1
|
Chakraborty AK, Kroehling L, Raut RD, Choudhury C, Kukuruzinska M, Gutkind JS, Varelas X, Sahay B, Monti S, Bais MV. LSD1 inhibition corrects dysregulated MHC-I and dendritic cells activation through IFNγ-CXCL9-CXCR3 axis to promote antitumor immunity in HNSCC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643710. [PMID: 40166238 PMCID: PMC11956948 DOI: 10.1101/2025.03.17.643710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Poor infiltration of CD8+ T cells and dysregulated MHC-I confer resistance to anticancer clinical therapies. This study aimed to elucidate the mechanisms of lysine-specific demethylase 1 (LSD1, encoded by KDM1A gene) in antitumor immunity in Head and Neck Squamous cell carcinoma (HNSCC). LSD1 inhibition in syngeneic and chronic tobacco carcinogen-induced HNSCC mice recruited activated dendritic cells (DCs), CD4+ and CD8+ T cells, enriched interferon-gamma (IFNγ) in T cells, CXCL9 in DCs, and CXCR3 in T cells, as evaluated using flow cytometry and single-cell RNA-seq analysis. Humanized HNSCC mice and TCGA data validated the inverse correlation of KDM1A with DC markers, CD8+ T cells, and their activating chemokines. Kdm1a knockout in mouse HNSCC and LSD1 inhibitor treatment to co-culture of human HNSCC cells with human peripheral blood mononuclear cells (PBMCs) resulted in MHC-I upregulation in cancer cells for efficient antigen presentation in tumors. Overall, LSD1 inhibition in tumor cells upregulates MHC class I and induces DCs to produce CXCL9, which in turn activates CD8+ T cells through the CXCL9-CXCR3 axis to produce IFNγ. Finally, we identified a novel mechanism by which LSD1 inhibition promotes the activation of H3K4me2 and its direct interaction with MHC-I to induce antitumor immunity. This may have implications in poorly immunogenic and immunotherapy-resistant cancers. Statement of Significance LSD1-mediated unique mechanisms have impact on epigenetic therapy, MHC-I resistant HNSCC therapies, and poor CD8+ and dendritic cell infilterated tumors.
Collapse
|
2
|
Ghazi N, Saghravanian N, Saeedi P, Maboudinezhad MM. Assessing the Correlation Between Langerhans Cells Population and Prognosis of Tongue Squamous Cell Carcinoma. Clin Exp Dent Res 2025; 11:e70080. [PMID: 39888250 PMCID: PMC11780601 DOI: 10.1002/cre2.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Tongue squamous cell carcinoma (TSCC) is the most prevalent oral cancer. Despite considerable advancements in treatment, the 5-year survival rate remains relatively unchanged. Langerhans cells (LCs) play an important role in antitumor immunity. Therefore, we attempt to evaluate the correlation between the LC count and disease prognosis. MATERIALS AND METHODS Histopathologic slides from 24 cases, with at least 2 years of follow-up, were selected and categorized into early-stage (12 cases) and advanced-stage (12 cases) groups. An additional 12 slides of normal tissue comprised the control group. Immunohistochemical staining with the CD1a marker was performed to analyze the density of LCs. Statistical analysis assessed the impact of CD1a immune expression on patient survival and other variables such as age, gender, stage, and histopathological grade. RESULTS Comparison of CD1a+ cell counts across the three groups revealed a significant decrease in the advanced group. Furthermore, a lower count of CD1a+ cells correlated with poorer disease-free survival (DFS) (p < 0.001) and overall survival (OS) (p = 0.049). Although the CD1a+ cell count did not independently affect OS significantly (p = 0.210), it did show a significant impact on DFS as an independent variable (p = 0.002). CONCLUSION The significant correlation between CD1a expression and patients' prognosis and survival rates suggests that CD1a+ cells could serve as a crucial prognostic factor in the management and treatment of TSCC.
Collapse
Affiliation(s)
- Narges Ghazi
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Nasrollah Saghravanian
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Pooya Saeedi
- School of DentistryMashhad University of Medical SciencesMashhadIran
| | | |
Collapse
|
3
|
Yuan F, Xu J, Xuan L, Deng C, Wang W, Yang R. USP14 inhibition by degrasyn induces YAP1 degradation and suppresses the progression of radioresistant esophageal cancer. Neoplasia 2025; 60:101101. [PMID: 39675091 PMCID: PMC11699344 DOI: 10.1016/j.neo.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Radiotherapy is a major modality for esophageal cancer (ESCA) treatment, yet radioresistance severely hampers its therapeutic efficacy. Ubiquitin-specific peptidase 14 (USP14) is a novel deubiquitinase and can mediate cancer cells' response to irradiation, although the underlying mechanism remains unclear, including in ESCA. METHODS To evaluate the expression of USP14 in ESCA tissues or cells, we used RNA-Seq, immunoblotting, co-immunoprecipitation (Co-IP), ubiquitination, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence assays in this investigation. Additionally, we used CCK8, cloning, and migration tests to examine the proliferation and migration of ESCA cells. We also used transplantation tumor mouse model to investigate the course of the cancer cell growth. Finally, we looked into the biological processes linked to USP14 using gene set enrichment analysis (GSEA), which was later verified. RESULTS We observed a significant upregulation of USP14 in human ESCA tissues and cell lines, especially in those with radioresistance. Moreover, USP14 knockdown significantly restrained the proliferation and inhibited the radiation tolerance of ESCC cells. Here, we identified a potential inhibitor of USP14, Degrasyn (DGS), and investigated its regulatory effects on ESCA radioresistance and progression. We found that DGS had marked antiproliferative effects in radiosensitive ESCA cell lines. Notably, a low dose of DGS significantly enhanced the sensitivity of radioresistant ESCA cells to irradiation, as shown by the significantly reduced cell proliferation, migration, and invasion. Furthermore, the combination of DGS and X-ray irradiation strongly induced DNA damage in radioresistant ESCA cell lines by increasing the phosphorylation levels of H2AX (γ-H2AX) and checkpoint kinase 1/ataxia-telangiectasia-mutated-and-Rad3-related kinase (CHK1/ATR) signaling. Animal experiments confirmed the effective role of the DGS and X-ray combined treatment in reducing tumor growth and irradiation tolerance of ESCA in vivo with undetectable toxicity. Importantly, the promotive and malignant biological behaviors of ESCA cells suppressed by the DGS/X-ray combination treatment were almost eliminated by USP14 overexpression, along with the abolished DNA damage process. Mechanistically, we found that USP14 could interact with Yes-associated protein 1 (YAP1) and induce its deubiquitination in radioresistant ESCA cells. Interestingly, we discovered that DGS/X-ray co-therapy significantly reduced the stability of YAP1 and induced its ubiquitination in radioresistant ESCA cells. More importantly, the proliferation, epithelial-mesenchymal tansition (EMT) process, and DNA damage regulated by DGS/X-ray and USP14 knockdown were significantly eliminated when YAP1 was overexpressed in radioresistant ESCA cells. CONCLUSIONS These data revealed the potential role of DGS/X-ray co-therapy in controlling ESCA resistance to radiotherapy by inhibiting the USP14/YAP1 axis, providing a candidate strategy for ESCA treatment.
Collapse
Affiliation(s)
- Fang Yuan
- Departments of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Juan Xu
- Departments of Head and Neck Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lingmei Xuan
- Departments of Gynecological Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chan Deng
- Departments of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wei Wang
- Departments of Head and Neck Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Rong Yang
- Departments of Gynecological Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
4
|
Rodrigo JP, Moreno-Bueno G, Lequerica-Fernández P, Rodríguez-Santamarta T, Díaz E, Prieto-Fernández L, Álvarez-Teijeiro S, García-Pedrero JM, de Vicente JC. Tumor-Intrinsic Perinuclear LOXL2: Prognostic Relevance and Relationship with YAP1 Activation Status in Oral Squamous Cell Carcinoma. Pathobiology 2024; 91:422-433. [PMID: 38934185 PMCID: PMC11614311 DOI: 10.1159/000539928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Lysyl oxidase-like 2 (LOXL2) expression and function is frequently altered in different cancers but scarcely explored in oral squamous cell carcinoma (OSCC). This prompted us to investigate the clinical relevance of LOXL2 expression pattern in OSCC and also a possible crosstalk with Hippo/YAP1 pathway signaling. METHODS Immunohistochemical analysis of LOXL2 protein expression was performed in 158 OSCC patient samples, together with Yes-associated protein 1 (YAP1) activation status. Correlations with clinicopathological parameters and patient survival were assessed. RESULTS Tumor cell-intrinsic LOXL2 expression showed two distinct expression patterns: diffuse cytoplasmic staining (64.6%) and heterogeneous perinuclear staining (35.4%). Remarkably, perinuclear LOXL2 staining was significantly associated with lymph node metastasis, advanced clinical stage and perineural invasion. Moreover, patients harboring tumors with perinuclear LOXL2 expression exhibited significantly poorer disease-specific survival (DSS) rates, and perinuclear LOXL2 positivity gradually increased in relation to YAP1 activation. Patients harboring tumors with concomitant perinuclear LOXL2 and fully active YAP1 exhibited the worst DSS. Multivariate Cox analysis further revealed combined perinuclear LOXL2 and fully active YAP1 as a significant independent predictor of poor DSS. CONCLUSION Tumor-intrinsic perinuclear LOXL2 emerges as a clinically and biologically relevant feature associated with advanced disease, tumor aggressiveness, and poor prognosis in OSCC. Moreover, this study unprecedentedly uncovers a functional relationship between perinuclear LOXL2 and YAP1 activation with major prognostic implications. Notably, combined perinuclear LOXL2 and fully active YAP1 was revealed as independent predictor of poor prognosis. These findings encourage targeting oncogenic LOXL2 functions for personalized treatment regimens.
Collapse
Affiliation(s)
- Juan P. Rodrigo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Department of Surgery, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
- Fundación MD Anderson Internacional Madrid, Madrid, Spain
| | - Paloma Lequerica-Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Tania Rodríguez-Santamarta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Eva Díaz
- Fundación MD Anderson Internacional Madrid, Madrid, Spain
| | - Llara Prieto-Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos de Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Department of Surgery, Universidad de Oviedo, Oviedo, Spain
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| |
Collapse
|
5
|
Pattalachinti VK, Ito I, Chowdhury S, Yousef A, Gu Y, Gunes BB, Salle ER, Taggart M, Fournier K, Fowlkes NW, Shen JP. Peritoneal Microenvironment Promotes Appendiceal Adenocarcinoma Growth: A Multi-omics Approach Using Patient-Derived Xenografts. Mol Cancer Res 2024; 22:329-336. [PMID: 38226984 PMCID: PMC10987270 DOI: 10.1158/1541-7786.mcr-23-0749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
Appendiceal adenocarcinoma (AA) is unique from other gastrointestinal malignancies in that it almost exclusively metastasizes to the peritoneal cavity. However, few studies have investigated the molecular interaction of the peritoneal microenvironment and AA. Here, we use a multi-omics approach with orthotopic and flank-implanted patient-derived xenografts (PDX) to study the effect of the peritoneal microenvironment on AA. AA tumors implanted in the peritoneal microenvironment tended to grow faster and displayed greater nuclear expression of Ki-67 relative to the same tumors implanted in the flank. Comparing the tumor-specific transcriptome (excluding stromal transcription), the peritoneal microenvironment relatively upregulated genes related to proliferation, including MKI67 and EXO1. Peritoneal tumors were also enriched for proliferative gene sets, including E2F and Myc Targets. Proteomic studies found a 2.5-fold increased ratio of active-to-inactive phosphoforms of the YAP oncoprotein in peritoneal tumors, indicating downregulation of Hippo signaling. IMPLICATIONS The peritoneal microenvironment promotes growth of appendiceal tumors and expression of proliferative pathways in PDXs.
Collapse
Affiliation(s)
- Vinay K. Pattalachinti
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Ichiaki Ito
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abdelrahman Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yue Gu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Betul Beyza Gunes
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Emma R. Salle
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, U.S.A
| | - Melissa Taggart
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, U.S.A
| | - Keith Fournier
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, U.S.A
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, U.S.A
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Kanai R, Norton E, Stern P, Hynes RO, Lamar JM. Identification of a Gene Signature That Predicts Dependence upon YAP/TAZ-TEAD. Cancers (Basel) 2024; 16:852. [PMID: 38473214 PMCID: PMC10930532 DOI: 10.3390/cancers16050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Targeted therapies are effective cancer treatments when accompanied by accurate diagnostic tests that can help identify patients that will respond to those therapies. The YAP/TAZ-TEAD axis is activated and plays a causal role in several cancer types, and TEAD inhibitors are currently in early-phase clinical trials in cancer patients. However, a lack of a reliable way to identify tumors with YAP/TAZ-TEAD activation for most cancer types makes it difficult to determine which tumors will be susceptible to TEAD inhibitors. Here, we used a combination of RNA-seq and bioinformatic analysis of metastatic melanoma cells to develop a YAP/TAZ gene signature. We found that the genes in this signature are TEAD-dependent in several melanoma cell lines, and that their expression strongly correlates with YAP/TAZ activation in human melanomas. Using DepMap dependency data, we found that this YAP/TAZ signature was predictive of melanoma cell dependence upon YAP/TAZ or TEADs. Importantly, this was not limited to melanoma because this signature was also predictive when tested on a panel of over 1000 cancer cell lines representing numerous distinct cancer types. Our results suggest that YAP/TAZ gene signatures like ours may be effective tools to predict tumor cell dependence upon YAP/TAZ-TEAD, and thus potentially provide a means to identify patients likely to benefit from TEAD inhibitors.
Collapse
Affiliation(s)
- Ryan Kanai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (R.K.); (E.N.)
| | - Emily Norton
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (R.K.); (E.N.)
| | - Patrick Stern
- Koch Institute for Integrative Cancer Research, at Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Richard O. Hynes
- Department of Biology, Koch Institute for Integrative Cancer Research, and Howard Hughes Medical Institute, at Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - John M. Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (R.K.); (E.N.)
| |
Collapse
|
7
|
Shin E, Kwon Y, Jung E, Kim YJ, Kim C, Hong S, Kim J. TM4SF19 controls GABP-dependent YAP transcription in head and neck cancer under oxidative stress conditions. Proc Natl Acad Sci U S A 2024; 121:e2314346121. [PMID: 38315837 PMCID: PMC10873613 DOI: 10.1073/pnas.2314346121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Tobacco and alcohol are risk factors for human papillomavirus-negative head and neck squamous cell carcinoma (HPV- HNSCC), which arises from the mucosal epithelium of the upper aerodigestive tract. Notably, despite the mutagenic potential of smoking, HPV- HNSCC exhibits a low mutational load directly attributed to smoking, which implies an undefined role of smoking in HPV- HNSCC. Elevated YAP (Yes-associated protein) mRNA is prevalent in HPV- HNSCC, irrespective of the YAP gene amplification status, and the mechanism behind this upregulation remains elusive. Here, we report that oxidative stress, induced by major risk factors for HPV- HNSCC such as tobacco and alcohol, promotes YAP transcription via TM4SF19 (transmembrane 4 L six family member 19). TM4SF19 modulates YAP transcription by interacting with the GABP (Guanine and adenine-binding protein) transcription factor complex. Mechanistically, oxidative stress induces TM4SF19 dimerization and topology inversion in the endoplasmic reticulum membrane, which in turn protects the GABPβ1 subunit from proteasomal degradation. Conversely, depletion of TM4SF19 impairs the survival, proliferation, and migration of HPV- HNSCC cells, highlighting the potential therapeutic relevance of targeting TM4SF19. Our findings reveal the roles of the key risk factors of HPV- HNSCC in tumor development via oxidative stress, offering implications for upcoming therapeutic approaches in HPV- HNSCC.
Collapse
Affiliation(s)
- Eunbie Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Yongsoo Kwon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Eunji Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Yong Joon Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul03722, South Korea
| | - Changgon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Semyeong Hong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| |
Collapse
|
8
|
Vukovic Đerfi K, Vasiljevic T, Matijevic Glavan T. Recent Advances in the Targeting of Head and Neck Cancer Stem Cells. APPLIED SCIENCES 2023; 13:13293. [DOI: 10.3390/app132413293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a very heterogeneous cancer with a poor overall response to therapy. One of the reasons for this therapy resistance could be cancer stem cells (CSCs), a small population of cancer cells with self-renewal and tumor-initiating abilities. Tumor cell heterogeneity represents hurdles for therapeutic elimination of CSCs. Different signaling pathway activations, such as Wnt, Notch, and Sonic-Hedgehog (SHh) pathways, lead to the expression of several cancer stem factors that enable the maintenance of CSC features. Identification and isolation of CSCs are based either on markers (CD133, CD44, and aldehyde dehydrogenase (ALDH)), side populations, or their sphere-forming ability. A key challenge in cancer therapy targeting CSCs is overcoming chemotherapy and radiotherapy resistance. However, in novel therapies, various approaches are being employed to address this hurdle such as targeting cell surface markers, other stem cell markers, and different signaling or metabolic pathways, but also, introducing checkpoint inhibitors and natural compounds into the therapy can be beneficial.
Collapse
Affiliation(s)
- Kristina Vukovic Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tea Vasiljevic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tanja Matijevic Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Kofler M, Kapus A. Nuclear Import and Export of YAP and TAZ. Cancers (Basel) 2023; 15:4956. [PMID: 37894323 PMCID: PMC10605228 DOI: 10.3390/cancers15204956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Yes-associated Protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding Motif (TAZ) are major regulators of gene transcription/expression, primarily controlled by the Hippo pathway and the cytoskeleton. Integrating an array of chemical and mechanical signals, they impact growth, differentiation, and regeneration. Accordingly, they also play key roles in tumorigenesis and metastasis formation. Their activity is primarily regulated by their localization, that is, Hippo pathway- and/or cytoskeleton-controlled cytosolic or nuclear sequestration. While many details of such prevailing retention models have been elucidated, much less is known about their actual nuclear traffic: import and export. Although their size is not far from the cutoff for passive diffusion through the nuclear pore complex (NPC), and they do not contain any classic nuclear localization (NLS) or nuclear export signal (NES), evidence has been accumulating that their shuttling involves mediated and thus regulatable/targetable processes. The aim of this review is to summarize emerging information/concepts about their nucleocytoplasmic shuttling, encompassing the relevant structural requirements (NLS, NES), nuclear transport receptors (NTRs, karyophererins), and NPC components, along with the potential transport mechanisms and their regulation. While dissecting retention vs. transport is often challenging, the emerging picture suggests that YAP/TAZ shuttles across the NPC via multiple, non-exclusive, mediated mechanisms, constituting a novel and intriguing facet of YAP/TAZ biology.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
10
|
Kumar M, Jha AK. Exploring the potential of dietary factors and plant extracts as chemopreventive agents in oral squamous cell carcinoma treatment. FRONTIERS IN ORAL HEALTH 2023; 4:1246873. [PMID: 37859687 PMCID: PMC10582632 DOI: 10.3389/froh.2023.1246873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Oral cancer, particularly oral squamous cell carcinoma (OSCC), is a prevalent malignancy having a significant fatality rate worldwide. Despite advancements in conventional treatment modalities, the overall survival rate for OSCC remains low. Therefore, there is a critical need to explore alternative therapeutic approaches that can improve patient outcomes. This review focuses on the potential of dietary factors and plant extracts as chemopreventive agents in treating oral cancer. These compounds possess diverse biological functions encompassing a range of attributes, such as antioxidative, anti-inflammatory, and anticancer capabilities. By targeting multiple cellular pathways involved in carcinogenesis, they possess the capacity to hinder tumor growth and development, promote programmed cell death, and impede the progression of oral cancer. Signaling pathways targeted by natural compounds that have been included in this review include Akt/mTOR/NF-κB signaling, Hippo-Tafazzin signaling pathway, notch signaling pathway, mitochondrial pathway, and Sonic Hedgehog pathway.
Collapse
Affiliation(s)
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| |
Collapse
|
11
|
Julius P, Siyumbwa SN, Maate F, Moonga P, Kang G, Kaile T, West JT, Wood C, Angeletti PC. Yes-associated protein-1 overexpression in ocular surface squamous neoplasia; a potential diagnostic marker and therapeutic target. Front Oncol 2023; 13:1213426. [PMID: 37476371 PMCID: PMC10354641 DOI: 10.3389/fonc.2023.1213426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Yes-associated protein-1 (YAP-1) is a Hippo system transcription factor, which serves as an oncogene in squamous cell carcinoma, and several solid tumors when the Hippo pathway is dysregulated. Yet, the activity of YAP-1 in ocular surface squamous neoplasia (OSSN) has not been determined. Here, we investigate the relationship between YAP-1 overexpression and OSSN. Using a cross-sectional study design, we recruited 227 OSSN patients from the University Teaching Hospitals in Lusaka, Zambia. Immunohistochemistry was used to assess YAP-1 protein overexpression in tumor tissue relative to surrounding benign squamous epithelium. OSSN patient samples (preinvasive, n = 62, 27% and invasive, n = 165, 73%) were studied. One hundred forty-nine invasive tumors contained adjacent preinvasive tissue, bringing the total number of preinvasive lesions examined to 211 (62 + 149). There was adjacent benign squamous epithelium in 50.2% (114/227) of OSSN samples. Nuclear YAP- 1 was significantly overexpressed in preinvasive (Fisher's (F): p <.0001, Monte Carlo (MC): p <.0001) and invasive (F: p <.0001, MC: p <.0001) OSSN in comparison to adjacent benign squamous epithelium when analyzed for basal keratinocyte positive count, staining intensity, expression pattern, and Immunostaining intensity-distribution index. YAP-1 expression did not differ between preinvasive and invasive OSSN (p >.05), keratinizing and non- keratinizing cancer (p >.05), or between T1/T2 and T3/T4 stages in invasive tumors (p >.05). However, grade 2 and 3 tumors had significantly stronger nucleus YAP-1 overexpression intensity than grade 1 tumors (F: p = .0078, MC: p = .0489). By immunohistochemistry, we identified significant overexpression (upregulation of YAP-1 protein expression) in preinvasive and invasive OSSN lesions compared to neighboring benign squamous epithelium. YAP-1 expression was significantly higher in poorly and moderately differentiated invasive squamous cancer than in well-differentiated carcinomas. Overexpression of YAP-1 within the margin of preinvasive and invasive OSSN, but not in the neighboring normal epithelium, indicates that it plays a role in the development and progression of OSSN.
Collapse
Affiliation(s)
- Peter Julius
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Stepfanie N. Siyumbwa
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Fred Maate
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Phyllis Moonga
- University Teaching Hospital, Eye Hospital, Lusaka, Zambia
| | - Guobin Kang
- Department of Interdisciplinary Oncology, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Trevor Kaile
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Charles Wood
- Department of Interdisciplinary Oncology, Louisiana State University Health Science Center, New Orleans, LA, United States
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, NE, United States
| | - Peter C. Angeletti
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, NE, United States
| |
Collapse
|
12
|
Maggisano V, Capriglione F, Verrienti A, Celano M, Sponziello M, Pecce V, Russo D, Durante C, Bulotta S. Expression of miR-31-5p affects growth, migration and invasiveness of papillary thyroid cancer cells. Endocrine 2023; 79:517-526. [PMID: 36474133 DOI: 10.1007/s12020-022-03267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE In this study, we evaluated the biological role of miRNA-31-5p in papillary thyroid cancer (PTC). METHODS By using the real-time PCR, we measured miRNA-31-5p expression levels in 25 PTC tissues and in two human PTC cell lines (K1 and TPC-1). Then, K1 cells were transiently transfected with mirVana inhibitor or mirVana mimic to miRNA-31-5-p. Cell proliferation was determined by MTT and colony formation assays. The in vitro metastatic ability of thyroid cancer cells was evaluated by adhesion, migration and invasion assays. Epithelial mesenchymal transition (EMT) and Hippo pathway related gene and protein levels were evaluated by using the TaqMan™ Gene Expression Assays and western blot analysis, respectively. RESULTS We found a significant increase of miR-31-5-p expression in tumor tissue and in K1 cells harboring the BRAF p.V600E mutation. Knockdown of miR-31-5p determined a reduction of cell proliferation, associated with a significant decrease in cell adhesion, migration and invasion properties. A downregulation of EMT markers and YAP/β-catenin axis was also observed. CONCLUSIONS Our findings suggest that miRNA-31-5p acts as oncogenic miRNA in human thyrocytes and its overexpression may be involved in the BRAF-related tumorigenesis in PTCs, providing new understanding into its pathological role in PTC progression and invasiveness.
Collapse
Affiliation(s)
- Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Francesca Capriglione
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Marilena Celano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Diego Russo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Cosimo Durante
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
13
|
Karska J, Kowalski S, Saczko J, Moisescu MG, Kulbacka J. Mechanosensitive Ion Channels and Their Role in Cancer Cells. MEMBRANES 2023; 13:167. [PMID: 36837670 PMCID: PMC9965697 DOI: 10.3390/membranes13020167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Mechanical forces are an inherent element in the world around us. The effects of their action can be observed both on the macro and molecular levels. They can also play a prominent role in the tissues and cells of animals due to the presence of mechanosensitive ion channels (MIChs) such as the Piezo and TRP families. They are essential in many physiological processes in the human body. However, their role in pathology has also been observed. Recent discoveries have highlighted the relationship between these channels and the development of malignant tumors. Multiple studies have shown that MIChs mediate the proliferation, migration, and invasion of various cancer cells via various mechanisms. This could show MIChs as new potential biomarkers in cancer detection and prognosis and interesting therapeutic targets in modern oncology. Our paper is a review of the latest literature on the role of the Piezo1 and TRP families in the molecular mechanisms of carcinogenesis in different types of cancer.
Collapse
Affiliation(s)
- Julia Karska
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mihaela G. Moisescu
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| |
Collapse
|
14
|
Abstract
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies. However, transcription factors are conventionally considered as "undruggable." Here, we summarize the recent progresses in understanding the regulation of transcription factors in cancers and strategies to target transcription factors and co-factors for preclinical and clinical drug development, particularly focusing on c-Myc, YAP/TAZ, and β-catenin due to their significance and interplays in cancer.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
15
|
The deubiquitinase USP7 promotes HNSCC progression via deubiquitinating and stabilizing TAZ. Cell Death Dis 2022; 13:677. [PMID: 35931679 PMCID: PMC9356134 DOI: 10.1038/s41419-022-05113-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
Dysregulated abundance, location and transcriptional output of Hippo signaling effector TAZ have been increasingly linked to human cancers including head neck squamous cell carcinoma (HNSCC). TAZ is subjected to ubiquitination and degradation mediated by E3 ligase β-TRCP. However, the deubiquitinating enzymes and mechanisms responsible for its protein stability remain underexplored. Here, we exploited customized deubiquitinases siRNA and cDNA library screen strategies and identified USP7 as a bona fide TAZ deubiquitinase in HNSCC. USP7 promoted cell proliferation, migration, invasion in vitro and tumor growth by stabilizing TAZ. Mechanistically, USP7 interacted with, deubiquitinated and stabilized TAZ by selectively removing its K48-linked ubiquitination chain independent of canonical Hippo kinase cascade. USP7 potently antagonized β-TRCP-mediated ubiquitin-proteasomal degradation of TAZ and enhanced its nuclear retention and transcriptional output. Importantly, overexpression of USP7 correlated with TAZ upregulation, tumor aggressiveness and unfavorable prognosis in HNSCC patients. Pharmacological inhibition of USP7 significantly suppressed tumor growth in both xenograft and PDX models. Collectively, these findings identify USP7 as an essential regulator of TAZ and define USP7-TAZ signaling axis as a novel biomarker and potential therapeutic target for HNSCC.
Collapse
|
16
|
Fujibayashi E, Mukai S, Torigata K, Ando Y, Uchihashi T, Nozaki M, Tanaka S, Okada M, Kogo M, Nojima H, Yabuta N. LATS kinases and SLUG regulate the transition to advanced stage in aggressive oral cancer cells. Sci Rep 2022; 12:12363. [PMID: 35859006 PMCID: PMC9300623 DOI: 10.1038/s41598-022-16667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 07/13/2022] [Indexed: 12/30/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a critical process by which cancer cells acquire malignant features. However, the molecular mechanism and functional implications of EMT and the mesenchymal-to-epithelial transition (MET) in tumor progression remain elusive. In this study, we established two aggressive cancer cell lines from the human oral cancer cell line SAS, mesenchymal-like SAS-m4 and epithelial-like SAS-δ. SAS-δ is a revertant cell obtained by inducing MET in SAS-m4. SAS-δ, but not SAS-m4, exhibited abnormal cell growth, including piled-up overgrowth and invasive tumor formation in the tongues of nude mice, suggesting that SAS-δ represented more advanced cancer cells than the parental SAS cells. EMT-related transcriptional factor SLUG is phosphorylated at T208 and partly stabilized by the Hippo pathway kinases, LATS1 and LATS2. Depletion of SLUG promoted the invasive activity of SAS-δ by increasing the protein levels of LATS1/2 and the proportion of the phosphorylated form among total SLUG protein. Our results suggest that the LATS1/2-SLUG axis regulates the transition of SAS cells to the advanced stage via repeated switching between EMT and MET. Therefore, an anti-SLUG-pT208 antibody would be valuable not alone as a malignant tumor marker antibody but also as a prognostic tool for patients with malignant disease.
Collapse
Affiliation(s)
- Emi Fujibayashi
- grid.136593.b0000 0004 0373 3971Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka Japan ,grid.136593.b0000 0004 0373 3971First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka Japan
| | - Satomi Mukai
- grid.136593.b0000 0004 0373 3971Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka Japan ,grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya City, Aichi 464-8681 Japan
| | - Kosuke Torigata
- grid.136593.b0000 0004 0373 3971Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka Japan
| | - Yumi Ando
- grid.136593.b0000 0004 0373 3971Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka Japan
| | - Toshihiro Uchihashi
- grid.136593.b0000 0004 0373 3971First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka Japan
| | - Masami Nozaki
- grid.136593.b0000 0004 0373 3971Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka Japan ,grid.412378.b0000 0001 1088 0812Present Address: Second Department of Oral and Mexilllofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121 Japan
| | - Susumu Tanaka
- grid.136593.b0000 0004 0373 3971First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka Japan
| | - Masato Okada
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871 Japan
| | - Mikihiko Kogo
- grid.136593.b0000 0004 0373 3971First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka Japan
| | - Hiroshi Nojima
- grid.136593.b0000 0004 0373 3971Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka Japan
| | - Norikazu Yabuta
- grid.136593.b0000 0004 0373 3971Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka Japan ,grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871 Japan
| |
Collapse
|
17
|
YAP1 maintains active chromatin state in head and neck squamous cell carcinomas that promotes tumorigenesis through cooperation with BRD4. Cell Rep 2022; 39:110970. [PMID: 35705032 DOI: 10.1016/j.celrep.2022.110970] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/23/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
Analysis of The Cancer Genome Atlas and other published data of head and neck squamous cell carcinoma (HNSCC) reveals somatic alterations of the Hippo-YAP pathway in approximately 50% of HNSCC. Better strategies to target the YAP1 transcriptional complex are sought. Here, we show that FAT1, an upstream inhibitor of YAP1, is mutated either by missense or by truncating mutation in 29% of HNSCC. Comprehensive proteomic and drug-screening studies across pan-cancer models confirm that FAT1-mutant HNSCC exhibits selective and higher sensitivity to BRD4 inhibition by JQ1. Epigenomic analysis reveals an active chromatin state in FAT1-mutant HNSCC cells that is driven by the YAP/TAZ transcriptional complex through recruitment of BRD4 to deposit active histone marks, thereby maintaining an oncogenic transcriptional state. This study reveals a detailed cooperative mechanism between YAP1 and BRD4 in HNSCC and suggests a specific therapeutic opportunity for the treatment of this subset of head and neck cancer patients.
Collapse
|
18
|
Calvet L, Dos-Santos O, Spanakis E, Jean-Baptiste V, Le Bail JC, Buzy A, Paul P, Henry C, Valence S, Dib C, Pollard J, Sidhu S, Moll J, Debussche L, Valtingojer I. YAP1 is essential for malignant mesothelioma tumor maintenance. BMC Cancer 2022; 22:639. [PMID: 35689194 PMCID: PMC9188206 DOI: 10.1186/s12885-022-09686-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Malignant pleural mesothelioma, a tumor arising from the membrane covering the lungs and the inner side of the ribs, is a cancer in which genetic alterations of genes encoding proteins that act on or are part of the Hippo-YAP1 signaling pathway are frequent. Dysfunctional Hippo signaling may result in aberrant activation of the transcriptional coactivator protein YAP1, which binds to and activates transcription factors of the TEAD family. Recent studies have associated elevated YAP1 protein activity with a poor prognosis of malignant mesothelioma and its resistance to current therapies, but its role in tumor maintenance is unclear. In this study, we investigate the dependence of malignant mesothelioma on YAP1 signaling to maintain fully established tumors in vivo. We show that downregulation of YAP1 in a dysfunctional Hippo genetic background results in the inhibition of YAP1/TEAD-dependent gene expression, the induction of apoptosis, and the inhibition of tumor cell growth in vitro. The conditional downregulation of YAP1 in established tumor xenografts leads to the inhibition of YAP1-dependent gene transcription and eventually tumor regression. This effect is only seen in the YAP1-activated MSTO-211H mesothelioma xenograft model, but not in the Hippo-independent HCT116 colon cancer xenograft model. Our data demonstrate that, in the context of a Hippo pathway mutated background, YAP1 activity alone is enough to maintain the growth of established tumors in vivo, thus validating the concept of inhibiting the activated YAP1-TEAD complex for the treatment of malignant pleural mesothelioma patients.
Collapse
Affiliation(s)
- Loreley Calvet
- Department of Oncology, In Vivo Pharmacology, Sanofi Research Center, Vitry-sur-Seine, France.
| | - Odette Dos-Santos
- Department of Oncology, Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Emmanuel Spanakis
- Department of Oncology, Precision Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | | | | | - Armelle Buzy
- Department of Translational Sciences, Sanofi Research Center, Chilly Mazarin, France
| | - Pascal Paul
- Department of Translational Sciences, Sanofi Research Center, Chilly Mazarin, France
| | - Christophe Henry
- Department of Oncology, Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Sandrine Valence
- Department of Oncology, Precision Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Colette Dib
- Department of Oncology, Precision Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Jack Pollard
- Department of Oncology, Precision Oncology, Sanofi Research Center, Cambridge, USA
| | - Sukhvinder Sidhu
- Department of Oncology, In Vivo Pharmacology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Jürgen Moll
- Department of Oncology, Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Laurent Debussche
- Department of Oncology, In Vivo Pharmacology, Sanofi Research Center, Vitry-sur-Seine, France.,Department of Oncology, Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Iris Valtingojer
- Department of Oncology, Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| |
Collapse
|
19
|
Chu PC, Dokla EME, Hu JL, Weng JR. Induction of apoptosis using ATN as a novel Yes-associated protein inhibitor in human oral squamous cell carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1404-1412. [PMID: 35212453 DOI: 10.1002/tox.23493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Oral squamous cell carcinoma (OSCC) represents a clinical challenge due to the lack of effective therapy to improve prognosis. Hippo/Yes-associated protein (YAP) signaling has emerged as a promising therapeutic target for squamous cell carcinoma treatment. In this study, we investigated the antitumor activity and underlying mechanisms of {[N-(4-(5-(3-(3-(4-acetamido-3-(trifluoromethyl)phenyl)ureido)phenyl)-1,2,4-oxadiazol-3-yl)-3-chlorophenyl)-nicotinamide]} (ATN), a novel YAP inhibitor, in OSCC cells. ATN exhibited differential antiproliferative efficacy against OSCC cells (IC50 as low as 0.29 μM) versus nontumorigenic human fibroblast cells (IC50 = 1.9 μM). Moreover, ATN effectively suppressed the expression of YAP and YAP-related or downstream targets, including Akt, p-AMPK, c-Myc, and cyclin D1, which paralleled the antiproliferative efficacy of ATN. Supporting the roles of YAP in regulating cancer cell survival and migration, ATN not only induced caspase-dependent apoptosis, but also suppressed migration activity in OSCC. Mechanistically, the antitumor activity of ATN in OSCC was attributed, in part, to its ability to regulate Mcl-1 expression. Together, these findings suggest a translational potential of YAP inhibitors, represented by ATN as anticancer therapy for OSCC.
Collapse
Affiliation(s)
- Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Jing-Lan Hu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Alhousami T, Diny M, Ali F, Shin J, Kumar G, Kumar V, Campbell JD, Noonan V, Hanna GJ, Denis GV, Monti S, Kukuruzinska MA, Varelas X, Bais MV. Inhibition of LSD1 Attenuates Oral Cancer Development and Promotes Therapeutic Efficacy of Immune Checkpoint Blockade and YAP/TAZ Inhibition. Mol Cancer Res 2022; 20:712-721. [PMID: 35105672 PMCID: PMC9081163 DOI: 10.1158/1541-7786.mcr-21-0310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Lysine-specific demethylase 1 (LSD1) is a histone demethylase that contributes to the etiology of oral squamous cell carcinoma (OSCC) in part by promoting cancer stem cell phenotypes. The molecular signals regulated by LSD1, or acting with LSD1, are poorly understood, particularly in the development of OSSC. In this study, we show that conditional deletion of the Lsd1 gene or pharmacologic inhibition of LSD1 in the tongue epithelium leads to reduced development of OSCC following exposure to the tobacco carcinogen 4NQO. LSD1 inhibition attenuated proliferation and clonogenic survival and showed an additive effect when combined with the YAP inhibitor Verteporfin. Interestingly, LSD1 inhibition upregulated the expression of PD-L1, leading to immune checkpoint inhibitor therapy responses. IMPLICATIONS Collectively, our studies reveal a critical role for LSD1 in OSCC development and identification of tumor growth targeting strategies that can be combined with LSD1 inhibition for improved therapeutic application.
Collapse
Affiliation(s)
- Thabet Alhousami
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Michael Diny
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Faiza Ali
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Jennifer Shin
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Gaurav Kumar
- Cancer Genomics and Bioinformatics Laboratory, Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, Nebraska
| | - Joshua D Campbell
- Section of Computational Biomedicine, Boston University School of Medicine, Bioinformatics Program, Boston University, Boston, Massachusetts
| | - Vikki Noonan
- Division of Oral Pathology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Glenn J Hanna
- Center for Head & Neck Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Gerald V Denis
- BU-BMC Cancer Center, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Bioinformatics Program, Boston University, Boston, Massachusetts
| | - Maria A Kukuruzinska
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Manish V Bais
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
21
|
Faraji F, Ramirez SI, Anguiano Quiroz PY, Mendez-Molina AN, Gutkind JS. Genomic Hippo Pathway Alterations and Persistent YAP/TAZ Activation: New Hallmarks in Head and Neck Cancer. Cells 2022; 11:1370. [PMID: 35456049 PMCID: PMC9028246 DOI: 10.3390/cells11081370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a highly prevalent and deadly malignancy worldwide. The prognosis for locoregionally advanced HNSCC has not appreciably improved over the past 30 years despite advances in surgical, radiation, and targeted therapies and less than 20% of HNSCC patients respond to recently approved immune checkpoint inhibitors. The Hippo signaling pathway, originally discovered as a mechanism regulating tissue growth and organ size, transduces intracellular and extracellular signals to regulate the transcriptional co-activators YAP and TAZ. Alterations in the Hippo pathway resulting in persistent YAP and TAZ activation have emerged as major oncogenic drivers. Our analysis of the human HNSCC oncogenome revealed multiple genomic alterations impairing Hippo signaling and activating YAP and TAZ, which in turn contribute to HNSCC development. This includes mutations and deletions of the FAT1 gene (29%) and amplification of the WWTR1 (encoding TAZ, 14%) and YAP1 genes (8%), together representing one of the most genetically altered signaling mechanisms in this malignancy. Here, we discuss key elements of the mammalian Hippo pathway, detail mechanisms by which perturbations in Hippo signaling promote HNSCC initiation and progression and outline emerging strategies to target Hippo signaling vulnerabilities as part of novel multimodal precision therapies for HNSCC.
Collapse
Affiliation(s)
- Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sydney I. Ramirez
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Disease and Global Public Health, Department of Internal Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | | | | | - J. Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
22
|
Analysis of Yes-Associated Protein-1 (YAP1) Target Gene Signature to Predict Progressive Breast Cancer. J Clin Med 2022; 11:jcm11071947. [PMID: 35407556 PMCID: PMC8999906 DOI: 10.3390/jcm11071947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancers are treated according to the ER/PR or HER2 expression and show better survival outcomes with targeted therapy. Triple-negative breast cancers (TNBCs) with a lack of expression of ER/PR and HER2 are treated with systemic therapy with unpredictable responses and outcomes. It is essential to investigate novel markers to identify targeted therapies for TNBC. One such marker is YAP1, a transcription co-activator protein that shows association with poor prognosis of breast cancer. YAP1 transcriptionally regulates the expression of genes that drive the oncogenic phenotypes. Here, we assess a potential YAP target gene signature to predict a progressive subset of breast tumors from METABRIC and TCGA datasets. YAP1 target genes were shortlisted based on expression correlation and concordance with YAP1 expression and significant association with survival outcomes of patients. Hierarchical clustering was performed for the shortlisted genes. The utility of the clustered genes was assessed by survival analysis to identify a recurring subset. Expression of the shortlisted target genes showed significant association with survival outcomes of HER2-positive and TNBC subset in both datasets. The shortlisted genes were verified using an independent dataset. Further validation using IHC can prove the utility of this potential prognostic signature to identify a recurrent subset of HER2-positive and TNBC subtypes.
Collapse
|
23
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
24
|
Ahmad US, Parkinson EK, Wan H. Desmoglein-3 induces YAP phosphorylation and inactivation during collective migration of oral carcinoma cells. Mol Oncol 2022; 16:1625-1649. [PMID: 35000271 PMCID: PMC9019900 DOI: 10.1002/1878-0261.13177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 11/07/2022] Open
Abstract
Alterations of the Hippo-YAP pathway are potential targets for oral squamous cell carcinoma (OSCC) therapy, but heterogeneity in this pathway could be responsible for therapeutic resistance. We analysed the Hippo-YAP signatures in a cohort of characterised keratinocyte cell lines derived from the mouth floor and buccal mucosa from different stages of OSCC tumour progression and focused on the specific role of YAP on invasive and metastatic potential. We confirmed heterogeneity in the Hippo-YAP pathway in OSCC lines, including overexpression of YAP1, WWTR1 (often referred to as TAZ) and the major Hippo signalling components, as well as the variations in the genes encoding the intercellular anchoring junctional proteins, which could potentially regulate the Hippo pathway. Specifically, desmoglein-3 (DSG3) exhibits a unique and mutually exclusive regulation of YAP via YAP phosphorylation during the collective migration of OSCC cells. Mechanistically, such regulation is associated with inhibition of phosphorylation of epidermal growth factor receptor (EGFR) (S695/Y1086) and its downstream effectors heat shock protein beta-1 (Hsp27) (S78/S82) and transcription factor AP-1 (c-Jun) (S63), leading to YAP phosphorylation coupled with its cytoplasmic translocation and inactivation. Additionally, OSCC lines display distinct phenotypes of YAP dependency or a mixed YAP and TAZ dependency for cell migration, and present distinct patterns in YAP abundance and activity, with the latter being associated with YAP nuclear localisation. In conclusion, this study has provided evidence for a newly identified paradigm in the Hippo-YAP pathway and suggests a new regulation mechanism involved in the control of collective migration in OSCC cells.
Collapse
Affiliation(s)
- Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, School of Medicine and Dentistry, Barts and The London, London, UK
| | - Eric Kenneth Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, School of Medicine and Dentistry, Barts and The London, London, UK
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, School of Medicine and Dentistry, Barts and The London, London, UK
| |
Collapse
|
25
|
Gao R, Kalathur RKR, Coto‐Llerena M, Ercan C, Buechel D, Shuang S, Piscuoglio S, Dill MT, Camargo FD, Christofori G, Tang F. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med 2021; 13:e14351. [PMID: 34664408 PMCID: PMC8649869 DOI: 10.15252/emmm.202114351] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In this study, a combination of shRNA-mediated synthetic lethality screening and transcriptomic analysis revealed the transcription factors YAP/TAZ as key drivers of Sorafenib resistance in hepatocellular carcinoma (HCC) by repressing Sorafenib-induced ferroptosis. Mechanistically, in a TEAD-dependent manner, YAP/TAZ induce the expression of SLC7A11, a key transporter maintaining intracellular glutathione homeostasis, thus enabling HCC cells to overcome Sorafenib-induced ferroptosis. At the same time, YAP/TAZ sustain the protein stability, nuclear localization, and transcriptional activity of ATF4 which in turn cooperates to induce SLC7A11 expression. Our study uncovers a critical role of YAP/TAZ in the repression of ferroptosis and thus in the establishment of Sorafenib resistance in HCC, highlighting YAP/TAZ-based rewiring strategies as potential approaches to overcome HCC therapy resistance.
Collapse
Affiliation(s)
- Ruize Gao
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | | | - Caner Ercan
- Institute of PathologyUniversity Hospital BaselBaselSwitzerland
| | - David Buechel
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Song Shuang
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | | | - Michael T Dill
- Stem Cell ProgramBoston Children's HospitalBostonMAUSA
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMAUSA
| | - Fernando D Camargo
- Stem Cell ProgramBoston Children's HospitalBostonMAUSA
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMAUSA
| | | | - Fengyuan Tang
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| |
Collapse
|
26
|
Lee JW, Lee HY. Targeting Cancer Stem Cell Markers or Pathways: A Potential Therapeutic Strategy for Oral Cancer Treatment. Int J Stem Cells 2021; 14:386-399. [PMID: 34711702 PMCID: PMC8611309 DOI: 10.15283/ijsc21084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells with stem cell-like properties, self-renewal potential, and differentiation capacity into multiple cell types. Critical genetic alterations or aberrantly activated signaling pathways associated with drug resistance and recurrence have been observed in multiple types of CSCs. In this context, CSCs are considered to be responsible for tumor initiation, growth, progression, therapeutic resistance, and metastasis. Therefore, to effectively eradicate CSCs, tremendous efforts have been devoted to identify specific target molecules that play a critical role in regulating their distinct functions and to develop novel therapeutics, such as proteins, monoclonal antibodies, selective small molecule inhibitors, and small antisense RNA (asRNA) drugs. Similar to other CSC types, oral CSCs can be characterized by certain pluripotency-associated markers, and oral CSCs can also survive and form 3D tumor spheres in suspension culture conditions. These oral CSC-targeting therapeutics selectively suppress specific surface markers or key signaling components and subsequently inhibit the stem-like properties of oral CSCs. A large number of new therapeutic candidates have been tested, and some products are currently in the pre-clinical or clinical development phase. In the present study, we review new oral CSC-targeted therapeutic strategies and discuss the various specific CSC surface markers and key signaling components involved in the stem-like properties, growth, drug resistance, and tumorigenicity of oral CSCs.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
| | - Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, Goesan, Korea.,Division of Science Education, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
27
|
Chen J, Cheng J, Zhao C, Zhao B, Mi J, Li W. The Hippo pathway: a renewed insight in the craniofacial diseases and hard tissue remodeling. Int J Biol Sci 2021; 17:4060-4072. [PMID: 34671220 PMCID: PMC8495397 DOI: 10.7150/ijbs.63305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway plays an important role in many pathophysiological processes, including cell proliferation and differentiation, cell death, cell migration and invasion. Because of its extensive functions, Hippo pathway is closely related to not only growth and development, but also many diseases, including inflammation and cancer. In this study, the role of Hippo pathway in craniofacial diseases and hard tissue remodeling was reviewed, in attempting to find new research directions.
Collapse
Affiliation(s)
- Jun Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, China.,Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.,Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
| | - Jingyi Cheng
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Cong Zhao
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Boxuan Zhao
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Jia Mi
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Wenjie Li
- Xiangya School of Stomatology, Central South University, Changsha 410008, China.,Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.,Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China.,National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
28
|
Wang M, Dai M, Wang D, Xiong W, Zeng Z, Guo C. The regulatory networks of the Hippo signaling pathway in cancer development. J Cancer 2021; 12:6216-6230. [PMID: 34539895 PMCID: PMC8425214 DOI: 10.7150/jca.62402] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/15/2021] [Indexed: 01/14/2023] Open
Abstract
The Hippo signaling pathway is a relatively young tumor-related signaling pathway. Although it was discovered lately, research on it developed rapidly. The Hippo signaling pathway is closely relevant to the occurrence and development of tumors and the maintenance of organ size and other biological processes. This manuscript focuses on YAP, the core molecule of the Hippo signaling pathway, and discussion the upstream and downstream regulatory networks of the Hippo signaling pathway during tumorigenesis and development. It also summarizes the relevant drugs involved in this signaling pathway, which may be helpful to the development of targeted drugs for cancer therapy.
Collapse
Affiliation(s)
- Maonan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Manli Dai
- Hunan Food and Drug Vocational College, Changsha 410036, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Huang ZM, Wang H, Ji ZG. Bladder mesenchymal stromal cell-derived exosomal miRNA-217 modulates bladder cancer cell survival through Hippo-YAP pathway. Inflamm Res 2021; 70:959-969. [PMID: 34390377 DOI: 10.1007/s00011-021-01494-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Donor cell-derived exosomes regulate recipient cell functions. The aim of this study was to investigate the effect of human normal bladder stromal cell (hBSC) derived exosomal miR-217 on bladder cell cancer proliferation and migration. METHODS Human BSCs were transfected with miR-217 mimic or inhibitor and hBSC-derived exosomes were isolated. Human bladder cancer cell lines (T24 and 5367) were co-cultured with hBSC-derived exosomal miR-217 mimic or inhibitor. Proliferation, migration, and apoptosis of the bladder cancer cells were assessed by Edu assay, Transwell migration assay, and Annexin V assay. RESULTS Expression of miR-217 was significantly higher in the T24 and 5367 cell lines (P < 0.01). Exosomal miR-217 mimic enhanced proliferation and migration of T24 and 5367 cells, but inhibited apoptosis of the cells (P < 0.01); in contrast, exosomal miR-217 inhibitor suppressed proliferation and migration but stimulated apoptosis of the two cancer cell lines (P < 0.01). Moreover, exosomal miR-217 mimic stimulated YAP and its target proteins including Cyr61, CTGF, and ANKRD1 (P < 0.01), and in contrast, exosomal miR-217 inhibitor suppressed YAP and its target proteins (P < 0.01). CONCLUSION These findings suggested that hBSC-derived exosomal miR-217 may act as oncogene in bladder cancer cells, and that Hippo-YAP signaling pathway maybe the target for miR-217 in the bladder cancer cell lines.
Collapse
Affiliation(s)
- Zhong-Ming Huang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, China
| | - Hai Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, China
| | - Zhi-Gang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, China.
| |
Collapse
|
30
|
Pearson JD, Huang K, Pacal M, McCurdy SR, Lu S, Aubry A, Yu T, Wadosky KM, Zhang L, Wang T, Gregorieff A, Ahmad M, Dimaras H, Langille E, Cole SPC, Monnier PP, Lok BH, Tsao MS, Akeno N, Schramek D, Wikenheiser-Brokamp KA, Knudsen ES, Witkiewicz AK, Wrana JL, Goodrich DW, Bremner R. Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell 2021; 39:1115-1134.e12. [PMID: 34270926 PMCID: PMC8981970 DOI: 10.1016/j.ccell.2021.06.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/17/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity impacts therapeutic response, driving efforts to discover over-arching rules that supersede variability. Here, we define pan-cancer binary classes based on distinct expression of YAP and YAP-responsive adhesion regulators. Combining informatics with in vivo and in vitro gain- and loss-of-function studies across multiple murine and human tumor types, we show that opposite pro- or anti-cancer YAP activity functionally defines binary YAPon or YAPoff cancer classes that express or silence YAP, respectively. YAPoff solid cancers are neural/neuroendocrine and frequently RB1-/-, such as retinoblastoma, small cell lung cancer, and neuroendocrine prostate cancer. YAP silencing is intrinsic to the cell of origin, or acquired with lineage switching and drug resistance. The binary cancer groups exhibit distinct YAP-dependent adhesive behavior and pharmaceutical vulnerabilities, underscoring clinical relevance. Mechanistically, distinct YAP/TEAD enhancers in YAPoff or YAPon cancers deploy anti-cancer integrin or pro-cancer proliferative programs, respectively. YAP is thus pivotal across cancer, but in opposite ways, with therapeutic implications.
Collapse
Affiliation(s)
- Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Marek Pacal
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Sean R McCurdy
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Suying Lu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Kristine M Wadosky
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Letian Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Tao Wang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alex Gregorieff
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, ON H4A 3J1, Canada
| | - Mohammad Ahmad
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Helen Dimaras
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; The Department of Ophthalmology & Vision Sciences, Child Health Evaluative Sciences Program, and Center for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Clinical Public Health, Dalla Lana School of Public Health, The University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Ellen Langille
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON K7L 3N6, Canada
| | - Philippe P Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin H Lok
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ming-Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nagako Akeno
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel Schramek
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Agnieszka K Witkiewicz
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jeffrey L Wrana
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
31
|
Zanotti S, Vanhauwaert S, Van Neste C, Olexiouk V, Van Laere J, Verschuuren M, Van der Meulen J, Mus LM, Durinck K, Tilleman L, Deforce D, Van Nieuwerburgh F, Hogarty MD, Decaesteker B, De Vos WH, Speleman F. MYCN-induced nucleolar stress drives an early senescence-like transcriptional program in hTERT-immortalized RPE cells. Sci Rep 2021; 11:14454. [PMID: 34262099 PMCID: PMC8280219 DOI: 10.1038/s41598-021-93863-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022] Open
Abstract
MYCN is an oncogenic driver in neural crest-derived neuroblastoma and medulloblastoma. To better understand the early effects of MYCN activation in a neural-crest lineage context, we profiled the transcriptome of immortalized human retina pigment epithelial cells with inducible MYCN activation. Gene signatures associated with elevated MYC/MYCN activity were induced after 24 h of MYCN activation, which attenuated but sustained at later time points. Unexpectedly, MYCN activation was accompanied by reduced cell growth. Gene set enrichment analysis revealed a senescence-like signature with strong induction of p53 and p21 but in the absence of canonical hallmarks of senescence such as β-galactosidase positivity, suggesting incomplete cell fate commitment. When scrutinizing the putative drivers of this growth attenuation, differential gene expression analysis identified several regulators of nucleolar stress. This process was also reflected by phenotypic correlates such as cytoplasmic granule accrual and nucleolar coalescence. Hence, we propose that the induction of MYCN congests the translational machinery, causing nucleolar stress and driving cells into a transient pre-senescent state. Our findings shed new light on the early events induced by MYCN activation and may help unravelling which factors are required for cells to tolerate unscheduled MYCN overexpression during early malignant transformation.
Collapse
Affiliation(s)
- Sofia Zanotti
- Laboratory of Cell Biology and Histology, Dept. Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Suzanne Vanhauwaert
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Christophe Van Neste
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Volodimir Olexiouk
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Jolien Van Laere
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Dept. Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Joni Van der Meulen
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
- Molecular Diagnostic, Ghent University, 9000, Ghent, Belgium
| | - Liselot M Mus
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
- Bioresource Center Ghent, Health, Innovation and Research Center, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Kaat Durinck
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Laurentijn Tilleman
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dieter Deforce
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Michael D Hogarty
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bieke Decaesteker
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Dept. Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Dept. Biomolecular Medicine, Ghent University, Medical Research Building (MRB), 2nd Floor, Entrance 34, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
32
|
Role of Yes-associated protein and transcriptional coactivator with PDZ-binding motif in the malignant transformation of oral submucous fibrosis. Arch Oral Biol 2021; 128:105164. [PMID: 34044344 DOI: 10.1016/j.archoralbio.2021.105164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE(S) The objective of the present manuscript is to elucidate the role of matrix stiffness in the malignant transformation of oral submucous fibrosis. DESIGN The role of matrix stiffness in several cancers including oral cancer was reviewed with a tailored search strategy using relevant keywords as per the Medline format. The role of molecular mediators, Yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) was weighed in the context of OSF along two distinct pathways. RESULTS Increased matrix stiffness activates the transcriptional coactivators, YAP and TAZ shuttling between the nucleus and cytoplasm. YAP and TAZ, serve as mechanical transducers in promoting cell migration, invasion and epithelial-mesenchymal transition (EMT). The hypoxic microenvironment in the advanced stage of OSF promotes the migratory phenotype through mechanical memory. CONCLUSIONS Reprogramming of a stiff matrix has the potential to restore the Hippo-YAP/TAZ tumor suppressor pathway and reverse fibrosis-associated tumor development.
Collapse
|
33
|
Tilston-Lunel A, Mazzilli S, Kingston NM, Szymaniak AD, Hicks-Berthet J, Kern JG, Abo K, Reid ME, Perdomo C, Wilson AA, Spira A, Beane J, Varelas X. Aberrant epithelial polarity cues drive the development of precancerous airway lesions. Proc Natl Acad Sci U S A 2021; 118:e2019282118. [PMID: 33903236 PMCID: PMC8106308 DOI: 10.1073/pnas.2019282118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular events that drive the development of precancerous lesions in the bronchial epithelium, which are precursors of lung squamous cell carcinoma (LUSC), are poorly understood. We demonstrate that disruption of epithelial cellular polarity, via the conditional deletion of the apical determinant Crumbs3 (Crb3), initiates and sustains precancerous airway pathology. The loss of Crb3 in adult luminal airway epithelium promotes the uncontrolled activation of the transcriptional regulators YAP and TAZ, which stimulate intrinsic signals that promote epithelial cell plasticity and paracrine signals that induce basal-like cell growth. We show that aberrant polarity and YAP/TAZ-regulated gene expression associates with human bronchial precancer pathology and disease progression. Analyses of YAP/TAZ-regulated genes further identified the ERBB receptor ligand Neuregulin-1 (NRG1) as a key transcriptional target and therapeutic targeting of ERBB receptors as a means of preventing and treating precancerous cell growth. Our observations offer important molecular insight into the etiology of LUSC and provides directions for potential interception strategies of lung cancer.
Collapse
Affiliation(s)
- Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Sarah Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Nathan M Kingston
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | | | - Julia Hicks-Berthet
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Joseph G Kern
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Kristine Abo
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118
| | - Mary E Reid
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
| | - Catalina Perdomo
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Andrew A Wilson
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118
- Pulmonary Center, Boston University School of Medicine , Boston, MA 02118
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Pulmonary Center, Boston University School of Medicine , Boston, MA 02118
- Lung Cancer Initiative (LCI), Johnson and Johnson, Cambridge, MA 02142
| | - Jennifer Beane
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118;
- Pulmonary Center, Boston University School of Medicine , Boston, MA 02118
| |
Collapse
|
34
|
Circ-HIPK3 regulates YAP1 expression by sponging miR-381-3p to promote oral squamous cell carcinoma development. J Biosci 2021. [DOI: 10.1007/s12038-021-00142-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Hooglugt A, van der Stoel MM, Boon RA, Huveneers S. Endothelial YAP/TAZ Signaling in Angiogenesis and Tumor Vasculature. Front Oncol 2021; 10:612802. [PMID: 33614496 PMCID: PMC7890025 DOI: 10.3389/fonc.2020.612802] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Solid tumors are dependent on vascularization for their growth. The hypoxic, stiff, and pro-angiogenic tumor microenvironment induces angiogenesis, giving rise to an immature, proliferative, and permeable vasculature. The tumor vessels promote tumor metastasis and complicate delivery of anti-cancer therapies. In many types of tumors, YAP/TAZ activation is correlated with increased levels of angiogenesis. In addition, endothelial YAP/TAZ activation is important for the formation of new blood and lymphatic vessels during development. Oncogenic activation of YAP/TAZ in tumor cell growth and invasion has been studied in great detail, however the role of YAP/TAZ within the tumor endothelium remains insufficiently understood, which complicates therapeutic strategies aimed at targeting YAP/TAZ in cancer. Here, we overview the upstream signals from the tumor microenvironment that control endothelial YAP/TAZ activation and explore the role of their downstream targets in driving tumor angiogenesis. We further discuss the potential for anti-cancer treatments and vascular normalization strategies to improve tumor therapies.
Collapse
Affiliation(s)
- Aukie Hooglugt
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, Amsterdam, Netherlands
| | - Miesje M. van der Stoel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, Amsterdam, Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Berlin, Germany
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Szulzewsky F, Holland EC, Vasioukhin V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol 2021; 475:205-221. [PMID: 33428889 DOI: 10.1016/j.ydbio.2020.12.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
YAP1 is a transcriptional co-activator whose activity is controlled by the Hippo signaling pathway. In addition to important functions in normal tissue homeostasis and regeneration, YAP1 has also prominent functions in cancer initiation, aggressiveness, metastasis, and therapy resistance. In this review we are discussing the molecular functions of YAP1 and its roles in cancer, with a focus on the different mechanisms of de-regulation of YAP1 activity in human cancers, including inactivation of upstream Hippo pathway tumor suppressors, regulation by intersecting pathways, miRNAs, and viral oncogenes. We are also discussing new findings on the function and biology of the recently identified family of YAP1 gene fusions, that constitute a new type of activating mutation of YAP1 and that are the likely oncogenic drivers in several subtypes of human cancers. Lastly, we also discuss different strategies of therapeutic inhibition of YAP1 functions.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA; Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Valeri Vasioukhin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| |
Collapse
|
37
|
Wei W, Xue L, Tan L, Liu J, Yang Q, Wang J, Yan B, Cai Q, Yang L, Yue Y, Hao L, Wang M, Li J. Inhibition of yes-associated protein dephosphorylation prevents aggravated periodontitis with occlusal trauma. J Periodontol 2020; 92:1036-1048. [PMID: 33094479 DOI: 10.1002/jper.19-0338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Occlusal trauma can aggravate periodontitis, but the mechanism remains unclear. Yes-associated protein (YAP), a mechanical stressor protein, may play an important role in this process. METHODS Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to detect the expression of YAP and inflammatory factors in patients with periodontitis accompanied with or without occlusal trauma. Through local administration of Porphyromonas gingivalis and composite resin bonding on maxillary molars in mice, we established periodontitis and occlusal trauma models. Treatment with or without XAV939, to inhibit YAP activation, was performed in these models. Micro-computed tomography, immunofluorescence (IF), and qRT-PCR were used to explore the YAP pathway in periodontitis with occlusal trauma. Cyclic stress and lipopolysaccharide (LPS) stimuli were applied to the L929 mouse fibroblast cell line with or without XAV939. Western blot, IF, and qRT-PCR were used to verify the in vivo results. RESULTS Activated dephosphorylated YAP and increased expression of inflammatory factors were observed in patients with periodontitis accompanied with occlusal trauma. In the mouse model of periodontitis with occlusal trauma, YAP transferred into the nucleus, resulting in Jun N-terminal kinases (JNK) related pro-inflammatory pathway up-regulation. L929 cell cyclic stress and LPS stimulation results confirmed the in vivo results. Application of XAV939 inhibited YAP protein dephosphorylation and reduced JNK pro-inflammatory pathway factor expression in vivo and in vitro. CONCLUSIONS Occlusal trauma can activate YAP nuclear transfer, resulting in the up-regulation of the JNK pro-inflammatory pathway. This can be inhibited by the XAV939 YAP inhibitor.
Collapse
Affiliation(s)
- Wei Wei
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lili Xue
- Department of stomatology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Liangyu Tan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jie Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Bing Yan
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Qiaoling Cai
- Department of stomatology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Li Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jinle Li
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
38
|
Hasegawa K, Fujii S, Matsumoto S, Tajiri Y, Kikuchi A, Kiyoshima T. YAP signaling induces PIEZO1 to promote oral squamous cell carcinoma cell proliferation. J Pathol 2020; 253:80-93. [PMID: 32985688 DOI: 10.1002/path.5553] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/18/2020] [Accepted: 09/15/2020] [Indexed: 01/13/2023]
Abstract
Most cancer cells are exposed to altered extracellular environments, such as an increase in extracellular matrix (ECM) stiffness and soluble signals consisting of growth factors and cytokines. It is therefore conceivable that changes in tumor extracellular environments affect tumor cell behavior. The Hippo pathway reportedly responds to the extracellular environment and regulates the nuclear localization of the transcription co-activator, yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ). Inactivation of the Hippo pathway with nuclear translocation of YAP/TAZ stimulates cell proliferation. Its pathway also regulates gene expression, but the precise molecule(s) meditating the cell-proliferating effect of YAP signaling on oral squamous cell carcinoma (OSCC) is unclear. First, we examined the effects of YAP signaling on OSCC tumorigenesis. Loss-of-function experiments using siRNA or an inhibitor, and immunohistochemical analyses of tissue specimens obtained from OSCC patients demonstrated that YAP signaling was involved in OSCC cell proliferation. Second, we identified Piezo-type mechanosensitive ion channel component 1 (PIEZO1), a Ca2+ channel, as a transcriptional target of YAP signaling and showed that elevated PIEZO1 was required for PIEZO1 agonist-dependent Ca2+ entry and cell proliferation in OSCC cells. Experiments using three-dimensional and suspension culture revealed that PIEZO1 was involved in OSCC cellular growth. Finally, YAP overexpression in the nucleus and/or cytoplasm was immunohistochemically detected in tumor lesions with frequent expression of both PIEZO1 and Ki-67, but not in non-tumor regions of OSCC specimens. These results suggest that the YAP/PIEZO1 axis promotes OSCC cell growth. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kana Hasegawa
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yudai Tajiri
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Department of Dentistry and Oral Surgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
Dong T, Sun X, Jin H. Role of YAP1 gene in proliferation, osteogenic differentiation, and apoptosis of human periodontal ligament stem cells induced by TNF-α. J Periodontol 2020; 92:1192-1200. [PMID: 32997793 DOI: 10.1002/jper.20-0176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease that occurs in periodontal tissues and can cause tooth loosening and loss in severe cases. As the main effector of downstream of Hippo signaling pathway, yes-related protein 1 (YAP1) plays an important role in cell proliferation and differentiation. However, the role of YAP1 in periodontitis has not been reported. METHODS Cell activity was detected by Cell Counting Kit-8 (CCK-8). YAP1 was overexpressed by cell transfection, and then RT-qPCR and western blot were used to detect the expression of YAP1. The cell proliferation was determined by clone formation assay, and the expression of proliferation-related proteins was determined by western blot. The cell differentiation was detected by ELISA kit of alkaline phosphatase activity (ALP) and alizarin red staining. Finally, western blot was used to detect the expression of differentiation-related protein and Hippo signaling pathway-related proteins. Apoptosis was detected by flow cytometry. RESULTS With the increase of concentration induced by TNF-α, the cell survival rate of human periodontal ligament stem cells (HPDLSCs) decreased significantly. After the overexpression of YAP1, cell proliferation and proliferation-related protein expression increased. Overexpression of YAP1 can improve the differentiation and the formation of osteoblasts of HPDLSCs induced by TNF-α. The expression of Hippo signaling pathway-related proteins transcriptional coactivators with PDZ binding domains (TAZ), TEA domain family member (TRED) increased and proliferation-related protein P27 decreased, whereas there was no significant change in the expression of MST1. CONCLUSION TNF-α can inhibit proliferation and osteogenic differentiation of HPDLSCs, which can be ameliorated by the YAP1 gene through the Hippo signaling pathway. Our paper suggested that YAP1 may be a potential therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Tao Dong
- Department of stomatology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuemin Sun
- Department of stomatology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - He Jin
- Department of stomatology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
40
|
Chai AWY, Yee PS, Price S, Yee SM, Lee HM, Tiong VKH, Gonçalves E, Behan FM, Bateson J, Gilbert J, Tan AC, McDermott U, Garnett MJ, Cheong SC. Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway. eLife 2020; 9:e57761. [PMID: 32990596 PMCID: PMC7591259 DOI: 10.7554/elife.57761] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
New therapeutic targets for oral squamous cell carcinoma (OSCC) are urgently needed. We conducted genome-wide CRISPR-Cas9 screens in 21 OSCC cell lines, primarily derived from Asians, to identify genetic vulnerabilities that can be explored as therapeutic targets. We identify known and novel fitness genes and demonstrate that many previously identified OSCC-related cancer genes are non-essential and could have limited therapeutic value, while other fitness genes warrant further investigation for their potential as therapeutic targets. We validate a distinctive dependency on YAP1 and WWTR1 of the Hippo pathway, where the lost-of-fitness effect of one paralog can be compensated only in a subset of lines. We also discover that OSCCs with WWTR1 dependency signature are significantly associated with biomarkers of favorable response toward immunotherapy. In summary, we have delineated the genetic vulnerabilities of OSCC, enabling the prioritization of therapeutic targets for further exploration, including the targeting of YAP1 and WWTR1.
Collapse
Affiliation(s)
- Annie Wai Yeeng Chai
- Head and Neck Cancer Research Team, Cancer Research Malaysia, Head and Neck Cancer Research TeamSubang Jaya, SelangorMalaysia
| | - Pei San Yee
- Head and Neck Cancer Research Team, Cancer Research Malaysia, Head and Neck Cancer Research TeamSubang Jaya, SelangorMalaysia
| | - Stacey Price
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - Shi Mun Yee
- Head and Neck Cancer Research Team, Cancer Research Malaysia, Head and Neck Cancer Research TeamSubang Jaya, SelangorMalaysia
| | - Hui Mei Lee
- Head and Neck Cancer Research Team, Cancer Research Malaysia, Head and Neck Cancer Research TeamSubang Jaya, SelangorMalaysia
| | - Vivian KH Tiong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, Head and Neck Cancer Research TeamSubang Jaya, SelangorMalaysia
| | - Emanuel Gonçalves
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - Fiona M Behan
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - Jessica Bateson
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - James Gilbert
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer CenterTampaUnited States
| | - Ultan McDermott
- Oncology R&D AstraZeneca, CRUK Cambridge InstituteCambridgeUnited Kingdom
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - Sok Ching Cheong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, Head and Neck Cancer Research TeamSubang Jaya, SelangorMalaysia
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of MalayaKuala LumpurMalaysia
| |
Collapse
|
41
|
Shin E, Kim J. The potential role of YAP in head and neck squamous cell carcinoma. Exp Mol Med 2020; 52:1264-1274. [PMID: 32859951 PMCID: PMC8080831 DOI: 10.1038/s12276-020-00492-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 01/20/2023] Open
Abstract
The transcriptional cofactor YAP and its inhibitory regulators, Hippo kinases and adapter proteins, constitute an evolutionarily conserved signaling pathway that controls organ size and cell fate. The activity of the Hippo-YAP pathway is determined by a variety of intracellular and intercellular cues, such as cell polarity, junctions, density, mechanical stress, energy status, and growth factor signaling. Recent studies have demonstrated that YAP can induce the expression of a set of genes that allow cancer cells to gain a survival advantage and aggressive behavior. Comprehensive genomic studies have revealed frequent focal amplifications of the YAP locus in human carcinomas, including head and neck squamous cell carcinoma (HNSCC). Moreover, FAT1, which encodes an upstream component of Hippo signaling, is one of the most commonly altered genes in HNSCC. In this review, we discuss the causes and functional consequences of YAP dysregulation in HNSCC. We also address interactions between YAP and other oncogenic drivers of HNSCC. Abnormal activity of a protein involved in cell proliferation may influence the progression of head and neck cancers. Head and neck squamous cell carcinoma (HNSCC) affects the skin, throat, mouth and nose tissues. Disruption to the Hippo-YAP signaling pathway, which plays a key role in cell proliferation and differentiation, is implicated in multiple cancers. Joon Kim and Eunbie Shin at the Korea Advanced Institute of Science and Technology, Daejeon, South Korea, reviewed recent research into the role of YAP in HNSCC. Abnormal YAP protein activity triggers the expression of genes that encourage cancer cell proliferation. Mice with over-expressed YAP showed tissue overgrowth and tumor formation. High YAP levels have been found at the invasive front of HNSCC tumors, suggesting a role in metastasis. Further research is needed to verify whether YAP is a potential therapeutic target.
Collapse
Affiliation(s)
- Eunbie Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
42
|
Loss of oral mucosal stem cell markers in oral submucous fibrosis and their reactivation in malignant transformation. Int J Oral Sci 2020; 12:23. [PMID: 32826859 PMCID: PMC7442837 DOI: 10.1038/s41368-020-00090-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
The integrity of the basal stem cell layer is critical for epithelial homoeostasis. In this paper, we review the expression of oral mucosal stem cell markers (OM-SCMs) in oral submucous fibrosis (OSF), oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) to understand the role of basal cells in potentiating cancer stem cell behaviour in OSF. While the loss of basal cell clonogenicity triggers epithelial atrophy in OSF, the transition of the epithelium from atrophic to hyperplastic and eventually neoplastic involves the reactivation of basal stemness. The vacillating expression patterns of OM-SCMs confirm the role of keratins 5, 14, 19, CD44, β1-integrin, p63, sex-determining region Y box (SOX2), octamer-binding transcription factor 4 (Oct-4), c-MYC, B-cell-specific Moloney murine leukaemia virus integration site 1 (Bmi-1) and aldehyde dehydrogenase 1 (ALDH1) in OSF, OPMDs and OSCC. The downregulation of OM-SCMs in the atrophic epithelium of OSF and their upregulation during malignant transformation are illustrated with relevant literature in this review.
Collapse
|
43
|
Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov 2020; 19:480-494. [PMID: 32555376 DOI: 10.1038/s41573-020-0070-z] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The Hippo pathway is an evolutionarily conserved signalling pathway with key roles in organ development, epithelial homeostasis, tissue regeneration, wound healing and immune modulation. Many of these roles are mediated by the transcriptional effectors YAP and TAZ, which direct gene expression via control of the TEAD family of transcription factors. Dysregulated Hippo pathway and YAP/TAZ-TEAD activity is associated with various diseases, most notably cancer, making this pathway an attractive target for therapeutic intervention. This Review highlights the key findings from studies of Hippo pathway signalling across biological processes and diseases, and discusses new strategies and therapeutic implications of targeting this pathway.
Collapse
|
44
|
Huang Z, Su B, Liu F, Zhang N, Ye Y, Zhang Y, Zhen Z, Liang S, Liang S, Chen L, Luo W, Claret FX, Huang Y, Xu T. YAP1 Promotes Tumor Invasion and Metastasis in Nasopharyngeal Carcinoma with Hepatitis B Virus Infection. Onco Targets Ther 2020; 13:5629-5642. [PMID: 32606777 PMCID: PMC7306475 DOI: 10.2147/ott.s247699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Nasopharyngeal carcinoma (NPC) patients with HBsAg (+) commonly present with high frequencies of distant metastasis and poor survival rate; however, the mechanism has not been elucidated. MATERIALS AND METHODS We analyzed the yes-associated protein 1 (YAP1) expression between HBsAg (+) and HBsAg (-) of NPC patients, then analyzed the relationship of YAP1 with survival. We further explored the anti-tumor role in NPC cell lines using YAP1 siRNA technique, and checked whether YAP1 regulatesepithelial-mesenchymal transition ( EMT). The relationship between HBV X protein (HBx) and YAP1 was also tested using Dual-Luciferase reporter assay. Finally, we explored anti-YAP1 to inhibit tumor metastasis using the xenograft mice model. RESULTS In the current study, we found that YAP1 expression was higher in HBsAg (+) samples than in the HBsAg (-) samples, as a clinical signature, suggesting that YAP1 could be used as a prognostic factor for NPC. Our results showed that the HBx could regulate YAP1, further promoting cellular invasiveness through EMT. Anti-YAP1 can also decrease metastasis in vivo. CONCLUSION Our findings suggest that YAP1 is a promising prognostic factor in NPC and could be used as a potential treatment target for NPC with HBV infection.
Collapse
Affiliation(s)
- Zeli Huang
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Bojin Su
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510630, Guangdong Province, People’s Republic of China
| | - Fang Liu
- Department of Pathology, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Ning Zhang
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Yilong Ye
- Department of Infection, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Yang Zhang
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Zhenghe Zhen
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Shaoqiang Liang
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Shaobo Liang
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Lushi Chen
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Weijun Luo
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - François X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Experimental Therapeutics Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX77030, USA
| | - Ying Huang
- Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou510080, Guangdong Province, People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Tao Xu
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| |
Collapse
|
45
|
Liu CM, Yu CC, Lin T, Liao YW, Hsieh PL, Yu CH, Lee SS. E3 ligase STUB1 attenuates stemness and tumorigenicity of oral carcinoma cells via transglutaminase 2 regulation. J Formos Med Assoc 2020; 119:1532-1538. [PMID: 32553686 DOI: 10.1016/j.jfma.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/PURPOSE Oral cancer is amongst the most prevalent cancers worldwide with rising incidence. Various attempts have been made to elucidate its pathogenesis, and we sought to examine the function of a ubiquitin E3 ligase that was encoded by STUB1. METHODS The mRNA expression of STUB1 in oral cancer samples and normal counterparts was determined by qRT-PCR. Numerous assays to assess the features of cancer cells, including self-renewal capacity, invasion and migration abilities were conducted following knockdown or overexpression of STUB1. RESULTS The expression level of STUB1 was reduced in oral cancer, which was associated with a reduced relapse-free survival. Two oral cancer cell lines with low expression of STUB1 (SAS and HSC3) were chosen for the overexpression of STUB1. We showed that ectopic expression of STUB1 led to the downregulation of TGM2, a multifunctional protein that contributed to cancer progression in several cancers. Our results demonstrated that overexpression of STUB1 suppressed the cancer aggressiveness, while restoration of TGM2 reverted the effects. Last, we showed that STUB1 silencing resulted in enhanced cancer features. CONCLUSION The abnormal downregulation of STUB1 may lessen its suppressive effect on TGM2, which induced the onset or exacerbated the progression of oral cancer. The therapeutic approach to enhance the expression of STUB1 could be a promising direction for cancer therapy.
Collapse
Affiliation(s)
- Chia-Ming Liu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Shiuan-Shinn Lee
- Department of Public Health, Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
46
|
Cao MX, Zhang WL, Yu XH, Wu JS, Qiao XW, Huang MC, Wang K, Wu JB, Tang YJ, Jiang J, Liang XH, Tang YL. Interplay between cancer cells and M2 macrophages is necessary for miR-550a-3-5p down-regulation-mediated HPV-positive OSCC progression. J Exp Clin Cancer Res 2020; 39:102. [PMID: 32493454 PMCID: PMC7268480 DOI: 10.1186/s13046-020-01602-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Human papillomavirus (HPV)-positive oral squamous cell carcinoma (OSCC) is increasing worldwide with typically higher grade and stage, while better prognosis. microRNAs (miRNAs) has been shown to play a critical role in cancer, however, their role in HPV-positive OSCC progression remains unclear. METHODS miRNA microarray was performed to identify differentially expressed miRNAs. qRT-PCR and FISH were performed to determine the relative expression of miR-550a-3-5p. CCK-8, Flow cytometry, Wound healing, Cell invasion assays and xenograft experiments were conducted to analyze the biological roles of miR-550a-3-5p. Tumor-associated macrophages (TAMs) generation, co-culturing of cancer cells with TAMs, Western blot, Dual-luciferase reporter gene assay, Immunohistochemistry and animal studies were performed to explore the mechanisms underlying the functions of miR-550a-3-5p. RESULTS We identified 19 miRNAs differentially expressed in HPV-positive OSCC specimens and miR-550a-3-5p was down-regulated. The low expression of miR-550a-3-5p correlated with higher tumor size and nodal metastasis of HPV-positive OSCC patients. Then, we found that miR-550a-3-5p suppressed the migration, invasion and EMT of HPV-positive OSCC cells dependent on decreasing M2 macrophages polarization. Moreover, miR-550a-3-5p, down-regulated by E6 oncoprotein, inhibited M2 macrophages polarization by YAP/CCL2 signaling, which in turn abrogating EMT program in HPV-positive OSCC cells. In addition, in both xenografts and clinical HPV-positive OSCC samples, miR-550a-3-5p levels were inversely associated with YAP, CCL2 expressions and the number of M2 macrophages. CONCLUSIONS E6/miR-550a-3-5p/YAP/CCL2 signaling induces M2 macrophages polarization to enhance EMT and progression, revealing a novel crosstalk between cancer cells and immune cells in HPV-positive OSCC microenvironment.
Collapse
Affiliation(s)
- Ming-Xin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Wei-Long Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Xin-Wei Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Mei-Chang Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, Sichuan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
47
|
Tsinias G, Nikou S, Mastronikolis N, Bravou V, Papadaki H. Expression and prognostic significance of YAP, TAZ, TEAD4 and p73 in human laryngeal cancer. Histol Histopathol 2020; 35:983-995. [PMID: 32378727 DOI: 10.14670/hh-18-228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The Hippo signaling pathway plays a critical role in organ size control and tissue homeostasis and its perturbation is associated with tumorigenesis. YAP (Yes associated protein) and TAZ (transcriptional co-activator with PDZ- binding motif) are the major nuclear effectors of the Hippo pathway interacting with TEADs (TEA domain) and p73 transcriptional factors to regulate gene expression. Altered expression of the above proteins promotes tumor initiation, progression and metastasis in a variety of cancer types. This study addresses their expression and prognostic significance in human laryngeal carcinoma. METHODS Protein expression of YAP, TAZ, TEAD4 and p73 was examined by immunohistochemistry in 121 human laryngeal squamous cell carcinomas. Correlations with clinicopathological data and survival were evaluated. RESULTS All proteins were overexpressed in human laryngeal carcinomas compared to non-neoplastic adjacent epithelium. High expression of YAP, TAZ, TEAD4 and p73 correlated significantly with high grade, advanced stage, supraglottic location of tumor, nodal metastases and recurrence. Furthermore, high expression of all proteins was significantly associated with poor overall and disease- free survival. p73 expression proved to be an independent predictive factor of survival and YAP expression proved to be an independent predictive factor of disease recurrence. CONCLUSIONS Deregulation of the expression of the Hippo pathway proteins is implicated in human laryngeal carcinogenesis and YAP and p73 have prognostic significance in the outcome of the disease.
Collapse
Affiliation(s)
- Georgios Tsinias
- Department of Otolaryngology, Head and Neck Surgery, University General Hospital of Patras, Patras, Greece.,Department of Anatomy, Histology and Embryology, University of Patras School of Medicine, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy, Histology and Embryology, University of Patras School of Medicine, Patras, Greece
| | - Nicholas Mastronikolis
- Department of Otolaryngology, Head and Neck Surgery, University General Hospital of Patras, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy, Histology and Embryology, University of Patras School of Medicine, Patras, Greece.
| | - Helen Papadaki
- Department of Anatomy, Histology and Embryology, University of Patras School of Medicine, Patras, Greece.
| |
Collapse
|
48
|
Ménard A, Abou Nader N, Levasseur A, St-Jean G, Le Gad-Le Roy M, Boerboom D, Benoit-Biancamano MO, Boyer A. Targeted Disruption of Lats1 and Lats2 in Mice Impairs Adrenal Cortex Development and Alters Adrenocortical Cell Fate. Endocrinology 2020; 161:5815549. [PMID: 32243503 PMCID: PMC7211035 DOI: 10.1210/endocr/bqaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
It has recently been shown that the loss of the Hippo signaling effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in adrenocortical steroidogenic cells impairs the postnatal maintenance of the adrenal gland. To further explore the role of Hippo signaling in mouse adrenocortical cells, we conditionally deleted the key Hippo kinases large tumor suppressor homolog kinases 1 and -2 (Lats1 and Lats2, two kinases that antagonize YAP and TAZ transcriptional co-regulatory activity) in steroidogenic cells using an Nr5a1-cre strain (Lats1flox/flox;Lats2flox/flox;Nr5a1-cre). We report here that developing adrenocortical cells adopt characteristics of myofibroblasts in both male and female Lats1flox/flox;Lats2flox/flox;Nr5a1-cre mice, resulting in a loss of steroidogenic gene expression, adrenal failure and death by 2 to 3 weeks of age. A marked accumulation of YAP and TAZ in the nuclei of the myofibroblast-like cell population with an accompanying increase in the expression of their transcriptional target genes in the adrenal glands of Lats1flox/flox;Lats2flox/flox;Nr5a1-cre animals suggested that the myofibroblastic differentiation could be attributed in part to YAP and TAZ. Taken together, our results suggest that Hippo signaling is required to maintain proper adrenocortical cell differentiation and suppresses their differentiation into myofibroblast-like cells.
Collapse
Affiliation(s)
- Amélie Ménard
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Nour Abou Nader
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Adrien Levasseur
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Guillaume St-Jean
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Marie Le Gad-Le Roy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Marie-Odile Benoit-Biancamano
- Département de Pathologie et Microbiologie Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Alexandre Boyer
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
- Correspondence: Alexandre Boyer, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada. E-mail:
| |
Collapse
|
49
|
Zhao X, Cui L. A robust six-miRNA prognostic signature for head and neck squamous cell carcinoma. J Cell Physiol 2020; 235:8799-8811. [PMID: 32342519 DOI: 10.1002/jcp.29723] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a major health problem worldwide. We aimed to identify a robust microRNA (miRNA)-based signature for predicting HNSCC prognosis. The miRNA expression profiles of HNSCC were obtained from The Cancer Genome Atlas (TCGA) database. The TCGA HNSCC cohort was randomly divided into the discovery and validation cohort. A miRNA-based prognostic signature was built up based on TGCA discovery cohort, and then further validated. The downstream targets of prognostic miRNAs were subjected to functional enrichment analyses. The role of miR-1229-3p, a prognosis-related miRNA, in tumorigenesis of HNSCC was further evaluated. A total of 305 significantly differentially expressed miRNAs were found between HNSCC samples and normal tissues. A six-miRNA prognostic signature was constructed, which exhibited a strong association with overall survival (OS) in the TCGA discovery cohort. In addition, these findings were successfully confirmed in TCGA validation cohort and our own independent cohort. The miRNA-based signature was demonstrated as an independent prognostic indicator for HNSCC. A risk signature-based nomogram model was constructed and showed good performance for predicting the OS for HNSCC. The functional analyses revealed that the downstream targets of these prognostic miRNAs were closely linked to cancer progression. Mechanistically, in vitro analysis revealed that miR-1229-3p played a tumor promoting role in HNSCC. In conclusion, our study has developed a robust miRNA-based signature for predicting the prognosis of HNSCC with high accuracy, which will contribute to improve the therapeutic outcome.
Collapse
Affiliation(s)
- Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Li Cui
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, California
| |
Collapse
|
50
|
Jiang Y, Li T, Wu Y, Xu H, Xie C, Dong Y, Zhong L, Wang Z, Zhao H, Zhou Y, Li J, Ji N, Zeng X, Feng X, Chen Q. GPR39 Overexpression in OSCC Promotes YAP-Sustained Malignant Progression. J Dent Res 2020; 99:949-958. [PMID: 32325008 DOI: 10.1177/0022034520915877] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The clinical outcome of oral squamous cell carcinoma (OSCC) has not improved in recent years, mainly due to the limited effective targeted therapy that has been applied. Recently, a transcriptional coactivator, YAP, has been shown to have a key regulatory role in malignant progression in multiple cancers, including OSCC. But pharmacologically targeting YAP or the Hippo pathway, which is the main signaling pathway regulating YAP, has been proven to be challenging. Therefore, uncovering YAP upstream regulators in cancer would identify novel therapeutic targets for treatment of YAP-sustained cancers. Here, we showed that YAP was overactivated in OSCC and that high YAP activity in patients with OSCC was associated with malignant progression and poor survival. We uncovered that GPR39 (a G protein-coupled receptor) was overexpressed in OSCC, that the expression level of GPR39 was correlated with the activity level of YAP, and that the high GPR39 expression was associated with malignant progression and poor survival in patients with OSCC. Moreover, we found that GPR39 regulated YAP through a Gαq/11-RhoA-dependent signaling pathway. Importantly, inhibition of GPR39 resulted in YAP-sustained OSCC growth inhibition. Our findings suggest that GPR39 is a potential therapeutic target for OSCC treatment with itself as a biomarker.
Collapse
Affiliation(s)
- Y Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - C Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Dong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - N Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|