1
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
2
|
Ronchetti D, Traini V, Silvestris I, Fabbiano G, Passamonti F, Bolli N, Taiana E. The pleiotropic nature of NONO, a master regulator of essential biological pathways in cancers. Cancer Gene Ther 2024; 31:984-994. [PMID: 38493226 PMCID: PMC11257950 DOI: 10.1038/s41417-024-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
NONO is a member of the Drosophila behavior/human splicing (DBHS) family of proteins. NONO is a multifunctional protein that acts as a "molecular scaffold" to carry out versatile biological activities in many aspects of gene regulation, cell proliferation, apoptosis, migration, DNA damage repair, and maintaining cellular circadian rhythm coupled to the cell cycle. Besides these physiological activities, emerging evidence strongly indicates that NONO-altered expression levels promote tumorigenesis. In addition, NONO can undergo various post-transcriptional or post-translational modifications, including alternative splicing, phosphorylation, methylation, and acetylation, whose impact on cancer remains largely to be elucidated. Overall, altered NONO expression and/or activities are a common feature in cancer. This review provides an integrated scenario of the current understanding of the molecular mechanisms and the biological processes affected by NONO in different tumor contexts, suggesting that a better elucidation of the pleiotropic functions of NONO in physiology and tumorigenesis will make it a potential therapeutic target in cancer. In this respect, due to the complex landscape of NONO activities and interactions, we highlight caveats that must be considered during experimental planning and data interpretation of NONO studies.
Collapse
Affiliation(s)
- Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Traini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ilaria Silvestris
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppina Fabbiano
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Passamonti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Taiana
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
3
|
Roshani M, Molavizadeh D, Sadeghi S, Jafari A, Dashti F, Mirazimi SMA, Ahmadi Asouri S, Rajabi A, Hamblin MR, Anoushirvani AA, Mirzaei H. Emerging roles of miR-145 in gastrointestinal cancers: A new paradigm. Biomed Pharmacother 2023; 166:115264. [PMID: 37619484 DOI: 10.1016/j.biopha.2023.115264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Gastrointestinal (GI) carcinomas are a group of cancers affecting the GI tract and digestive organs, such as the gastric, liver, bile ducts, pancreas, small intestine, esophagus, colon, and rectum. MicroRNAs (miRNAs) are small functional non-coding RNAs (ncRNAs) which are involved in regulating the expression of multiple target genes; mainly at the post-transcriptional level, via complementary binding to their 3'-untranslated region (3'-UTR). Increasing evidence has shown that miRNAs have critical roles in modulating of various physiological and pathological cellular processes and regulating the occurrence and development of human malignancies. Among them, miR-145 is recognized for its anti-oncogenic properties in various cancers, including GI cancers. MiR-145 has been implicated in diverse biological processes of cancers through the regulation of target genes or signaling, including, proliferation, differentiation, tumorigenesis, angiogenesis, apoptosis, metastasis, and therapy resistance. In this review, we have summarized the role of miR-145 in selected GI cancers and also its downstream molecules and cellular processes targets, which could lead to a better understanding of the miR-145 in these cancers. In conclusion, we reveal the potential diagnostic, prognostic, and therapeutic value of miR-145 in GI cancer, and hope to provide new ideas for its application as a biomarker as well as a therapeutic target for the treatment of these cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for BasicSciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Liu R, Huang B, Shao Y, Cai Y, Liu X, Ren Z. Identification of memory B-cell-associated miRNA signature to establish a prognostic model in gastric adenocarcinoma. J Transl Med 2023; 21:648. [PMID: 37735667 PMCID: PMC10515266 DOI: 10.1186/s12967-023-04366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Memory B cells and microRNAs (miRNAs) play important roles in the progression of gastric adenocarcinoma (GAC), also known as stomach adenocarcinoma (STAD). However, few studies have investigated the use of memory B-cell-associated miRNAs in predicting the prognosis of STAD. METHODS We identified the marker genes of memory B cells by single-cell RNA sequencing (scRNA-seq) and identified the miRNAs associated with memory B cells by constructing an mRNA‒miRNA coexpression network. Then, univariate Cox, random survival forest (RSF), and stepwise multiple Cox regression (StepCox) algorithms were used to identify memory B-cell-associated miRNAs that were significantly related to overall survival (OS). A prognostic risk model was constructed and validated using these miRNAs, and patients were divided into a low-risk group and a high-risk group. In addition, the differences in clinicopathological features, tumour microenvironment, immune blocking therapy, and sensitivity to anticancer drugs in the two groups were analysed. RESULTS Four memory B-cell-associated miRNAs (hsa-mir-145, hsa-mir-125b-2, hsa-mir-100, hsa-mir-221) with significant correlations to OS were identified and used to construct a prognostic model. Time-dependent receiver operating characteristic (ROC) curve analysis confirmed the feasibility of the model. Kaplan‒Meier (K‒M) survival curve analysis showed that the prognosis was poor in the high-risk group. Comprehensive analysis showed that patients in the high-risk group had higher immune scores, matrix scores, and immune cell infiltration and a poor immune response. In terms of drug screening, we predicted eight drugs with higher sensitivity in the high-risk group, of which CGP-60474 was associated with the greatest sensitivity. CONCLUSIONS In summary, we identified memory B-cell-associated miRNA prognostic features and constructed a novel risk model for STAD based on scRNA-seq data and bulk RNA-seq data. Among patients in the high-risk group, STAD showed the highest sensitivity to CGP-60474. This study provides prognostic insights into individualized and precise treatment for STAD patients.
Collapse
Affiliation(s)
- Ruquan Liu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Biaojie Huang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongzhao Shao
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yongming Cai
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Xi Liu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhonglu Ren
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China.
| |
Collapse
|
5
|
Du L, Liu Y, Li C, Deng J, Sang Y. The interaction between ETS transcription factor family members and microRNAs: A novel approach to cancer therapy. Biomed Pharmacother 2022; 150:113069. [PMID: 35658214 DOI: 10.1016/j.biopha.2022.113069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
In cancer biology, ETS transcription factors promote tumorigenesis by mediating transcriptional regulation of numerous genes via the conserved ETS DNA-binding domain. MicroRNAs (miRNAs) act as posttranscriptional regulators to regulate various tumor-promoting or tumor-suppressing factors. Interactions between ETS factors and miRNAs regulate complex tumor-promoting and tumor-suppressing networks. This review discusses the progress of ETS factors and miRNAs in cancer research in detail. We focused on characterizing the interaction of the miRNA/ETS axis with competing endogenous RNAs (ceRNAs) and its regulation in posttranslational modifications (PTMs) and the tumor microenvironment (TME). Finally, we explore the prospect of ETS factors and miRNAs in therapeutic intervention. Generally, interactions between ETS factors and miRNAs provide fresh perspectives into tumorigenesis and development and novel therapeutic approaches for malignant tumors.
Collapse
Affiliation(s)
- Liwei Du
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China
| | - Yuchen Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China; Stomatology College of Nanchang University, Nanchang, China
| | - Chenxi Li
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China
| | - Jinkuang Deng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China.
| |
Collapse
|
6
|
Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis. Biomed Pharmacother 2022; 148:112760. [PMID: 35228062 DOI: 10.1016/j.biopha.2022.112760] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GB) is a highly aggressive cancer of the central nervous system, occurring in the brain or spinal cord. Many factors such as angiogenesis are associated with GB development. Angiogenesis is a procedure by which the pre-existing blood vessels create new vessels that play an essential role in health and disease, including tumors. Also, angiogenesis is one of the significant factors thought to be responsible for treatment resistance in many tumors, including GB. Hence, an improved understanding of the molecular processes underlying GB angiogenesis will pave the way for developing potential new treatments. Recently, it has been found that microRNAs (miRNAs) and exosomal miRNAs have a crucial role in inducing or inhibiting the angiogenesis process in GB development. A better knowledge of the miRNA's regulation pathway in the angiogenesis process in cancer offers unique mechanistic insight into the mechanism of tumor-associated neovascularization. Because of advancements in miRNA characterization and delivery methods, miRNAs can also be employed in clinical settings as potential biomarkers for anti-angiogenic treatment response as well as therapies targeting tumor angiogenesis. The recent finding and insights about miRNAs' angioregulatory role and exosomal miRNAs in GB are provided throughout the review. Also, we discuss the new concept of miRNAs-based therapies for GB in the future.
Collapse
|
7
|
Mao Y, Lv J, Jiang L, Wang Y. Integrative analysis of ceRNA network reveals functional lncRNAs associated with independent recurrent prognosis in colon adenocarcinoma. Cancer Cell Int 2021; 21:352. [PMID: 34225739 PMCID: PMC8259330 DOI: 10.1186/s12935-021-02069-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs), acting as competing endogenous RNA (ceRNA) have been reported to regulate the expression of targeted genes by sponging miRNA in colon adenocarcinoma (COAD). Methods However, their potential implications for recurrence free survival prognosis and functional roles remains largely unclear in COAD. In this study, we downloaded the TCGA dataset (training dataset) and GSE39582 (validation dataset) of COAD patients with prognostic information. Results A total of 411 differentially expressed genes (DElncRNAs: 12 downregulated and 43 upregulated), 18 DE miRNAs (9 downregulated and 9 upregulated) and 338 DEmRNAs (113 downregulated and 225 upregulated) were identified in recurrence samples compared with non-recurrence samples with the thresholds of FDR < 0.05 and |log2FC|> 0.263. Based on six signature lncRNAs (LINC00899, LINC01503, PRKAG2-AS1, RAD21-AS1, SRRM2-AS1 and USP30-AS1), the risk score (RS) system was constructed. Two prognostic clinical features, including pathologic stage and RS model status were screened for building the nomogram survival model. Moreover, a recurrent-specific ceRNA network was successfully constructed with 2 signature lncRNAs, 4 miRNAs and 113 mRNAs. Furthermore, we further manifested that SRRM2-AS1 predicted a poor prognosis in COAD patients. Furthermore, knockdown of SRRM2-AS1 significantly suppressed cell proliferation, migration, invasion and EMT markers in HT-29 and SW1116 cells. Conclusion These identified novel lncRNA signature and ceRNA network associated with recurrence prognosis might provide promising therapeutic targets for COAD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02069-6.
Collapse
Affiliation(s)
- Yinling Mao
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150001, Heilongjiang Province, China
| | - Jiachen Lv
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, NO. 150 Hapin Road, Harbin, 150001, Heilongjiang Province, China
| | - Li Jiang
- Department of Hemolymph, Harbin Medical University Cancer Hospital, Harbin, 150001, Heilongjiang Province, China
| | - Yihui Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, NO. 150 Hapin Road, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
8
|
Gallardo Martin E, Cousillas Castiñeiras A. Vitamin D modulation and microRNAs in gastric cancer: prognostic and therapeutic role. Transl Cancer Res 2021; 10:3111-3127. [PMID: 35116620 PMCID: PMC8797897 DOI: 10.21037/tcr-20-2813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Gastric adenocarcinoma arises after a complex interaction between the host and environmental factors. Tumor location and TNM are the tools that currently guide treatment decisions. Surgery is the only curative treatment, but relapse is common. After relapse or advanced staged disease survival is poor and systemic treatment has modestly improved survival. An association between sun exposure, vitamin D status and gastric cancer (GC) incidence and mortality has been reported. The molecular differences of the histological subtypes and the new molecular classifications account for the great heterogeneity of this disease and are the basis for the discovery of new therapeutic targets. New prognostic and predictive factors are essential and microRNAs (miRNAs) are endogenous small non-coding RNA molecules with a great potential for diagnosis, prognosis and treatment of cancer. There are hundreds of miRNAs with altered expression in tumor gastric tissue when compared to normal gastric tissue. Many of these miRNAs are associated with clinicopathological variables and survival in patients with GC. Furthermore, the expression of some of these miRNAs with prognostic importance in CG is influenced by vitamin D and others are mediators of some of the actions of this vitamin. This review aims to update the evidence on several miRNAs with prognostic value and therapeutic potential in GC, whose expression may be influenced by vitamin D or may regulate vitamin D signaling.
Collapse
Affiliation(s)
- Elena Gallardo Martin
- Medical Oncology Department in Complejo Hospitalario Universitario de Pontevedra, University Hospital of Pontevedra, CP 36001 Pontevedra, Spain
| | - Antia Cousillas Castiñeiras
- Medical Oncology Department in Complejo Hospitalario Universitario de Pontevedra, University Hospital of Pontevedra, CP 36001 Pontevedra, Spain
| |
Collapse
|
9
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Teng F, Zhang J, Chen Y, Shen X, Su C, Guo Y, Wang P, Shi C, Lei M, Cao Y, Liu S. LncRNA NKX2-1-AS1 promotes tumor progression and angiogenesis via upregulation of SERPINE1 expression and activation of the VEGFR-2 signaling pathway in gastric cancer. Mol Oncol 2021; 15:1234-1255. [PMID: 33512745 PMCID: PMC8024734 DOI: 10.1002/1878-0261.12911] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) can compete with endogenous RNAs to modulate the gene expression and contribute to oncogenesis and tumor metastasis. lncRNA NKX2-1-AS1 (NKX2-1 antisense RNA 1) plays a pivotal role in cancer progression and metastasis; however, the contribution of aberrant expression of NKX2-1-AS1 and the mechanism by which it functions as a competing endogenous RNA (ceRNA) in gastric cancer (GC) remains elusive. NKX2-1-AS1 expression was detected in paired tumor and nontumor tissues of 178 GC patients by quantitative reverse transcription PCR (qRT-PCR). Using loss-of-function and gain-of-function experiments, the biological functions of NKX2-1-AS1 were evaluated both in vitro and in vivo. Further, to assess that NKX2-1-AS1 regulates angiogenic processes, tube formation and co-culture assays were performed. RNA binding protein immunoprecipitation (RIP) assay, a dual-luciferase reporter assay, quantitative PCR, Western blot, and fluorescence in situ hybridization (FISH) assays were performed to determine the potential molecular mechanism underlying this ceRNA. The results indicated that NKX2-1-AS1 expression was upregulated in GC cell lines and tumor tissues. Overexpression of NKX2-1-AS1 was significantly associated with tumor progression and enhanced angiogenesis. Functionally, NKX2-1-AS1 overexpression promoted GC cell proliferation, metastasis, invasion, and angiogenesis, while NKX2-1-AS1 knockdown restored these effects, both in vitro and in vivo. RIP and dual-luciferase assays revealed that the microRNA miR-145-5p is a direct target of NKX2-1-AS1 and that NKX2-1-AS1 serves as a ceRNA to sponge miRNA and regulate angiogenesis in GC. Moreover, serpin family E member 1 (SERPINE1) is an explicit target for miR-145-5p; besides, the NKX2-1-AS1/miR-145-5p axis induces the translation of SERPINE1, thus activating the VEGFR-2 signaling pathway to promote tumor progression and angiogenesis. NKX2-1-AS1 overexpression is associated with enhanced tumor cell proliferation, angiogenesis, and poor prognosis in GC. Collectively, NKX2-1-AS1 functions as a ceRNA to miR-145-5p and promotes tumor progression and angiogenesis by activating the VEGFR-2 signaling pathway via SERPINE1.
Collapse
Affiliation(s)
- Fei Teng
- Department of Gastrointestinal SurgeryMinhang HospitalFudan UniversityShanghaiChina
- Institute of Fudan‐Minhang Academic Health SystemMinhang HospitalFudan UniversityShanghaiChina
| | - Ju‐Xiang Zhang
- Shanghai Med‐X Engineering Center for Medical Equipment and TechnologySchool of Biomedical EngineeringShanghai Jiao Tong UniversityChina
| | - Yi Chen
- Department of Gastrointestinal SurgeryMinhang HospitalFudan UniversityShanghaiChina
- Institute of Fudan‐Minhang Academic Health SystemMinhang HospitalFudan UniversityShanghaiChina
| | - Xiao‐Dong Shen
- Department of Gastrointestinal SurgeryMinhang HospitalFudan UniversityShanghaiChina
- Institute of Fudan‐Minhang Academic Health SystemMinhang HospitalFudan UniversityShanghaiChina
| | - Chang Su
- Department of Gastrointestinal SurgeryMinhang HospitalFudan UniversityShanghaiChina
- Institute of Fudan‐Minhang Academic Health SystemMinhang HospitalFudan UniversityShanghaiChina
| | - Yan‐Jiao Guo
- Department of Gastrointestinal SurgeryMinhang HospitalFudan UniversityShanghaiChina
- Institute of Fudan‐Minhang Academic Health SystemMinhang HospitalFudan UniversityShanghaiChina
| | - Pu‐Hua Wang
- Department of Gastrointestinal SurgeryMinhang HospitalFudan UniversityShanghaiChina
- Institute of Fudan‐Minhang Academic Health SystemMinhang HospitalFudan UniversityShanghaiChina
| | - Chen‐cheng Shi
- Department of Gastrointestinal SurgeryMinhang HospitalFudan UniversityShanghaiChina
- Institute of Fudan‐Minhang Academic Health SystemMinhang HospitalFudan UniversityShanghaiChina
| | - Ming Lei
- Department of Gastrointestinal SurgeryMinhang HospitalFudan UniversityShanghaiChina
- Institute of Fudan‐Minhang Academic Health SystemMinhang HospitalFudan UniversityShanghaiChina
| | - Yi‐Ou Cao
- Department of Gastrointestinal SurgeryMinhang HospitalFudan UniversityShanghaiChina
- Institute of Fudan‐Minhang Academic Health SystemMinhang HospitalFudan UniversityShanghaiChina
| | - Shao‐Qun Liu
- Department of Gastrointestinal SurgeryMinhang HospitalFudan UniversityShanghaiChina
- Institute of Fudan‐Minhang Academic Health SystemMinhang HospitalFudan UniversityShanghaiChina
| |
Collapse
|
11
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
12
|
Regulators at Every Step—How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020. [DOI: 10.3390/cancers12123709
expr 991289423 + 939431153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial–mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
|
13
|
Zeinali T, Karimi L, Hosseinahli N, Shanehbandi D, Mansoori B, Mohammadi A, Hajiasgharzadeh K, Babaloo Z, Majidi-Zolbanin J, Baradaran B. Overexpression of miRNA-145 induces apoptosis and prevents proliferation and migration of MKN-45 gastric cancer cells. EXCLI JOURNAL 2020; 19:1446-1458. [PMID: 33250681 PMCID: PMC7689247 DOI: 10.17179/excli2020-2777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
MiR-145 is a tumor suppressor miRNA that its ubiquitously expressed in the body but in numerous types of cancers such as GC, its expression became reduced or sometimes ceased in many subjects. This study aimed at restoring the function of the miR-145 in MKN-45 cells and investigating the function of this miRNA in proliferation, apoptosis, and migration of GC cells. MKN-45 cells were transfected using the PCMV-miR-145 plasmid vector. The MTT, DAPI staining, and wound healing assays were applied to estimate the impacts of ectopic expression of miR-145 in vitro. Moreover, alterations in the expression levels of K-Ras, c-Myc, caspase-3, caspase-9, Bax, Bcl-2, and MMP-9 mRNA were measured by qRT-PCR analysis. The findings designated that high expression of miR-145 reduced the proliferation and migration and increased the apoptosis of the MKN-45 cells. These effects occur with concurrent suppression of c-Myc, K-Ras, Bcl-2, and MMP-9 as well as induction of caspase-3, caspase-9, and Bax expression. Exogenous miR-145 influences multiple oncogenic pathways and can be regarded as a promising avenue of future therapeutic interventions for GC therapy.
Collapse
Affiliation(s)
- Tahereh Zeinali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Leila Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nayer Hosseinahli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zohreh Babaloo
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Ahadi A. Dysregulation of miRNAs as a signature for diagnosis and prognosis of gastric cancer and their involvement in the mechanism underlying gastric carcinogenesis and progression. IUBMB Life 2020; 72:884-898. [DOI: 10.1002/iub.2259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
Brossa A, Fonsato V, Grange C, Tritta S, Tapparo M, Calvetti R, Cedrino M, Fallo S, Gontero P, Camussi G, Bussolati B. Extracellular vesicles from human liver stem cells inhibit renal cancer stem cell-derived tumor growth in vitro and in vivo. Int J Cancer 2020; 147:1694-1706. [PMID: 32064610 PMCID: PMC7496472 DOI: 10.1002/ijc.32925] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) are considered as responsible for initiation, maintenance and recurrence of solid tumors, thus representing the key for tumor eradication. The antitumor activity of extracellular vesicles (EVs) derived from different stem cell sources has been investigated with conflicting results. In our study, we evaluated, both in vitro and in vivo, the effect of EVs derived from human bone marrow mesenchymal stromal cells (MSCs) and from a population of human liver stem cells (HLSCs) of mesenchymal origin on renal CSCs. In vitro, both EV sources displayed pro‐apoptotic, anti‐proliferative and anti‐invasive effects on renal CSCs, but not on differentiated tumor cells. Pre‐treatment of renal CSCs with EVs, before subcutaneous injection in SCID mice, delayed tumor onset. We subsequently investigated the in vivo effect of MSC‐ and HLSC‐EVs systemic administration on progression of CSC‐generated renal tumors. Tumor bio‐distribution analysis identified intravenous treatment as best route of administration. HLSC‐EVs, but not MSC‐EVs, significantly impaired subcutaneous tumor growth by reducing tumor vascularization and inducing tumor cell apoptosis. Moreover, intravenous treatment with HLSC‐EVs improved metastasis‐free survival. In EV treated tumor explants, we observed both the transfer and the induction of miR‐145 and of miR‐200 family members. In transfected CSCs, the same miRNAs affected cell growth, invasion and survival. In conclusion, our results showed a specific antitumor effect of HLSC‐EVs on CSC‐derived renal tumors in vivo, possibly ascribed to the transfer and induction of specific antitumor miRNAs. Our study provides further evidence for a possible clinical application of stem cell‐EVs in tumor treatment. What's new? Stem cell‐derived extracellular vesicles (EVs) can reprogram target cells and promote tissue repair by transferring their cargo. However, the anti‐tumor activity of EVs derived from different stem cell sources has been investigated with conflicting results. Here, the authors demonstrate for the first time the anti‐tumor effect of EVs from human liver stem cells (HLSC‐EVs) in a systemic intravenous administration model. HLSC‐EVs had a selective effect on cancer stem cells that could be ascribed to the transfer and induction of anti‐tumor miRNAs. This study highlights the potential clinical use of stem cell‐derived EVs, alone or in combination with other cancer therapies.
Collapse
Affiliation(s)
- Alessia Brossa
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Valentina Fonsato
- Molecular Biotechnology Center, University of Torino, Torino, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Torino, Italy
| | - Cristina Grange
- Department of Medical Science, University of Torino, Torino, Italy
| | - Stefania Tritta
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marta Tapparo
- Department of Medical Science, University of Torino, Torino, Italy
| | - Ruggero Calvetti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Massimo Cedrino
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sofia Fallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paolo Gontero
- Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Giovanni Camussi
- Department of Medical Science, University of Torino, Torino, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
16
|
Zhao X, Li D, Yang F, Lian H, Wang J, Wang X, Fang E, Song H, Hu A, Guo Y, Liu Y, Li H, Chen Y, Huang K, Zheng L, Tong Q. Long Noncoding RNA NHEG1 Drives β-Catenin Transactivation and Neuroblastoma Progression through Interacting with DDX5. Mol Ther 2020; 28:946-962. [PMID: 31982037 DOI: 10.1016/j.ymthe.2019.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that long noncoding RNAs (lncRNAs) play essential roles in tumor progression. However, the functional roles and underlying mechanisms of lncRNAs in neuroblastoma (NB), the most common malignant solid tumor in pediatric population, still remain elusive. Herein, through integrating analysis of a public RNA sequencing dataset, neuroblastoma highly expressed 1 (NHEG1) was identified as a risk-associated lncRNA, contributing to an unfavorable outcome of NB. Depletion of NHEG1 led to facilitated differentiation and decreased growth and aggressiveness of NB cells. Mechanistically, NHEG1 bound to and stabilized DEAD-box helicase 5 (DDX5) protein through repressing proteasome-mediated degradation, resulting in β-catenin transactivation that altered target gene expression associated with NB progression. We further determined a lymphoid enhancer binding factor 1 (LEF1)/transcription factor 7-like 2 (TCF7L2)/NHEG1/DDX5/β-catenin axis with a positive feedback loop and demonstrated that NHEG1 harbored oncogenic properties via its interplay with DDX5. Administration of small interfering RNAs against NHEG1 or DDX5 reduced tumor growth and prolonged survival of nude mice bearing xenografts. High NHEG1 or DDX5 expression was associated with poor survival of NB patients. These results indicate that lncRNA NHEG1 exhibits oncogenic activity that affects NB progression via stabilizing the DDX5 protein, which might serve as a potential therapeutic target for NB.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Heng Lian
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yang Liu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China.
| |
Collapse
|
17
|
Zuberi M, Mir R, Khan I, Javid J, Guru SA, Bhat M, Sumi MP, Ahmad I, Masroor M, Yadav P, Vishnubhatla S, Saxena A. The Promising Signatures of Circulating microRNA-145 in Epithelial Ovarian Cancer Patients. Microrna 2020; 9:49-57. [PMID: 30799804 DOI: 10.2174/2211536608666190225111234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/09/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Epithelial ovarian cancer continues to be a deleterious threat to women as it is asymptomatic and is typically detected in advanced stages. Cogent non-invasive biomarkers are therefore needed which are effective in apprehending the disease in early stages. Recently, miRNA deregulation has shown a promising magnitude in ovarian cancer tumorigenesis. miRNA-145(miR- 145) is beginning to be understood for its possible role in cancer development and progression. In this study, we identified the clinicopathological hallmarks altered owing to the downexpression of serum miR-145 in EOC. METHODS 70 serum samples from histopathologically confirmed EOC patients and 70 controls were collected. Total RNA from serum was isolated by Trizol method, polyadenylated and reverse transcribed into cDNA. Expression level of miR-145 was detected by miRNA qRT-PCR using RNU6B snRNA as reference. RESULTS The alliance of miR-145 profiling amongst patients and controls established itself to be conspicuous with a significant p-value (p<0.0001). A positive conglomeration (p=0.04) of miR-145 profiling was manifested with histopathological grade. Receiver Operating Characteristic (ROC) curve highlights the diagnostic potential and makes it imminent with a robust Area Under the curve (AUC). A positive correlation with the ROC curve was also noted for histological grade, FIGO stage, distant metastasis, lymph node status and survival. CONCLUSION Our results propose that miR-145 down-regulation might be a possible touchstone for disease progression and be identified as a diagnostic marker and predict disease outcome in EOC patients.
Collapse
Affiliation(s)
- Mariyam Zuberi
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Imran Khan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Columbia, SC, United States
| | - Jamsheed Javid
- Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sameer Ahmad Guru
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Musadiq Bhat
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Mamta Pervin Sumi
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Imtiyaz Ahmad
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Mirza Masroor
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Prasant Yadav
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | | | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| |
Collapse
|
18
|
Liu WL, Wang HX, Shi CX, Shi FY, Zhao LY, Zhao W, Wang GH. MicroRNA-1269 promotes cell proliferation via the AKT signaling pathway by targeting RASSF9 in human gastric cancer. Cancer Cell Int 2019; 19:308. [PMID: 31768130 PMCID: PMC6873743 DOI: 10.1186/s12935-019-1026-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRNAs) play key roles in tumorigenesis and progression of gastric cancer (GC). miR-1269 has been reported to be upregulated in several cancers and plays a crucial role in carcinogenesis and cancer progression. However, the biological function of miR-1269 in human GC and its mechanism remain unclear and need to be further elucidated. Methods The expression of miR-1269 in GC tissues and cell lines was detected by quantitative real-time PCR (qRT-PCR). Target prediction programs (TargetScanHuman 7.2 and miRBase) and a dual-luciferase reporter assay were used to confirm that Ras-association domain family 9 (RASSF9) is a target gene of miR-1269. The expression of RASSF9 was measured by qRT-PCR and Western blotting in GC tissues. MTT and cell counting assays were used to explore the effect of miR-1269 on GC cell proliferation. The cell cycle and apoptosis were measured by flow cytometry. RASSF9 knockdown and overexpression were used to further verify the function of the target gene. Results We found that miR-1269 expression was upregulated in human GC tissues and cell lines. The overexpression of miR-1269 promoted GC cell proliferation and cell cycle G1-S transition and suppressed apoptosis. The inhibition of miR-1269 inhibited cell growth and G1-S transition and induced apoptosis. miR-1269 expression was inversely correlated with RASSF9 expression in GC tissues. RASSF9 was verified to be a direct target of miR-1269 by using a luciferase reporter assay. The overexpression of miR-1269 decreased RASSF9 expression at both the mRNA and protein levels, and the inhibition of miR-1269 increased RASSF9 expression. Importantly, silencing RASSF9 resulted in the same biological effects in GC cells as those induced by overexpression of miR-1269. Overexpression of RASSF9 reversed the effects of miR-1269 overexpression on GC cells. Both miR-1269 overexpression and RASSF9 silencing activated the AKT signaling pathway, which modulated cell cycle regulators (Cyclin D1 and CDK2). In contrast, inhibition of miR-1269 and RASSF9 overexpression inhibited the AKT signaling pathway. Moreover, miR-1269 and RASSF9 also regulated the Bax/Bcl-2 signaling pathway. Conclusions Our results demonstrate that miR-1269 promotes GC cell proliferation and cell cycle G1-S transition by activating the AKT signaling pathway and inhibiting cell apoptosis via regulation of the Bax/Bcl-2 signaling pathway by targeting RASSF9. Our findings indicate an oncogenic role of miR-1269 in GC pathogenesis and the potential use of miR-1269 in GC therapy.
Collapse
Affiliation(s)
- Wen-Li Liu
- 1Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| | - Hu-Xia Wang
- 2Mammary Department, Shaanxi Provincial Tumor Hospital, Xi'an, 710061 Shaanxi China
| | - Cheng-Xin Shi
- 3Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| | - Fei-Yu Shi
- 3Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| | - Ling-Yu Zhao
- 4Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi China
| | - Wei Zhao
- 3Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| | - Guang-Hui Wang
- 3Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| |
Collapse
|
19
|
Manvati S, Mangalhara KC, Kalaiarasan P, Chopra R, Agarwal G, Kumar R, Saini SK, Kaushik M, Arora A, Kumari U, Bamezai RNK, Dhar PK. miR-145 supports cancer cell survival and shows association with DDR genes, methylation pattern, and epithelial to mesenchymal transition. Cancer Cell Int 2019; 19:230. [PMID: 31516387 PMCID: PMC6731614 DOI: 10.1186/s12935-019-0933-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background Despite several reports describing the dual role of miR-145 as an oncogene and a tumor suppressor in cancer, not much has been resolved and understood. Method In this study, the potential targets of miR-145 were identified bio-informatically using different target prediction tools. The identified target genes were validated in vitro by dual luciferase assay. Wound healing and soft agar colony assay assessed cell proliferation and migration. miR-145 expression level was measured quantitatively by RT-PCR at different stages of breast tumor. Western blot was used to verify the role of miR-145 in EMT transition using key marker proteins. Result Wound healing and soft agar colony assays, using miR-145 over-expressing stably transfected MCF7 cells, unraveled its role as a pro-proliferation candidate in cancerous cells. The association between miR-145 over-expression and differential methylation patterns in representative target genes (DR5, BCL2, TP53, RNF8, TIP60, CHK2, and DCR2) supported the inference drawn. These in vitro observations were validated in a representative set of nodal positive tumors of stage 3 and 4 depicting higher miR-145 expression as compared to early stages. Further, the role of miR-145 in epithelial-mesenchymal (EMT) transition found support through the observation of two key markers, Vimentin and ALDL, where a positive correlation with Vimentin protein and a negative correlation with ALDL mRNA expression were observed. Conclusion Our results demonstrate miR-145 as a pro-cancerous candidate, evident from the phenotypes of aggressive cellular proliferation, epithelial to mesenchymal transition, hypermethylation of CpG sites in DDR and apoptotic genes and upregulation of miR-145 in later stages of tumor tissues.
Collapse
Affiliation(s)
- Siddharth Manvati
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Kailash Chandra Mangalhara
- 2National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Rupali Chopra
- 2National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Agarwal
- 3Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar
- 4School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir India
| | - Sunil Kumar Saini
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Monika Kaushik
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Arora
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Usha Kumari
- 5Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Rameshwar Nath Koul Bamezai
- 2National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pawan Kumar Dhar
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Mei JW, Yang ZY, Xiang HG, Bao R, Ye YY, Ren T, Wang XF, Shu YJ. MicroRNA-1275 inhibits cell migration and invasion in gastric cancer by regulating vimentin and E-cadherin via JAZF1. BMC Cancer 2019; 19:740. [PMID: 31357957 PMCID: PMC6664777 DOI: 10.1186/s12885-019-5929-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Background Emerging evidence has shown that miR-1275 plays a critical role in tumour metastasis and the progression of various types of cancer. In this study, we analysed the role and mechanism of miR-1275 in the progression and prognosis of gastric cancer (GC). Methods Target genes of miR-1275 were identified and verified by luciferase assay and Western blotting. The function of miR-1275 in invasion and metastasis was analysed in vitro and in vivo in nude mice. The signal pathway regulated by miR-1275 was examined by qRT-PCR, Western blotting and chromatin immunoprecipitation analyses. The expression of miR-1275and JAZF1 were measured in specimens of GC and adjacent non cancerous tissues. Results We identified JAZF1 as a direct miR-1275 target. miR-1275 supresses migration and invasion of GC cells in vitro and in vivo, which was restored by JAZF1 overexpression. Moreover, JAZF1 was recognized as a direct regulator of Vimentin. Knocking-down miR-1275 or overexpressing JAZF1 resulted in upregulation of Vimentin but downregulation of E-cadherin. Meanwhile, we validated in 120 GC patients specimens that low miR-1275expression and high JAZF1 mRNA expression levels were closely associated with lymph node metastasis and poor prognosis. The expression of JAZF1 in protein level displayed the correlations with Vimentin but inversely with E-cadherin. Conclusions Increased miR-1275 expression inhibited GC metastasis by regulating vimentin/E-cadherin via direct suppression of JAZF1expression, suggesting that miR-1275 is a tumour-suppressor miRNA with the potential as a prognostic biomarker or therapeutic target in GC. Electronic supplementary material The online version of this article (10.1186/s12885-019-5929-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Wei Mei
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zi-Yi Yang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Hong-Gang Xiang
- Department of General Surgery, Pudong New Area People's Hospital affiliated to Shanghai University of Medicine and Health Science, No. 490, South Chuanhuan Road, Pudong New Area, Shanghai, 201299, China
| | - Runfa Bao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yuan-Yuan Ye
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Tai Ren
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xue-Feng Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yi-Jun Shu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
21
|
Arderiu G, Peña E, Aledo R, Juan-Babot O, Crespo J, Vilahur G, Oñate B, Moscatiello F, Badimon L. MicroRNA-145 Regulates the Differentiation of Adipose Stem Cells Toward Microvascular Endothelial Cells and Promotes Angiogenesis. Circ Res 2019; 125:74-89. [PMID: 31219744 DOI: 10.1161/circresaha.118.314290] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Adipose-derived stem cells (ASCs) are a potential adult mesenchymal stem cell source for restoring endothelial function in ischemic tissues. However, the mechanism that promotes ASCs differentiation toward endothelial cells (ECs) is not known. OBJECTIVE To investigate the mechanisms of ASCs differentiation into ECs. METHODS AND RESULTS ASCs were isolated from clinical lipoaspirates and cultured with DMEM or endothelial cell-conditioned medium. Endothelial cell-conditioned medium induced downregulation of miR-145 in ASCs and promoted endothelial differentiation. We identified bFGF (basic fibroblast growth factor) released by ECs as inducer of ASCs differentiation through receptor-induced AKT (protein kinase B) signaling and phosphorylation of FOXO1 (forkhead box protein O1) suppressing its transcriptional activity and decreasing miR-145 expression. Blocking bFGF-receptor or PI3K/AKT signaling in ASCs increased miR-145 levels. Modulation of miR-145 in ASCs, using a miR-145 inhibitor, regulated their differentiation into ECs: increasing proliferation, migration, inducing expression of EC markers (VE-cadherin, VEGFR2 [vascular endothelial growth factor receptor 2], or VWF [von Willebrand Factor]), and tube-like formation. Furthermore, in vivo, downregulation of miR-145 in ASCs enhanced angiogenesis in subcutaneously implanted plugs in mice. In a murine hindlimb ischemia model injection of ASCs with downregulated miR-145 induced collateral flow and capillary formation evidenced by magnetic resonance angiography. Next, we identified ETS1 (v-ets avian erythroblastosis virus E26 oncogene homolog 1) as the target of miR-145. Upregulation of miR-145 in ASCs, by mimic miR-145, suppressed ETS1 expression and consequently abolished EC differentiation and the angiogenic properties of endothelial cell-conditioned medium-preconditioned ASCs; whereas, overexpression of ETS1 reversed the abrogated antiangiogenic capacity of miR-145. ETS1 overexpression induced similar results to those obtained with miR-145 knockdown. CONCLUSIONS bFGF released by ECs induces ASCs differentiation toward ECs through miR-145-regulated expression of ETS1. Downregulation of miR-145 in ASCs induce vascular network formation in ischemic muscle.
Collapse
Affiliation(s)
- Gemma Arderiu
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
| | - Esther Peña
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
- Ciber CV, Instituto Carlos III, Madrid, Spain (E.P., R.A., G.V., L.B.)
| | - Rosa Aledo
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
- Ciber CV, Instituto Carlos III, Madrid, Spain (E.P., R.A., G.V., L.B.)
| | - Oriol Juan-Babot
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
| | - Javier Crespo
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
| | - Gemma Vilahur
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
- Ciber CV, Instituto Carlos III, Madrid, Spain (E.P., R.A., G.V., L.B.)
| | - Blanca Oñate
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
| | | | - Lina Badimon
- From the Cardiovascular-Program ICCC, IR-Hospital Santa Creu i Sant Pau, IIBSantPau Barcelona, Spain (G.A., E.P., R.A., O.J.-B., J.C., G.V., B.O., L.B.)
- Ciber CV, Instituto Carlos III, Madrid, Spain (E.P., R.A., G.V., L.B.)
| |
Collapse
|
22
|
Tang C, He JY, Yu C, Wang PJ, Huang SH, Zheng HJ, Yan DQ, Zhang JH, Li Y. MicroRNA-145 performs as a tumor suppressor in human esophageal squamous cell carcinoma by targeting phospholipase C epsilon 1. J Cell Biochem 2019; 120:10678-10687. [PMID: 30652343 DOI: 10.1002/jcb.28358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the leading pathologic type in China. miR-145 has been reported to be downregulated in multiple tumors. This study was aimed to investigate the role of miR-145 in ESCC. miR-145 expression was investigated in 65 ESCC samples as well as four ESCC cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). Targetscan 6.2 website (http://www.targetscan.org/) was used to predict the targets of miR-145. Expression of phospholipase C epsilon 1 (PLCE1) messenger RNA and protein was detected by qRT-PCR or Western blot. MTT and wound healing assay were conducted to explore the effects of miR-145 on the proliferation and migration of ESCC cell lines, respectively. miR-145 was significantly decreased in ESCC tissues. An inverse correlation between miR-145 and invasion depth and TNM stage were observed. PLCE1 was a direct target of miR-145, and the expression of PLCE1 was inversely correlated with miR-145 expression in ESCC tissues. In addition, overexpression of miR-145 suppressed cell proliferation and migration in ESCC cells. The enforced expression of PLCE1 partially reversed the suppressive effect of miR-145. These results prove that miR-145 may perform as a tumor suppressor in ESCC by targeting PLCE1.
Collapse
Affiliation(s)
- Chun Tang
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P.R. China.,Department of Cardiothoracic and Vascular Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P.R. China
| | - Jin-Yuan He
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Chao Yu
- Center for Health Examination, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Pei-Jie Wang
- Department of Cardiothoracic and Vascular Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P.R. China
| | - Shao-Hong Huang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Hong-Jie Zheng
- Department of Cardiothoracic and Vascular Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P.R. China
| | - Dong-Qing Yan
- Department of Cardiothoracic and Vascular Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P.R. China
| | - Jun-Hang Zhang
- Department of Cardiothoracic and Vascular Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P.R. China
| | - Yun Li
- Department of Cardiothoracic and Vascular Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P.R. China
| |
Collapse
|
23
|
Xu L, Zhang Y, Tang J, Wang P, Li L, Yan X, Zheng X, Ren S, Zhang M, Xu M. The Prognostic Value and Regulatory Mechanisms of microRNA-145 in Various Tumors: A Systematic Review and Meta-analysis of 50 Studies. Cancer Epidemiol Biomarkers Prev 2019; 28:867-881. [PMID: 30602498 DOI: 10.1158/1055-9965.epi-18-0570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/16/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
Acting as an important tumor-related miRNA, the clinical significance and underlying mechanisms of miR-145 in various malignant tumors have been investigated by numerous studies. This study aimed to comprehensively estimate the prognostic value and systematically illustrate the regulatory mechanisms of miR-145 based on all eligible literature.Relevant studies were acquired from multiple online databases. Overall survival (OS) and progression-free survival (PFS) were used as primary endpoints. Detailed subgroup analyses were performed to decrease the heterogeneity among studies and recognize the prognostic value of miR-145. All statistical analyses were performed with RevMan software version 5.3 and STATA software version 14.1. A total of 48 articles containing 50 studies were included in the meta-analysis. For OS, the pooled results showed that low miR-145 expression in tumor tissues was significantly associated with worse OS in patients with various tumors [HR = 1.70; 95% confidence interval (CI), 1.46-1.99; P < 0.001). Subgroup analysis based on tumor type showed that the downregulation of miR-145 was associated with unfavorable OS in colorectal cancer (HR = 2.17; 95% CI, 1.52-3.08; P < 0.001), ovarian cancer (HR = 2.15; 95% CI, 1.29-3.59; P = 0.003), gastric cancer (HR = 1.78; 95% CI, 1.35-2.36; P < 0.001), glioma (HR = 1.65; 95% CI, 1.30-2.10; P < 0.001), and osteosarcoma (HR = 2.28; 95% CI, 1.50-3.47; P < 0.001). For PFS, the pooled results also showed that the downregulation of miR-145 was significantly associated with poor PFS in patients with multiple tumors (HR = 1.39; 95% CI, 1.16-1.67; P < 0.001), and the subgroup analyses further identified that the low miR-145 expression was associated with worse PFS in patients with lung cancer (HR = 1.97; 95% CI, 1.25-3.09; P = 0.003) and those of Asian descent (HR = 1.50; 95% CI, 1.23-1.82; P < 0.001). For the regulatory mechanisms, we observed that numerous tumor-related transcripts could be targeted by miR-145-5p or miR-145-3p, as well as the expression and function of miR-145-5p could be regulated by multiple molecules.This meta-analysis indicated that downregulated miR-145 in tumor tissues or peripheral blood predicted unfavorable prognostic outcomes for patients suffering from various malignant tumors. In addition, miR-145 was involved in multiple tumor-related pathways and the functioning of significant biological effects. miR-145 is a well-demonstrated tumor suppressor, and its expression level is significantly correlated with the prognosis of patients with multiple malignant tumors.
Collapse
Affiliation(s)
- Liangliang Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanfang Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jianwei Tang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Wang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaokai Yan
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaobo Zheng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shengsheng Ren
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingqing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
24
|
Yang Y, Qu A, Zhao R, Hua M, Zhang X, Dong Z, Zheng G, Pan H, Wang H, Yang X, Zhang Y. Genome-wide identification of a novel miRNA-based signature to predict recurrence in patients with gastric cancer. Mol Oncol 2018; 12:2072-2084. [PMID: 30242969 PMCID: PMC6275280 DOI: 10.1002/1878-0261.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
The current tumor node metastasis (TNM) staging system is inadequate for identifying high-risk gastric cancer (GC) patients. Using a systematic and comprehensive-biomarker discovery and validation approach, we attempted to build a microRNA (miRNA)-recurrence classifier (MRC) to improve the prognostic prediction of GC. We identified 312 differentially expressed miRNAs in 446 GC tissues compared to 45 normal controls by analyzing high-throughput data from The Cancer Genome Atlas (TCGA). Using a Cox regression model, we developed an 11-miRNA signature that could successfully discriminate high-risk patients in the training set (n = 372; P < 0.0001). Quantitative real-time polymerase chain reaction-based validation in an independent clinical cohort (n = 88) of formalin-fixed paraffin-embedded clinical GC samples showed that MRC-derived high-risk patients succumb to significantly poor recurrence-free survival in GC patients (P < 0.0001). Cox and stratification analysis indicated that the prognostic value of this signature was independent of clinicopathological risk factors. Time-dependent receiver operating characteristic (ROC) analysis revealed that the area under the curve of this signature was significantly larger than that of TNM stage in the TCGA (0.733 vs. 0.589 at 3 years, P = 0.004; 0.802 vs. 0.635 at 5 years, P = 0.005) and validation cohort (0.835 vs. 0.689 at 3 years, P = 0.003). A nomogram was constructed for clinical use, which integrated both MRC and clinical-related variables (depth of invasion, lymph node status and distance metastasis) and did well in the calibration plots. In conclusion, this novel miRNA-based signature is superior to currently used clinicopathological features for identifying high-risk GC patients. It can be readily translated into clinical practice with formalin-fixed paraffin-embedded specimens for specific decision-making applications.
Collapse
Affiliation(s)
- Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Ailin Qu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Rui Zhao
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Mengmeng Hua
- Department of Oral Pathology, Institute of Stomatology, Qilu Hospital, Shandong University, Jinan, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
25
|
Noruzi S, Azizian M, Mohammadi R, Hosseini SA, Rashidi B, Mohamadi Y, Nesaei A, Seiri P, Sahebkar A, Salarinia R, Aghdam AM, Mirzaei H. Micro-RNAs as critical regulators of matrix metalloproteinases in cancer. J Cell Biochem 2018; 119:8694-8712. [PMID: 30132957 DOI: 10.1002/jcb.27182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022]
Abstract
Metastasis is known to be one of the important factors associated with cancer-related deaths worldwide. Several cellular and molecular targets are involved in the metastasis process. Among these targets, matrix metalloproteinases (MMPs) play central roles in promoting cancer metastasis. MMPs could contribute toward tumor growth, angiogenesis, migration, and invasion via degradation of the extracellular matrix and activation of pre-pro-growth factors. Therefore, identification of various cellular and molecular pathways that affect MMPs could contribute toward a better understanding of the metastatic pathways involved in various tumors. Micro-RNAs are important targets that could affect MMPs. Multiple lines of evidence have indicated that deregulation of various micro-RNAs, including miR-9, Let-7, miR-10b, and miR-15b, affects metastasis of tumor cells via targeting MMPs.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Mitra Azizian
- Department of Clinical Biochemistry, Ftabaculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Rezvan Mohammadi
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Mohamadi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, Faculty of medicine, Qom University of Medical Sciences, Qom, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Parvaneh Seiri
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Salarinia
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Arad Mobasher Aghdam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Li D, Song H, Mei H, Fang E, Wang X, Yang F, Li H, Chen Y, Huang K, Zheng L, Tong Q. Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat Commun 2018; 9:2829. [PMID: 30026490 PMCID: PMC6053364 DOI: 10.1038/s41467-018-05286-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest the emerging roles of armadillo (ARM) family proteins in tumor progression. However, the functions and underlying mechanisms of ARM members in tumorigenesis and aggressiveness of neuroblastoma (NB) remain to be determined. Herein, we identify armadillo repeat containing 12 (ARMC12) as an ARM member associated with NB progression. ARMC12 promotes the growth and aggressiveness of NB cell lines. Mechanistically, ARMC12 physically interacts with retinoblastoma binding protein 4 (RBBP4) to facilitate the formation and activity of polycomb repressive complex 2, resulting in transcriptional repression of tumor suppressive genes. Blocking the interaction between ARMC12 and RBBP4 by cell-penetrating inhibitory peptide activates the downstream gene expression and suppresses the tumorigenesis and aggressiveness of NB cells. Both ARMC12 and RBBP4 are upregulated in NB tissues, and are associated with unfavorable outcome of patients. These findings suggest the crucial roles of ARMC12 in tumor progression and a potential therapeutic approach for NB. Armadillo (ARM) family proteins can act as oncogenes or tumor suppressors. Here, the authors show that a new ARM protein (ARMC12) is upregulated in neuroblastoma, binds the PRC2 component RBBP4, and inhibits transcription of tumor suppressive genes.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| |
Collapse
|
27
|
Alessandrini L, Manchi M, De Re V, Dolcetti R, Canzonieri V. Proposed Molecular and miRNA Classification of Gastric Cancer. Int J Mol Sci 2018; 19:E1683. [PMID: 29882766 PMCID: PMC6032377 DOI: 10.3390/ijms19061683] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is a common malignant neoplasm worldwide and one of the main cause of cancer-related deaths. Despite some advances in therapies, long-term survival of patients with advanced disease remains poor. Different types of classification have been used to stratify patients with GC for shaping prognosis and treatment planning. Based on new knowledge of molecular pathways associated with different aspect of GC, new pathogenetic classifications for GC have been and continue to be proposed. These novel classifications create a new paradigm in the definition of cancer biology and allow the identification of relevant GC genomic subsets by using different techniques such as genomic screenings, functional studies and molecular or epigenetic characterization. An improved prognostic classification for GC is essential for the development of a proper therapy for a proper patient population. The aim of this review is to discuss the state-of-the-art on combining histological and molecular classifications of GC to give an overview of the emerging therapeutic possibilities connected to the latest discoveries regarding GC.
Collapse
Affiliation(s)
- Lara Alessandrini
- Pathology, IRCCS CRO National Cancer Institute, 33081 Aviano, Italy.
| | - Melissa Manchi
- Pathology, IRCCS CRO National Cancer Institute, 33081 Aviano, Italy.
| | - Valli De Re
- Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, 33081 Aviano, Italy.
| | - Riccardo Dolcetti
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | | |
Collapse
|
28
|
Li D, Chen Y, Mei H, Jiao W, Song H, Ye L, Fang E, Wang X, Yang F, Huang K, Zheng L, Tong Q. Ets-1 promoter-associated noncoding RNA regulates the NONO/ERG/Ets-1 axis to drive gastric cancer progression. Oncogene 2018; 37:4871-4886. [PMID: 29773901 PMCID: PMC6117270 DOI: 10.1038/s41388-018-0302-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/20/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023]
Abstract
Emerging studies have indicated the essential functions of long noncoding RNAs (lncRNAs) during cancer progression. However, whether lncRNAs contribute to the upregulation of v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1), an established oncogenic protein facilitating tumor invasion and metastasis, in gastric cancer remains elusive. Herein, we identified Ets-1 promoter-associated noncoding RNA (pancEts-1) as a novel lncRNA associated with the gastric cancer progression via mining of publicly available datasets and rapid amplification of cDNA ends. RNA pull-down, RNA immunoprecipitation, in vitro binding, and RNA electrophoretic mobility shift assays indicated the binding of pancEts-1 to non-POU domain containing octamer binding (NONO) protein. Mechanistically, pancEts-1 facilitated the physical interaction between NONO and Ets related gene (ERG), resulting in increased ERG transactivation and transcription of Ets-1 associated with gastric cancer progression. In addition, pancEts-1 facilitated the growth and aggressiveness of gastric cancer cells via interacting with NONO. In gastric cancer tissues, pancEts-1, NONO, and ERG were upregulated and significantly correlated with Ets-1 levels. High levels of pancEts-1, NONO, ERG, or Ets-1 were respectively associated with poor survival of gastric cancer patients, whereas simultaneous expression of all of them (HR = 3.012, P = 0.105) was not an independent prognostic factor for predicting clinical outcome. Overall, these results demonstrate that lncRNA pancEts-1 exhibits oncogenic properties that drive the progression of gastric cancer via regulating the NONO/ERG/Ets-1 axis.
Collapse
Affiliation(s)
- Dan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Hong Mei
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Huajie Song
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Lin Ye
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Erhu Fang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Feng Yang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China.
| | - Qiangsong Tong
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China.
| |
Collapse
|
29
|
Lopez-Santillan M, Larrabeiti-Etxebarria A, Arzuaga-Mendez J, Lopez-Lopez E, Garcia-Orad A. Circulating miRNAs as biomarkers in diffuse large B-cell lymphoma: a systematic review. Oncotarget 2018; 9:22850-22861. [PMID: 29854319 PMCID: PMC5978269 DOI: 10.18632/oncotarget.25230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous malignancy, with highly variable outcomes among patients. Although classification and prognostic tools have been developed, standard therapy still fails in 30-40% of patients. Hence, identification of novel biomarkers is needed. Recently, circulating microRNAs (miRNAs) have been suggested as non-invasive biomarkers in cancer. Our aim was to review the potential role of circulating miRNAs as biomarkers for diagnosis, classification, prognosis, and treatment response in DLBCL. We performed a search in PubMed using the terms [((‘Non-coding RNA’) OR (‘microRNA’ OR ‘miRNA’ OR ‘miR’) OR (‘exosome’) OR (‘extracellular vesicle’) OR (‘secretome’)) AND (‘Diffuse large B cell lymphoma’ OR ‘DLBCL’)] to identify articles that evaluated the impact of circulating miRNAs as diagnosis, subtype, treatment response or prognosis biomarkers in DLBCL in human population. Among the twelve articles that met the inclusion criteria, eleven considered circulating miRNAs as biomarkers for diagnosis, two for classification, and five for prognosis or treatment response. The limited number of studies performed and lack of consistency in results make it difficult to draw conclusions about the role of circulating miRNAs as non-invasive biomarkers in DLBCL. Although the preliminary associations observed seem promising, the only consistent result is the upregulation of mir-21 in DLBCL patients, which could be a biomarker for diagnosis. Further studies are needed.
Collapse
Affiliation(s)
- Maria Lopez-Santillan
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,Medical Oncology Service, Basurto University Hospital, Bilbao, Spain
| | - Ane Larrabeiti-Etxebarria
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,Pharmacy Service, Araba University Hospital-Txagorritxu, Vitoria, Spain
| | - Javier Arzuaga-Mendez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,Hematology and Hemotherapy Service, Cruces University Hospital, Barakaldo, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,BioCruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
30
|
Jiao W, Chen Y, Song H, Li D, Mei H, Yang F, Fang E, Wang X, Huang K, Zheng L, Tong Q. HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene 2018; 37:2728-2745. [PMID: 29511351 DOI: 10.1038/s41388-018-0128-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
Recent studies reveal the emerging functions of enhancer RNAs (eRNAs) in gene expression. However, the roles of eRNAs in regulating the expression of heparanase (HPSE), an established endo-β-D-glucuronidase essential for cancer invasion and metastasis, still remain elusive. Herein, through comprehensive analysis of publically available FANTOM5 expression atlas and chromatin interaction dataset, we identified a super enhancer and its derived eRNA facilitating the HPSE expression (HPSE eRNA) in cancers. Gain-of-function and loss-of-function experiments indicated that HPSE eRNA facilitated the in vitro and in vivo tumorigenesis and aggressiveness of cancer cells. Mechanistically, as a p300-regulated nuclear noncoding RNA, HPSE eRNA bond to heterogeneous nuclear ribonucleoprotein U (hnRNPU) to facilitate its interaction with p300 and their enrichment on super enhancer, resulting in chromatin looping between super enhancer and HPSE promoter, p300-mediated transactivation of transcription factor early growth response 1 (EGR1), and subsequent elevation of HPSE expression. In addition, rescue studies in HPSE overexpressing or silencing cancer cells indicated that HPSE eRNA exerted oncogenic properties via driving HPSE expression. In clinical cancer tissues, HPSE eRNA was highly expressed and positively correlated with HPSE levels, and served as an independent prognostic factor for poor outcome of cancer patients. Therefore, these findings indicate that as a novel noncoding RNA, HPSE eRNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis.
Collapse
Affiliation(s)
- Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
31
|
Hart M, Rheinheimer S, Leidinger P, Backes C, Menegatti J, Fehlmann T, Grässer F, Keller A, Meese E. Identification of miR-34a-target interactions by a combined network based and experimental approach. Oncotarget 2018; 7:34288-99. [PMID: 27144431 PMCID: PMC5085156 DOI: 10.18632/oncotarget.9103] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/16/2016] [Indexed: 12/25/2022] Open
Abstract
Circulating miRNAs have been associated with numerous human diseases. The lack of understanding the functional roles of blood-born miRNAs limits, however, largely their value as disease marker. In a systems biology analysis we identified miR-34a as strongly associated with pathogenesis. Genome-wide analysis of miRNAs in blood cell fractions highlighted miR-34a as most significantly up-regulated in CD3+ cells of lung cancer patients. By our in silico analysis members of the protein kinase C family (PKC) were indicated as miR-34a target genes. Using a luciferase assay, we confirmed binding of miR-34a-5p to target sequences within the 3′UTRs of five PKC family members. To verify the biological effect, we transfected HEK 293T and Jurkat cells with miR-34a-5p causing reduced endogenous protein levels of PKC isozymes. By combining bioinformatics approaches with experimental validation, we demonstrate that one of the most relevant disease associated miRNAs has the ability to control the expression of a gene family.
Collapse
Affiliation(s)
- Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | | | - Petra Leidinger
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Jennifer Menegatti
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Friedrich Grässer
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
32
|
miRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget 2018; 7:40314-40328. [PMID: 27259238 PMCID: PMC5130010 DOI: 10.18632/oncotarget.9739] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/13/2016] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinase 14 (MMP-14), a membrane-anchored MMP that promotes the tumorigenesis and aggressiveness, is highly expressed in gastric cancer. However, the transcriptional regulators of MMP-14 expression in gastric cancer still remain largely unknown. In this study, through mining computational algorithm programs and chromatin immunoprecipitation datasets, we identified adjacent binding sites of myeloid zinc finger 1 (MZF1) and miRNA-337-3p (miR-337-3p) within the MMP-14 promoter. We demonstrated that MZF1 directly bound to the MMP-14 promoter to facilitate its nascent transcription and expression in gastric cancer cell lines. In contrast, endogenous miR-337-3p suppressed the MMP-14 expression through recognizing its binding site within MMP-14 promoter. Mechanistically, miR-337-3p repressed the binding of MZF1 to MMP-14 promoter via recruiting Argonaute 2 and inducing repressive chromatin remodeling. Gain- and loss-of-function studies demonstrated that miR-337-3p suppressed the growth, invasion, metastasis, and angiogenesis of gastric cancer cells in vitro and in vivo through repressing MZF1-facilitated MMP-14 expression. In clinical specimens and cell lines of gastric cancer, MZF1 was highly expressed and positively correlated with MMP-14 expression. Meanwhile, miR-337-3p was under-expressed and inversely correlated with MMP-14 levels. miR-337-3p was an independent prognostic factor for favorable outcome of gastric cancer, and patients with high MZF1 or MMP-14 expression had lower survival probability. Taken together, these data indicate that miR-337-3p directly binds to the MMP-14 promoter to repress MZF1-facilitatd MMP-14 expression, thus suppressing the progression of gastric cancer.
Collapse
|
33
|
Qu H, Zheng L, Song H, Jiao W, Li D, Fang E, Wang X, Mei H, Pu J, Huang K, Tong Q. microRNA-558 facilitates the expression of hypoxia-inducible factor 2 alpha through binding to 5'-untranslated region in neuroblastoma. Oncotarget 2018; 7:40657-40673. [PMID: 27276678 PMCID: PMC5130034 DOI: 10.18632/oncotarget.9813] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Our previous studies have shown that hypoxia-inducible factor 2 alpha (HIF-2α), one member of the bHLH-PAS transcription factor family, facilitates the progression of NB under non-hypoxic conditions. However, the mechanisms underlying HIF-2α expression in NB still remain largely unknown. Herein, through analyzing the computational algorithm programs, we identified microRNA-558 (miR-558) as a crucial regulator of HIF-2α expression in NB. We demonstrated that miR-558 promoted the expression of HIF-2α at translational levels in NB cells through recruiting Argonaute 2 (AGO2). Mechanistically, miR-558 directly bound with its complementary site within 5′-untranslated region (5′-UTR) to facilitate the binding of AGO2 to eukaryotic translation initiation factor 4E (eIF4E) binding protein 1, resulting in increased eIF4E enrichment and HIF-2α translation. In addition, miR-558 promoted the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo, and these biological features were rescued by knockdown of AGO2, eIF4E, or HIF-2α. In clinical NB specimens, miR-558, AGO2, and eIF4E were highly expressed and positively correlated with HIF-2α expression. Patients with high miR-558, HIF-2α, AGO2, or eIF4E levels had lower survival probability. Taken together, these results demonstrate that miR-558 facilitates the expression of HIF-2α through bindingto its 5′-UTR, thus promoting the tumorigenesis and aggressiveness of NB.
Collapse
Affiliation(s)
- Hongxia Qu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Jiarui Pu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| |
Collapse
|
34
|
Zhao X, Li D, Huang D, Song H, Mei H, Fang E, Wang X, Yang F, Zheng L, Huang K, Tong Q. Risk-Associated Long Noncoding RNA FOXD3-AS1 Inhibits Neuroblastoma Progression by Repressing PARP1-Mediated Activation of CTCF. Mol Ther 2017; 26:755-773. [PMID: 29398485 PMCID: PMC5910666 DOI: 10.1016/j.ymthe.2017.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in childhood. Recent studies have implicated the emerging roles of long noncoding RNAs (lncRNAs) in tumorigenesis and aggressiveness. However, the functions and targets of risk-associated lncRNAs in NB progression still remain to be determined. Herein, through mining of public microarray datasets, we identify lncRNA forkhead box D3 antisense RNA 1 (FOXD3-AS1) as an independent prognostic marker for favorable outcome of NB patients. FOXD3-AS1 is downregulated in NB tissues and cell lines, and ectopic expression of FOXD3-AS1 induces neuronal differentiation and decreases the aggressiveness of NB cells in vitro and in vivo. Mechanistically, as a nuclear lncRNA, FOXD3-AS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1) to inhibit the poly(ADP-ribosyl)ation and activation of CCCTC-binding factor (CTCF), resulting in derepressed expression of downstream tumor-suppressive genes. Rescue experiments indicate that FOXD3-AS1 harbors tumor-suppressive properties by inhibiting the oncogenic roles of PARP1 or CTCF and plays crucial roles in all-trans-retinoic-acid-mediated therapeutic effects on NB. Administration of FOXD3-AS1 construct or siRNAs against PARP1 or CTCF reduces the tumor growth and prolongs the survival of nude mice. These findings suggest that as a risk-associated lncRNA, FOXD3-AS1 inhibits the progression of NB through repressing PARP1-mediated CTCF activation.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Dandan Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
35
|
Lou W, Liu J, Gao Y, Zhong G, Chen D, Shen J, Bao C, Xu L, Pan J, Cheng J, Ding B, Fan W. MicroRNAs in cancer metastasis and angiogenesis. Oncotarget 2017; 8:115787-115802. [PMID: 29383201 PMCID: PMC5777813 DOI: 10.18632/oncotarget.23115] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer metastasis is a malignant process by which tumor cells migrate from their primary site of origin to other organs. It is the main cause of poor prognosis in cancer patients. Angiogenesis is the process of generating new blood capillaries from pre-existing vasculature. It plays a vital role in primary tumor growth and distant metastasis. MicroRNAs are small non-coding RNAs involved in regulating normal physiological processes as well as cancer pathogenesis. They suppress gene expression by specifically binding to the 3′-untranslated region (3′-UTR) of their target genes. They can thus act as oncogenes or tumor suppressors depending on the function of their target genes. MicroRNAs have shown great promise for use in anti-metastatic cancer therapy. In this article, we review the roles of various miRNAs in cancer angiogenesis and metastasis and highlight their potential for use in future therapies against metastatic cancer.
Collapse
Affiliation(s)
- Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Jingxing Liu
- Department of Intensive Care Unit, Changxing People's Hospital of Zhejiang, Zhejiang Province, Huzhou 313100, China
| | - Yanjia Gao
- Department of Anesthesiology, International Hospital of Zhejiang University, Shulan (Hangzhou) Hospital, Zhejiang Province, Hangzhou 310003, China
| | - Guansheng Zhong
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Danni Chen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Jiaying Shen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Chang Bao
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Liang Xu
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Jie Pan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Junchi Cheng
- Department of Chemotherapy, Zhejiang Cancer Hospital, Zhejiang Province, Hangzhou 310003, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
36
|
Kuasne H, Barros-Filho MC, Busso-Lopes A, Marchi FA, Pinheiro M, Muñoz JJM, Scapulatempo-Neto C, Faria EF, Guimarães GC, Lopes A, Trindade-Filho JCS, Domingues MAC, Drigo SA, Rogatto SR. Integrative miRNA and mRNA analysis in penile carcinomas reveals markers and pathways with potential clinical impact. Oncotarget 2017; 8:15294-15306. [PMID: 28122331 PMCID: PMC5362487 DOI: 10.18632/oncotarget.14783] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Penile carcinoma (PeCa) is an important public health issue in poor and developing countries, and has only recently been explored in terms of genetic and epigenetic studies. Integrative data analysis is a powerful method for the identification of molecular drivers involved in cancer development and progression. miRNA and mRNA expression profiles followed by integrative analysis were investigated in 23 PeCa and 12 non-neoplastic penile tissues (NPT). Expression levels of eight miRNAs and 10 mRNAs were evaluated in the same set of samples used for microarray and in a validation set of cases (PeCa = 36; NPT = 27). Eighty-one miRNAs and 2,697 mRNAs were identified as differentially expressed in PeCa. Integrative data analysis revealed 255 mRNAs potentially regulated by 68 miRNAs. Using RT-qPCR, eight miRNAs and nine transcripts were confirmed as altered in PeCa. We identified that MMP1, MMP12 and PPARG and hsa-miR-31-5p, hsa-miR-224-5p, and hsa-miR-223-3p were able to distinguish tumors from NPT with high sensitivity and specificity. Higher MMP1 expression was detected as a better predictor of lymph node metastasis than the clinical-pathological data. In addition, PPARG and EGFR were highlighted as potential pathways for targeted therapy in PeCa. The analysis based on HPV positivity (7 of 23 cases) revealed five miRNA and 13 mRNA differentially expressed. Although in a limited number of cases, HPV positive PeCa presented less aggressive phenotype in comparison with negative cases. Overall, an integrative analysis using mRNA and miRNA profiles revealed markers related with tumor development and progression. Furthermore, MMP1 expression level was a predictive marker for lymph node metastasis in patients with PeCa.
Collapse
Affiliation(s)
- Hellen Kuasne
- CIPE-A. C. Camargo Cancer Center, São Paulo, Brazil.,Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | - Eliney F Faria
- Department of Urology, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | - Ademar Lopes
- Department of Urology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - José C S Trindade-Filho
- Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | | | - Sandra A Drigo
- Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Silvia R Rogatto
- CIPE-A. C. Camargo Cancer Center, São Paulo, Brazil.,Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil.,Department of Clinical Genetics, Vejle Sygehus, Vejle, Denmark.,Institute of Regional Health, University of Southern Denmark, Denmark
| |
Collapse
|
37
|
miRNA-584-3p inhibits gastric cancer progression by repressing Yin Yang 1- facilitated MMP-14 expression. Sci Rep 2017; 7:8967. [PMID: 28827574 PMCID: PMC5566321 DOI: 10.1038/s41598-017-09271-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022] Open
Abstract
Recent evidence shows the emerging roles of promoter-targeting endogenous microRNAs (miRNAs) in regulating gene transcription. However, miRNAs affecting the transcription of matrix metalloproteinase 14 (MMP-14) in gastric cancer remain unknown. Herein, through integrative mining of public datasets, we identified the adjacent targeting sites of Yin Yang 1 (YY1) and miRNA-584-3p (miR-584-3p) within MMP-14 promoter. We demonstrated that YY1 directly targeted the MMP-14 promoter to facilitate its expression in gastric cancer cells. In contrast, miR-584-3p recognized its complementary site within MMP-14 promoter to suppress its expression. Mechanistically, miR-584-3p interacted with Argonaute 2 to recruit enhancer of zeste homolog 2 and euchromatic histone lysine methyltransferase 2, resulting in enrichment of repressive epigenetic markers and decreased binding of YY1 to MMP-14 promoter. miR-584-3p inhibited the in vitro and in vivo tumorigenesis and aggressiveness of gastric cancer cells through repressing YY1-facilitated MMP-14 expression. In clinical gastric cancer tissues, the expression of YY1 and miR-584-3p was positively or negatively correlated with MMP-14 levels. In addition, miR-584-3p and YY1 were independent prognostic factors associated with favorable and unfavorable outcome of gastric cancer patients, respectively. These data demonstrate that miR-584-3p directly targets the MMP-14 promoter to repress YY1-facilitated MMP-14 expression and inhibits the progression of gastric cancer.
Collapse
|
38
|
Hao NB, He YF, Li XQ, Wang K, Wang RL. The role of miRNA and lncRNA in gastric cancer. Oncotarget 2017; 8:81572-81582. [PMID: 29113415 PMCID: PMC5655310 DOI: 10.18632/oncotarget.19197] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most common cancers and has the highest mortality rate worldwide. It is worthwhile to explore the mechanism of gastric cancer progression. An increasing number of studies have found that non-coding RNAs including miRNA and lncRNA play important roles in gastric cancer progression. This review summarized the role of ectopic miRNA in gastric cancer proliferation, growth, migration, invasion and apoptosis. Meantime, aberrantly expressed miRNA also received a great deal of attention as potential biomarker for gastric cancer diagnosis and therapy. Over the last decade, lncRNA was considered to regulate gastric cancer progression at the transcript and post-transcript level. At the transcript level, lncRNA induced gastric cancer progression by changing chromatin modification and mRNA stabilization to regulate mRNA and miRNA expression. Furthermore, lncRNA regulated gastric cancer progression by completely combining with miRNA to produce ceRNA or promote protein stabilization at the post-transcript level. Greater attention of miRNA and lncRNA in gastric cancer can provide new insight of mechanism of cancer development and may be acted as a new anticancer target.
Collapse
Affiliation(s)
- Ning-Bo Hao
- Department of Gastroenterology, General Hospital of the PLA Rocket Force, Beijing, China
| | - Ya-Fei He
- Intensive Medical Center, 302 Hospital of PLA, Beijing, China
| | - Xiao-Qin Li
- Department of Ophthalmology, General Hospital of the PLA Rocket Force, Beijing, China
| | - Kai Wang
- New Era Stoke Care and Research Institute, General Hospital of the PLA Rocket Force, Beijing, China
| | - Rui-Ling Wang
- Department of Gastroenterology, General Hospital of the PLA Rocket Force, Beijing, China
| |
Collapse
|
39
|
Lv QL, Du H, Liu YL, Huang YT, Wang GH, Zhang X, Chen SH, Zhou HH. Low expression of microRNA-320b correlates with tumorigenesis and unfavorable prognosis in glioma. Oncol Rep 2017; 38:959-966. [PMID: 28656255 DOI: 10.3892/or.2017.5762] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/13/2017] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence demonstrates that dysregulated microRNAs (miRNAs) play a critical role in tumorigenesis and progression of various cancers. miR-320b, a member of miR‑320 family, was revealed downregulated in numerous human cancers, including nasopharyngeal carcinoma and colorectal cancer. However, the function of miR‑320b in human glioma remained poorly defined. In this study, we report that miR‑320b was lowly expressed in glioma tissues and cell lines in contrast with controls, being closely correlated with histological malignancy of glioma. Furthermore, patients with low expression of miR‑320b were associated with poor prognostic outcomes. In vitro functional assays indicated that overexpression of miR‑320b could markedly enhance cell apoptosis rate and suppress cell proliferation, migration and invasion. miR-320b mimic impaired cell cycle and metastasis through inhibiting the expression of G1/S transition key regulator Cyclin D1 as well as decreasing the expression level of MMP2 and MMP9. Additionally, upregulation of miR‑320b could markedly promote apoptosis by increasing the level of Bax and reducing Bcl-2 expression in glioma. Taken together, our data suggested that miR‑320b might serve as a novel prognostic marker and potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Qiao-Li Lv
- Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Hong Du
- Department of Pharmacy, Qingdao Mental Health Center, Qingdao, Shandong 266034, P.R. China
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuang-Tao Huang
- Department of Neurology, The Brain Hospital of Hunan Province, Changsha, Hunan 410008, P.R. China
| | - Gui-Hua Wang
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410008, P.R. China
| | - Xue Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
40
|
Ge F, Wang C, Wang W, Liu W, Wu B. MicroRNA-31 inhibits tumor invasion and metastasis by targeting RhoA in human gastric cancer. Oncol Rep 2017; 38:1133-1139. [PMID: 28656284 DOI: 10.3892/or.2017.5758] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 05/18/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies have shown that microRNA-31 (miR-31) functions as a tumor-suppressor in various types of cancer. In the present study we found that miR-31 was significantly downregulated in gastric cancer (GC) as determined by microRNA (miRNA) array screening analysis. Although aberrant expression of miR-31 has been found in different types of cancer, its pathophysiological effect and role in tumorigenesis still remain to be elucidated. In the present study, we detected miR-31 expression in both metastatic GC cell lines and tissues that are potentially highly metastatic by real-time polymerase chain reaction (PCR). Transwell and scratch healing assays were conducted to examine whether the ectopic expression of miR-31 could modify the invasion and migration abilities of GC cells in vitro. We found that miR-31 inhibited GC metastasis in a nude mouse xenograft model of GC. Luciferase reporter assays demonstrated that miR-31 could directly bind to the 3' untranslated region of RhoA and downregulate the expression of RhoA. Significant downregulation of miR-31 in 78 GC tissues and four GC cell lines was examined by real-time reverse transcription-PCR. Moreover, the decreased expression of miR-31 was demonstrated to be associated with lymph node metastasis, poor pT and pN stage, and invasion ability into lymphatic vessels as determined by the Mann-Whitney U test. We also found that miR-31 could inhibit cell invasion and migration abilities in vitro using the Transwell and scratch healing assays in BGC-823, SGC-7901, MGC-803 as well as AGS cells. Experiments in a nude mouse model revealed that miR-31 suppressed tumorigenicity in vivo. The luciferase activity assay and western blotting indicated that RhoA was the potential target of miR-31 in GC cells. Collectively, our results provide important evidence that the downregulation of miR-31 inhibited the invasion and migration abilities of GC cells through direct targeting of the tumor metastasis‑associated gene, RhoA. These findings suggest that miR-31 may be a promising therapeutic candidate in the treatment of GC metastasis.
Collapse
Affiliation(s)
- Fulin Ge
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Changzheng Wang
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Weihua Wang
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenhui Liu
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Benyan Wu
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
41
|
Wu L, Zhang L, Zheng S. Role of the long non-coding RNA HOTAIR in hepatocellular carcinoma. Oncol Lett 2017; 14:1233-1239. [PMID: 28789338 PMCID: PMC5529952 DOI: 10.3892/ol.2017.6312] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
A number of recent studies have focused on the association between long non-coding RNAs (lncRNAs) and cancer. HOX transcript antisense RNA (HOTAIR), an lncRNA that functions as a transcriptional modulator, has been implicated in various fundamental biological activities. HOTAIR mediates the trimethylation of histone H3 at lysine 27 and the demethylation of histone H3 dimethyl Lys4 by recruiting the polycomb repressive complex 2 and the lysine-specific demethylase 1/co-repressor of RE1-silencing transcription factor (coREST)/REST complex to the target gene promoters, which leads to gene silencing. Overexpression of HOTAIR in hepatocellular carcinoma (HCC) is strongly associated with an unfavorable prognosis for patients with HCC. HOTAIR promotes the carcinogenic activity of HCC cells through the suppression of RNA binding motif protein 38, triggering the epithelial-mesenchymal transition, and by interacting with microRNAs that act as tumor suppressors. In the present review, the role of the lncRNA HOTAIR in HCC is examined. The potential use of HOTAIR as a biomarker to achieve more accurate prognostic predictions and as an effective therapeutic target for HCC is then discussed.
Collapse
Affiliation(s)
- Liming Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Jingning National Hospital of The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 323500, P.R. China
| | - Lele Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shusen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
42
|
Histological and Pathological Assessment of miR-204 and SOX4 Levels in Gastric Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6894675. [PMID: 28133610 PMCID: PMC5241485 DOI: 10.1155/2017/6894675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 01/05/2023]
Abstract
Gastric cancer is one of the most common cancers and the efficient therapeutic methods are limited. Further study of the exact molecular mechanism of gastric cancer to develop novel targeted therapies is necessary and urgent. We herein systematically examined that miR-204 suppressed both proliferation and metastasis of gastric cancer AGS cells. miR-204 directly targeted SOX4. In clinical tissue research, we determined that miR-204 was expressed much lower and SOX4 expressed much higher in gastric cancer tissues compared with normal gastric tissues. Associated analysis with clinicopathological parameters in gastric cancer patients showed miR-204 was associated with no lymph node metastasis and early tumor stages whereas SOX4 was associated with lymph node metastasis and advanced tumor stages. In addition, miR-204 and SOX4 were negatively correlated in tissues from gastric cancer patients. Our findings examined the important role of miR-204 and SOX4 played in gastric cancer, and they could be used as candidate therapeutic targets for gastric cancer therapy.
Collapse
|
43
|
Zheng L, Jiao W, Song H, Qu H, Li D, Mei H, Chen Y, Yang F, Li H, Huang K, Tong Q. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell Death Dis 2016; 7:e2382. [PMID: 27685626 PMCID: PMC5059886 DOI: 10.1038/cddis.2016.293] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 12/25/2022]
Abstract
Previous studies have indicated that as the only mammalian endo-β-D-glucuronidase, heparanase (HPSE) is up-regulated and associated with poor prognosis in gastric cancer, while the underlying mechanisms still remain to be determined. Herein, through integrative analysis of public datasets, we found microRNA-558 (miR-558) and SMAD family member 4 (Smad4) as the crucial transcription regulators of HPSE expression in gastric cancer, with their adjacent target sites within the promoter of HPSE. We identified that endogenous miR-558 activated the transcription and expression of HPSE in gastric cancer cell lines. In contrast, Smad4 suppressed the nascent transcription and expression of HPSE via directly binding to its promoter. Mechanistically, miR-558 recognized its complementary site within HPSE promoter to decrease the binding of Smad4 in an Argonaute 1-dependent manner. Ectopic expression or knockdown experiments indicated that miR-558 promoted the in vitro and in vivo tumorigenesis and aggressiveness of gastric cancer cell lines via attenuating Smad4-mediated repression of HPSE expression. In clinical gastric cancer specimens, up-regulation of miR-558 and down-regulation of Smad4 were positively correlated with HPSE expression. Kaplan–Meier survival analysis revealed that miR-558 and Smad4 were associated with unfavourable and favourable outcome of gastric cancer patients, respectively. Therefore, these findings demonstrate that miR-558 facilitates the progression of gastric cancer through directly targeting the HPSE promoter to attenuate Smad4-mediated repression of HPSE expression.
Collapse
Affiliation(s)
- Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Huajie Song
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Hongxia Qu
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Dan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Hong Mei
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Feng Yang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Huanhuan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Qiangsong Tong
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China.,Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| |
Collapse
|
44
|
Xiang X, Mei H, Zhao X, Pu J, Li D, Qu H, Jiao W, Zhao J, Huang K, Zheng L, Tong Q. miRNA-337-3p suppresses neuroblastoma progression by repressing the transcription of matrix metalloproteinase 14. Oncotarget 2016; 6:22452-66. [PMID: 26084291 PMCID: PMC4673175 DOI: 10.18632/oncotarget.4311] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023] Open
Abstract
Recent evidence shows the emerging roles of endogenous microRNAs (miRNAs) in repressing gene transcription. However, the miRNAs inhibiting the transcription of matrix metalloproteinase 14 (MMP-14), a membrane-anchored MMP crucial for the tumorigenesis and aggressiveness, still remain largely unknown. In this study, through mining computational algorithm program and genome-wide Argonaute profiling dataset, we identified one binding site of miRNA-337-3p (miR-337-3p) within the MMP-14 promoter. We demonstrated that miR-337-3p was under-expressed and inversely correlated with MMP-14 expression in clinical specimens and cell lines of neuroblastoma (NB), the most common extracranial solid tumor in childhood. Patients with high miR-337-3p expression had greater survival probability. miR-337-3p suppressed the promoter activity, nascent transcription, and expression of MMP-14, resulting in decreased levels of vascular endothelial growth factor, in cultured NB cell lines. Mechanistically, miR-337-3p recognized its binding site and recruited Argonaute 2 to facilitate the enrichment of repressive epigenetic markers and decrease the binding of RNA polymerase II and specificity protein 1 on the MMP-14 promoter. Gain- and loss-of-function studies demonstrated that miR-337-3p suppressed the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. In addition, restoration of MMP-14 expression rescued the NB cells from changes in these biological features. Taken together, these data indicate that miR-337-3p directly binds the MMP-14 promoter to repress its transcription, thus suppressing the progression of NB.
Collapse
Affiliation(s)
- Xuan Xiang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jiarui Pu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Hongxia Qu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| |
Collapse
|
45
|
Huang T, Wang-Johanning F, Zhou F, Kallon H, Wei Y. MicroRNAs serve as a bridge between oxidative stress and gastric cancer (Review). Int J Oncol 2016; 49:1791-1800. [PMID: 27633118 DOI: 10.3892/ijo.2016.3686] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains one of the most prevalent tumors worldwide and affects human health due to its high morbidity and mortality. Mechanisms underlying occurrence and development of GC have been widely studied. Studies have revealed reactive oxygen species (ROS) generated by cells under oxidative stress (OS) are involved in gastric tumorigenesis, and modulate expression of microRNAs (miRs). As such, miRs have been shown to be associated with OS-related GC. Given the association of OS and miRs in development of GC, this review aims to summarize the relationship between miRs and OS and their role in GC development. Serving as a link between OS and GC, miRs may offer new approaches for gaining a more in-depth understanding of mechanisms of GC and may lead to the identification of new therapeutic approaches against GC.
Collapse
Affiliation(s)
- Tianhe Huang
- Department of Clinical Oncology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an, Shaanxi 710061, P.R. China
| | | | - Fuling Zhou
- Department of Clinical Hematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Herbert Kallon
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
46
|
Smad4 suppresses the tumorigenesis and aggressiveness of neuroblastoma through repressing the expression of heparanase. Sci Rep 2016; 6:32628. [PMID: 27595937 PMCID: PMC5011643 DOI: 10.1038/srep32628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/11/2016] [Indexed: 12/25/2022] Open
Abstract
Heparanase (HPSE) is the only endo-β-D-glucuronidase that is correlated with the progression of neuroblastoma (NB), the most common extracranial malignancy in childhood. However, the mechanisms underlying HPSE expression in NB still remain largely unknown. Herein, through analyzing cis-regulatory elements and mining public microarray datasets, we identified SMAD family member 4 (Smad4) as a crucial transcription regulator of HPSE in NB. We demonstrated that Smad4 repressed the HPSE expression at the transcriptional levels in NB cells. Mechanistically, Smad4 suppressed the HPSE expression through directly binding to its promoter and repressing the lymphoid enhancer binding factor 1 (LEF1)-facilitated transcription of HPSE via physical interaction. Gain- and loss-of-function studies demonstrated that Smad4 inhibited the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. Restoration of HPSE expression prevented the NB cells from changes in these biological features induced by Smad4. In clinical NB specimens, Smad4 was under-expressed and inversely correlated with HPSE levels, while LEF1 was highly expressed and positively correlated with HPSE expression. Patients with high Smad4 expression, low LEF1 or HPSE levels had greater survival probability. These results demonstrate that Smad4 suppresses the tumorigenesis and aggressiveness of NB through repressing the HPSE expression.
Collapse
|
47
|
Li S, Wu X, Xu Y, Wu S, Li Z, Chen R, Huang N, Zhu Z, Xu X. miR-145 suppresses colorectal cancer cell migration and invasion by targeting an ETS-related gene. Oncol Rep 2016; 36:1917-26. [PMID: 27572146 DOI: 10.3892/or.2016.5042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/17/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-45 (miR-145) has been demonstrated to be downregulated in various cancer types including colorectal cancer (CRC). However, the function of miR‑145 in CRC has not been clearly elucidated. In this study, we examined miR-145 expression by quantitative real‑time PCR (qRT‑PCR) in CRC cell lines as well as tumors and corresponding normal mucosa, and the results were correlated to the clinicopathological parameters. In addition, using computational algorithms we investigated putative miR‑145 targets. The role of miR‑145 was further examined in studies in vitro. In our study miR‑145 was significantly decreased in CRC tissues and cell lines compared with non‑cancerous colorectal mucosa, especially lymph node or distance metastasis cases. Based on computational algorithms, we assumed that ERG was directly modulated by miR‑145 in colorectal cancer cells. For the first time, we demonstrated that ERG was highly expressed in CRC tissues compared with normal ones by qRT‑PCR. The inverse correlation between the expression of miR‑145 and ERG was observed in CRC tissues. Dual‑Luciferase assays demonstrated the direct interaction between miR‑145 and 3'‑UTR of ERG mRNA. Ectopic expression of miR‑145 suppressed the proliferation and invasion ability of colorectal cancer cells, while ERG knockdown partially restored the tumor suppressive effect of miR‑145. These results suggested that miR‑145 might act as a tumor suppressor during the process of CRC malignant transformation by interacting with ERG.
Collapse
Affiliation(s)
- Shuling Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xiaobing Wu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Yuandong Xu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Shangbiao Wu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhifa Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Rong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Nanqi Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ziyuan Zhu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xuehu Xu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
48
|
Chang S, Gao L, Yang Y, Tong D, Guo B, Liu L, Li Z, Song T, Huang C. miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 by directly targeting E2F3 in gastric cancer cells. Oncotarget 2016; 6:7675-85. [PMID: 25762621 PMCID: PMC4480708 DOI: 10.18632/oncotarget.3048] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/06/2015] [Indexed: 12/19/2022] Open
Abstract
VitaminD3 signaling is involved in inhibiting the development and progression of gastric cancer (GC), while the active vitamin D metabolite 1-alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3)-mediated gene regulatory mechanisms in GC remain unclear. We found that miR-145 is induced by 1,25(OH)2D3 in a dose- and vitamin D receptor (VDR)-dependent manner in GC cells. Inhibition of miR-145 reverses the antiproliferative effect of 1,25(OH)2D3. Furthermore, miR-145 expression was lower in tumors compared with matched normal samples and correlated with increased the E2F3 transcription factor protein staining. Overexpression of miR-145 inhibited colony formation, cell viability and induced cell arrest in S-phase in GC cells by targeting E2F3 and CDK6. miR-145 inhibition consistently abrogates the 1,25(OH)2D3-mediated suppression of E2F3, CDK6, CDK2 and CCNA2 genes. Altogether, our results indicate that miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 in GC cells and might hold promise for prognosis and therapeutic strategies for GC treatment.
Collapse
Affiliation(s)
- Su'e Chang
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Ling Gao
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.,Department of Oral Maxillofacial Surgery, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P. R. China
| | - Yang Yang
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Dongdong Tong
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Bo Guo
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Liying Liu
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zongfang Li
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Tusheng Song
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Chen Huang
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
49
|
Huang TT, Ping YH, Wang AM, Ke CC, Fang WL, Huang KH, Lee HC, Chi CW, Yeh TS. The reciprocal regulation loop of Notch2 pathway and miR-23b in controlling gastric carcinogenesis. Oncotarget 2016; 6:18012-26. [PMID: 26041881 PMCID: PMC4627232 DOI: 10.18632/oncotarget.4000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/06/2015] [Indexed: 01/03/2023] Open
Abstract
Gastric carcinoma is one of the most common malignancies and the third highest cause of global cancer-related death. Notch2 receptor intracellular domain (N2IC), the activated form of Notch2 receptor, enhances gastric carcinogenesis. MicroRNAs (miRNAs) act as either oncogenes or tumor suppressors in tumorigenesis and cross-talk with Notch pathways. Herein, microRNA-23b (miR-23b) was identified as a Notch2 receptor-related miRNA and its role in gastric carcinogenesis was investigated. Levels of miR-23b in stomach adenocarcinoma samples were down-regulated, whereas those of Notch2 receptor, v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets1), and E2F1 transcripts were up-regulated. Results also showed that N2IC down-regulated miR-23b expression in gastric cancer cells through up-regulating E2F1. The miR-23b inhibited gastric tumorigenesis including growth, viability, epithelial-mesenchymal transition, and abilities of colony formation, migration, invasion, and tumorsphere formation. Mechanistically, miR-23b suppressed tumor progression and pluripotency gene expression and affected tumorsphere ultra-structure in gastric cancer cells via targeting Notch2 receptor or Ets1. Furthermore, miR-23b diminished the xenografted tumor growth and lung metastasis of SC-M1 gastric cancer cells through Notch2 pathway. Our results suggest that Notch2 pathway and miR-23b interplay in a reciprocal regulation loop in gastric cancer cells and this axis plays an important role in gastric carcinogenesis.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - An-Ming Wang
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Chi Ke
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Liang Fang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Hung Huang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Wen Chi
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tien-Shun Yeh
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
50
|
Li D, Zhao X, Xiao Y, Mei H, Pu J, Xiang X, Jiao W, Song H, Qu H, Huang K, Zheng L, Tong Q. Intelectin 1 suppresses tumor progression and is associated with improved survival in gastric cancer. Oncotarget 2016; 6:16168-82. [PMID: 25965823 PMCID: PMC4599263 DOI: 10.18632/oncotarget.3753] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/06/2015] [Indexed: 12/30/2022] Open
Abstract
Recent evidence shows the emerging roles of intelectin 1 (ITLN1), a secretory lectin, in human cancers. Our previous studies have implicated the potential roles of ITLN1 in the aggressiveness of gastric cancer. Herein, we investigated the functions, downstream targets, and clinical significance of ITLN1 in the progression of gastric cancer. We demonstrated that ITLN1 increased the levels of hepatocyte nuclear factor 4 alpha (HNF4α), resulting in suppression of nuclear translocation and transcriptional activity of β-catenin in gastric cancer cells. Mechanistically, ITLN1 attenuated the activity of nuclear factor-kappa B, a transcription factor repressing the HNF4α expression, in gastric cancer cells through inactivating the phosphoinositide 3-kinase/AKT/Ikappa B kinase signaling. Gain- and loss-of-function studies demonstrated that ITLN1 suppressed the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. In addition, restoration of HNF4α expression prevented the gastric cancer cells from ITLN1-mediated changes in these biological features. In clinical gastric cancer tissues, HNF4α expression was positively correlated with that of ITLN1. Patients with high ITLN1 or HNF4α expression had greater survival probability. Taken together, these data indicate that ITLN1 suppresses the progression of gastric cancer through up-regulation of HNF4α, and is associated with improved survival in patients with gastric cancer.
Collapse
Affiliation(s)
- Dan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiang Zhao
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yong Xiao
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Hong Mei
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jiarui Pu
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xuan Xiang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Huajie Song
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Hongxia Qu
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qiangsong Tong
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|