1
|
Puljko B, Grbavac J, Potočki V, Ilic K, Viljetić B, Kalanj-Bognar S, Heffer M, Debeljak Ž, Blažetić S, Mlinac-Jerkovic K. The good, the bad, and the unknown nature of decreased GD3 synthase expression. Front Mol Neurosci 2024; 17:1465013. [PMID: 39649107 PMCID: PMC11621222 DOI: 10.3389/fnmol.2024.1465013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/04/2024] [Indexed: 12/10/2024] Open
Abstract
This paper explores the physiological consequences of decreased expression of GD3 synthase (GD3S), a biosynthetic enzyme that catalyzes the synthesis of b-series gangliosides. GD3S is a key factor in tumorigenesis, with overexpression enhancing tumor growth, proliferation, and metastasis in various cancers. Hence, inhibiting GD3S activity has potential therapeutic effects due to its role in malignancy-associated pathways across different cancer types. GD3S has also been investigated as a promising therapeutic target in treatment of various neurodegenerative disorders. Drugs targeting GD3 and GD3S have been extensively explored and underwent clinical trials, however decreased GD3S expression in mouse models, human subjects, and in vitro studies has demonstrated serious adverse effects. We highlight these negative consequences and show original mass spectrometry imaging (MSI) data indicating that inactivated GD3S can generally negatively affect energy metabolism, regulatory pathways, and mitigation of oxidative stress. The disturbance in several physiological systems induced by GD3S inhibition underscores the vital role of this enzyme in maintaining cellular homeostasis and should be taken into account when GD3S is considered as a therapeutic target.
Collapse
Affiliation(s)
- Borna Puljko
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Josip Grbavac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Vinka Potočki
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Ilic
- Department of Neuroimaging, BRAIN Centre, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Barbara Viljetić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Khamrui E, Banerjee S, Mukherjee DD, Biswas K. Emerging role of MAPK signaling in glycosphingolipid-associated tumorigenesis. Glycoconj J 2024; 41:343-360. [PMID: 39368037 DOI: 10.1007/s10719-024-10168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Glycosphingolipids (GSLs) are a type of amphipathic lipid molecules consisting of hydrophobic ceramide backbone bound to carbohydrate moiety clustered in the cell surface microdomains named 'lipid rafts' and are known to participate in cell-cell communication as well as intra-cellular signaling, thereby facilitating critical normal cellular processes and functions. Over the past several decades, various GSLs have been reported to be aberrantly expressed in different cancers, many of which have been associated with their prognosis. The wide implication of MAPK signaling in controlling tumor growth, progression, and metastasis through activation of an upstream signaling cascade, often originating in the cell membrane, justifies the rationale for its plausible influence on MAPK signaling. This review highlights the role of GSLs and their metabolites in regulating different signaling pathways towards modulation of tumor cell growth, migration, and adhesion by interacting with various receptors [epidermal growth factor receptor (EGFR), and platelet derived growth factor receptor (PDGFR), and other receptor tyrosine kinases (RTKs)] leading to activation of the MAPK pathway. Furthermore, GSLs can influence the activity and localization of downstream signaling components in the MAPK pathway by regulating the activation state of kinases, which in turn, regulate the activity of MAPKs. Additionally, this review further consolidates the GSL-mediated modulation of MAPK pathway components through the regulation of gene expression. Finally, recent findings on GSL-MAPK crosstalk will be explored in this article for the identification of potential anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Elora Khamrui
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Sounak Banerjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Dipanwita Das Mukherjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
3
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
4
|
Kundu S, Rohokale R, Lin C, Chen S, Biswas S, Guo Z. Bifunctional glycosphingolipid (GSL) probes to investigate GSL-interacting proteins in cell membranes. J Lipid Res 2024; 65:100570. [PMID: 38795858 PMCID: PMC11261293 DOI: 10.1016/j.jlr.2024.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/28/2024] Open
Abstract
Glycosphingolipids (GSLs) are abundant glycolipids on cells and essential for cell recognition, adhesion, signal transduction, and so on. However, their lipid anchors are not long enough to cross the membrane bilayer. To transduce transmembrane signals, GSLs must interact with other membrane components, whereas such interactions are difficult to investigate. To overcome this difficulty, bifunctional derivatives of II3-β-N-acetyl-D-galactosamine-GA2 (GalNAc-GA2) and β-N-acetyl-D-glucosamine-ceramide (GlcNAc-Cer) were synthesized as probes to explore GSL-interacting membrane proteins in live cells. Both probes contain photoreactive diazirine in the lipid moiety, which can crosslink with proximal membrane proteins upon photoactivation, and clickable alkyne in the glycan to facilitate affinity tag addition for crosslinked protein pull-down and characterization. The synthesis is highlighted by the efficient assembly of simple glycolipid precursors followed by on-site lipid remodeling. These probes were employed to profile GSL-interacting membrane proteins in HEK293 cells. The GalNAc-GA2 probe revealed 312 distinct proteins, with GlcNAc-Cer probe-crosslinked proteins as controls, suggesting the potential influence of the glycan on GSL functions. Many of the proteins identified with the GalNAc-GA2 probe are associated with GSLs, and some have been validated as being specific to this probe. The versatile probe design and experimental protocols are anticipated to be widely applicable to GSL research.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA; Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Shayak Biswas
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Thomas M, Nguyen TH, Drnevich J, D’Souza AM, de Alarcon PA, Gnanamony M. Hu14.18K.322A Causes Direct Cell Cytotoxicity and Synergizes with Induction Chemotherapy in High-Risk Neuroblastoma. Cancers (Basel) 2024; 16:2064. [PMID: 38893185 PMCID: PMC11171330 DOI: 10.3390/cancers16112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The disialoganglioside, GD2, is a promising therapeutic target due to its overexpression in certain tumors, particularly neuroblastoma (NB), with limited expression in normal tissues. Despite progress, the intricate mechanisms of action and the full spectrum of the direct cellular responses to anti-GD2 antibodies remain incompletely understood. In this study, we examined the direct cytotoxic effects of the humanized anti-GD2 antibody hu14.18K322A (hu14) on NB cell lines, by exploring the associated cell-death pathways. Additionally, we assessed the synergy between hu14 and conventional induction chemotherapy drugs. Our results revealed that hu14 treatment induced direct cytotoxic effects in CHLA15 and SK-N-BE1 cell lines, with a pronounced impact on proliferation and colony formation. Apoptosis emerged as the predominant cell-death pathway triggered by hu14. Furthermore, we saw a reduction in GD2 surface expression in response to hu14 treatment. Hu14 demonstrated synergy with induction chemotherapy drugs with alterations in GD2 expression. Our comprehensive investigation provides valuable insights into the multifaceted effects of hu14 on NB cells, shedding light on its direct cytotoxicity, cell-death pathways, and interactions with induction chemotherapy drugs. This study contributes to the evolving understanding of anti-GD2 antibody therapy and its potential synergies with conventional treatments in the context of NB.
Collapse
Affiliation(s)
- Maria Thomas
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Thu Hien Nguyen
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, The University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA;
| | - Amber M. D’Souza
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Pedro A. de Alarcon
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Manu Gnanamony
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| |
Collapse
|
6
|
van der Haar Àvila I, Zhang T, Lorrain V, de Bruin F, Spreij T, Nakayama H, Iwabuchi K, García-Vallejo JJ, Wuhrer M, van Kooyk Y, van Vliet SJ. Limited impact of cancer-derived gangliosides on anti-tumor immunity in colorectal cancer. Glycobiology 2024; 34:cwae036. [PMID: 38785323 PMCID: PMC11137322 DOI: 10.1093/glycob/cwae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression. In this paper, we investigated the immunomodulatory function of ST3Gal5, a sialyltransferase that catalyzes the addition of α2-3 sialic acids to glycosphingolipids, since lower expression of ST3Gal5 is associated with better survival of CRC patients. We employed CRISPR/Cas9 to knock out the ST3Gal5 gene in two murine CRC cell lines MC38 and CT26. Glycomics analysis confirmed the removal of sialic acids on glycolipids, with no discernible impact on glycoprotein sialylation. Although knocking out ST3Gal5 in both cell lines did not affect in vivo tumor growth, we observed enhanced levels of regulatory T cells in CT26 tumors lacking ST3Gal5. Moreover, we demonstrate that the absence of ST3Gal5 affected size and blood vessel density only in MC38 tumors. In summary, we ascertain that sialylation of glycosphingolipids has a limited influence on the anti-tumor immune response in CRC, despite detecting alterations in the tumor microenvironment, possibly due to a shift in ganglioside abundance.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Victor Lorrain
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Florance de Bruin
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Tianne Spreij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Hitoshi Nakayama
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Kazuhisa Iwabuchi
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Sarkar A, Banerjee S, Biswas K. Multi-dimensional role of gangliosides in modulating cancer hallmarks and their prospects in targeted cancer therapy. Front Pharmacol 2023; 14:1282572. [PMID: 38089042 PMCID: PMC10711107 DOI: 10.3389/fphar.2023.1282572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 12/10/2024] Open
Abstract
Gangliosides are glycosphingolipids with prevalence in nervous tissue and their involvement in certain neuronal diseases have been widely known. Interestingly, many recent studies highlighted their importance in the development and progression of various cancers through orchestration of multiple attributes of tumorigenesis, i.e., promoting migration, invasion, escaping the host immune system, and influencing other cancer hallmarks. Therefore, the multidimensional role of gangliosides in different cancers has established them as potential cancer targets. However, the tremendous structural complexity and functional heterogeneity are the major challenges in ganglioside research. Moreover, despite numerous immunotherapeutic attempts to target different gangliosides, it has failed to yield consistent results in clinical trials owing to their poor immunogenicity, a broad range of cross-reactivity, severe side effects, lack of uniform expression as well as heterogeneity. The recent identification of selective O-acetylated ganglioside expression in cancer tissues, but not in normal tissues, has strengthened their potential as a better and specific target for treating cancer patients. It was further supported by reduced cross-reactivity and side effects in clinical trials, although poor immunogenicity remains a major concern. Therefore, in addition to characterization and identification of the biological importance of O-acetylated gangliosides, their specific and efficient targeting in cancer through engineered antibodies is an emerging area of glycobiology research. This review highlights the modulatory effect of select gangliosides on different hallmarks of cancer and presents the overall development of ganglioside targeted immunotherapies along with recent progress. Here, we have also discussed its potential for future modifications aimed towards improvement in ganglioside-based cancer therapies.
Collapse
Affiliation(s)
| | | | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
8
|
Girych M, Kulig W, Enkavi G, Vattulainen I. How Neuromembrane Lipids Modulate Membrane Proteins: Insights from G-Protein-Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs). Cold Spring Harb Perspect Biol 2023; 15:a041419. [PMID: 37487628 PMCID: PMC10547395 DOI: 10.1101/cshperspect.a041419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Lipids play a diverse and critical role in cellular processes in all tissues. The unique lipid composition of nerve membranes is particularly interesting because it contains, among other things, polyunsaturated lipids, such as docosahexaenoic acid, which the body only gets through the diet. The crucial role of lipids in neurological processes, especially in receptor-mediated cell signaling, is emphasized by the fact that in many neuropathological diseases there are significant deviations in the lipid composition of nerve membranes compared to healthy individuals. The lipid composition of neuromembranes can significantly affect the function of receptors by regulating the physical properties of the membrane or by affecting specific interactions between receptors and lipids. In addition, it is worth noting that the ligand-binding pocket of many receptors is located inside the cell membrane, due to which lipids can even modulate the binding of ligands to their receptors. These mechanisms highlight the importance of lipids in the regulation of membrane receptor activation and function. In this article, we focus on two major protein families: G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) and discuss how lipids affect their function in neuronal membranes, elucidating the basic mechanisms underlying neuronal function and dysfunction.
Collapse
Affiliation(s)
- Mykhailo Girych
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
9
|
van der Haar Àvila I, Windhouwer B, van Vliet SJ. Current state-of-the-art on ganglioside-mediated immune modulation in the tumor microenvironment. Cancer Metastasis Rev 2023; 42:941-958. [PMID: 37266839 PMCID: PMC10584724 DOI: 10.1007/s10555-023-10108-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Gangliosides are sialylated glycolipids, mainly present at the cell surface membrane, involved in a variety of cellular signaling events. During malignant transformation, the composition of these glycosphingolipids is altered, leading to structural and functional changes, which are often negatively correlated to patient survival. Cancer cells have the ability to shed gangliosides into the tumor microenvironment, where they have a strong impact on anti-tumor immunity and promote tumor progression. Since most ganglioside species show prominent immunosuppressive activities, they might be considered checkpoint molecules released to counteract ongoing immunosurveillance. In this review, we highlight the current state-of-the-art on the ganglioside-mediated immunomodulation, specified for the different immune cells and individual gangliosides. In addition, we address the dual role that certain gangliosides play in the tumor microenvironment. Even though some ganglioside species have been more extensively studied than others, they are proven to contribute to the defense mechanisms of the tumor and should be regarded as promising therapeutic targets for inclusion in future immunotherapy regimens.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Britt Windhouwer
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands.
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
El Malki K, Wehling P, Alt F, Sandhoff R, Zahnreich S, Ustjanzew A, Wilzius C, Brockmann MA, Wingerter A, Russo A, Beck O, Sommer C, Ottenhausen M, Frauenknecht KBM, Paret C, Faber J. Glucosylceramide Synthase Inhibitors Induce Ceramide Accumulation and Sensitize H3K27 Mutant Diffuse Midline Glioma to Irradiation. Int J Mol Sci 2023; 24:9905. [PMID: 37373053 DOI: 10.3390/ijms24129905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
H3K27M mutant (mut) diffuse midline glioma (DMG) is a lethal cancer with no effective cure. The glycosphingolipids (GSL) metabolism is altered in these tumors and could be exploited to develop new therapies. We tested the effect of the glucosylceramide synthase inhibitors (GSI) miglustat and eliglustat on cell proliferation, alone or in combination with temozolomide or ionizing radiation. Miglustat was included in the therapy protocol of two pediatric patients. The effect of H3.3K27 trimethylation on GSL composition was analyzed in ependymoma. GSI reduced the expression of the ganglioside GD2 in a concentration and time-dependent manner and increased the expression of ceramide, ceramide 1-phosphate, sphingosine, and sphingomyelin but not of sphingosine 1-phosphate. Miglustat significantly increased the efficacy of irradiation. Treatment with miglustat according to dose recommendations for patients with Niemann-Pick disease was well tolerated with manageable toxicities. One patient showed a mixed response. In ependymoma, a high concentration of GD2 was found only in the presence of the loss of H3.3K27 trimethylation. In conclusion, treatment with miglustat and, in general, targeting GSL metabolism may offer a new therapeutic opportunity and can be administered in close proximity to radiation therapy. Alterations in H3K27 could be useful to identify patients with a deregulated GSL metabolism.
Collapse
Affiliation(s)
- Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Pia Wehling
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Francesca Alt
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
| | - Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Carolin Wilzius
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Olaf Beck
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Malte Ottenhausen
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Katrin B M Frauenknecht
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- National Center of Pathology (NCP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Research Center of Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Jörg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Cao S, Hu X, Ren S, Wang Y, Shao Y, Wu K, Yang Z, Yang W, He G, Li X. The biological role and immunotherapy of gangliosides and GD3 synthase in cancers. Front Cell Dev Biol 2023; 11:1076862. [PMID: 36824365 PMCID: PMC9941352 DOI: 10.3389/fcell.2023.1076862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Gangliosides are a large subfamily of glycosphingolipids that broadly exist in the nervous system and interact with signaling molecules in the lipid rafts. GD3 and GD2 are two types of disialogangliosides (GDs) that include two sialic acid residues. The expression of GD3 and GD2 in various cancers is mostly upregulated and is involved in tumor proliferation, invasion, metastasis, and immune responses. GD3 synthase (GD3S, ST8SiaI), a subclass of sialyltransferases, regulates the biosynthesis of GD3 and GD2. GD3S is also upregulated in most tumors and plays an important role in the development and progression of tumors. Many clinical trials targeting GD2 are ongoing and various immunotherapy studies targeting gangliosides and GD3S are gradually attracting much interest and attention. This review summarizes the function, molecular mechanisms, and ongoing clinical applications of GD3, GD2, and GD3S in abundant types of tumors, which aims to provide novel targets for future cancer therapy.
Collapse
Affiliation(s)
- Shangqi Cao
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xu Hu
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shangqing Ren
- 2Robotic Minimally Invasive Surgery Center, Sichuan Academy of Medical Sciences and Sichuan Provincial Peoples Hospital, Chengdu, China
| | - Yaohui Wang
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yanxiang Shao
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Kan Wu
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhen Yang
- 3Department of Urology, Chengdu Second People’s Hospital, Chengdu, China
| | - Weixiao Yang
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Gu He
- 4State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China,*Correspondence: Gu He, ; Xiang Li,
| | - Xiang Li
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China,*Correspondence: Gu He, ; Xiang Li,
| |
Collapse
|
12
|
Glycosyltransferases in Cancer: Prognostic Biomarkers of Survival in Patient Cohorts and Impact on Malignancy in Experimental Models. Cancers (Basel) 2022; 14:cancers14092128. [PMID: 35565254 PMCID: PMC9100214 DOI: 10.3390/cancers14092128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Glycosylation changes are a main feature of cancer. Some carbohydrate epitopes and expression levels of glycosyltransferases have been used or proposed as prognostic markers, while many experimental works have investigated the role of glycosyltransferases in malignancy. Using the transcriptomic data of the 21 TCGA cohorts, we correlated the expression level of 114 glycosyltransferases with the overall survival of patients. Methods: Using the Oncolnc website, we determined the Kaplan−Meier survival curves for the patients falling in the 15% upper or lower percentile of mRNA expression of each glycosyltransferase. Results: Seventeen glycosyltransferases involved in initial steps of N- or O-glycosylation and of glycolipid biosynthesis, in chain extension and sialylation were unequivocally associated with bad prognosis in a majority of cohorts. Four glycosyltransferases were associated with good prognosis. Other glycosyltransferases displayed an extremely high predictive value in only one or a few cohorts. The top were GALNT3, ALG6 and B3GNT7, which displayed a p < 1 × 10−9 in the low-grade glioma (LGG) cohort. Comparison with published experimental data points to ALG3, GALNT2, B4GALNT1, POFUT1, B4GALT5, B3GNT5 and ST3GAL2 as the most consistently malignancy-associated enzymes. Conclusions: We identified several cancer-associated glycosyltransferases as potential prognostic markers and therapeutic targets.
Collapse
|
13
|
Glycosphingolipids in human embryonic stem cells and breast cancer stem cells, and potential cancer therapy strategies based on their structures and functions. Glycoconj J 2022; 39:177-195. [PMID: 35267131 DOI: 10.1007/s10719-021-10032-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Expression profiles of glycosphingolipids (GSLs) in human embryonic stem cell (hESC) lines and their differentiated embryoid body (EB) outgrowth cells, consisting of three germ layers, were surveyed systematically. Several globo- and lacto-series GSLs were identified in undifferentiated hESCs and during differentiation of hESCs to EB outgrowth cells, and core structure switching of these GSLs to gangliosides was observed. Such switching was attributable to altered expression of key glycosyltransferases (GTs) in GSL biosynthetic pathways, reflecting the unique stage-specific transitions and mechanisms characteristic of the differentiation process. Lineage-specific differentiation of hESCs was associated with further GSL alterations. During differentiation of undifferentiated hESCs to neural progenitor cells, core structure switching from globo- and lacto-series to primarily gangliosides (particularly GD3) was again observed. During differentiation to endodermal cells, alterations of GSL profiles were distinct from those in differentiation to EB outgrowth or neural progenitor cells, with high expression of Gb4Cer and low expression of stage-specific embryonic antigen (SSEA)-3, -4, or GD3 in endodermal cells. Again, such profile changes resulted from alterations of key GTs in GSL biosynthetic pathways. Novel glycan structures identified on hESCs and their differentiated counterparts presumably play functional roles in hESCs and related cancer or cancer stem cells, and will be useful as surface biomarkers. We also examined GSL expression profiles in breast cancer stem cells (CSCs), using a model of epithelial-mesenchymal transition (EMT)-induced human breast CSCs. We found that GD2 and GD3, together with their common upstream GTs, GD3 synthase (GD3S) and GD2/GM2 synthase, maintained stem cell phenotype in breast CSCs. Subsequent studies showed that GD3 was associated with epidermal growth factor receptor (EGFR), and activated EGFR signaling in breast CSCs and breast cancer cell lines. GD3S knockdown enhanced cytotoxicity of gefitinib (an EGFR kinase inhibitor) in resistant MDA-MB468 cells, both in vitro and in vivo. Our findings indicate that GD3S contributes to gefitinib resistance in EGFR-positive breast cancer cells, and is a potentially useful therapeutic target in drug-resistant breast cancers.
Collapse
|
14
|
Kasprowicz A, Sophie GD, Lagadec C, Delannoy P. Role of GD3 Synthase ST8Sia I in Cancers. Cancers (Basel) 2022; 14:cancers14051299. [PMID: 35267607 PMCID: PMC8909605 DOI: 10.3390/cancers14051299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The carbohydrate moiety of cell surface glycolipids is modified in cancers of neuro–ectoderm origin, leading to the expression of more complex structures with two or more sialic acid residues. These alterations result from the upregulation of the ST8SIA1 gene that encodes GD3 synthase, the enzyme controlling the biosynthesis of complex gangliosides, and are usually associated with a more aggressive phenotype and a poor outcome for patients, making GD3 synthase an interesting target for cancer therapy. This review reports our general knowledge of GD3 synthase gene expression and regulation, its role in both epithelial–mesenchymal transition (EMT) and cancer progression, and the different approaches targeting GD3S expression in cancers. Abstract GD3 synthase controls the biosynthesis of complex gangliosides, bearing two or more sialic acid residues. Disialylated gangliosides GD3 and GD2 are tumor-associated carbohydrate antigens (TACA) in neuro–ectoderm-derived cancers, and are directly involved in cell malignant properties, i.e., migration, invasion, stemness, and epithelial–mesenchymal transition. Since GD3 and GD2 levels are directly linked to GD3 synthase expression and activity, targeting GD3 synthase appears to be a promising strategy through which to interfere with ganglioside-associated malignant properties. We review here the current knowledge on GD3 synthase expression and regulation in cancers, and the consequences of complex ganglioside expression on cancer cell signaling and properties, highlighting the relationships between GD3 synthase expression and epithelial–mesenchymal transition and stemness. Different strategies were used to modulate GD3 synthase expression in cancer cells in vitro and in animal models, such as inhibitors or siRNA/lncRNA, which efficiently reduced cancer cell malignant properties and the proportion of GD2 positive cancer stem cells, which are associated with high metastatic properties, resistance to therapy, and cancer relapse. These data show the relevance of targeting GD3 synthase in association with conventional therapies, to decrease the number of cancer stem cells in tumors.
Collapse
Affiliation(s)
- Angelina Kasprowicz
- University of Lille, CNRS, UMR 8576-UGSF-Unité de Glycosylation Structurale et Fonctionnelle, F-59000 Lille, France;
| | - Groux-Degroote Sophie
- University of Lille, CNRS, UMR 8576-UGSF-Unité de Glycosylation Structurale et Fonctionnelle, F-59000 Lille, France;
- Correspondence: (G.-D.S.); (P.D.)
| | - Chann Lagadec
- University of Lille, CNRS, Inserm, CHU Lille UMR9020-U1277-CANTHER Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Philippe Delannoy
- University of Lille, CNRS, UMR 8576-UGSF-Unité de Glycosylation Structurale et Fonctionnelle, F-59000 Lille, France;
- Correspondence: (G.-D.S.); (P.D.)
| |
Collapse
|
15
|
Groux-Degroote S, Foulquier F, Cavdarli S, Delannoy P. [Reticular and Golgi glycosylation: Advances and associated diseases]. Med Sci (Paris) 2021; 37:609-617. [PMID: 34180820 DOI: 10.1051/medsci/2021082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycosylation is one of the essential modifications of proteins and lipids. It is carried out mainly in the endoplasmic reticulum and Golgi apparatus, and requires a specific molecular machinery associating several hundreds of glycosyltransferases, glycosidases, transporters and regulating proteins. Modifications of glycosylation are found in numerous diseases, notably in cancers. All types of glycosylation can be affected and this leads to dysfunctions of cellular metabolism. In this review, we present the current knowledge on the regulation of glycosylation mechanisms and illustrate how the alteration of these regulatory mechanisms can lead to abnormal protein and lipid glycosylation, and take part in the development of cancers.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de glycobiologie structurale et fonctionnelle, Avenue Mendeleïev, 59655 Villeneuve-d'Ascq, France
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de glycobiologie structurale et fonctionnelle, Avenue Mendeleïev, 59655 Villeneuve-d'Ascq, France
| | - Sumeyye Cavdarli
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de glycobiologie structurale et fonctionnelle, Avenue Mendeleïev, 59655 Villeneuve-d'Ascq, France
| | - Philippe Delannoy
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de glycobiologie structurale et fonctionnelle, Avenue Mendeleïev, 59655 Villeneuve-d'Ascq, France
| |
Collapse
|
16
|
Cancer-Associated Glycosphingolipids as Tumor Markers and Targets for Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22116145. [PMID: 34200284 PMCID: PMC8201009 DOI: 10.3390/ijms22116145] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Aberrant expression of glycosphingolipids is a hallmark of cancer cells and is associated with their malignant properties. Disialylated gangliosides GD2 and GD3 are considered as markers of neuroectoderm origin in tumors, whereas fucosyl-GM1 is expressed in very few normal tissues but overexpressed in a variety of cancers, especially in small cell lung carcinoma. These gangliosides are absent in most normal adult tissues, making them targets of interest in immuno-oncology. Passive and active immunotherapy strategies have been developed, and have shown promising results in clinical trials. In this review, we summarized the current knowledge on GD2, GD3, and fucosyl-GM1 expression in health and cancer, their biosynthesis pathways in the Golgi apparatus, and their biological roles. We described how their overexpression can affect intracellular signaling pathways, increasing the malignant phenotypes of cancer cells, including their metastatic potential and invasiveness. Finally, the different strategies used to target these tumor-associated gangliosides for immunotherapy were discussed, including the use and development of monoclonal antibodies, vaccines, immune system modulators, and immune effector-cell therapy, with a special focus on adoptive cellular therapy with T cells engineered to express chimeric antigen receptors.
Collapse
|
17
|
Xing P, Wang Y, Zhang L, Ma C, Lu J. Knockdown of lncRNA MIR4435‑2HG and ST8SIA1 expression inhibits the proliferation, invasion and migration of prostate cancer cells in vitro and in vivo by blocking the activation of the FAK/AKT/β‑catenin signaling pathway. Int J Mol Med 2021; 47:93. [PMID: 33846784 PMCID: PMC8041483 DOI: 10.3892/ijmm.2021.4926] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is a main health risk for males with a high incidence and mortality. The present study aimed to examine the effects of long non‑coding RNA (lncRNA) MIR4435‑2HG binding with ST8SIA1 on the proliferation, invasion and migration of prostate cancer cells via the activation of the FAK/AKT/β‑catenin signaling pathway. The expression of MIR4435‑2HG and ST8SIA1 in prostate cancer cell lines, and the transfection efficacy were analyzed by RT‑qPCR. The proliferation, clone formation ability, and the invasion and migration of transfected cells were detected by CCK‑8 assay, clone formation assay, Transwell assay and wound healing assay, respectively. Plasmids were injected subcutaneously into mice to construct a xenograft tumor model. The expression levels of proteins related to proliferation, apoptosis, invasion and migration, and the FAK/AKT/β‑catenin pathway were detected by western blot analysis. The results revealed that MIR4435‑2HG expression was increased in the prostate cancer cell lines and MIR4435‑2HG expression was the highest in the PC‑3 cells. Interference with MIR4435‑2HG inhibited the proliferation, clone formation ability, and the invasion and migration of PC‑3 cells, as well as tumor growth by suppressing the activation of the FAK/AKT/β‑catenin signaling pathway. MIR4435‑2HG was demonstrated to target ST8SIA1. ST8SIA1 expression was also increased in the prostate cancer cell lines and MIR4435‑2HG expression was the highest in the PC‑3 cells. Interference with ST8SIA1 inhibited the promoting effects of MIR4435‑2HG on the proliferation, invasion and migration of PC‑3 cells, as well as tumor growth by suppressing the activation of the FAK/AKT/β‑catenin signaling pathway. On the whole, the present study demonstrates that interference with MIR4435‑2HG, combined with ST8SIA1, inhibits the proliferation, invasion and migration of prostate cancer cells in vitro and in vivo by blocking the activation of the FAK/AKT/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Pengyi Xing
- Department of Radiology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, P.R. China
| | - Ye Wang
- Department of Urology, Chinese People's Liberation Army (PLA) General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Li Zhang
- Department of Endocrinology, PLA Joint Logistics Support Force No. 989 Hospital, Luoyang, Henan 471600, P.R. China
| | - Chao Ma
- Department of Radiology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, P.R. China
| | - Jianping Lu
- Department of Radiology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
18
|
Deciphering the Importance of Glycosphingolipids on Cellular and Molecular Mechanisms Associated with Epithelial-to-Mesenchymal Transition in Cancer. Biomolecules 2021; 11:biom11010062. [PMID: 33418847 PMCID: PMC7824851 DOI: 10.3390/biom11010062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Every living cell is covered with a dense and complex layer of glycans on the cell surface, which have important functions in the interaction between cells and their environment. Glycosphingolipids (GSLs) are glycans linked to lipid molecules that together with sphingolipids, sterols, and proteins form plasma membrane lipid rafts that contribute to membrane integrity and provide specific recognition sites. GSLs are subdivided into three major series (globo-, ganglio-, and neolacto-series) and are synthesized in a non-template driven process by enzymes localized in the ER and Golgi apparatus. Altered glycosylation of lipids are known to be involved in tumor development and metastasis. Metastasis is frequently linked with reversible epithelial-to-mesenchymal transition (EMT), a process involved in tumor progression, and the formation of new distant metastatic sites (mesenchymal-to-epithelial transition or MET). On a single cell basis, cancer cells lose their epithelial features to gain mesenchymal characteristics via mechanisms influenced by the composition of the GSLs on the cell surface. Here, we summarize the literature on GSLs in the context of reversible and cancer-associated EMT and discuss how the modification of GSLs at the cell surface may promote this process.
Collapse
|
19
|
Comprehensive Transcriptomic Analysis Identifies ST8SIA1 as a Survival-Related Sialyltransferase Gene in Breast Cancer. Genes (Basel) 2020; 11:genes11121436. [PMID: 33260650 PMCID: PMC7760851 DOI: 10.3390/genes11121436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Hypersialylation caused by the overexpression of sialyltransferases (STs) is a common feature in cancer that is associated with several characteristics of tumorigenesis. Thus, identifying cancer-associated STs is critical for cancer therapy. However, ST screening has been frequently conducted in cell line models. In this study, we conducted a comprehensive analysis of STs in the clinical database and identified the STs related with the survival of breast cancer patients. RNA sequencing (RNA-Seq) data of 496 patients were obtained from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA). Of the eight mapped STs, ST3GAL5, and ST8SIA1 met the acceptable area under the curve (AUC) criteria for overall survival (OS). Using Kaplan–Meier methods, we determined that high expression of ST8SIA1 was associated with poor 10-year OS in all patients, triple-negative breast cancer (TNBC), and non-TNBC patients, and poor disease-free survival (DFS) rates particularly in TNBC. ST8SIA1 also had superior AUC values in terms of OS/DFS. High ST8SIA1 levels showed a higher risk for poor OS in different groups of patients and a higher risk for poor DFS particularly in TNBC. In summary, we conducted a comprehensive analysis of STs from the clinical database and identified ST8SIA1 as a crucial survival-related ST, which might be a potential therapeutic target for breast cancer and TNBC patients.
Collapse
|
20
|
McCullough D, Atofanei C, Knight E, Trim SA, Trim CM. Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities. Toxicon 2020; 185:129-146. [PMID: 32682827 DOI: 10.1016/j.toxicon.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023]
Abstract
The search for novel and relevant cancer therapeutics is continuous and ongoing. Cancer adaptations, resulting in therapeutic treatment failures, fuel this continuous necessity for new drugs to novel targets. Recently, researchers have started to investigate the effect of venoms and venom components on different types of cancer, investigating their mechanisms of action. Receptor tyrosine kinases (RTKs) comprise a family of highly conserved and functionally important druggable targets for cancer therapy. This research exploits the novelty of complex venom mixtures to affect phosphorylation of the epidermal growth factor receptor (EGFR) and related RTK family members, dually identifying new activities and unexplored avenues for future cancer and venom research. Six whole venoms from diverse species taxa, were evaluated for their ability to illicit changes in the phosphorylated expression of a panel of 49 commonly expressed RTKs. The triple negative breast cancer cell line MDA-MB-468 was treated with optimised venom doses, pre-determined by SDS PAGE and Western blot analysis. The phosphorylated expression levels of 49 RTKs in response to the venoms were assessed with the use of Human Phospho-RTK Arrays and analysed using ImageLab 5.2.1 analysis software (BioRad). Inhibition of EGFR phosphorylation occurred with treatment of venom from Acanthoscurria geniculata (Theraphosidae), Heterometrus swammerdami (Scorpionidae), Crotalus durissus vegrandis (Crotalidae) and Naja naja (Elapidae). Western green mamba Dendroaspis viridis venom increased EGFR phosphorylation. Eph, HGFR and HER were the most affected receptor families by venoms. Whilst the importance of these changes in terms of effect on MDA-MB-468 cells' long-term viability and functionality are still unclear, the findings present exciting opportunities for further investigation as potential drug targets in cancer and as tools to understand better how these pathways interact.
Collapse
Affiliation(s)
- Danielle McCullough
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Cristina Atofanei
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Emily Knight
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK; Life Sciences Industry Liaison laboratory, Canterbury Christ Church University, Discovery Park, Sandwich, Kent, CT13 9FF, UK
| | - Steven A Trim
- Venomtech Ltd., Discovery Park, Sandwich, Kent, CT13 9FF, UK
| | - Carol M Trim
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK.
| |
Collapse
|
21
|
Wan H, Li Z, Wang H, Cai F, Wang L. ST8SIA1 inhibition sensitizes triple negative breast cancer to chemotherapy via suppressing Wnt/β-catenin and FAK/Akt/mTOR. Clin Transl Oncol 2020; 23:902-910. [PMID: 32939659 DOI: 10.1007/s12094-020-02484-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chemoresistance is the major cause of therapeutic failure in triple negative breast cancer (TNBC). In this work, we investigated the molecular mechanism for the development of TNBC chemoresistance. METHODS mRNA and protein levels of ST8SIA1 were analyzed in chemosensitive and chemoresistant TNBC cells and tissues. Proliferation and survival assays were performed to determine the role of ST8SIA1 in TNBC chemoresistance. RESULTS We found that ST8SIA1 mRNA and protein levels were increased in multiple TNBC cell lines after prolonged exposure to chemotherapeutic drugs. Consistently, retrospective study demonstrated that the majority of TNBC patients who developed chemoresistance displayed upregulation of ST8SIA1. We further found that chemoresistant TNBC cells were more sensitive than chemosensitive cells to ST8SIA1 inhibition in decreasing growth and viability. Consistently, ST8SIA1 inhibition augmented the efficacy of chemotherapy in TNBC cells. Mechanism studies demonstrated that ST8SIA1 inhibition led to suppression of FAK/Akt/mTOR and Wnt/β-catenin signalling pathways. CONCLUSIONS These findings provide an explanation for the heterogeneity of chemotherapy responses across TNBC individuals and reveal the supportive roles of ST8SIA1in TNBC chemoresistance.
Collapse
Affiliation(s)
- H Wan
- Department of Oncology, Sanya People's Hospital, Sanya, 572000, China
| | - Z Li
- Department of Oncology, Sanya People's Hospital, Sanya, 572000, China
| | - H Wang
- Department of Pathology, Sanya People's Hospital, Sanya, 572000, China
| | - F Cai
- Department of Pharmacy, Sanya People's Hospital, Sanya, 572000, China
| | - L Wang
- Department of Oncology, Hainan General Hospital, No.19, Xinhua Road, Xiuying District, Haikou, 570311, Hainan, China.
| |
Collapse
|
22
|
Yu J, Hung JT, Wang SH, Cheng JY, Yu AL. Targeting glycosphingolipids for cancer immunotherapy. FEBS Lett 2020; 594:3602-3618. [PMID: 32860713 DOI: 10.1002/1873-3468.13917] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 11/07/2022]
Abstract
Aberrant expression of glycosphingolipids (GSLs) is a unique feature of cancer and stromal cells in tumor microenvironments. Although the impact of GSLs on tumor progression remains largely unclear, anticancer immunotherapies directed against GSLs are attracting growing attention. Here, we focus on GD2, a disialoganglioside expressed in tumors of neuroectodermal origin, and Globo H ceramide (GHCer), the most prevalent cancer-associated GSL overexpressed in a variety of epithelial cancers. We first summarize recent advances on our understanding of GD2 and GHCer biology and then discuss the clinical development of the first immunotherapeutic agent targeting a glycolipid, the GD2-specific antibody dinutuximab, its approved indications, and new strategies to improve its efficacy for neuroblastoma. Next, we review ongoing clinical trials on Globo H-targeted immunotherapeutics. We end with highlighting how these studies provide sound scientific rationales for targeting GSLs in cancer and may facilitate a rational design of new GSL-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Yan Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, University of California in San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Baeza-Kallee N, Bergès R, Soubéran A, Colin C, Denicolaï E, Appay R, Tchoghandjian A, Figarella-Branger D. Glycolipids Recognized by A2B5 Antibody Promote Proliferation, Migration, and Clonogenicity in Glioblastoma Cells. Cancers (Basel) 2019; 11:cancers11091267. [PMID: 31466399 PMCID: PMC6769647 DOI: 10.3390/cancers11091267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023] Open
Abstract
A2B5+ cells isolated from human glioblastomas exhibit cancer stem cell properties. The A2B5 epitope belongs to the sialoganglioside family and is synthetized by the ST8 alpha-N-acetyl-neuraminidase α-2,8-sialyltransferase 3 (ST8SIA3) enzyme. Glycolipids represent attractive targets for solid tumors; therefore, the aim of this study was to decipher A2B5 function in glioblastomas. To this end, we developed cell lines expressing various levels of A2B5 either by genetically manipulating ST8SIA3 or by using neuraminidase. The overexpression of ST8SIA3 in low-A2B5-expressing cells resulted in a dramatic increase of A2B5 immunoreactivity. ST8SIA3 overexpression increased cell proliferation, migration, and clonogenicity in vitro and tumor growth when cells were intracranially grafted. Conversely, lentiviral ST8SIA3 inactivation in low-A2B5-expressing cells resulted in reduced proliferation, migration, and clonogenicity in vitro and extended mouse survival. Furthermore, in the shST8SIA3 cells, we found an active apoptotic phenotype. In high-A2B5-expressing cancer stem cells, lentiviral delivery of shST8SIA3 stopped cell growth. Neuraminidase treatment, which modifies the A2B5 epitope, impaired cell survival, proliferation, self-renewal, and migration. Our findings prove the crucial role of the A2B5 epitope in the promotion of proliferation, migration, clonogenicity, and tumorigenesis, pointing at A2B5 as an attractive therapeutic target for glioblastomas.
Collapse
Affiliation(s)
| | - Raphaël Bergès
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Aurélie Soubéran
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Carole Colin
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Emilie Denicolaï
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Romain Appay
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, AP-HM, Marseille, France
| | | | - Dominique Figarella-Branger
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
- Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, AP-HM, Marseille, France.
| |
Collapse
|
24
|
Cavdarli S, Groux-Degroote S, Delannoy P. Gangliosides: The Double-Edge Sword of Neuro-Ectodermal Derived Tumors. Biomolecules 2019; 9:E311. [PMID: 31357634 PMCID: PMC6723632 DOI: 10.3390/biom9080311] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are mostly localized at the plasma membrane in lipid raft domains and implicated in many cellular signaling pathways mostly by interacting with tyrosine kinase receptors. Gangliosides are divided into four series according to the number of sialic acid residues, which can be also modified by O-acetylation. Both ganglioside expression and sialic acid modifications can be modified in pathological conditions such as cancer, which can induce either pro-cancerous or anti-cancerous effects. In this review, we summarize the specific functions of gangliosides in neuro-ectodermal derived tumors, and their roles in reprogramming the lipidomic profile of cell membrane occurring with the induction of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sumeyye Cavdarli
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France
| | - Sophie Groux-Degroote
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France
| | - Philippe Delannoy
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France.
| |
Collapse
|
25
|
Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, Specht MC, Bernstein BE, Michor F, Ellisen LW. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun 2018; 9:3588. [PMID: 30181541 PMCID: PMC6123496 DOI: 10.1038/s41467-018-06052-0] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by extensive intratumoral heterogeneity. To investigate the underlying biology, we conducted single-cell RNA-sequencing (scRNA-seq) of >1500 cells from six primary TNBC. Here, we show that intercellular heterogeneity of gene expression programs within each tumor is variable and largely correlates with clonality of inferred genomic copy number changes, suggesting that genotype drives the gene expression phenotype of individual subpopulations. Clustering of gene expression profiles identified distinct subgroups of malignant cells shared by multiple tumors, including a single subpopulation associated with multiple signatures of treatment resistance and metastasis, and characterized functionally by activation of glycosphingolipid metabolism and associated innate immunity pathways. A novel signature defining this subpopulation predicts long-term outcomes for TNBC patients in a large cohort. Collectively, this analysis reveals the functional heterogeneity and its association with genomic evolution in TNBC, and uncovers unanticipated biological principles dictating poor outcomes in this disease.
Collapse
Affiliation(s)
- Mihriban Karaayvaz
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Simona Cristea
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Shawn M Gillespie
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anoop P Patel
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ravindra Mylvaganam
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Christina C Luo
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Michelle C Specht
- Department of Surgical Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Bradley E Bernstein
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
- The Ludwig Center at Harvard, Boston, MA, 02215, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02215, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA.
- The Ludwig Center at Harvard, Boston, MA, 02215, USA.
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
| | - Leif W Ellisen
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
26
|
Liu J, Zheng X, Pang X, Li L, Wang J, Yang C, Du G. Ganglioside GD3 synthase (GD3S), a novel cancer drug target. Acta Pharm Sin B 2018; 8:713-720. [PMID: 30245960 PMCID: PMC6147802 DOI: 10.1016/j.apsb.2018.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/24/2018] [Accepted: 04/28/2018] [Indexed: 01/05/2023] Open
Abstract
Gangliosides are a class of important glycosphingolipids containing sialic acid that are widely distributed on the outer surface of cells and are abundantly distributed in brain tissue. Disialoganglioside with three glycosyl groups (GD3) and disialoganglioside with two glycosyl groups (GD2) are markedly increased in pathological conditions such as cancers and neurodegenerative diseases. GD3 and GD2 were found to play important roles in cancers by mediating cell proliferation, migration, invasion, adhesion, angiogenesis and in preventing immunosuppression of tumors. GD3 synthase (GD3S) is the regulatory enzyme of GD3 and GD2 synthesis, and is important in tumorigenesis and the development of cancers. The study of GD3S as a drug target may be of great significance for the discovery of new drugs for cancer treatment. This review will describe the gangliosides and their roles in physiological and pathological conditions; the roles of GD3 and GD2 in cancers; the expression, functions and mechanisms of GD3S, and its potential as a drug target in cancers.
Collapse
Affiliation(s)
- Jinyi Liu
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
27
|
Zhuo D, Li X, Guan F. Biological Roles of Aberrantly Expressed Glycosphingolipids and Related Enzymes in Human Cancer Development and Progression. Front Physiol 2018; 9:466. [PMID: 29773994 PMCID: PMC5943571 DOI: 10.3389/fphys.2018.00466] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
Glycosphingolipids (GSLs), which consist of a hydrophobic ceramide backbone and a hydrophilic carbohydrate residue, are an important type of glycolipid expressed in surface membranes of all animal cells. GSLs play essential roles in maintenance of plasma membrane stability, in regulation of numerous cellular processes (including adhesion, proliferation, apoptosis, and recognition), and in modulation of signal transduction pathways. GSLs have traditionally been classified as ganglio-series, lacto-series, or globo-series on the basis of their diverse types of oligosaccharide chains. Structures and functions of specific GSLs are also determined by their oligosaccharide chains. Different cells and tissues show differential expression of GSLs, and changes in structures of GSL glycan moieties occur during development of numerous types of human cancer. Association of GSLs and/or related enzymes with initiation and progression of cancer has been documented in 100s of studies, and many such GSLs are useful markers or targets for cancer diagnosis or therapy. In this review, we summarize (i) recent studies on aberrant expression and distribution of GSLs in common human cancers (breast, lung, colorectal, melanoma, prostate, ovarian, leukemia, renal, bladder, gastric); (ii) biological functions of specific GSLs in these cancers.
Collapse
Affiliation(s)
- Dinghao Zhuo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of China, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Dewald JH, Cavdarli S, Steenackers A, Delannoy CP, Mortuaire M, Spriet C, Noël M, Groux-Degroote S, Delannoy P. TNF differentially regulates ganglioside biosynthesis and expression in breast cancer cell lines. PLoS One 2018; 13:e0196369. [PMID: 29698439 PMCID: PMC5919650 DOI: 10.1371/journal.pone.0196369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022] Open
Abstract
Gangliosides are glycosphingolipids concentrated in glycolipid-enriched membrane microdomains. Mainly restricted to the nervous system in healthy adult, complex gangliosides such as GD3 and GD2 have been shown to be involved in aggressiveness and metastasis of neuro-ectoderm derived tumors such as melanoma and neuroblastoma. GD3 synthase (GD3S), the key enzyme that controls the biosynthesis of complex gangliosides, was shown to be over-expressed in Estrogen Receptor (ER)-negative breast cancer tumors, and associated with a decreased overall survival of patients. We previously demonstrated that GD3S expression in ER-negative breast cancer cells induced a proliferative phenotype and an increased tumor growth. In addition, our results clearly indicate that Tumor Necrosis Factor (TNF) induced GD3S over-expression in breast cancer cells via NFκB pathway. In this study, we analyzed the effect of TNF on ganglioside biosynthesis and expression in breast cancer cells from different molecular subtypes. We showed that TNF up-regulated the expression of GD3S in MCF-7 and Hs578T cells, whereas no change was observed for MDA-MB-231. We also showed that TNF induced an increased expression of complex gangliosides at the cell surface of a small proportion of MCF-7 cells. These results demonstrate that TNF differentially regulates gangliosides expression in breast cancer cell lines and establish a possible link between inflammation at the tumor site environment, expression of complex gangliosides and tumor development.
Collapse
Affiliation(s)
- Justine H. Dewald
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Sumeyye Cavdarli
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Agata Steenackers
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Clément P. Delannoy
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Marlène Mortuaire
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Corentin Spriet
- University of Lille, Bio Imaging Center Lille, Lille, France
| | - Maxence Noël
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Sophie Groux-Degroote
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Philippe Delannoy
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
- * E-mail:
| |
Collapse
|
29
|
Liang YJ, Wang CY, Wang IA, Chen YW, Li LT, Lin CY, Ho MY, Chou TL, Wang YH, Chiou SP, Lin YJ, Yu J. Interaction of glycosphingolipids GD3 and GD2 with growth factor receptors maintains breast cancer stem cell phenotype. Oncotarget 2018; 8:47454-47473. [PMID: 28537895 PMCID: PMC5564578 DOI: 10.18632/oncotarget.17665] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/19/2017] [Indexed: 01/13/2023] Open
Abstract
Many studies have suggested that disialogangliosides, GD2 and GD3, are involved in the development of various tumor types. However, the functional relationships between ganglioside expression and cancer development or aggressiveness are not fully described. GD3 is upregulated in approximately half of all invasive ductal breast carcinoma cases, and enhanced expression of GD3 synthase (GD3S, alpha-N-acetylneuraminide alpha-2,8-sialyltransferase) in estrogen receptor-negative breast tumors, was shown to correlate with reduced overall patient survival. We previously found that GD2 and GD3, together with their common upstream glycosyltransferases, GD3S and GD2/GM2 synthase, maintain a stem cell phenotype in breast cancer stem cells (CSCs). In the current study, we demonstrate that GD3S alone can sustain CSC properties and also promote malignant cancer properties. Using MALDI-MS and flow cytometry, we found that breast cancer cell lines, of various subtypes with or without ectopic GD3S-expression, exhibited distinct GD2/GD3 expression profiles. Furthermore, we found that GD3 was associated with EGFR and activated EGFR signaling in both breast CSCs and breast cancer cell lines. In addition, GD3S knockdown enhanced cytotoxicity of the EGFR-inhibitor gefitinib in resistant MDA-MB468 cells, both in vitro and in vivo. Based on this evidence, we propose that GD3S contributes to gefitinib-resistance in EGFR-positive breast cancer cells and may be an effective therapeutic target in drug-resistant breast cancers.
Collapse
Affiliation(s)
- Yuh-Jin Liang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I-An Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Wen Chen
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Li-Tzu Li
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chuang-Yu Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsung-Lung Chou
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Pin Chiou
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Ju Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
30
|
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall'Olio F. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling. Int J Mol Sci 2018; 19:ijms19020580. [PMID: 29462882 PMCID: PMC5855802 DOI: 10.3390/ijms19020580] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1) by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2) through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3) by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
31
|
Groux-Degroote S, Rodríguez-Walker M, Dewald JH, Daniotti JL, Delannoy P. Gangliosides in Cancer Cell Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:197-227. [DOI: 10.1016/bs.pmbts.2017.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Abstract
Tumor-associated gangliosides play important roles in regulation of signal transduction induced by growth-factor receptors including EGFR, FGFR, HGF and PDGFR in a specific microdomain called glycosynapse in the cancer cell membranes, and in interaction with glycan recognition molecules involved in cell adhesion and immune regulation including selectins and siglecs. As the genes involved in the synthesis and degradation of tumor-associated gangliosides were identified, biological functions became clearer from the experimental results employing forced overexpression and/or knockdown/knockout of the genes. Studies on the regulatory mechanisms for their expression also achieved great advancements. Epigenetic silencing of glycan-related genes is a dominant mechanism in glycan alteration at early stages of carcinogenesis. Development of hypoxia resistance involving activation of a transcription factor HIF, and acquisition of cancer stem cell-like characteristics through epithelial-mesenchymal transition are important mechanisms for glycan modulations in the later stages of cancer progression. In the initial stages of studies, the gangliosides which specifically appear in cancers attracted attention under the name of tumor-associated gangliosides. However, it became apparent that not only the cancer-associated gangliosides but also the normal gangliosides present in nonmalignant cells and tissues perform important biological functions, and some of them tend to disappear in cancer cells resulting in the loss of the physiological functions, and this sometimes facilitates progression of cancers.
Collapse
|
33
|
Ren H, Ren B, Zhang J, Zhang X, Li L, Meng L, Li Z, Li J, Gao Y, Ma X. Androgen enhances the activity of ETS-1 and promotes the proliferation of HCC cells. Oncotarget 2017; 8:109271-109288. [PMID: 29312607 PMCID: PMC5752520 DOI: 10.18632/oncotarget.22669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
The expression of androgen receptor (AR) has been detected in hepatocellular cancer (HCC). However, there is no universal model detailing AR’s function and mechanism in HCC. This study’s results show that treatment with dihydrotestosterone (DHT), an endogenous androgen, promoted HCC cells’ proliferation and up-regulated the transcription factor activity of ETS-1 (E26 transformation specific sequence 1), which mediates the migration and invasion of cancer cells via protein-protein interaction between AR and ETS-1. Results from luciferase assays showed that ETS-1’s activity was significantly up-regulated following androgen treatment. AR mediated ETS-1’s DHT-induced transcription factor activity. A potential protein-protein interaction between ETS-1 and AR was identified via glutathione S-transferase (GST) pull-down and co-immunoprecipitation assays. The mechanisms’ data indicated that enhancing AR activity increases ETS-1’s activity by modulating its cytoplasmic/nuclear translocation and recruiting ETS-1 to its target genes’ promoter. Moreover, while overexpression of AR significantly increased the proliferation or in vitro migration or invasion of HepG2 cells in the presence of androgen, inhibiting AR’s activity reduced these abilities. Thus, AR’s function as a novel ETS-1 co-activator or potentially therapeutic target of HCC has been demonstrated.
Collapse
Affiliation(s)
- Hui Ren
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Bo Ren
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Jiabin Zhang
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Xiaofeng Zhang
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Lixin Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Lingzhan Meng
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Zhijie Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Jia Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Yinjie Gao
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Xuemei Ma
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| |
Collapse
|
34
|
Shan Y, Liu Y, Zhao L, Liu B, Li Y, Jia L. MicroRNA-33a and let-7e inhibit human colorectal cancer progression by targeting ST8SIA1. Int J Biochem Cell Biol 2017; 90:48-58. [PMID: 28751193 DOI: 10.1016/j.biocel.2017.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/12/2017] [Accepted: 07/23/2017] [Indexed: 01/27/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality worldwide. Aberrant sialylation is crucially involved in the progression of various types of cancer. MicroRNAs (miRNAs) have been broadly studied in cancer. MicroRNA-33a (miR-33a) and Has-let-7e (let-7e) are non-coding RNA that can reduce cell motility and viability in cancer. In this study, miR-33a and let-7e levels were confirmed to be significantly down-regulated in CRC samples (n=32) and drug resistant cell line (HCT-8/5-FU) compared with those in the matched adjacent tissues and drug sensitivity cell line (HCT-8). ST8SIA1 was highly expressed in CRC tissues and HCT-8/5-FU cells, which was negatively correlated with miR-33a/let-7e expression. Luciferase reporter assays confirmed that both miR-33a and let-7e bound to the 3'-untranslated (3'-UTR) region of ST8SIA1. Inhibiting miR-33a/let-7e expression in CRC cells increased endogenous ST8SIA1 mRNA and protein levels. MiR-33a/let-7e knockdown promoted chemoresistance, proliferation, invasion, angiogenesis in vitro, and tumor growth in vivo. Whereas, ectopic expression of miR-33a/let-7e suppressed chemoresistance, proliferation, invasion and angiogenesis in CRC cell lines. ST8SIA1 knockdown mimicked the tumor suppressive effect of miR-33a/let-7e on CRC cells, while restoration of ST8SIA1 abolished the tumor suppressive effect of miR-33a/let-7e on CRC cells. Taken together, altered expression of miR-33a/let-7e was correlated with ST8SIA1 level, which might contribute to CRC progression. The miR-33a/let-7e-ST8SIA1 axis could be a therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yuejian Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
35
|
Groux-Degroote S, Guérardel Y, Delannoy P. Gangliosides: Structures, Biosynthesis, Analysis, and Roles in Cancer. Chembiochem 2017; 18:1146-1154. [PMID: 28295942 DOI: 10.1002/cbic.201600705] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Indexed: 12/30/2022]
Abstract
Gangliosides are acidic glycosphingolipids containing one or more sialic acid residues. They are essential compounds at the outer leaflet of the plasma membrane, where they interact with phospholipids, cholesterol, and transmembrane proteins, forming lipid rafts. They are involved in cell adhesion, proliferation, and recognition processes, as well as in the modulation of signal transduction pathways. These functions are mainly governed by the glycan moiety, and changes in the structures of gangliosides occur under pathological conditions, particularly in neuro-ectoderm-derived cancers. With the progress in mass spectrometry analysis of gangliosides, their role in cancer progression can be now investigated in more detail. In this review we summarize the current knowledge on the biosynthesis of gangliosides and their role in cancers, together with the recent development of cancer immunotherapy targeting gangliosides.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Philippe Delannoy
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| |
Collapse
|
36
|
Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer. Cells 2016; 5:cells5040043. [PMID: 27916834 PMCID: PMC5187527 DOI: 10.3390/cells5040043] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022] Open
Abstract
Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling.
Collapse
|
37
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
38
|
Delannoy CP, Rombouts Y, Groux-Degroote S, Holst S, Coddeville B, Harduin-Lepers A, Wuhrer M, Elass-Rochard E, Guérardel Y. Glycosylation Changes Triggered by the Differentiation of Monocytic THP-1 Cell Line into Macrophages. J Proteome Res 2016; 16:156-169. [DOI: 10.1021/acs.jproteome.6b00161] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Clément P. Delannoy
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Yoann Rombouts
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Sophie Groux-Degroote
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Stephanie Holst
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Bernadette Coddeville
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Elisabeth Elass-Rochard
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| |
Collapse
|
39
|
Glycolipid GD3 and GD3 synthase are key drivers for glioblastoma stem cells and tumorigenicity. Proc Natl Acad Sci U S A 2016; 113:5592-7. [PMID: 27143722 DOI: 10.1073/pnas.1604721113] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cancer stem cells (CSCs) of glioblastoma multiforme (GBM), a grade IV astrocytoma, have been enriched by the expressed marker CD133. However, recent studies have shown that CD133(-) cells also possess tumor-initiating potential. By analysis of gangliosides on various cells, we show that ganglioside D3 (GD3) is overexpressed on eight neurospheres and tumor cells; in combination with CD133, the sorted cells exhibit a higher expression of stemness genes and self-renewal potential; and as few as six cells will form neurospheres and 20-30 cells will grow tumor in mice. Furthermore, GD3 synthase (GD3S) is increased in neurospheres and human GBM tissues, but not in normal brain tissues, and suppression of GD3S results in decreased GBM stem cell (GSC)-associated properties. In addition, a GD3 antibody is shown to induce complement-dependent cytotoxicity against cells expressing GD3 and inhibition of GBM tumor growth in vivo. Our results demonstrate that GD3 and GD3S are highly expressed in GSCs, play a key role in glioblastoma tumorigenicity, and are potential therapeutic targets against GBM.
Collapse
|
40
|
Groux-Degroote S, Guérardel Y, Julien S, Delannoy P. Gangliosides in breast cancer: New perspectives. BIOCHEMISTRY (MOSCOW) 2015; 80:808-19. [DOI: 10.1134/s0006297915070020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Ganglioside GD3 is required for neurogenesis and long-term maintenance of neural stem cells in the postnatal mouse brain. J Neurosci 2015; 34:13790-800. [PMID: 25297105 DOI: 10.1523/jneurosci.2275-14.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The maintenance of a neural stem cell (NSC) population in mammalian postnatal and adult life is crucial for continuous neurogenesis and neural repair. However, the molecular mechanism of how NSC populations are maintained remains unclear. Gangliosides are important cellular membrane components in the nervous system. We previously showed that ganglioside GD3 plays a crucial role in the maintenance of the self-renewal capacity of NSCs in vitro. Here, we investigated its role in postnatal and adult neurogenesis in GD3-synthase knock-out (GD3S-KO) and wild-type mice. GD3S-KO mice with deficiency in GD3 and the downstream b-series gangliosides showed a progressive loss of NSCs both at the SVZ and the DG of the hippocampus. The decrease of NSC populations in the GD3S-KO mice resulted in impaired neurogenesis at the granular cell layer of the olfactory bulb and the DG in the adult. In addition, defects of the self-renewal capacity and radial glia-like stem cell outgrowth of postnatal GD3S-KO NSCs could be rescued by restoration of GD3 expression in these cells. Our study demonstrates that the b-series gangliosides, especially GD3, play a crucial role in the long-term maintenance NSC populations in postnatal mouse brain. Moreover, the impaired neurogenesis in the adult GD3S-KO mice led to depression-like behaviors. Thus, our results provide convincing evidence linking b-series gangliosides deficiency and neurogenesis defects to behavioral deficits, and support a crucial role of gangliosides in the long-term maintenance of NSCs in adult mice.
Collapse
|
42
|
Horwacik I, Rokita H. Targeting of tumor-associated gangliosides with antibodies affects signaling pathways and leads to cell death including apoptosis. Apoptosis 2015; 20:679-88. [DOI: 10.1007/s10495-015-1103-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Regulations of glycolipid: XI. glycosyltransferase (GSL: GLTs) genes involved in SA-LeX and related GSLs biosynthesis in carcinoma cells by Biosimilar apoptotic agents: potential anticancer drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 842:329-54. [PMID: 25408353 DOI: 10.1007/978-3-319-11280-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
44
|
Dall'Olio F, Malagolini N, Trinchera M, Chiricolo M. Sialosignaling: Sialyltransferases as engines of self-fueling loops in cancer progression. Biochim Biophys Acta Gen Subj 2014; 1840:2752-64. [PMID: 24949982 DOI: 10.1016/j.bbagen.2014.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 02/03/2023]
|
45
|
Sarkar TR, Battula VL, Werden SJ, Vijay GV, Ramirez-Peña EQ, Taube JH, Chang JT, Miura N, Porter W, Sphyris N, Andreeff M, Mani SA. GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 2014; 34:2958-67. [PMID: 25109336 DOI: 10.1038/onc.2014.245] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/04/2014] [Accepted: 06/20/2014] [Indexed: 12/14/2022]
Abstract
The epithelial-mesenchymal transition (EMT) bestows cancer cells with increased stem cell properties and metastatic potential. To date, multiple extracellular stimuli and transcription factors have been shown to regulate EMT. Many of them are not druggable and therefore it is necessary to identify targets, which can be inhibited using small molecules to prevent metastasis. Recently, we identified the ganglioside GD2 as a novel breast cancer stem cell marker. Moreover, we found that GD3 synthase (GD3S)--an enzyme involved in GD2 biosynthesis--is critical for GD2 production and could serve as a potential druggable target for inhibiting tumor initiation and metastasis. Indeed, there is a small molecule known as triptolide that has been shown to inhibit GD3S function. Accordingly, in this manuscript, we demonstrate that the inhibition of GD3S using small hairpin RNA or triptolide compromises the initiation and maintenance of EMT instigated by various signaling pathways, including Snail, Twist and transforming growth factor-β1 as well as the mesenchymal characteristics of claudin-low breast cancer cell lines (SUM159 and MDA-MB-231). Moreover, GD3S is necessary for wound healing, migration, invasion and stem cell properties in vitro. Most importantly, inhibition of GD3S in vivo prevents metastasis in experimental as well as in spontaneous syngeneic wild-type mouse models. We also demonstrate that the transcription factor FOXC2, a central downstream effector of several EMT pathways, directly regulates GD3S expression by binding to its promoter. In clinical specimens, the expression of GD3S correlates with poor prognosis in triple-negative human breast tumors. Moreover, GD3S expression correlates with activation of the c-Met signaling pathway leading to increased stem cell properties and metastatic competence. Collectively, these findings suggest that the GD3S-c-Met axis could serve as an effective target for the treatment of metastatic breast cancers.
Collapse
Affiliation(s)
- T R Sarkar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - V L Battula
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S J Werden
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G V Vijay
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Q Ramirez-Peña
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J H Taube
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - N Miura
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - W Porter
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - N Sphyris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S A Mani
- 1] Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [3] Center for Stem Cells and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
46
|
Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach. Radiol Oncol 2014; 48:257-66. [PMID: 25177240 PMCID: PMC4110082 DOI: 10.2478/raon-2014-0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/10/2014] [Indexed: 12/30/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. Materials and methods. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM. Results We identified 11 plasma proteins that are statistically most strongly associated with the presence of GBM. These proteins belong to three functional signalling pathways: T-cell signalling and immune responses; cell adhesion and migration; and cell-cycle control and apoptosis. Thus, we can consider this identified set of proteins as potential diagnostic biomarker candidates for GBM. In addition, a set of 16 plasma proteins were significantly associated with the overall survival of these patients with GBM. Guanine nucleotide binding protein alpha (GNAO1) was associated with both GBM presence and survival of patients with GBM. Conclusions Antibody array analysis represents a useful tool for the screening of plasma samples for potential cancer biomarker candidates in small-scale exploratory experiments; however, clinical validation of these candidates requires their further evaluation in a larger study on an independent cohort of patients.
Collapse
|
47
|
How Do Gangliosides Regulate RTKs Signaling? Cells 2013; 2:751-67. [PMID: 24709879 PMCID: PMC3972652 DOI: 10.3390/cells2040751] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 01/14/2023] Open
Abstract
Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are located on the outer leaflet of the plasma membrane in glycolipid-enriched microdomains, where they interact with molecules of signal transduction pathways including receptors tyrosine kinases (RTKs). The role of gangliosides in the regulation of signal transduction has been reported in many cases and in a large number of cell types. In this review, we summarize the current knowledge on the biosynthesis of gangliosides and the mechanism by which they regulate RTKs signaling.
Collapse
|
48
|
Yang Q, Feng F, Zhang F, Wang C, Lu Y, Gao X, Zhu Y, Yang Y. LINE-1 ORF-1p functions as a novel HGF/ETS-1 signaling pathway co-activator and promotes the growth of MDA-MB-231 cell. Cell Signal 2013; 25:2652-60. [PMID: 24012497 DOI: 10.1016/j.cellsig.2013.08.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/25/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Long interspersed nucleotide element (LINE)-1 ORF-1p is encoded by the human pro-oncogene LINE-1. It is involved in the development and progression of several human carcinomas, such as hepatocellular carcinoma and lung and breast cancers. The hepatocyte growth factor (HGF)/ETS-1 signaling pathway is involved in regulation of cancer cell proliferation, metastasis and invasion. The biological function of the interaction between LINE-1 ORF-1p and the HGF/ETS-1 signaling pathway in regulation of human breast cancer proliferation remains largely unknown. Here, we showed that LINE-1 ORF-1p enhanced ETS-1 transcriptional activity and increased expression of downstream genes of ETS-1. Interaction between ETS-1 and LINE-1 ORF-1p was identified by immunoprecipitation assays. LINE-1 ORF-1p modulated ETS-1 activity through cytoplasm/nucleus translocation and recruitment to the ETS-1 binding element in the MMP1 gene promoter. We also showed that LINE-1 ORF-1p promoted proliferation and anchorage-independent growth of MDA-MB-231 breast cancer cells. By investigating a novel role of the LINE-1 ORF-1p in the HGF/ETS-1 signaling pathway and MDA-MB-231 cells, we demonstrated that LINE-1 ORF-1p may be a novel ETS-1 coactivator and molecular target for therapy of human triple negative breast cancer.
Collapse
Affiliation(s)
- Qian Yang
- College of Clinical Medicine, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hotta H, Hamamura K, Yamashita K, Shibuya H, Tokuda N, Hashimoto N, Furukawa K, Yamamoto N, Hattori H, Toyokuni S, Ueda M, Furukawa K. Lewis y antigen is expressed in oral squamous cell carcinoma cell lines and tissues, but disappears in the invasive regions leading to the enhanced malignant properties irrespective of sialyl-Lewis x. Glycoconj J 2013; 30:585-97. [PMID: 23242548 DOI: 10.1007/s10719-012-9458-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Expression and implication of carbohydrate antigens in squamous cell carcinomas (SCCs) in oral cavity was examined. In the cell lines, type 2H and Lewis y antigens were markedly expressed. In the tissues from SCC patients and benign disorders, type 2H was highly expressed in hyperplasia (96.4 %), displasia (92.9 %) and SCC (100 %). Lewis y was, in turn, expressed mainly in cancer tissues (91.3 %), suggesting that Lewis y is a cancer-associated antigen. Normal oral mucosa showed no expression of these blood group antigens. Surprisingly, Lewis y antigen disappeared in the invasion sites where Ki-67 was definitely stained. Over-expression of Lewis y with manipulation of a fucosyltransferase cDNA resulted in suppression of cell growth and invasion, and knockdown of Lewis y also brought about increased cell growth and invasion. In either situations, no changes in the expression of sialyl-Lewis x could be found. Lowered tumor growth and invasion into surrounding tissues were also shown in Lewis y-positive SCC grafts in nu/nu mice. All these results together with alternative staining between Lewis y and Ki-67 in cancer tissues and FUT1 transfectants suggested that loss of Lewis y is a crucial event for the late stage of SCCs.
Collapse
Affiliation(s)
- Hiroshi Hotta
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bobowski M, Vincent A, Steenackers A, Colomb F, Van Seuningen I, Julien S, Delannoy P. Estradiol represses the G(D3) synthase gene ST8SIA1 expression in human breast cancer cells by preventing NFκB binding to ST8SIA1 promoter. PLoS One 2013; 8:e62559. [PMID: 23626833 PMCID: PMC3633854 DOI: 10.1371/journal.pone.0062559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/23/2013] [Indexed: 12/13/2022] Open
Abstract
Recent data have underlined a possible role of G(D3) synthase (GD3S) and complex gangliosides in Estrogen Receptor (ER) negative breast cancer progression. Here, we describe the main transcript of the GD3S coding gene ST8SIA1 expressed in breast tumors. We characterized the corresponding core promoter in Hs578T breast cancer cells and showed that estradiol decreases ST8SIA1 mRNA expression in ER-positive MCF-7 cells and ERα-transfected ER-negative Hs578T cells. The activity of the core promoter sequence of ST8SIA1 is also repressed by estradiol. The core promoter of ST8SIA1 contains two putative Estrogen Response Elements (ERE) that were not found to be involved in the promoter activity pathway. However, NFκB was shown to be involved in ST8SIA1 transcriptional activation and we demonstrated that estradiol prevents NFκB to bind to ST8SIA1 core promoter in ERα expressing breast cancer cells by inhibiting p65 and p50 nucleus localization. The activation of NFκB pathway in ER-negative tumors, due to the absence of estradiol signaling, might explain the overexpression of G(D3) synthase in this tumor subtype.
Collapse
Affiliation(s)
- Marie Bobowski
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Audrey Vincent
- University Lille Nord de France, Lille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Jean Pierre Aubert Research Center, Lille, France
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Agata Steenackers
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Florent Colomb
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Isabelle Van Seuningen
- University Lille Nord de France, Lille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Jean Pierre Aubert Research Center, Lille, France
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Sylvain Julien
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Philippe Delannoy
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
- * E-mail:
| |
Collapse
|