1
|
Heffernan ÁB, Steinruecke M, Dempsey G, Chandran S, Selvaraj BT, Jiwaji Z, Stavrou M. Role of glia in delirium: proposed mechanisms and translational implications. Mol Psychiatry 2024:10.1038/s41380-024-02801-4. [PMID: 39463449 DOI: 10.1038/s41380-024-02801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Delirium is a common acute onset neurological syndrome characterised by transient fluctuations in cognition. It affects over 20% of medical inpatients and 50% of those critically ill. Delirium is associated with morbidity and mortality, causes distress to patients and carers, and has significant socioeconomic costs in ageing populations. Despite its clinical significance, the pathophysiology of delirium is understudied, and many underlying cellular mechanisms remain unknown. There are currently no effective pharmacological treatments which directly target underlying disease processes. Although many studies focus on neuronal dysfunction in delirium, glial cells, primarily astrocytes, microglia, and oligodendrocytes, and their associated systems, are increasingly implicated in delirium pathophysiology. In this review, we discuss current evidence which implicates glial cells in delirium, including biomarker studies, post-mortem tissue analyses and pre-clinical models. In particular, we focus on how astrocyte pathology, including aberrant brain energy metabolism and glymphatic dysfunction, reactive microglia, blood-brain barrier impairment, and white matter changes may contribute to the pathogenesis of delirium. We also outline limitations in this body of work and the unique challenges faced in identifying causative mechanisms in delirium. Finally, we discuss how established neuroimaging and single-cell techniques may provide further mechanistic insight at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Áine Bríd Heffernan
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Georgia Dempsey
- School of Medicine, University of St Andrews, St Andrews, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Zoeb Jiwaji
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Bano S, Alburquerque JQ, Roberts HJ, Pang S, Huang HC, Hasan T. Minocycline and photodynamic priming significantly improve chemotherapy efficacy in heterotypic spheroids of pancreatic ductal adenocarcinoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112910. [PMID: 38663337 PMCID: PMC11088523 DOI: 10.1016/j.jphotobiol.2024.112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.
Collapse
Affiliation(s)
- Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Jose Quilez Alburquerque
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Harrison James Roberts
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Sumiao Pang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, MA, USA; Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, MA, USA.
| |
Collapse
|
3
|
Rezaei A, Moqadami A, Khalaj-Kondori M. Minocycline as a prospective therapeutic agent for cancer and non-cancer diseases: a scoping review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2835-2848. [PMID: 37991540 DOI: 10.1007/s00210-023-02839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Minocycline is an FDA-approved secondary-generation tetracycline antibiotic. It is a synthetic antibiotic having many biological effects, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective functions. This study discusses the pharmacological mechanisms of preventive and therapeutic effects of minocycline. Specifically, it provides a comprehensive overview of the molecular pathways by which minocycline acts on the different cancers, including ovarian, breast, glioma, colorectal, liver, pancreatic, lung, prostate, melanoma, head and neck, leukemia, and non-cancer diseases such as Alzheimer's disease, Parkinson, schizophrenia, multiple sclerosis, Huntington, polycystic ovary syndrome, and coronavirus disease 19. Minocycline may be a potential medication for these disorders due to its strong blood-brain barrier penetrance. It is also widely accepted as a specific medication, has a well-known side-effect characteristic, is reasonably priced, making it appropriate for continuous use in managing diseases, and has been demonstrated as an oral approach because it is effectively absorbed and accomplished almost all of the body's parts.
Collapse
Affiliation(s)
- Abedeh Rezaei
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Moqadami
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
4
|
Ataie-Kachoie P, Badar S, Morris DL, Pourgholami MH. Retraction: Minocycline Targets the NF-κB Nexus through Suppression of TGF-β1-TAK1-IκB Signaling in Ovarian Cancer. Mol Cancer Res 2024; 22:415. [PMID: 38562062 DOI: 10.1158/1541-7786.mcr-24-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
|
5
|
Expression of Concern: Minocycline Suppresses Interleukine-6, Its Receptor System and Signaling Pathways and Impairs Migration, Invasion and Adhesion Capacity of Ovarian Cancer Cells: In Vitro and In Vivo Studies. PLoS One 2024; 19:e0298444. [PMID: 38306336 PMCID: PMC10836686 DOI: 10.1371/journal.pone.0298444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
|
6
|
Li J, Qin Y, Zhao C, Zhang Z, Zhou Z. Tetracycline antibiotics: Potential anticancer drugs. Eur J Pharmacol 2023; 956:175949. [PMID: 37541377 DOI: 10.1016/j.ejphar.2023.175949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
In recent years, research on tetracycline antibiotics has gradually shifted from their antibacterial effects to anticancer effects. Doxycycline, minocycline, and tigecycline as the US Food and Drug Administration (FDA) approved tetracycline antibiotics have been the main subjects of studies. Evidence indicated that they have anticancer properties and are able to control cancer progression through different mechanisms, such as anti-proliferation, anti-metastasis, and promotion of autophagy or apoptosis. In addition, studies have shown that these three tetracycline antibiotics can be utilized in conjunction with chemotherapeutic and targeted drugs to inhibit cancer progression and improve the quality of patient survival. Therefore, doxycycline, minocycline, and tigecycline are taken as examples in this work. Their mechanisms of action in different cancers and related combination therapies are introduced. Their current roles in alleviating the suffering of patients undergoing chemotherapy when used as adjuvant drugs in clinical treatment are also described. Finally, the research gaps and potential research directions at this stage are briefly summarized.
Collapse
Affiliation(s)
- Jiayu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China; College of Pharmacy, Nankai University, China
| | - Chenhao Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhi Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhiruo Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
7
|
Shihmani B, Rassouli A, Mehrzad J, Shokrpoor S. The anti-inflammatory effects of minocycline on lipopolysaccharide-induced paw oedema in rats: a histopathological and molecular study. Inflammopharmacology 2023:10.1007/s10787-023-01236-7. [PMID: 37119392 DOI: 10.1007/s10787-023-01236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/10/2023] [Indexed: 05/01/2023]
Abstract
Minocycline is a semi-synthetic antimicrobial agent with claimed anti-inflammatory properties reported from different experimental models. This study was aimed to evaluate the anti-inflammatory effects of minocycline, compared to the actions of two common anti-inflammatory agents, on lipopolysaccharide (LPS)-induced paw oedema through some clinical, histopathological, haematological and molecular analyses. Forty-eight rats were divided into eight groups (n = 6). In control group (Ctrl), each animal was injected with normal saline into its sub-plantar region of hind paw. In groups 2-7, hind paw oedema was induced by injection of LPS. One hour before injections, groups 1 (Ctrl) and 2 (LPS) were treated orally with distilled water, 3 and 4 with methylprednisolone (Pred) and meloxicam (Melo) and 5-7 with minocycline in doses of 50, 150 and 450 mg/kg (M50, M150 and M450, respectively). The 8th group (MC) was given minocycline (150 mg/kg) orally and normal saline was injected into sub-plantar region. Paw swelling and body temperature were assessed at 0, 2, 4, 6 and 24 h post-injections. At 24 h, samples of blood and liver, kidney, spleen and hind paw tissues were taken for haematological and histopathological examinations. Some samples of the paw were also obtained for molecular analysis of some inflammatory-related cytokines at mRNA level. Paw swelling and body temperature increased in all LPS-injected groups 2 h post-injection. In LPS group, they remained significantly increased up to 24 h; however, these parameters decreased to normal in Pred, Melo and all minocycline groups. The histological findings showed mild-to-moderate signs of inflammation in tissue samples of groups 2-6, but not in group M450. Additionally, gene expression of pro-inflammatory cytokines (IL-1β and IL-6) increased significantly in LPS group compared to other groups. In conclusion, this study supports the role of minocycline as an anti-inflammatory agent with effects comparable to those of meloxicam and methylprednisolone.
Collapse
Affiliation(s)
- Basim Shihmani
- Pharmacology Division, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1419963114, Iran
| | - Ali Rassouli
- Pharmacology Division, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1419963114, Iran.
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
The Female Reproductive Tract Microbiome and Cancerogenesis: A Review Story of Bacteria, Hormones, and Disease. Diagnostics (Basel) 2023; 13:diagnostics13050877. [PMID: 36900020 PMCID: PMC10000484 DOI: 10.3390/diagnostics13050877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
The microbiota is the complex community of microorganisms that populate a particular environment in the human body, whereas the microbiome is defined by the entire habitat-microorganisms and their environment. The most abundant and, therefore, the most studied microbiome is that of the gastrointestinal tract. However, the microbiome of the female reproductive tract is an interesting research avenue, and this article explores its role in disease development. The vagina is the reproductive organ that hosts the largest number of bacteria, with a healthy profile represented mainly by Lactobacillus spp. On the other hand, the female upper reproductive tract (uterus, Fallopian tubes, ovaries) contains only a very small number of bacteria. Previously considered sterile, recent studies have shown the presence of a small microbiota here, but there are still debates on whether this is a physiologic or pathologic occurrence. Of particular note is that estrogen levels significantly influence the composition of the microbiota of the female reproductive tract. More and more studies show a link between the microbiome of the female reproductive tract and the development of gynecological cancers. This article reviews some of these findings.
Collapse
|
9
|
Miyazaki T, Taketomi Y, Higashi T, Ohtaki H, Takaki T, Ohnishi K, Hosonuma M, Kono N, Akasu R, Haraguchi S, Kim-Kaneyama JR, Otsu K, Arai H, Murakami M, Miyazaki A. Hypercholesterolemic Dysregulation of Calpain in Lymphatic Endothelial Cells Interferes With Regulatory T-Cell Stability and Trafficking. Arterioscler Thromb Vasc Biol 2023; 43:e66-e82. [PMID: 36519468 DOI: 10.1161/atvbaha.122.317781] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although hypercholesterolemia reportedly counteracts lymphocyte trafficking across lymphatic vessels, the roles of lymphatic endothelial cells (LECs) in the lymphocyte regulations remain unclear. Previous studies showed that calpain-an intracellular modulatory protease-interferes with leukocyte dynamics in the blood microcirculation and is associated with hypercholesterolemic dysfunction in vascular endothelial cells. METHODS This study investigated whether the calpain systems in LECs associate with the LEC-lymphocyte interaction under hypercholesterolemia using gene-targeted mice. RESULTS Lipidomic analysis in hypercholesterolemic mice showed that several lysophospholipids, including lysophosphatidic acid, accumulated in the lymphatic environment. Lysophosphatidic acid enables the potentiation of calpain systems in cultured LECs, which limits their ability to stabilize regulatory T cells (Treg) without altering Th1/Th2 (T helper type1/2) subsets. This occurs via the proteolytic degradation of MEKK1 (mitogen-activated protein kinase kinase kinase 1) and the subsequent inhibition of TGF (transforming growth factor)-β1 production in LECs. Targeting calpain systems in LECs expanded Tregs in the blood circulation and reduced aortic atherosclerosis in hypercholesterolemic mice, concomitant with the reduction of proinflammatory macrophages in the lesions. Treg expansion in the blood circulation and atheroprotection in calpain-targeted mice was prevented by the administration of TGF-β type-I receptor inhibitor. Moreover, lysophosphatidic acid-induced calpain overactivation potentiated the IL (interleukin)-18/NF-κB (nuclear factor κB)/VCAM1 (vascular cell adhesion molecule 1) axis in LECs, thereby inhibiting lymphocyte mobility on the cells. Indeed, VCAM1 in LECs was upregulated in hypercholesterolemic mice and human cases of coronary artery disease. Neutralization of VCAM1 or targeting LEC calpain systems recovered afferent Treg transportation via lymphatic vessels in mice. CONCLUSIONS Calpain systems in LECs have a key role in controlling Treg stability and trafficking under hypercholesterolemia.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine (Y.T., T.H., M.M.), the University of Tokyo, Japan
| | - Takayoshi Higashi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine (Y.T., T.H., M.M.), the University of Tokyo, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy (H.O.), Showa University School of Medicine, Tokyo, Japan
| | - Takashi Takaki
- Division of Electron Microscopy (T.T.), Showa University School of Medicine, Tokyo, Japan
| | - Koji Ohnishi
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan (K. Ohnishi)
| | - Masahiro Hosonuma
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan (M.H.)
| | - Nozomu Kono
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Graduate School of Medicine (N.K., H.A.), the University of Tokyo, Japan
| | - Risako Akasu
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Shogo Haraguchi
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom (K. Otsu)
| | - Hiroyuki Arai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Graduate School of Medicine (N.K., H.A.), the University of Tokyo, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine (Y.T., T.H., M.M.), the University of Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Assessment of the In Vitro Cytotoxic Profile of Two Broad-Spectrum Antibiotics-Tetracycline and Ampicillin-On Pharyngeal Carcinoma Cells. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091289. [PMID: 36143966 PMCID: PMC9505149 DOI: 10.3390/medicina58091289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Background and Objectives: In spite of the fact that antibiotics are considered to be the cornerstone of modern medicine, their use in the treatment of cancer remains controversial. In the present study, the main objective was to examine the effects of two antibiotics—tetracycline and ampicillin—on the viability, morphology, migration, and organization and structure of the nuclei and the actin fiber network of pharyngeal carcinoma cells—Detroit-562. Materials and Methods: In order to determine the viability of the cells, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was applied after the cells were stimulated with five concentrations of tetracycline and ampicillin (10, 25, 50, 75, and 100 μM) for 72 h. A scratch assay was used to assess the migration ability of the cells. For the visualization of the nuclei and actin fibers, 4,6-diamidino-2-phenylindole (Dapi) and Rhodamine-Phalloidin were used. Results: There are different effects of tetracycline and ampicillin. Thus, tetracycline: (i) exhibited a concentration-dependent cytotoxic effect, decreasing cell viability to approximately 46%; (ii) inhibits cellular migration up to 16% compared to 60% for control cells; and (iii) induces changes in cell morphology as well as apoptotic changes in the nucleus and F-actin fibers. In contrast, in the case of ampicillin, an increase in viability up to 113% was observed at 10 μM, while a decrease in viability up to approximately 94% was observed at the highest concentration tested (100 μM). Conclusions: The results indicated a different effect regarding the impact on pharyngeal carcinoma cells. Thus, tetracycline has a concentration-dependent cytotoxic effect, while in the case of ampicillin a slight stimulation of cell viability was observed.
Collapse
|
11
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
12
|
Combined Therapy with Ivermectin and Doxycycline can effectively alleviate the Cytokine Storm of COVID-19 Infection amid Vaccination Drive: A Narrative Review. J Infect Public Health 2022; 15:566-572. [PMID: 35462191 PMCID: PMC8964533 DOI: 10.1016/j.jiph.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
An unprecedented global health crisis has developed due to the emergence of the mysterious coronavirus-2 of the severe acute respiratory syndrome, which has resulted in millions of deaths around the globe, as no therapy could control the ‘cytokine storm’. Consequently, many vaccines have been developed and several others are being developed for this infection. Although most of the approved vaccines have been highly effective, many developing, and economically poor countries are still deprived of vaccination against SARS-CoV-2 due to the unequal distribution of vaccines worldwide. Furthermore, the uncertainty about the effectiveness of the available vaccines against the emerging mutants and variants also remains a matter of concern. Due to the multistep pathogenesis and unique features, combination therapy using safe immunomodulatory and antiviral drugs should be considered as the most effective and acceptable therapeutic regimen for this infection. Based on a thorough assessment of the literature, it was determined that it would be interesting to study the therapeutic potential of ivermectin and doxycycline, given their roles in several biological pathways involved in SARS CoV-2 pathogenesis. Following that, a comprehensive literature search was undertaken using Scopus, Web of Science, and Pubmed, depending on the inclusion and exclusion criteria. The present study provides a mechanism and comprehensive report, highlighting the role of combined therapy with ivermectin and doxycycline in alleviating the ‘cytokine storm’ of COVID-19 infection.
Collapse
|
13
|
Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev Oncol Hematol 2022; 172:103625. [PMID: 35158070 DOI: 10.1016/j.critrevonc.2022.103625] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The most widespread, malignant, and deadliest type of glial tumor is glioblastoma multiforme (GBM). Despite radiation, chemotherapy, and radical surgery, the median survival of afflicted individuals is about 12 months. Unfortunately, existing therapeutic interventions are abysmal. Dexamethasone (Dex), a synthetic glucocorticoid, has been used for many years to treat brain edema and inflammation caused by GBM. Several investigations have recently shown that Dex also exerts antitumoral effects against GBM. On the other hand, more recent disputed findings have questioned the long-held dogma of Dex treatment for GBM. Unfortunately, steroids are associated with various undesirable side effects, including severe immunosuppression and metabolic changes like hyperglycemia, which may impair the survival of GBM patients. Current ideas and concerns about Dex's effects on GBM cerebral edema, cell proliferation, migration, and its clinical outcomes were investigated in this study.
Collapse
|
14
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
15
|
A cytokine in turmoil: Transforming growth factor beta in cancer. Biomed Pharmacother 2021; 139:111657. [PMID: 34243626 DOI: 10.1016/j.biopha.2021.111657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer remains one of the debilitating health threats to mankind in view of its incurable nature. Many factors are complicit in the initiation, progression and establishment of cancers. Early detection of cancer is the only window of hope that allows for appreciable management and possible limited survival. However, understanding of cancer biology and knowledge of the key factors that interplay at multi-level in the initiation and progression of cancer may hold possible avenues for cancer treatment and management. In particular, dysregulation of growth factor signaling such as that of transforming growth factor beta (TGF-β) and its downstream mediators play key roles in various cancer subtypes. Expanded understanding of the context/cell type-dependent roles of TGF-β and its downstream signaling mediators in cancer may provide leads for cancer pharmacotherapy. Reliable information contained in original articles, reviews, mini-reviews and expert opinions on TGF-β, cancer and the specific roles of TGF-β signaling in various cancer subtypes were retrieved from major scientific data bases including PubMed, Scopus, Medline, Web of Science core collections just to mention but a sample by using the following search terms: TGF-β in cancer, TGF-β and colorectal cancer, TGF-β and brain cancer, TGF-β in cancer initiation, TGF-β and cell proliferation, TGF-β and cell invasion, and TGF-β-based cancer therapy. Retrieved information and reports were carefully examined, contextualized and synchronized into a coherent scientific content to highlight the multiple roles of TGF-β signaling in normal and cancerous cells. From a conceptual standpoint, development of pharmacologically active agents that exert non-specific inhibitory effects on TGF-β signaling on various cell types will undoubtedly lead to a plethora of serious side effects in view of the multi-functionality and pleiotropic nature of TGF-β. Such non-specific targeting of TGF-β could derail any beneficial therapeutic intention associated with TGF-β-based therapy. However, development of pharmacologically active agents designed specifically to target TGF-β signaling in cancer cells may improve cancer pharmacotherapy. Similarly, specific targeting of downstream mediators of TGF-β such as TGF-β type 1 and II receptors (TβRI and TβRII), receptor-mediated Smads, mitogen activated protein kinase (MAPK) and importing proteins in cancer cells may be crucial for cancer pharmacotherapy.
Collapse
|
16
|
Sipos A, Ujlaki G, Mikó E, Maka E, Szabó J, Uray K, Krasznai Z, Bai P. The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med 2021; 27:33. [PMID: 33794773 PMCID: PMC8017782 DOI: 10.1186/s10020-021-00295-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is characterized by dysbiosis, referred to as oncobiosis in neoplastic diseases. In ovarian cancer, oncobiosis was identified in numerous compartments, including the tumor tissue itself, the upper and lower female genital tract, serum, peritoneum, and the intestines. Colonization was linked to Gram-negative bacteria with high inflammatory potential. Local inflammation probably participates in the initiation and continuation of carcinogenesis. Furthermore, local bacterial colonies in the peritoneum may facilitate metastasis formation in ovarian cancer. Vaginal infections (e.g. Neisseria gonorrhoeae or Chlamydia trachomatis) increase the risk of developing ovarian cancer. Bacterial metabolites, produced by the healthy eubiome or the oncobiome, may exert autocrine, paracrine, and hormone-like effects, as was evidenced in breast cancer or pancreas adenocarcinoma. We discuss the possible involvement of lipopolysaccharides, lysophosphatides and tryptophan metabolites, as well as, short-chain fatty acids, secondary bile acids and polyamines in the carcinogenesis of ovarian cancer. We discuss the applicability of nutrients, antibiotics, and probiotics to harness the microbiome and support ovarian cancer therapy. The oncobiome and the most likely bacterial metabolites play vital roles in mediating the effectiveness of chemotherapy. Finally, we discuss the potential of oncobiotic changes as biomarkers for the diagnosis of ovarian cancer and microbial metabolites as possible adjuvant agents in therapy.
Collapse
Affiliation(s)
- Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Eszter Maka
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Zoárd Krasznai
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
17
|
Abstract
Tetracyclines have been used to treat many bacterial infections. The use of these antibiotics for the treatment of viral diseases dates to the 1960s to 1970s. Over the decades, the effect of tetracyclines on the pathogenesis of viral infections has been demonstrated both clinically and experimentally. Tetracyclines can act on viral infections either through their antibacterial properties or through direct antiviral action. This review focuses on clinical and experimental data that support the use of tetracycline in treating viral infections and highlights an important approach to slowing disease progression during viral infections. Tetracycline treatment might represent a strategy for eliminating the infection or inhibiting the progression of COVID-19.
Collapse
|
18
|
Wen J, Han S, Cui M, Wang Y. Long non‑coding RNA MCM3AP‑AS1 drives ovarian cancer progression via the microRNA‑143‑3p/TAK1 axis. Oncol Rep 2020; 44:1375-1384. [PMID: 32945454 PMCID: PMC7448503 DOI: 10.3892/or.2020.7694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
The long non‑coding RNA (lncRNA) MCM3AP antisense 1 (MCM3AP‑AS1) has previously been shown to be a key regulator of multiple types of cancer; however whether it is important in the context of ovarian cancer (OC) is uncertain. The present study determined that MCM3AP‑AS1 expression in samples from patients with OC was significantly increased, and was associated with tumor stage, presence of lymph node metastases and poorer overall survival. The role of this lncRNA was investigated in vitro, and it was observed that knockdown of MCM3AP‑AS1 impaired OC cell proliferation, migration and colony formation. Similarly, it disrupted tumor growth in vivo. The present study further determined that MCM3AP‑AS1 was able to directly interact with microRNA (miRNA or miR)‑143‑3p as a competing endogenous (ce)RNA for this miRNA, thereby regulating the expression of transforming growth factor‑β‑activated kinase 1 (TAK1), a known target of miR‑143‑3p in OC. Consistent with this, inhibition of miR‑143‑3p was sufficient to partially reverse the effects of MCM3AP‑AS1‑knockdown, which inhibited the proliferation, migration and invasion of OC cells. Together, these results indicate that MCM3AP‑AS1 serves as an oncogenic lncRNA in OC by binding to miR‑143‑3p and thereby promoting TAK1 expression, and suggest that this lncRNA may be a possible target for therapy in OC.
Collapse
Affiliation(s)
- Jihong Wen
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shumei Han
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Man Cui
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanli Wang
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
19
|
Tan Y, Lin XT, Luo YD, Zhang J, Fang L, Zhu YY, Yu HQ, Shuai L, Jiang Y, Zhang LD, Bie P, Xie CM. Reduced IκBα promotes hepatocellular carcinoma cell proliferation and migration via regulation of NF-κB/Erbin axis. Oncol Lett 2020; 20:216. [PMID: 32963622 PMCID: PMC7491102 DOI: 10.3892/ol.2020.12079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Aberrantly low expression of NF-κB inhibitor α (IκBα) is observed in hepatocellular carcinoma (HCC), yet the underlying mechanism via which IκBα regulates HCC remains largely unknown. Therefore, to determine the potential function of IκBα in hepatocarcinogenesis, the present study used immunohistochemistry (IHC) staining to analyze the associations between IκBα protein expression and clinicopathologic characteristics of 107 patients with HCC. It was found that expression of IκBα was significantly associated with tumor recurrence. Moreover, IκBα protein expression was decreased in 107 HCC tissue samples and was positively associated with overall survival. Mechanistically, it was demonstrated that silencing of IκBα activated NF-κB in both Huh7 and HCCLM3 cells, followed by upregulation of Erbb2 interacting protein (Erbin) at both the mRNA and protein levels, confirmed by reverse transcription-quantitative PCR and western blotting, to promote cell proliferation and migration. Furthermore, knockdown of Erbin significantly attenuated NF-κB-mediated cell proliferation and migration. It was also identified that overexpression of Erbin in HCC tissues promoted both cell proliferation and migration, and was negatively associated with IκBα expression in 107 HCC tissue samples. Thus, these results indicated that downregulation of IκBα promoted HCC tumorigenesis via upregulation of NF-κB-mediated Erbin expression.
Collapse
Affiliation(s)
- Ye Tan
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yuan-Deng Luo
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yan-Yin Zhu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Ling Shuai
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yan Jiang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Lei-Da Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Ping Bie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China.,Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
20
|
Afshari AR, Mollazadeh H, Sahebkar A. Minocycline in Treating Glioblastoma Multiforme: Far beyond a Conventional Antibiotic. JOURNAL OF ONCOLOGY 2020; 2020:8659802. [PMID: 33014057 PMCID: PMC7519463 DOI: 10.1155/2020/8659802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
One of the most lethal forms of CNS pathologies is glioblastoma multiforme (GBM) that represents high invasiveness, uncontrolled proliferation, and angiogenic features. Its invasiveness is responsible for the high recurrence even after maximal surgical interventions. Minocycline is a semisynthetic analog of tetracyclines with potential anti-inflammatory and anticancer effects, distinct from its antimicrobial activity. In this review, we highlight the importance and the cytotoxic mechanisms of minocycline on GBM pathophysiology. Considering the role of certain enzymes in autophagy, apoptosis, tumor cell invasion, and metastatic ability, the possible use of tetracyclines for cancer therapy should be investigated, especially GBM. The present study is, therefore, going to cover the main topics in minocycline pharmacology to date, encouraging its consideration as a new treatment approach for cancer and GBM.
Collapse
Affiliation(s)
- Amir R. Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Yoshida T, Das NA, Carpenter AJ, Izadpanah R, Kumar SA, Gautam S, Bender SB, Siebenlist U, Chandrasekar B. Minocycline reverses IL-17A/TRAF3IP2-mediated p38 MAPK/NF-κB/iNOS/NO-dependent cardiomyocyte contractile depression and death. Cell Signal 2020; 73:109690. [PMID: 32553549 DOI: 10.1016/j.cellsig.2020.109690] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022]
Abstract
Minocycline, an FDA-approved second-generation semisynthetic tetracycline, exerts antioxidant, anti-apoptotic and anti-inflammatory effects, independent of its antimicrobial properties. Interleukin (IL)-17A is an immune and inflammatory mediator, and its sustained induction is associated with various cardiovascular diseases. Here we investigated (i) whether IL-17A induces cardiomyocyte contractile depression and death, (ii) whether minocycline reverses IL-17A's negative inotropic effects and (iii) investigated the underlying molecular mechanisms. Indeed, treatment with recombinant mouse IL-17A impaired adult cardiomyocyte contractility as evidenced by a 34% inhibition in maximal velocity of shortening and relengthening after 4 h (P < .01). Contractile depression followed iNOS induction at 2 h (2.13-fold, P < .01) and NO generation at 3 h (3.71-fold, P <.01). Further mechanistic investigations revealed that IL-17A-dependent induction of iNOS occurred via TRAF3IP2, TRAF6, TAK1, NF-κB, and p38MAPK signaling. 1400 W, a highly specific iNOS inhibitor, suppressed IL-17A-induced NO generation and contractile depression, where as the NO donors SNAP and PAPA-NONOate both suppressed cardiomyocyte contractility. IL-17A also stimulated cardiomyocyte IL-1β and TNF-α secretion, however, their neutralization failed to modulate IL-17A-mediated contractile depression or viability. Further increases of IL-17A concentration and the duration of exposure enhanced IL-1β and TNF-α secreted levels, buthad no impact on adult cardiomyocyte viability. However, when combined with pathophysiological concentrations of IL-1β or TNF-α, IL-17A promoted adult cardiomyocyte death. Importantly, minocycline blunted IL-17A-mediated deleterious effects, indicating its therapeutic potential in inflammatory cardiac diseases.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nitin A Das
- Cardiothoracic Surgery, UT Health, San Antonio, TX 78229, USA
| | | | - Reza Izadpanah
- Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Senthil A Kumar
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Sandeep Gautam
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bysani Chandrasekar
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
22
|
Lai YC, Chao CH, Yeh TM. Roles of Macrophage Migration Inhibitory Factor in Dengue Pathogenesis: From Pathogenic Factor to Therapeutic Target. Microorganisms 2020; 8:microorganisms8060891. [PMID: 32545679 PMCID: PMC7356240 DOI: 10.3390/microorganisms8060891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) infection is the most prevalent mosquito-borne viral infection and can lead to severe dengue hemorrhagic fever (DHF) and even life-threatening dengue shock syndrome (DSS). Although the cytokine storm has been revealed as a critical factor in dengue disease, the limited understanding of dengue immunopathogenesis hinders the development of effective treatments. Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that mediates diverse immune responses, and the serum level of MIF positively correlates with disease severity in patients with dengue. MIF is involved in DENV replication and many pathological changes, such as vascular leakage, during DENV infection. In this paper, the pathogenic roles of MIF and the regulation of MIF secretion during DENV infection are reviewed. Furthermore, whether MIF is a potential therapeutic target against DENV infection is also discussed.
Collapse
Affiliation(s)
- Yen-Chung Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-C.L.); (C.-H.C.)
| | - Chiao-Hsuan Chao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-C.L.); (C.-H.C.)
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5778)
| |
Collapse
|
23
|
Khaleel EF, Badi RM, Satti HH, Mostafa DG. Exendin-4 exhibits a tumour suppressor effect in SKOVR-3 and OVACR-3 ovarian cancer cells lines by the activation of SIRT1 and inhibition of NF-κB. Clin Exp Pharmacol Physiol 2020; 47:1092-1102. [PMID: 32072679 DOI: 10.1111/1440-1681.13288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
Abstract
This study investigated if EX-527 has an anti-tumour effect in SKOV-3 and OVCAR-3 ovarian cancer (OC) cell lines and if this effect involves the SIRT1/NF-κB axis. Cells were cultured in the presence or absence of EX-527, a selective SIRT-1 inhibitor. Exendin-4 significantly induced cell death in both cell lines and inhibited cell migration and invasion. Also, it decreased protein levels of Bcl-2, MMP-9, and ICAM-1 and increased those of Bax, cyclin D1 and cleaved caspase-3. Mechanistically, Exendin-4 increased the activity and nuclear accumulation of SIRT1 and decreased nuclear levels of NF-κB p65; acetylated levels of NF-κB p65, and cytoplasmic levels of p-IKKα and p-IκBα. EX-527 partially ameliorated the effect of Exendin-4 on cell death, migration, and invasion, as well as on the expression of Bcl-2, MMP-9, Bax, cleaved caspase-3 and ICAM-1. In addition, EX-527 did not affect the levels of nuclear p65 and p-p65 (Ser536); p-IκBα (Ser32) and p-IKKαβ. In conclusion, Exendin-4 can suppress OC by inhibiting NF-kB through SIRT1 dependent and independent mechanisms.
Collapse
Affiliation(s)
- Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Faculty of Medicine, Department of Medical Physiology, Cairo University, Cairo, Egypt
| | - Rehab M Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Faculty of Medicine, Department of Physiology, University of Khartoum, Khartoum, Sudan
| | - Huda H Satti
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Faculty of Medicine, Department of Pathology, University of Khartoum, Khartoum, Sudan
| | - Dalia G Mostafa
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| |
Collapse
|
24
|
El-Kott AF, Shati AA, Ali Al-Kahtani M, Alharbi SA. The apoptotic effect of resveratrol in ovarian cancer cells is associated with downregulation of galectin-3 and stimulating miR-424-3p transcription. J Food Biochem 2019; 43:e13072. [PMID: 31603261 DOI: 10.1111/jfbc.13072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 01/21/2023]
Abstract
This study investigated if the well-reported anti-tumor effects of resveratrol (RES) is mediated by modulation levels of galectin-3 (GAL-3), an anti-apoptotic lectin that is highly overexpressed in ovarian cancer cells. SKOV3 and OVCAR-3 OC cells were untreated or incubated with DMOS or increasing concentrations of RES (25, 50, 100 μM) for 72 hr. RES, in a dose-dependent manner and in both cell lines, induced cell death and inhibited cell migration and invasion It also downregulated Bcl-2 levels, increased cleaved caspase-3, and GAL-3 protein (but not mRNA) levels, suggesting increased breakdown. These effects were associated with reduced levels of p-NF-κB P65, p-IKKα/β, and p-Akt, major targets of Gal-3. Further investigation showed that RES enhanced levels of miR-424-3p which is able to degrade GAL-3. Conclusion: Findings of this study suggest that RES induced apoptosis in cancerous cells is associated with increased levels of miR-424-3p and reduced levels of GAL-3. PRACTICAL APPLICATIONS: This study highlights a possible mechanism by which RES could enhance cell death in OC cells and enhances their sensitivity to cisplatin. RES apoptotic effect and enhancement of OC cells to chemotherapy were associated with decreased abundance of GAL-3, a common cell survival molecule that promotes tumorigenesis and increased transcription of miR-424-3p that has the ability to degrade cellular GAL-3. These findings add a possible new mechanism by which RES acts and opens a window for further research to understand its mechanism of action.
Collapse
Affiliation(s)
- Attalla Farag El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Ali A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Samah A Alharbi
- Department of Physiology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
25
|
Park GH, Shin HS, Choi ES, Yoon BS, Choi MH, Lee SJ, Lee KE, Lee JS, Hong JM. Cranial burr hole with erythropoietin administration induces reverse arteriogenesis from the enriched extracranium. Neurobiol Dis 2019; 132:104538. [PMID: 31344491 DOI: 10.1016/j.nbd.2019.104538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023] Open
Abstract
It is challenging to revitalize ischemic penumbra after an acute stroke with intracranial perfusion insufficiency. To evaluate whether cranial burr hole and erythropoietin (EPO) generate effective revascularization, we investigated the efficacy of the augmentation method for reverse arteriogenesis from the healthy extracranial milieu. An intracranial perfusion insufficiency was created through bilateral internal carotid artery ligation (bICAL) in Sprague-Dawley rats. We administered recombinant human EPO (5000 U/kg) or saline intraperitoneally for 3 days after bICAL. Mechanical barrier disruption (MBD) was performed through a cranial burr hole with small dural cracks in the right hemisphere. The ipsilateral hemisphere with MBD grossly showed vascular networks between the extra- and intra-cranial spaces 2 weeks after the MBD procedure. It also showed significantly increased vessels in the intracranial vasculature adjacent to the MBD region (p = 0.0006). The levels of pro-angiogenic and inflammatory factors with prominent markers of vessel permeability were also significantly increased (MBD-only vs. control; Tnf-α, p = 0.0007; Vegf, p = 0.0206). In the EPO-administered group, such elevations in inflammation were significantly mitigated (combined vs. MBD-only; Tnf-α, p = 0.0008). The ipsilateral hemisphere with MBD-EPO (vs. MBD-only) showed significantly increased vessels (RECA-1, p = 0.0182) and their maturation (RECA-1/α-SMA, p = 0.0046), with upregulation of tumor growth factor-β1 (Tgf-β1, p = 0.037) and matrix metalloproteinase-2 (Mmp-2, p = 0.0488). These findings were completely blocked by minocycline (MIC) administration during in vivo (Tgf-β1, p = 0.0009; Mmp-2, p < 0.0001) and in vitro experiments (tube formation, p < 0.0001). Our data suggest that the MBD procedure (for angiogenic routes) and EPO administration (for an arteriogenic booster) are complimentary and can facilitate successfully "reverse arteriogenesis" in subjects with intracranial perfusion insufficiency.
Collapse
Affiliation(s)
- Geun Hwa Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Hee Sun Shin
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Eun Sil Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Bok Seon Yoon
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Mun Hee Choi
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Seong-Joon Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Kyung-Eon Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University School of Pharmacy, Seoul, South Korea
| | - Jin Soo Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea; Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Ji Man Hong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea; Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea.
| |
Collapse
|
26
|
Zhu D, Yuan D, Guo R, Zhang L, Guo T, Zhao Y, Wang J, Chen X, Qian H, Ge H. Overexpression of miR-148a inhibits viability and invasion of ovarian cancer OVCAR3 cells by targeting FOXO3. Oncol Lett 2019; 18:402-410. [PMID: 31289511 PMCID: PMC6539956 DOI: 10.3892/ol.2019.10321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 03/29/2019] [Indexed: 12/31/2022] Open
Abstract
Decreased expression of microRNA (miR)-148a is associated with poor prognosis in ovarian cancer. The aim of the present study was to investigate the impact of miR-148a on tumor cell viability and invasion via targeting forkhead box protein O3 (FOXO3). Expression of miR-148a was detected in paired tumor and adjacent normal tissues. OVCAR3 cells were transfected with miR-148a mimic and inhibitor. Cell viability, apoptosis and invasion were determined. A luciferase reporter assay was used to study the association between miR-148a and FOXO3. In addition, the influence of miR-148a on tumor cell growth was investigated by performing xenograft assays in nude mice. RT-qPCR showed that miR-148a was downregulated in ovarian cancer tissues. Overexpression of miR-148a in OVCAR3 cells inhibited cell viability, suppressed invasion and promoted cellular apoptosis. The dual-luciferase assay indicated that miR-148a directly regulated the expression of FOXO3, a transcription factor of caspase-3. Western blotting confirmed that the expression of caspase-3 was regulated by the modulation of miR-148a expression. In vivo assays revealed that miR-148a overexpression inhibited the growth of OVCAR3 ×enograft tumors in nude mice. miR-148a is a tumor suppressor in ovarian cancer OVCAR3 cells and in nude mice. The suppressive effect is due to inhibiting cell viability and invasion as well as promoting apoptosis. These results may provide theoretical basis for targeting miR-148a in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Donglan Yuan
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Runfa Guo
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Lixin Zhang
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Ting Guo
- Central Laboratory, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Yinling Zhao
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Jia Wang
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Xinping Chen
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Hua Qian
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Hongshan Ge
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
27
|
Weiler J, Dittmar T. Minocycline impairs TNF-α-induced cell fusion of M13SV1-Cre cells with MDA-MB-435-pFDR1 cells by suppressing NF-κB transcriptional activity and its induction of target-gene expression of fusion-relevant factors. Cell Commun Signal 2019; 17:71. [PMID: 31266502 PMCID: PMC6604204 DOI: 10.1186/s12964-019-0384-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background To date, several studies have confirmed that driving forces of the inflammatory tumour microenvironment trigger spontaneous cancer cell fusion. However, less is known about the underlying factors and mechanisms that facilitate inflammation-induced cell fusion of a cancer cell with a normal cell. Recently, we demonstrated that minocycline, a tetracycline antibiotic, successfully inhibited the TNF-α-induced fusion of MDA-MB-435 cancer cells with M13SV1 breast epithelial cells. Here, we investigated how minocycline interferes with the TNF-α induced signal transduction pathway. Methods A Cre-LoxP recombination system was used to quantify the fusion of MDA-MB-435-pFDR1 cancer cells and M13SV1-Cre breast epithelial cells. The impact of minocycline on the TNF-α signalling pathway was determined by western blotting. The transcriptional activity of NF-κB was characterised by immunocytochemistry, western blot and ChIP analyses. An NF-κB-luciferase reporter assay was indicative of NF-κB activity. Results Minocycline treatment successfully inhibited the TNFR1-TRAF2 interaction in both cell types, while minocycline abrogated the phosphorylation of IκBα and NF-κB-p65 to suppress nuclear NF-κB and its promotor activity only in M13SV1-Cre cells, which attenuated the expression of MMP9 and ICAM1. In MDA-MB-435-pFDR1 cells, minocycline increased the activity of NF-κB, leading to greater nuclear accumulation of NF-κB-p65, thus increasing promoter activity to stimulate the expression of ICAM1. Even though TNF-α also activated all MAPKs (ERK1/2, p38 and JNK), minocycline differentially affected these kinases to either inhibit or stimulate their activation. Moreover, SRC activation was analysed as an upstream activator of MAPKs, but no activation by TNF-α was revealed. The addition of several specific inhibitors that block the activation of SRC, MAPKs, AP-1 and NF-κB confirmed that only NF-κB inhibition was successful in inhibiting the TNF-α-induced cell fusion process. Conclusion Minocycline is a potent inhibitor in the TNF-α-induced cell fusion process by targeting the NF-κB pathway. Thus, minocycline prevented NF-κB activation and nuclear translocation to abolish the target-gene expression of MMP9 and ICAM1 in M13SV1-Cre cells, resulting in reduced cell fusion frequency.
Collapse
Affiliation(s)
- Julian Weiler
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Thomas Dittmar
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| |
Collapse
|
28
|
Morin decreases galectin-3 expression and sensitizes ovarian cancer cells to cisplatin. Arch Gynecol Obstet 2018; 298:1181-1194. [PMID: 30267152 PMCID: PMC6244704 DOI: 10.1007/s00404-018-4912-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/19/2018] [Indexed: 01/30/2023]
Abstract
Purpose This study aimed at evaluating whether morin (a natural flavonoid and a known inhibitor of NF-κB) can sensitize ovarian cancer cells to cisplatin by decreasing the expression of galectin-3, which is an anti-apoptotic protein regulated by NF-κB transcription factor. Methods To assess the possibility of augmentation the activity of cisplatin by morin, we studied the separate and the combined effect of morin and cisplatin on viability, proliferation, and apoptosis of TOV-21G (cisplatin-sensitive) and SK-OV-3 (cisplatin-resistant) ovarian cancer cells. We also analysed the effect of morin and cisplatin on galectin-3 expression at the mRNA and protein levels. Results We demonstrated that morin possess antitumor activity against TOV-21G and SK-OV-3 ovarian cancer cells by reducing cell viability and proliferation as well as increasing the induction of apoptosis. Co-treatment of the cells with selected concentrations of morin and cisplatin, accordingly to specific treatment approaches, reveals a synergism, which leads to sensitization of the cells to cisplatin. During this sensitization, morin significantly reduces the expression of galectin-3 at the mRNA and protein level, regardless of the presence of cisplatin. Conclusions Morin sensitizes TOV-21G and SK-OV-3 ovarian cancer cells to cisplatin, what is associated with a decrease of the expression of galectin-3.
Collapse
|
29
|
Weiler J, Mohr M, Zänker KS, Dittmar T. Matrix metalloproteinase-9 (MMP9) is involved in the TNF-α-induced fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Cell Commun Signal 2018; 16:14. [PMID: 29636110 PMCID: PMC5894245 DOI: 10.1186/s12964-018-0226-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 01/07/2023] Open
Abstract
Background In addition to physiological events such as fertilisation, placentation, osteoclastogenesis, or tissue regeneration/wound healing, cell fusion is involved in pathophysiological conditions such as cancer. Cell fusion, which applies to both the proteins and conditions that induce the merging of two or more cells, is not a fully understood process. Inflammation/pro-inflammatory cytokines might be a positive trigger for cell fusion. Using a Cre-LoxP-based cell fusion assay we demonstrated that the fusion between human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells was induced by the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α). Methods The gene expression profile of the cells in the presence of TNF-α and under normoxic and hypoxic conditions was analysed by cDNA microarray analysis. cDNA microarray data were verified by qPCR, PCR, Western blot and zymography. Quantification of cell fusion events was determined by flow cytometry. Proteins of interest were either blocked or knocked-down using a specific inhibitor, siRNA or a blocking antibody. Results The data showed an up-regulation of various genes, including claudin-1 (CLDN1), ICAM1, CCL2 and MMP9 in M13SV1-Cre and/or MDA-MB-435-pFDR1 cells. Inhibition of these proteins using a blocking ICAM1 antibody, CLDN1 siRNA or an MMP9 inhibitor showed that only the blockage of MMP9 was correlated with a decreased fusion rate of the cells. Likewise, the tetracycline-based antibiotic minocycline, which exhibits anti-inflammatory properties, was also effective in both inhibiting the TNF-α-induced MMP9 expression in M13SV1-Cre cells and blocking the TNF-α-induced fusion frequency of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Conclusions The matrix metalloproteinase-9 (MMP9) is most likely involved in the TNF-α-mediated fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Likewise, our data indicate that the tetracycline-based antibiotic minocycline might exhibit anti-fusogenic properties because it inhibits a cell fusion-related mechanism. Electronic supplementary material The online version of this article (10.1186/s12964-018-0226-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julian Weiler
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Marieke Mohr
- BioGenes GmbH, Köpenicker Str. 325, 12555, Berlin, Germany
| | - Kurt S Zänker
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Thomas Dittmar
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| |
Collapse
|
30
|
Hyperexcitability in Spinal WDR Neurons following Experimental Disc Herniation Is Associated with Upregulation of Fractalkine and Its Receptor in Nucleus Pulposus and the Dorsal Root Ganglion. Int J Inflam 2016; 2016:6519408. [PMID: 28116212 PMCID: PMC5220471 DOI: 10.1155/2016/6519408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Introduction. Lumbar radicular pain following intervertebral disc herniation may be associated with a local inflammatory response induced by nucleus pulposus (NP) cells. Methods. In anaesthetized Lewis rats, extracellular single unit recordings of wide dynamic range (WDR) neurons in the dorsal horn and qPCR were used to explore the effect of NP application onto the dorsal nerve roots (L3-L5). Results. A clear increase in C-fiber response was observed following NP conditioning. In the NP tissue, the expression of interleukin-1β (IL-1β), colony stimulating factor 1 (Csf1), fractalkine (CX3CL1), and the fractalkine receptor CX3CR1 was increased. Minocycline, an inhibitor of microglial activation, inhibited the increase in neuronal activity and attenuated the increase in IL-1β, Csf1, CX3L1, and CX3CR1 expression in NP tissue. In addition, the results demonstrated an increase in the expression of TNF, CX3CL1, and CX3CR1 in the dorsal root ganglions (DRGs). Conclusion. Hyperexcitability in the pain pathways and the local inflammation after disc herniation may involve upregulation of CX3CL1 signaling in both the NP and the DRG.
Collapse
|
31
|
Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI. Sci Rep 2016; 6:36650. [PMID: 27833124 PMCID: PMC5105135 DOI: 10.1038/srep36650] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR-ERK-NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T2-weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles.
Collapse
|
32
|
Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes. Acta Pharmacol Sin 2016; 37:753-62. [PMID: 27157092 DOI: 10.1038/aps.2016.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022] Open
Abstract
AIM To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. METHODS A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. RESULTS BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. CONCLUSION Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes.
Collapse
|
33
|
KEILHOFF GERBURG, LUCAS BENJAMIN, UHDE KATJA, FANSA HISHAM. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med 2016; 11:1685-1699. [PMID: 27168790 PMCID: PMC4840837 DOI: 10.3892/etm.2016.3130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
The present study was conducted to investigate the effects of minocycline on the expression of selected transcriptional and translational profiles in the rat spinal cord following sciatic nerve (SNR) transection and microsurgical coaptation. The mRNA and protein expression levels of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, major histocompatibility complex I (MHC I), tumor necrosis factor-α (TNF-α), activating transcription factor 3 (ATF3), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and growth associated protein-43 (GAP-43) were monitored in the rat lumbar spinal cord following microsurgical reconstruction of the sciatic nerves and minocycline treatment. The present study used semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. As a PCR analysis of spinal cord tissue enabled the examination of the expression patterns of all cell types including glia, the motorneuron-like NSC-34 cell line was used to investigate expression level changes in motorneurons. As stressors, oxygen glucose deprivation (OGD) and lipopolysaccharide (LPS) treatment were performed. SNR did not induce significant degeneration of ventral horn motorneurons, whereas microglia activation and synaptic terminal retraction were detectable. All genes were constitutively expressed at the mRNA and protein levels in untreated spinal cord and control cells. SNR significantly increased the mRNA expression levels of all genes, albeit only temporarily. In all genes except MMP9 and GAP-43, the induction was seen ipsilaterally and contralaterally. The effects of minocycline were moderate. The expression levels of MMP9, TNF-α, MHC I, VEGF, and GAP-43 were reduced, whereas those of Bax and Bcl-2 were unaffected. OGD, but not LPS, was toxic for NSC-34 cells. No changes in the expression levels of Bax, caspase-3, MHC I or ATF3 were observed. These results indicated that motorneurons were not preferentially or solely responsible for SNR-mediated upregulation of these genes. MMP9, TNF-α, VEGF and Bcl-2 were stress-activated. These results suggest that a substantial participation of motorneurons in gene expression levels in vivo. Minocycline was also shown to have inhibitory effects. The nuclear factor-κB signalling pathway may be a possible target of minocycline.
Collapse
Affiliation(s)
- GERBURG KEILHOFF
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - BENJAMIN LUCAS
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
- Department of Trauma Surgery, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - KATJA UHDE
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - HISHAM FANSA
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Bielefeld D-33604, Germany
| |
Collapse
|
34
|
Ali AAA, Lee YR, Chen TC, Chen CL, Lee CC, Shiau CY, Chiang CH, Huang HS. Novel Anthra[1,2-c][1,2,5]Thiadiazole-6,11-Diones as Promising Anticancer Lead Compounds: Biological Evaluation, Characterization & Molecular Targets Determination. PLoS One 2016; 11:e0154278. [PMID: 27100886 PMCID: PMC4839570 DOI: 10.1371/journal.pone.0154278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/10/2016] [Indexed: 12/29/2022] Open
Abstract
The novel compounds NSC745885 and NSC757963 developed at our laboratory were tested against a panel of 60 cancer cell lines at the National Cancer Institute, USA, and a panel of 39 cancer cell lines at the Japanese Foundation of Cancer Research. Both compounds demonstrated selective unique multi-log differential patterns of activity, with GI50 values in the sub-micro molar range against cancer cells rather than normal cardiac cells. NSC757963 showed high selectivity towards the leukemia subpanel. Activities of both compounds strongly correlated to expression of NFKB1 and CSNK2B genes, implying that they may inhibit the NF-κB pathway. Immunocytochemical microscopy of OVCAR-3 cells showed clear cytosolic accumulation of the NF-κB p65 subunit following treatment. Western blotting showed dose dependent inhibition of the nuclear expression of the NF-κB p65 subunit with subsequent accumulation in the cytosol following treatment. Docking experiments showed binding of both compounds to the NF-κB activator IKKβ subunit preventing its translocation to the nucleus. Collectively, these results confirm the ability of our compounds to inhibit the constitutively active NF-κB pathway of OVCAR-3 cells. Furthermore, COMPARE analysis indicated that the activity of NSC757963 is similar to the antituberculosis agent rifamycin SV, this was confirmed by testing the antimycobacterial activity of NSC757963 against Mycobacterium tuberculosis, results revealed potent activity suitable for use in clinical practice. Molecular properties and Lipinski’s parameters predicted acceptable bioavailability properties with no indication of mutagenicity, tumorigenicity, irritability and reproductive effects. Oral absorption experiments using the human Caco-2 model showed high intestinal absorption of NSC745885 by passive transport mechanism with no intestinal efflux or active transport mechanisms. The unique molecular characterization as well as the illustrated anticancer spectra of activity and bioavailability properties warrant further development of our compounds and present a foundation brick in the pre-clinical investigations to implement such compounds in clinical practice.
Collapse
Affiliation(s)
- Ahmed Atef Ahmed Ali
- Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ru Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Chih Chen
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Liang Chen
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chung Lee
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yang Shiau
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chiao-Hsi Chiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Hu J, Meng Y, Yu T, Hu L, Mao M. Ubiquitin E3 ligase MARCH7 promotes ovarian tumor growth. Oncotarget 2016; 6:12174-87. [PMID: 25895127 PMCID: PMC4494930 DOI: 10.18632/oncotarget.3650] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/28/2015] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin E3 ligase MARCH7 is involved in T cell proliferation and neuronal development. We found that expression of MARCH7 was higher in ovarian cancer tissues than normal ovarian tissues. Silencing MARCH7 decreased cell proliferation, migration, and invasion. Ectopic expression of MARCH7 increased cell proliferation, migration and invasion. Silencing MARCH7 prevented ovarian cancer growth in mice. Silencing MARCH7 inhibited NFkB and Wnt/β-catenin pathway. In agreement, ectopically expressed MARCH7 activated NFkB and Wnt/β-catenin pathways. Finally, MARCH7 was regulated by miR-101. Thus, MARCH7 is oncogenic and a potential target (oncotarget) for ovarian cancer therapy.
Collapse
Affiliation(s)
- Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Meng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ming Mao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Minocycline inhibits peritoneal macrophages but activates alveolar macrophages in acute pancreatitis. J Physiol Biochem 2015; 71:839-46. [PMID: 26561345 DOI: 10.1007/s13105-015-0448-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Minocycline is a tetracycline antibiotic that, in addition to its antimicrobial function, has been reported to possess a relevant anti-inflammatory activity. Its effects have been extensively evaluated in inflammatory-related neurological diseases. Here, we evaluate its effect on the systemic inflammatory response in a model of experimental acute pancreatitis. Minocycline treatment significantly reduced the inflammation in pancreas and mesenterium, had no effect on the adipose tissue inflammation, and increased the inflammatory response in the lung. These differences seem to be related with different effects exerted on peritoneal and alveolar macrophages. In vitro, minocycline reduced the expression of IL-1β and inhibit the activation of nuclear factor kappa B (NF-κB) on peritoneal macrophages, while it had no effect on alveolar macrophages. Our data indicates that although minocycline may be useful as a tool to control some inflammatory processes, differences on its effects depending on the population of macrophages involved in the process can be expected. In the particular case of acute pancreatitis, it could promote or potentiate inflammation in the lung so that its use does not appear to be recommended.
Collapse
|
37
|
Tetracyclines downregulate the production of LPS-induced cytokines and chemokines in THP-1 cells via ERK, p38, and nuclear factor-κB signaling pathways. Biochem Biophys Rep 2015; 4:397-404. [PMID: 29124230 PMCID: PMC5669446 DOI: 10.1016/j.bbrep.2015.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/03/2023] Open
Abstract
Recent reports have shown that antibiotics such as macrolide, aminoglycoside, and tetracyclines have immunomodulatory effects in addition to essential antibiotic effects. These agents may have important effects on the regulation of cytokine and chemokine production. However, the precise mechanism is unknown. This time, we used Multi Plex to measure the production of cytokines and chemokines following tetracycline treatment of lipopolysaccharide (LPS)-induced THP-1 cells. The signaling pathways were investigated with Western blotting analysis. Three tetracyclines significantly suppressed the expression of cytokines and chemokines induced by LPS. Minocycline (50 μg/ml), tigecycline (50 μg/ml), or doxycycline (50 μg/ml) were added after treatment with LPS (10 μg/ml). Tumor necrosis factor-α was downregulated to 16%, 14%, and 8%, respectively, after 60 min compared to treatment with LPS without agents. Interleukin-8 was downregulated to 43%, 32%, and 26% at 60 min. Macrophage inflammatory protein (MIP)-1α was downregulated to 23%, 33%, and 16% at 120 min. MIP-1β was downregulated to 21%, 11%, and 2% at 120 min. Concerning about signaling pathways, the mechanisms of the three tetracyclines might not be the same. Although the three tetracyclines showed some differences in the time course, tetracyclines modulated phosphorylation of the NF-κB pathway, p38 and ERK1/2/MAPK pathways, resulting in inhibition of cytokine and chemokine production. In addition, SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor) significantly suppressed the expression of TNF-α and IL-8 in LPS-stimulated THP-1 cells. And further, the NF-κB inhibitor, BAY11-7082, almost completely suppressed LPS-induced these two cytokines production. Thus, more than one signaling pathway may be involved in tetracyclines downregulation of the expression of LPS-induced cytokines and chemokines in THP-1 cells. And among the three signaling pathways, NF-κB pathway might be the dominant pathway on tetracyclines modification the LPS-induced cytokines production in THP-1 cells. In general, minocycline and doxycycline suppressed the production of cytokines and chemokines in LPS-stimulated THP-1 cell lines via mainly the inhibition of phosphorylation of NF-κB pathways. Tigecycline has the same structure as the other tetracyclines, however, it showed the different properties of cytokine modulation in the experimental time course.
Collapse
|
38
|
Ying L, Chunxia Y, Wei L. Inhibition of ovarian cancer cell growth by a novel TAK1 inhibitor LYTAK1. Cancer Chemother Pharmacol 2015; 76:641-50. [PMID: 26228528 DOI: 10.1007/s00280-015-2822-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 01/26/2023]
Abstract
PURPOSE Transforming growth factor-β-activating kinase 1 (TAK1) has been implicated in promoting ovarian cancer progression. Here, we evaluated the anti-ovarian cancer effect of LYTAK1, a novel and specific TAK1 inhibitor. METHODS Established or primary human ovarian cancer cells were treated with LYTAK1, and its cytotoxicity and underlying mechanisms were analyzed using in vitro and in vivo assays. RESULTS We demonstrated that LYTAK1 blocked TAK1-nuclear factor kappa B activation, and potently inhibited growth of established (SKOV3, CaOV3 and A2780 lines) or primary (patient-derived) human ovarian cancer cells, where TAK1 was over-expressed and over-activated. While the normal ovarian epithelial cells (IOSE-80), with low TAK1 expression, were minimally affected by the same LYTAK1 treatment. In ovarian cancer cells, LYTAK1 mainly induced necrosis (but not apoptosis), which was associated with mitochondrial permeability transition pore (mPTP) opening, the latter was evidenced by mitochondrial membrane potential reduction. Inhibition of mPTP, either by its inhibitor sanglifehrin A or cyclosporine A, as well as by siRNA-mediated knockdown of cyclophilin-D or voltage-dependent anion channel, attenuated LYTAK1-induced necrosis and cytotoxicity in ovarian cancer cells. In vivo, LYTAK1 oral administration suppressed growth of SKOV3 xenografts in nude mice, and its activity could be further enhanced by co-treatment of paclitaxel (Taxol). CONCLUSIONS These data reveal the therapeutic potential of LYTAK1 as an agent targeting the pro-oncogenic TAK1 in ovarian cancer.
Collapse
Affiliation(s)
- Liu Ying
- Central Laboratory, Maternal and Child Health Hospital of Jilin Province, Changchun, China
| | | | | |
Collapse
|
39
|
Chien W, Sun QY, Lee KL, Ding LW, Wuensche P, Torres-Fernandez LA, Tan SZ, Tokatly I, Zaiden N, Poellinger L, Mori S, Yang H, Tyner JW, Koeffler HP. Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer. Mol Oncol 2015; 9:889-905. [PMID: 25637283 PMCID: PMC4387089 DOI: 10.1016/j.molonc.2015.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 12/28/2022] Open
Abstract
We utilized three tiers of screening to identify novel therapeutic agents for pancreatic cancers. First, we analyzed 14 pancreatic cancer cell lines against a panel of 66 small-molecule kinase inhibitors and dasatinib was the most potent. Second, we performed RNA expression analysis on 3 dasatinib-resistant and 3 dasatinib-sensitive pancreatic cancer cell lines to profile their gene expression. Third, gene profiling data was integrated with the Connectivity Map database to search for potential drugs. Thioridazine was one of the top ranking small molecules with highly negative enrichment. Thioridazine and its family members of phenothiazine including penfluridol caused pancreatic cancer cell death and affected protein expression levels of molecules involved in cell cycle regulation, apoptosis, and multiple kinase activities. This family of drugs causes activation of protein phosphatase 2 (PP2A). The drug FTY-720 (activator of PP2A) induced apoptosis of pancreatic cancer cells. Silencing catalytic unit of PP2A rendered pancreatic cancer cells resistant to penfluridol. Our observations suggest potential therapeutic use of penfluridol or similar agent associated with activation of PP2A in pancreatic cancers.
Collapse
Affiliation(s)
- Wenwen Chien
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | - Qiao-Yang Sun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kian Leong Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Peer Wuensche
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Siew Zhuan Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Itay Tokatly
- Cancer Research Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Norazean Zaiden
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Lorenz Poellinger
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Seiichi Mori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jeffrey W Tyner
- Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, USA; National University Cancer Institute, Singapore
| |
Collapse
|
40
|
Ataie-Kachoie P, Pourgholami MH, Richardson DR, Morris DL. Gene of the month: Interleukin 6 (IL-6). J Clin Pathol 2014; 67:932-7. [DOI: 10.1136/jclinpath-2014-202493] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Interleukin 6 (IL-6) gene encodes the classic proinflammatory cytokine IL-6. It is also known as interferon-β2 (IFN-β2), B cell stimulatory factor-2 and hybridoma/plasmacytoma growth factor. IL-6 is a multifunctional cytokine with a central role in many physiological inflammatory and immunological processes. Due to its major role in initiation as well as resolving inflammation, deregulation of IL-6 is a mainstay of chronic inflammatory and autoimmune diseases. Additionally, IL-6 has been shown to be implicated in pathogenesis of many human malignancies. Thus, a better understanding of IL-6 and its role in various pathological conditions could enable the development of strategies to use it as a therapeutic target. This short review focuses on the structure, regulation and biological activities of IL-6. In addition we discuss the role of IL-6 in diseases with inflammatory background and cancer and also the therapeutic applications of anti-IL-6 agents.
Collapse
|
41
|
Nguyen HT, Tian G, Murph MM. Molecular epigenetics in the management of ovarian cancer: are we investigating a rational clinical promise? Front Oncol 2014; 4:71. [PMID: 24782983 PMCID: PMC3986558 DOI: 10.3389/fonc.2014.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/20/2014] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is essentially a phenotypical change in gene expression without any alteration of the DNA sequence; the emergence of epigenetics in cancer research and mainstream oncology is fueling new hope. However, it is not yet known whether this knowledge will translate to improved clinical management of ovarian cancer. In this malignancy, women are still undergoing chemotherapy similar to what was approved in 1978, which to this day represents one of the biggest breakthroughs for treating ovarian cancer. Although liquid tumors are benefiting from epigenetically related therapies, solid tumors like ovarian cancer are not (yet?). Herein, we will review the science of molecular epigenetics, especially DNA methylation, histone modifications and microRNA, but also include transcription factors since they, too, are important in ovarian cancer. Pre-clinical and clinical research on the role of epigenetic modifications is also summarized. Unfortunately, ovarian cancer remains an idiopathic disease, for the most part, and there are many areas of patient management, which could benefit from improved technology. This review will also highlight the evidence suggesting that epigenetics may have pre-clinical utility in pharmacology and clinical applications for prognosis and diagnosis. Finally, drugs currently in clinical trials (i.e., histone deacetylase inhibitors) are discussed along with the promise for epigenetics in the exploitation of chemoresistance. Whether epigenetics will ultimately be the answer to better management in ovarian cancer is currently unknown; but we hope so in the future.
Collapse
Affiliation(s)
- Ha T Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA
| | - Geng Tian
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA ; Department of Obstetrics and Gynecology, The Second Hospital of Jilin University , Changchun , China
| | - Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA
| |
Collapse
|
42
|
Salazar L, Kashiwada T, Krejci P, Meyer AN, Casale M, Hallowell M, Wilcox WR, Donoghue DJ, Thompson LM. Fibroblast growth factor receptor 3 interacts with and activates TGFβ-activated kinase 1 tyrosine phosphorylation and NFκB signaling in multiple myeloma and bladder cancer. PLoS One 2014; 9:e86470. [PMID: 24466111 PMCID: PMC3900522 DOI: 10.1371/journal.pone.0086470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/09/2013] [Indexed: 12/31/2022] Open
Abstract
Cancer is a major public health problem worldwide. In the United States alone, 1 in 4 deaths is due to cancer and for 2013 a total of 1,660,290 new cancer cases and 580,350 cancer-related deaths are projected. Comprehensive profiling of multiple cancer genomes has revealed a highly complex genetic landscape in which a large number of altered genes, varying from tumor to tumor, impact core biological pathways and processes. This has implications for therapeutic targeting of signaling networks in the development of treatments for specific cancers. The NFκB transcription factor is constitutively active in a number of hematologic and solid tumors, and many signaling pathways implicated in cancer are likely connected to NFκB activation. A critical mediator of NFκB activity is TGFβ-activated kinase 1 (TAK1). Here, we identify TAK1 as a novel interacting protein and target of fibroblast growth factor receptor 3 (FGFR3) tyrosine kinase activity. We further demonstrate that activating mutations in FGFR3 associated with both multiple myeloma and bladder cancer can modulate expression of genes that regulate NFκB signaling, and promote both NFκB transcriptional activity and cell adhesion in a manner dependent on TAK1 expression in both cancer cell types. Our findings suggest TAK1 as a potential therapeutic target for FGFR3-associated cancers, and other malignancies in which TAK1 contributes to constitutive NFκB activation.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Adhesion
- Cell Proliferation
- Gene Expression Profiling
- Humans
- Immunoprecipitation
- MAP Kinase Kinase Kinases/genetics
- MAP Kinase Kinase Kinases/metabolism
- Multiple Myeloma/genetics
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oligonucleotide Array Sequence Analysis
- Peptide Fragments
- Phosphorylation
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Tumor Cells, Cultured
- Two-Hybrid System Techniques
- Tyrosine/metabolism
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Lisa Salazar
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Tamara Kashiwada
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
| | - Pavel Krejci
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Institute of Experimental Biology, Masaryk University and Department of Cytokinetics, Institute of Biophysics AS CR, v.v.i., Brno, Czech Republic
- Department of Pediatrics, UCLA School of Medicine, Los Angeles, California, United States of America
| | - April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Malcolm Casale
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - Matthew Hallowell
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - William R. Wilcox
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Pediatrics, UCLA School of Medicine, Los Angeles, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Leslie Michels Thompson
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|