de Las Palmas de Gran Canaria (Unidad asociada al CSIC)Las Palmas de Gran CanariaSpain
- Instituto Universitario de Investigaciones Biomédicas y SanitariasUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Tamer Sallam
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Peter Tontonoz
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
23
|
van de Weijer ML, Schuren ABC, van den Boomen DJH, Mulder A, Claas FHJ, Lehner PJ, Lebbink RJ, Wiertz EJHJ. Multiple E2 ubiquitin-conjugating enzymes regulate human cytomegalovirus US2-mediated immunoreceptor downregulation. J Cell Sci 2017; 130:2883-2892. [PMID: 28743740 DOI: 10.1242/jcs.206839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Misfolded endoplasmic reticulum (ER) proteins are dislocated towards the cytosol and degraded by the ubiquitin-proteasome system in a process called ER-associated protein degradation (ERAD). During infection with human cytomegalovirus (HCMV), the viral US2 protein targets HLA class I molecules (HLA-I) for degradation via ERAD to avoid elimination by the immune system. US2-mediated degradation of HLA-I serves as a paradigm of ERAD and has facilitated the identification of TRC8 (also known as RNF139) as an E3 ubiquitin ligase. No specific E2 enzymes had previously been described for cooperation with TRC8. In this study, we used a lentiviral CRISPR/Cas9 library targeting all known human E2 enzymes to assess their involvement in US2-mediated HLA-I downregulation. We identified multiple E2 enzymes involved in this process, of which UBE2G2 was crucial for the degradation of various immunoreceptors. UBE2J2, on the other hand, counteracted US2-induced ERAD by downregulating TRC8 expression. These findings indicate the complexity of cellular quality control mechanisms, which are elegantly exploited by HCMV to elude the immune system.
Collapse
Affiliation(s)
- Michael L van de Weijer
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Anouk B C Schuren
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | | | - Arend Mulder
- Dept. Immunohematology and blood transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Frans H J Claas
- Dept. Immunohematology and blood transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Robert Jan Lebbink
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
24
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
25
|
Identification of the ER-resident E3 ubiquitin ligase RNF145 as a novel LXR-regulated gene. PLoS One 2017; 12:e0172721. [PMID: 28231341 PMCID: PMC5322959 DOI: 10.1371/journal.pone.0172721] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/08/2017] [Indexed: 12/12/2022] Open
Abstract
Cellular cholesterol metabolism is subject to tight regulation to maintain adequate levels of this central lipid molecule. Herein, the sterol-responsive Liver X Receptors (LXRs) play an important role owing to their ability to reduce cellular cholesterol load. In this context, identifying the full set of LXR-regulated genes will contribute to our understanding of their role in cholesterol metabolism. Using global transcriptional analysis we report here the identification of RNF145 as an LXR-regulated target gene. We demonstrate that RNF145 is regulated by LXRs in both human and mouse primary cells and cell lines, and in vivo in mice. Regulation of RNF145 by LXR depends on a functional LXR-element in its proximal promotor. Consistent with LXR-dependent regulation of Rnf145 we show that regulation is lost in macrophages and fibroblasts from Lxrαβ(-/-) mice, and also in vivo in livers of Lxrα(-/-) mice treated with the LXR synthetic ligand T0901317. RNF145 is closely related to RNF139/TRC8, an E3 ligase implicated in control of SREBP processing. However, silencing of RNF145 in HepG2 or HeLa cells does not impair SREBP1/2 processing and sterol-responsive gene expression in these cells. Similar to TRC8, we demonstrate that RNF145 is localized to the ER and that it possesses intrinsic E3 ubiquitin ligase activity. In summary, we report the identification of RNF145 as an ER-resident E3 ubiquitin ligase that is transcriptionally controlled by LXR.
Collapse
|
26
|
Abstract
The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and deployment of secreted and integral membrane proteins. Proteins failing to attain their native conformation are degraded through the endoplasmic reticulum-associated degradation (ERAD) pathway via a series of tightly coupled steps: substrate recognition, dislocation, and ubiquitin-dependent proteasomal destruction. The same ERAD machinery also controls the flux through various metabolic pathways by coupling the turnover of metabolic enzymes to the levels of key metabolites. We review the current understanding and biological significance of ERAD-mediated regulation of lipid metabolism in mammalian cells.
Collapse
Affiliation(s)
- Julian Stevenson
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - Edmond Y Huang
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - James A Olzmann
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| |
Collapse
|
27
|
Beckner ME, Pollack IF, Nordberg ML, Hamilton RL. Glioblastomas with copy number gains in EGFR and RNF139 show increased expressions of carbonic anhydrase genes transformed by ENO1. BBA CLINICAL 2015; 5:1-15. [PMID: 27051584 PMCID: PMC4802406 DOI: 10.1016/j.bbacli.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/17/2015] [Accepted: 11/02/2015] [Indexed: 12/16/2022]
Abstract
Background Prominence of glycolysis in glioblastomas may be non-specific or a feature of oncogene-related subgroups (i.e. amplified EGFR, etc.). Relationships between amplified oncogenes and expressions of metabolic genes associated with glycolysis, directly or indirectly via pH, were therefore investigated. Methods Using multiplex ligation-dependent probe amplification, copy numbers (CN) of 78 oncogenes were quantified in 24 glioblastomas. Related expressions of metabolic genes encoding lactate dehydrogenases (LDHA, LDHC), carbonic anhydrases (CA3, CA12), monocarboxylate transporters (SLC16A3 or MCT4, SLC16A4 or MCT5), ATP citrate lyase (ACLY), glycogen synthase1 (GYS1), hypoxia inducible factor-1A (HIF1A), and enolase1 (ENO1) were determined in 22 by RT-qPCR. To obtain supra-glycolytic levels and adjust for heterogeneity, concurrent ENO1 expression was used to mathematically transform the expression levels of metabolic genes already normalized with delta-delta crossing threshold methodology. Results Positive correlations with EGFR occurred for all metabolic genes. Significant differences (Wilcoxon Rank Sum) for oncogene CN gains in tumors of at least 2.00-fold versus less than 2.00-fold occurred for EGFR with CA3's expression (p < 0.03) and for RNF139 with CA12 (p < 0.004). Increased CN of XIAP associated negatively. Tumors with less than 2.00-fold CN gains differed from those with gains for XIAP with CA12 (p < 0.05). Male gender associated with CA12 (p < 0.05). Conclusions Glioblastomas with CN increases in EGFR had elevated CA3 expression. Similarly, tumors with RNF149 CN gains had elevated CA12 expression. General significance In larger studies, subgroups of glioblastomas may emerge according to oncogene-related effects on glycolysis, such as control of pH via effects on carbonic anhydrases, with prognostic and treatment implications. PCR of glioblastomas show oncogene copy numbers relate to metabolic gene expressions. ENO1(ENOLASE1) transformations yielded “supra-glycolytic” metabolic gene expressions. EGFR, RNF139, and XIAP associated with expressions of two carbonic anhydrase genes. Male gender associated (+) with the transformed expression of carbonic anhydrase 12. Oncogene amplifications may aid control of pH to protect glycolysis in glioblastomas.
Collapse
Key Words
- Amplified oncogenes
- CN, copy number
- Carbonic anhydrase
- DAPI, diaminephylindole
- EGFR
- GB, glioblastoma
- GOI, gene of interest
- Glycolysis
- HKG, housekeeping gene
- IRES, internal ribosome entry site
- MLPA, multiplex ligation-dependent probe amplification
- MPNST, malignant peripheral nerve sheath tumor
- MTB/GF, metabolic/growth factor
- NB, normal brain
- REMBRANDT, Repository of Molecular Brain Neoplasia Database
- RNF139
- RT-qPCR, real time quantitative PCR
- SLC, solute carrier
- WHO, World Health Organization
- XIAP
- ddCt, delta-delta crossing threshold
Collapse
Affiliation(s)
- Marie E Beckner
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, RM. 3-438, 1501 Kings Highway, Shreveport, LA 71130, United States 1(former position)
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, United States; 4th Floor, Children's Hospital of Pittsburgh, UPMC, 4129 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Mary L Nordberg
- Department of Medicine, Louisiana State University Health, 1501 Kings Highway, Shreveport, LA 71130, United States; The Delta Pathology Group, One Saint Mary Place, Shreveport, LA 71101, United States
| | - Ronald L Hamilton
- Department of Pathology, Division of Neuropathology, S724.1, Scaife Hall, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, United States
| |
Collapse
|
28
|
Zhao M, Li H, Bu X, Lei C, Fang Q, Hu Z. Quantitative Proteomic Analysis of Cellular Resistance to the Nanoparticle Abraxane. ACS NANO 2015; 9:10099-10112. [PMID: 26324059 DOI: 10.1021/acsnano.5b03677] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Abraxane, an FDA-approved albumin-bound nanoparticle (NP) form of paclitaxel (PTX) to treat breast cancer and nonsmall cell lung cancer (NSCLC), has been demonstrated to be more effective than the original Taxol, the single molecule form. We have established a cell line from NSCLC A549 cells to be resistant to Abraxane. To further understand the molecular mechanisms involved in the NP drug resistance, global protein expression profiles of Abraxane sensitive (A549) and resistant cells (A549/Abr), along with the treatment of Abraxane, have been obtained by a quantitative proteomic approach. The most significantly differentially expressed proteins are associated with lipid metabolism, cell cycle, cytoskeleton, apoptosis pathways and processes, suggesting several mechanisms are working synergistically in A549 Abraxane-resistant cells. Overexpression of proteins in the lipid metabolism processes, such as E3 ubiquitin-protein ligase RNF139 (RNF139) and Hydroxymethylglutaryl-CoA synthase (HMGCS1), have not been reported previously in the study of paclitaxel resistance, suggesting possibly different mechanism between nanoparticle and single molecular drug resistance. In particular, RNF139 is one of the most up-regulated proteins in A549 Abraxane-resistant cell line, but remains no change when the resistant cells were further treated with Abraxane and down-regulated in the sensitive cells after 4 h treatment of Abraxane. This study shows the use of a proteomic strategy to understand the unique response of drug resistant cells to a nanoparticle therapeutic.
Collapse
Affiliation(s)
- Minzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100190, China
| | - Haiyun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100190, China
| | - Xiangli Bu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100190, China
| | - Chunni Lei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100190, China
| | - Qiaojun Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
29
|
Chang PC, Tsai HW, Chiang MT, Huang PL, Shyue SK, Chau LY. TRC8 downregulation contributes to the development of non-alcoholic steatohepatitis by exacerbating hepatic endoplasmic reticulum stress. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2339-51. [PMID: 26319415 DOI: 10.1016/j.bbadis.2015.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 01/23/2023]
Abstract
Endoplasmic reticulum (ER) stress is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). TRC8 is an ER-resident E3 ligase with roles in modulating lipid and protein biosynthesis. In this study we showed that TRC8 expression was downregulated in steatotic livers of patients and mice fed with a high fat diet (HFD) or a methionine and choline deficient (MCD) diet. To investigate the impact of TRC8 downregulation on steatosis and the progression to non-alcoholic steatohepatitis (NASH), we placed TRC8 knockout (KO) mice and wild type (WT) controls on a HFD or MCD diet and the severities of steatosis and NASH developed were compared. We found that TRC8 deficiency did not significantly affect diet-induced steatosis. Nevertheless, MCD diet-induced NASH as characterized by hepatocyte death, inflammation and fibrosis were exacerbated in TRC8-KO mice. The hepatic ER stress response, as evidenced by increased eIF2α phosphorylation and expression of ATF4 and CHOP, and the level of activated caspase 3, an apoptosis indicator, were augmented by TRC8 deficiency. The hepatic ER stress and NASH induced in mice could be ameliorated by adenovirus-mediated hepatic TRC8 overexpression. Mechanistically, we found that TRC8 deficiency augmented lipotoxic-stress-induced unfolded protein response in hepatocytes by attenuating the arrest of protein translation and the misfolded protein degradation. These findings disclose a crucial role of TRC8 in the maintenance of ER protein homeostasis and its downregulation in steatotic liver contributes to the progression of NAFLD.
Collapse
Affiliation(s)
- Po-Chiao Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng-Kung University Hospital, Tainan, Taiwan.
| | - Ming-Tsai Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Pei-Ling Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Lee-Young Chau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
30
|
Abstract
E3 ubiquitin ligases play a central role in viral and cellular degradation of MHC-I. HCMV US2 and US11 hijack the mammalian ERAD machinery to induce MHC-I degradation. We identified the TRC8 and TMEM129 E3 ligases as crucial for US2/11 function. The US2/11 degradation hubs are flexible and enable viral evasion of different immune functions. Cellular quality control of MHC-I is controlled by the HRD1/SEL1L E3 ligase complex.
The human cytomegalovirus (HCMV) US2 and US11 gene products hijack mammalian ER-associated degradation (ERAD) to induce rapid degradation of major histocompatibility class I (MHC-I) molecules. The rate-limiting step in this pathway is thought to be the polyubiquitination of MHC-I by distinct host ERAD E3 ubiquitin ligases. TRC8 was identified as the ligase responsible for US2-mediated MHC-I degradation and shown to be required for the cleavage-dependent degradation of some tail-anchored proteins. In addition to MHC-I, plasma membrane profiling identified further immune receptors, which are also substrates for the US2/TRC8 complex. These include at least six α integrins, the coagulation factor thrombomodulin and the NK cell ligand CD112. US2’s use of specific HCMV-encoded adaptors makes it an adaptable viral degradation hub. US11-mediated degradation is MHC-I-specific and genetic screens have identified TMEM129, an uncharacterised RING-C2 E3 ligase, as responsible for US11-mediated degradation. In a unique auto-regulatory loop, US11 readily responds to changes in cellular expression of MHC-I. Free US11 either rebinds more MHC-I or is itself degraded by the HRD1/SEL1L E3 ligase complex. While virally encoded US2 and US11 appropriate mammalian ERAD, the MHC-I complex also undergoes stringent cellular quality control and misfolded MHC-I is degraded by the HRD1/SEL1L complex. We discuss the identification and central role of E3 ubiquitin ligases in ER quality control and viral degradation of the MHC-I chain.
Collapse
Affiliation(s)
- D J H van den Boomen
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK.
| | - P J Lehner
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
31
|
Hershey JWB. The role of eIF3 and its individual subunits in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:792-800. [PMID: 25450521 DOI: 10.1016/j.bbagrm.2014.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
Specific individual subunits of eIF3 are elevated or reduced in numerous human tumors, and their ectopic overexpression in immortal cells can result in malignant transformation. The structure and assembly of eIF3 and its role in promoting mRNA and methionyl-tRNAi binding to the ribosome during the initiation phase of protein synthesis are described. Methods employed to detect altered levels of eIF3 subunits in cancers are critically evaluated in order to conclude rigorously that such subunits may cause malignant transformation. Strong evidence is presented that the individual overexpression of eIF3 subunits 3a, 3b, 3c, 3h, 3i and 3m may cause malignant transformation, whereas underexpression of subunits 3e and 3f may cause a similar outcome. Possible mechanisms to explain the malignant phenotypes are examined. The involvement of eIF3 in cancer reinforces the view that translational control plays an important role in the regulation of cell proliferation, and provides new targets for the development of therapeutic agents. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- John W B Hershey
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
32
|
Watts FZ, Baldock R, Jongjitwimol J, Morley SJ. Weighing up the possibilities: Controlling translation by ubiquitylation and sumoylation. ACTA ACUST UNITED AC 2014; 2:e959366. [PMID: 26779408 DOI: 10.4161/2169074x.2014.959366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022]
Abstract
Regulation of protein synthesis is of fundamental importance to cells. It has a critical role in the control of gene expression, and consequently cell growth and proliferation. The importance of this control is supported by the fact that protein synthesis is frequently upregulated in tumor cells. The major point at which regulation occurs is the initiation stage. Initiation of translation involves the interaction of several proteins to form the eIF4F complex, the recognition of the mRNA by this complex, and the subsequent recruitment of the 40S ribosomal subunit to the mRNA. This results in the formation of the 48S complex that then scans the mRNA for the start codon, engages the methionyl-tRNA and eventually forms the mature 80S ribosome which is elongation-competent. Formation of the 48S complex is regulated by the availability of individual initiation factors and through specific protein-protein interactions. Both of these events can be regulated by post-translational modification by ubiquitin or Ubls (ubiquitin-like modifiers) such as SUMO or ISG15. We provide here a summary of translation initiation factors that are modified by ubiquitin or Ubls and, where they have been studied in detail, describe the role of these modifications and their effects on regulating protein synthesis.
Collapse
Affiliation(s)
- Felicity Z Watts
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Robert Baldock
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Jirapas Jongjitwimol
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Simon J Morley
- Department of Biochemistry and Biomedical Science; School of Life Sciences; University of Sussex ; Brighton, UK
| |
Collapse
|
33
|
Sharpe LJ, Cook ECL, Zelcer N, Brown AJ. The UPS and downs of cholesterol homeostasis. Trends Biochem Sci 2014; 39:527-35. [PMID: 25220377 DOI: 10.1016/j.tibs.2014.08.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 11/26/2022]
Abstract
An emerging theme in the regulation of cholesterol homeostasis is the role of the ubiquitin proteasome system (UPS), through which proteins are ubiquitylated and then degraded in response to specific signals. The UPS controls all aspects of cholesterol metabolism including its synthesis, uptake, and efflux. We review here recent work uncovering the ubiquitylation and degradation of key players in cholesterol homeostasis. This includes the low-density lipoprotein (LDL) receptor, transcription factors (sterol regulatory element binding proteins and liver X receptors), flux-controlling enzymes in cholesterol synthesis (3-hydroxy-3-methylglutaryl-CoA reductase and squalene monooxygenase), and cholesterol exporters (ATP-binding cassette transporters ABCA1 and ABCG1). We explore which E3 ligases are involved, and identify areas deserving of further research.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Emma C L Cook
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
34
|
Abstract
To maintain cholesterol homeostasis, the processes of cholesterol metabolism are regulated at multiple levels including transcription, translation, and enzymatic activity. Recently, the regulation of protein stability of some key players in cholesterol metabolism has been characterized. More and more ubiquitin ligases have been identified including gp78, Hrd1, TRC8, TEB4, Fbw7, and inducible degrader of low density lipoprotein receptor. Their working mechanisms and physiological functions are becoming revealed. Here, we summarize the structure, substrates and function of these ubiquitin ligases. Their potential application in drug discovery is also discussed.
Collapse
Affiliation(s)
- Wei Jiang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bao-Liang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
35
|
Ruggiano A, Foresti O, Carvalho P. Quality control: ER-associated degradation: protein quality control and beyond. ACTA ACUST UNITED AC 2014; 204:869-79. [PMID: 24637321 PMCID: PMC3998802 DOI: 10.1083/jcb.201312042] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Even with the assistance of many cellular factors, a significant fraction of newly synthesized proteins ends up misfolded. Cells evolved protein quality control systems to ensure that these potentially toxic species are detected and eliminated. The best characterized of these pathways, the ER-associated protein degradation (ERAD), monitors the folding of membrane and secretory proteins whose biogenesis takes place in the endoplasmic reticulum (ER). There is also increasing evidence that ERAD controls other ER-related functions through regulated degradation of certain folded ER proteins, further highlighting the role of ERAD in cellular homeostasis.
Collapse
Affiliation(s)
- Annamaria Ruggiano
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 88 08003 Barcelona, Spain
| | | | | |
Collapse
|
36
|
The chaperonin CCT interacts with and mediates the correct folding and activity of three subunits of translation initiation factor eIF3: b, i and h. Biochem J 2014; 458:213-24. [PMID: 24320561 DOI: 10.1042/bj20130979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
eIF3 (eukaryotic initiation factor 3) is the largest and most complex eukaryotic mRNA translation factor in terms of the number of protein components or subunits. In mammals, eIF3 is composed of 13 different polypeptide subunits, of which five, i.e. a, b, c, g and i, are conserved and essential in vivo from yeasts to mammals. In the present study, we show that the eukaryotic cytosolic chaperonin CCT [chaperonin containing TCP-1 (tailless complex polypeptide 1)] binds to newly synthesized eIF3b and promotes the correct folding of eIF3h and eIF3i. Interestingly, overexpression of these last two subunits is associated with enhanced translation of specific mRNAs over and above the general enhancement of global translation. In agreement with this, our data show that, as CCT is required for the correct folding of eIF3h and eIF3i subunits, it indirectly influences gene expression with eIF3i overexpression enhancing both cap- and IRES (internal ribosome entry segment)-dependent translation initiation, whereas eIF3h overexpression selectively increases IRES-dependent translation initiation. Importantly, these studies demonstrate the requirement of the chaperonin machinery for the correct folding of essential components of the translational machinery and provide further evidence of the close interplay between the cell environment, cell signalling, cell proliferation, the chaperone machinery and translational apparatus.
Collapse
|
37
|
Bianchini E, Fanin M, Mamchaoui K, Betto R, Sandonà D. Unveiling the degradative route of the V247M α-sarcoglycan mutant responsible for LGMD-2D. Hum Mol Genet 2014; 23:3746-58. [PMID: 24565866 PMCID: PMC4065151 DOI: 10.1093/hmg/ddu088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many membrane and secretory proteins that fail to pass quality control in the endoplasmic reticulum (ER) are dislocated into the cytosol and degraded by the proteasome. In applying rigid rules, however, quality control sometimes discharges proteins that, even though defective, retain their function. The unnecessary removal of such proteins represents the pathogenetic hallmark of diverse genetic diseases, in the case of ΔF508 mutant of cystic fibrosis transmembrane conductance regulator being probably the best known example. Recently, the inappropriate proteasomal degradation of skeletal muscle sarcoglycans (α, β, γ and δ) with missense mutation has been proposed to be at the bases of mild-to-severe forms of limb girdle muscular dystrophy (LGMD) known as type 2D, 2E, 2C and 2F, respectively. The quality control pathway responsible for sarcoglycan mutant disposal, however, is so far unexplored. Here we reveal key components of the degradative route of V247M α-sarcoglycan mutant, the second most frequently reported mutation in LGMD-2D. The disclosure of the pathway, which is led by the E3 ligases HRD1 and RFP2, permits to identify new potential druggable targets of a disease for which no effective therapy is at present available. Notably, we show that the pharmacological inhibition of HRD1 activity rescues the expression of V247-α-sarcoglycan both in a heterologous cell model and in myotubes derived from a LGMD-2D patient carrying the L31P/V247M mutations. This represents the first evidence that the activity of E3 ligases, the enzymes in charge of mutant fate, can be eligible for drug interventions to treat sarcoglycanopathy.
Collapse
Affiliation(s)
| | - Marina Fanin
- Department of Neurosciences, University of Padova, Padova 35131, Italy
| | - Kamel Mamchaoui
- Institut de Myologie, UPMC UM76, INSERM U974, CNRS UMR 7215, Paris 6, France
| | - Romeo Betto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Padova 35131, Italy
| | | |
Collapse
|
38
|
Hsieh V, Kim MJ, Gelissen IC, Brown AJ, Sandoval C, Hallab JC, Kockx M, Traini M, Jessup W, Kritharides L. Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1. J Biol Chem 2014; 289:7524-36. [PMID: 24500716 DOI: 10.1074/jbc.m113.515890] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes.
Collapse
Affiliation(s)
- Victar Hsieh
- From the Atherosclerosis Laboratory, ANZAC Research Institute and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol Cell Biol 2014; 34:1262-70. [PMID: 24449766 DOI: 10.1128/mcb.01140-13] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mevalonate pathway is used by cells to produce sterol and nonsterol metabolites and is subject to tight metabolic regulation. We recently reported that squalene monooxygenase (SM), an enzyme controlling a rate-limiting step in cholesterol biosynthesis, is subject to cholesterol-dependent proteasomal degradation. However, the E3-ubiquitin (E3) ligase mediating this effect was not established. Using a candidate approach, we identify the E3 ligase membrane-associated RING finger 6 (MARCH6, also known as TEB4) as the ligase controlling degradation of SM. We find that MARCH6 and SM physically interact, and consistent with MARCH6 acting as an E3 ligase, its overexpression reduces SM abundance in a RING-dependent manner. Reciprocally, knockdown of MARCH6 increases the level of SM protein and prevents its cholesterol-regulated degradation. Additionally, this increases cell-associated SM activity but is unexpectedly accompanied by increased flux upstream of SM. Prompted by this observation, we found that knockdown of MARCH6 also controls the level of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) in hepatocytes and model cell lines. In conclusion, MARCH6 controls abundance of both SM and HMGCR, establishing it as a major regulator of flux through the cholesterol synthesis pathway.
Collapse
|
40
|
Chu YL, Wu X, Xu Y, Her C. MutS homologue hMSH4: interaction with eIF3f and a role in NHEJ-mediated DSB repair. Mol Cancer 2013; 12:51. [PMID: 23725059 PMCID: PMC3689047 DOI: 10.1186/1476-4598-12-51] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/31/2013] [Indexed: 11/11/2022] Open
Abstract
Background DNA mismatch repair proteins participate in diverse cellular functions including DNA damage response and repair. As a member of this protein family, the molecular mechanisms of hMSH4 in mitotic cells are poorly defined. It is known that hMSH4 is promiscuous, and among various interactions the hMSH4-hMSH5 interaction is involved in recognizing DNA intermediate structures arising from homologous recombination (HR). Results We identified a new hMSH4 interacting protein eIF3f – a protein that functions not only in translation but also in the regulation of apoptosis and tumorigenesis in humans. Our studies have demonstrated that hMSH4-eIF3f interaction is mediated through the N-terminal regions of both proteins. The interaction with eIF3f fosters hMSH4 protein stabilization, which in turn sustains γ-H2AX foci and compromises cell survival in response to ionizing radiation (IR)-induced DNA damage. These effects can be, at least partially, attributed to the down-regulation of NHEJ activity by hMSH4. Furthermore, the interplay between hMSH4 and eIF3f inhibits IR-induced AKT activation, and hMSH4 promotes eIF3f-mediated bypass of S phase arrest, and ultimately enhancing an early G2/M arrest in response to IR treatment. Conclusion Our current study has revealed a role for hMSH4 in the maintenance of genomic stability by suppressing NHEJ-mediated DSB repair.
Collapse
Affiliation(s)
- Yen-Lin Chu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Mail Drop 64-7520, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
41
|
The translational factor eIF3f: the ambivalent eIF3 subunit. Cell Mol Life Sci 2013; 70:3603-16. [PMID: 23354061 PMCID: PMC3771369 DOI: 10.1007/s00018-013-1263-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/18/2012] [Accepted: 01/07/2013] [Indexed: 11/15/2022]
Abstract
The regulation of the protein synthesis has a crucial role in governing the eukaryotic cell growth. Subtle changes of proteins involved in the translation process may alter the rate of the protein synthesis and modify the cell fate by shifting the balance from normal status into a tumoral or apoptotic one. The largest eukaryotic initiation factor involved in translation regulation is eIF3. Amongst the 13 factors constituting eIF3, the f subunit finely regulates this balance in a cell-type-specific manner. Loss of this factor causes malignancy in several cells, and atrophy in normal muscle cells. The intracellular interacting partners which influence its physiological significance in both cancer and muscle cells are detailed in this review. By delineating the global interaction network of this factor and by clarifying its intracellular role, it becomes apparent that the f subunit represents a promising candidate molecule to use for biotherapeutic applications.
Collapse
|
42
|
Tsai YC, Leichner GS, Pearce MMP, Wilson GL, Wojcikiewicz RJH, Roitelman J, Weissman AM. Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system. Mol Biol Cell 2012; 23:4484-94. [PMID: 23087214 PMCID: PMC3510011 DOI: 10.1091/mbc.e12-08-0631] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HMGCR is subject to Insig-dependent, sterol-accelerated ERAD. gp78 was reported to target HMGCR and Insig-1 for ubiquitination and degradation. Here gp78-mediated Insig-1 degradation is confirmed, but no role for gp78 is found in regulated ERAD of HMGCR. The identity of the HMGCR E3(s) and mechanistic details of HMGCR degradation await further study. The endoplasmic reticulum (ER)–resident enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyzes the rate-limiting step in sterol production and is the therapeutic target of statins. Understanding HMG-CoA reductase regulation has tremendous implications for atherosclerosis. HMG-CoA reductase levels are regulated in response to sterols both transcriptionally, through a complex regulatory loop involving the ER Insig proteins, and posttranslationally, by Insig-dependent protein degradation by the ubiquitin-proteasome system. The ubiquitin ligase (E3) gp78 has been implicated in the sterol-regulated degradation of HMG-CoA reductase and Insig-1 through ER-associated degradation (ERAD). More recently, a second ERAD E3, TRC8, has also been reported to play a role in the sterol-accelerated degradation of HMG-CoA reductase. We interrogated this network in gp78−/− mouse embryonic fibroblasts and also assessed two fibroblast cell lines using RNA interference. Although we consistently observe involvement of gp78 in Insig-1 degradation, we find no substantive evidence to support roles for either gp78 or TRC8 in the robust sterol-accelerated degradation of HMG-CoA reductase. We discuss factors that might lead to such discrepant findings. Our results suggest a need for additional studies before definitive mechanistic conclusions are drawn that might set the stage for development of drugs to manipulate gp78 function in metabolic disorders.
Collapse
Affiliation(s)
- Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, MD 20712, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Drabkin HA, Gemmill RM. Cholesterol and the development of clear-cell renal carcinoma. Curr Opin Pharmacol 2012; 12:742-50. [PMID: 22939900 DOI: 10.1016/j.coph.2012.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 02/01/2023]
Abstract
The majority of kidney cancers are clear-cell carcinomas (ccRCC), characterized by the accumulation of cholesterol, cholesterol esters, other neutral lipids and glycogen. Rather than being a passive bystander, the clear-cell phenotype is suggested to be a biomarker of deregulated cholesterol and lipid biosynthesis, which plays an important role in development of the disease. One clue to this relationship has come from the elucidation of the hereditary kidney cancer gene, TRC8, which functions partly to degrade key regulators of endogenous cholesterol and lipid biosynthesis. In addition, deregulation of the mevalonate pathway has been shown to play a key role in cellular transformation and invasion. These findings are supported by considerable epidemiologic data linking obesity and the deregulation of lipid biosynthesis to ccRCC.
Collapse
Affiliation(s)
- Harry A Drabkin
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA.
| | | |
Collapse
|
44
|
Lin PH, Lan WM, Chau LY. TRC8 suppresses tumorigenesis through targeting heme oxygenase-1 for ubiquitination and degradation. Oncogene 2012; 32:2325-34. [PMID: 22689053 DOI: 10.1038/onc.2012.244] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The TRC8 gene, which was previously shown to be disrupted by a 3;8 chromosomal translocation in hereditary kidney cancer, encodes for an endoplasmic reticulum-resident E3 ligase. Studies have shown that TRC8 exhibits a tumor-suppressive effect through its E3-ligase activity. Therefore, the identification of its physiological substrates will provide important insights into the molecular mechanism underlying TRC8-mediated tumor suppression. Here we show that TRC8 targets heme oxygenase-1 (HO-1), an antioxidant enzyme highly expressed in various cancers, for ubiquitination and degradation. Ectopic TRC8 expression suppresses HO-1-induced cancer cell growth and migration/invasion. Conversely, HO-1 depletion reduced the tumorigenic and invasive capacities promoted by TRC8 knockdown. HO-1 downregulation in renal carcinoma cells induces a mitotic delay at G2/M phase by increasing the intracellular reactive oxygen species and the DNA-damage-induced checkpoint activation. These results highlight the tumorigenic role of HO-1 and the importance of TRC8-mediated HO-1 degradation in the control of cancer growth.
Collapse
Affiliation(s)
- P-H Lin
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
45
|
Hager L, Li L, Pun H, Liu L, Hossain MA, Maguire GF, Naples M, Baker C, Magomedova L, Tam J, Adeli K, Cummins CL, Connelly PW, Ng DS. Lecithin:cholesterol acyltransferase deficiency protects against cholesterol-induced hepatic endoplasmic reticulum stress in mice. J Biol Chem 2012; 287:20755-68. [PMID: 22500017 PMCID: PMC3370258 DOI: 10.1074/jbc.m112.340919] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/06/2012] [Indexed: 12/22/2022] Open
Abstract
We recently reported that lecithin:cholesterol acyltransferase (LCAT) knock-out mice, particularly in the LDL receptor knock-out background, are hypersensitive to insulin and resistant to high fat diet-induced insulin resistance (IR) and obesity. We demonstrated that chow-fed Ldlr-/-xLcat+/+ mice have elevated hepatic endoplasmic reticulum (ER) stress, which promotes IR, compared with wild-type controls, and this effect is normalized in Ldlr-/-xLcat-/- mice. In the present study, we tested the hypothesis that hepatic ER cholesterol metabolism differentially regulates ER stress using these models. We observed that the Ldlr-/-xLcat+/+ mice accumulate excess hepatic total and ER cholesterol primarily attributed to increased reuptake of biliary cholesterol as we observed reduced biliary cholesterol in conjunction with decreased hepatic Abcg5/g8 mRNA, increased Npc1l1 mRNA, and decreased Hmgr mRNA and nuclear SREBP2 protein. Intestinal NPC1L1 protein was induced. Expression of these genes was reversed in the Ldlr-/-xLcat-/- mice, accounting for the normalization of total and ER cholesterol and ER stress. Upon feeding a 2% high cholesterol diet (HCD), Ldlr-/-xLcat-/- mice accumulated a similar amount of total hepatic cholesterol compared with the Ldlr-/-xLcat+/+ mice, but the hepatic ER cholesterol levels remained low in conjunction with being protected from HCD-induced ER stress and IR. Hepatic ER stress correlates strongly with hepatic ER free cholesterol but poorly with hepatic tissue free cholesterol. The unexpectedly low ER cholesterol seen in HCD-fed Ldlr-/-xLcat-/- mice was attributable to a coordinated marked up-regulation of ACAT2 and suppressed SREBP2 processing. Thus, factors influencing the accumulation of ER cholesterol may be important for the development of hepatic insulin resistance.
Collapse
Affiliation(s)
- Lauren Hager
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine and
| | - Lixin Li
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Henry Pun
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Lu Liu
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Mohammad A. Hossain
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Graham F. Maguire
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Mark Naples
- Division of Biochemistry, Hospital for Sick Children, Toronto M5G 1X8, Canada, and
| | - Chris Baker
- Division of Biochemistry, Hospital for Sick Children, Toronto M5G 1X8, Canada, and
| | - Lilia Magomedova
- Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Jonathan Tam
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Khosrow Adeli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
- Division of Biochemistry, Hospital for Sick Children, Toronto M5G 1X8, Canada, and
| | | | - Philip W. Connelly
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Dominic S. Ng
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| |
Collapse
|
46
|
Kim MJ, Jessup W. Protein turnover regulated by cholesterol. Curr Opin Lipidol 2012; 23:76-7. [PMID: 22241328 DOI: 10.1097/mol.0b013e32834f42b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Nakamura N. The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function. MEMBRANES 2011; 1:354-93. [PMID: 24957874 PMCID: PMC4021871 DOI: 10.3390/membranes1040354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/24/2011] [Accepted: 12/05/2011] [Indexed: 01/08/2023]
Abstract
A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
48
|
Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8. Proc Natl Acad Sci U S A 2011; 108:20503-8. [PMID: 22143767 DOI: 10.1073/pnas.1112831108] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulation of sterols in membranes of the endoplasmic reticulum (ER) leads to the accelerated ubiquitination and proteasomal degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids. This degradation results from sterol-induced binding of reductase to the Insig-1 or Insig-2 proteins of ER membranes. We previously reported that in immortalized human fibroblasts (SV-589 cells) Insig-1, but not Insig-2, recruits gp78, a membrane-bound RING-finger ubiquitin ligase. We now report that both Insig-1 and Insig-2 bind another membrane-bound RING-finger ubiquitin ligase called Trc8. Knockdown of either gp78 or Trc8 in SV-589 cells through RNA interference (RNAi) inhibited sterol-induced ubiquitination of reductase and inhibited sterol-induced degradation by 50-60%. The combined knockdown of gp78 and Trc8 produced a more complete inhibition of degradation (> 90%). Knockdown of gp78 led to a three to fourfold increase in levels of Trc8 and Insig-1 proteins, which opposed the inhibitory action of gp78. In contrast, knockdown of Trc8 had no effect on gp78 or Insig-1. The current results suggest that sterol-induced ubiquitination and proteasomal degradation of reductase is dictated by the complex interplay of at least four proteins: Insig-1, Insig-2, gp78, and Trc8. Variations in the concentrations of any one of these proteins may account for differences in cell- and/or tissue-specific regulation of reductase degradation.
Collapse
|
49
|
Claessen JHL, Kundrat L, Ploegh HL. Protein quality control in the ER: balancing the ubiquitin checkbook. Trends Cell Biol 2011; 22:22-32. [PMID: 22055166 DOI: 10.1016/j.tcb.2011.09.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 11/30/2022]
Abstract
Protein maturation in the endoplasmic reticulum (ER) is subject to stringent quality control. Terminally misfolded polypeptides are usually ejected into the cytoplasm and targeted for destruction by the proteasome. Ubiquitin conjugation is essential for both extraction and proteolysis. We discuss the role of the ubiquitin conjugation machinery in this pathway and focus on the role of ubiquitin ligase complexes as gatekeepers for membrane passage. We then examine the type of ubiquitin modification applied to the misfolded ER protein and the role of de-ubiquitylating enzymes in the extraction of proteins from the ER.
Collapse
Affiliation(s)
- Jasper H L Claessen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
50
|
Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 2011; 11:629-43. [PMID: 21863050 PMCID: PMC3542975 DOI: 10.1038/nrc3120] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system has numerous crucial roles in physiology and pathophysiology. Fundamental to the specificity of this system are ubiquitin-protein ligases (E3s). Of these, the majority are RING finger and RING finger-related E3s. Many RING finger E3s have roles in processes that are central to the maintenance of genomic integrity and cellular homeostasis, such as the anaphase promoting complex/cyclosome (APC/C), the SKP1-cullin 1-F-box protein (SCF) E3s, MDM2, BRCA1, Fanconi anaemia proteins, CBL proteins, von Hippel-Lindau tumour suppressor (VHL) and SIAH proteins. As a result, many RING finger E3s are implicated in either the suppression or the progression of cancer. This Review summarizes current knowledge in this area.
Collapse
Affiliation(s)
- Stanley Lipkowitz
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|