1
|
Yu ZW, Zheng M, Fan HY, Liang XH, Tang YL. Ultraviolet (UV) radiation: a double-edged sword in cancer development and therapy. MOLECULAR BIOMEDICINE 2024; 5:49. [PMID: 39417901 PMCID: PMC11486887 DOI: 10.1186/s43556-024-00209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
It has long been widely acknowledged that ultraviolet (UV) light is an environment risk factor that can lead to cancer, particularly skin cancer. However, it is worth noting that UV radiation holds potential for cancer treatment as a relatively high-energy electromagnetic wave. With the help of nanomaterials, the role of UV radiation has caught increasing attention in cancer treatment. In this review, we briefly summarized types of UV-induced cancers, including malignant melanoma, squamous cell carcinoma, basal cell carcinoma, Merkel cell carcinoma. Importantly, we discussed the primary mechanisms underlying UV carcinogenesis, including mutations by DNA damage, immunosuppression, inflammation and epigenetic alterations. Historically limited by its shallow penetration depth, the introduction of nanomaterials has dramatically transformed the utilization of UV light in cancer treatment. The direct effect of UV light itself generally leads to the suppression of cancer cell growth and the initiation of apoptosis and ferroptosis. It can also be utilized to activate photosensitizers for reactive oxygen species (ROS) production, sensitize radiotherapy and achieve controlled drug release. Finally, we comprehensively weigh the significant risks and limitations associated with the therapeutic use of UV radiation. And the contradictory effect of UV exposure in promoting and inhibiting tumor has been discussed. This review provides clues for potential clinical therapy as well as future study directions in the UV radiation field. The precise delivery and control of UV light or nanomaterials and the wavelength as well as dose effects of UV light are needed for a thorough understanding of UV radiation.
Collapse
Affiliation(s)
- Zhen-Wei Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
2
|
Xia Q, Lan J, Pan Y, Wang Y, Song T, Yang Y, Tian X, Chen L, Gu Z, Ding YY. Effects of Dityrosine on Lactic Acid Metabolism in Mice Gastrocnemius Muscle During Endurance Exercise via the Oxidative Stress-Induced Mitochondria Damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5269-5282. [PMID: 38439706 DOI: 10.1021/acs.jafc.3c09649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Dityrosine (Dityr) has been detected in commercial food as a product of protein oxidation and has been shown to pose a threat to human health. This study aims to investigate whether Dityr causes a decrease in lactic acid metabolism in the gastrocnemius muscle during endurance exercise. C57BL/6 mice were administered Dityr or saline by gavage for 13 weeks and underwent an endurance exercise test on a treadmill. Dityr caused a severe reduction in motion displacement and endurance time, along with a significant increase in lactic acid accumulation in the blood and gastrocnemius muscle in mice after exercise. Dityr induced significant mitochondrial defects in the gastrocnemius muscle of mice. Additionally, Dityr induced serious oxidative stress in the gastrocnemius muscle, accompanied by inflammation, which might be one of the causes of mitochondrial dysfunction. Moreover, significant apoptosis in the gastrocnemius muscle increased after exposure to Dityr. This study confirmed that Dityr induced oxidative stress in the gastrocnemius muscle, which further caused significant mitochondrial damage in the gastrocnemius muscle cell, resulting in decreased capacity of lactic acid metabolism and finally affected performance in endurance exercise. This may be one of the possible mechanisms by which highly oxidized foods cause a decreased muscle energy metabolism.
Collapse
Affiliation(s)
- Qiudong Xia
- Department of Physical Education, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jinchi Lan
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuxiang Pan
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuxin Wang
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tianyuan Song
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xu Tian
- Beijing Competitor Sports Nutrition Research Institute, Beijing 100027, China
| | - Longjun Chen
- Huzhou Shengtao Biotechnology LLC, Huzhou 313000, China
| | - Zhenyu Gu
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yin-Yi Ding
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
3
|
Yang YC, Zhu Y, Sun SJ, Zhao CJ, Bai Y, Wang J, Ma LT. ROS regulation in gliomas: implications for treatment strategies. Front Immunol 2023; 14:1259797. [PMID: 38130720 PMCID: PMC10733468 DOI: 10.3389/fimmu.2023.1259797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Gliomas are one of the most common primary malignant tumours of the central nervous system (CNS), of which glioblastomas (GBMs) are the most common and destructive type. The glioma tumour microenvironment (TME) has unique characteristics, such as hypoxia, the blood-brain barrier (BBB), reactive oxygen species (ROS) and tumour neovascularization. Therefore, the traditional treatment effect is limited. As cellular oxidative metabolites, ROS not only promote the occurrence and development of gliomas but also affect immune cells in the immune microenvironment. In contrast, either too high or too low ROS levels are detrimental to the survival of glioma cells, which indicates the threshold of ROS. Therefore, an in-depth understanding of the mechanisms of ROS production and scavenging, the threshold of ROS, and the role of ROS in the glioma TME can provide new methods and strategies for glioma treatment. Current methods to increase ROS include photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), etc., and methods to eliminate ROS include the ingestion of antioxidants. Increasing/scavenging ROS is potentially applicable treatment, and further studies will help to provide more effective strategies for glioma treatment.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yu Zhu
- College of Health, Dongguan Polytechnic, Dongguan, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Jia Sun
- Department of Postgraduate Work, Xi’an Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Jin Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Shaanxi Key Laboratory of Free Radical and Medicine, Xi’an, China
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| |
Collapse
|
4
|
Gan X, Nie M, Cai S, Liu Y, Zhang F, Feng X, Li Y, Yang B, Wang X. Dankasterone A induces prostate cancer cell death by inducing oxidative stress. Eur J Pharmacol 2023; 957:175988. [PMID: 37597647 DOI: 10.1016/j.ejphar.2023.175988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Oxidative stress plays a dual role in tumor survival, either promoting tumor development or killing tumor cells under different conditions. Dankasterone A is a secondary metabolite derived from the fungus Talaromyces purpurogenu. It showed good potential in a screen for anti-prostate cancer compounds. In this study, MTT results showed dankasterone A was cytotoxic to prostate cancer cells, with an IC50 of 5.10 μM for PC-3 cells and 3.41 μM for 22Rv1 cells. Further studies, plate cloning assays and real-time cell analysis monitoring showed that dankasterone A significantly inhibited clonal colony formation and cell migration in 22Rv1 and PC-3 cells. In addition, flow cytometry results showed that dankasterone A induced apoptosis in prostate cancer cells while having no impact on cell cycle distribution. At the molecular level, Protein microarray experiments and western blot assays revealed that dankasterone A specifically and dramatically upregulated HO-1 protein expression; and the results of cell fluorescence staining showed that dankasterone A induced overexpression of reactive oxygen species in 22Rv1 and PC-3 cells. Taken together, dankasterone A induced prostate cancer cells to undergo intense oxidative stress, which resulted in the production of large amounts of HO-1 and the release of large amounts of reactive oxygen species, leading to apoptosis of prostate cancer cells, ultimately resulting in the inhibition of both cell proliferation and migration. We also validated the anti-prostate cancer effects of dankasterone A in vivo in a zebrafish xenograft tumor model. In conclusion, dankasterone A has the potential to be developed as an anti-prostate cancer drug.
Collapse
Affiliation(s)
- Xia Gan
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Mingyi Nie
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Siying Cai
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Feng
- Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yunqiu Li
- School of Pharmacy, Guilin Medical University, Guilin 541001, China.
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
5
|
Louzon M, de Vaufleury A, Capelli N. Ecogenotoxicity assessment with land snails: A mini-review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108472. [PMID: 37690511 DOI: 10.1016/j.mrrev.2023.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
In the context of the increasing environmental and sanitary crisis, it is accepted that soil pollution can cause health alterations and disturb natural population dynamics. Consequently, the assessment of the genotoxic potential of compounds found in contaminated soils is important. Indeed, the alteration of genomic integrity may increase the risk of cancer development and may impair reproduction and long-term population dynamics. Among the methodologies to assess terrestrial genotoxic potential, there has been growing interest during the last decade in monitoring alterations of the genome in bioindicators of soil quality. As some land snail species are recognized bioindicators of soil quality, especially to assess the environmental and toxicological bioavailability of compounds, this review focuses on current knowledge regarding the genotoxicology of land snails. Classical biomarkers to assess genotoxic effects have been used (e.g., DNA breakage, micronuclei, random amplification polymorphic DNA) at various stages of the life cycle, including embryos. The studies were performed in vitro, in vivo, in situ and ex situ and covered a diverse set of contaminants (nanoparticles, metal(loid)s, pesticides, polycyclic aromatic hydrocarbons) and snail species (Cantareus aspersus, Eobania vermiculata, Theba pisana, Helix lucorum). Based on recent studies reviewed here, the use of land snails to map soil genotoxic potential is promising due to their ability to reveal pollution and subsequent environmental risks. Moreover, the position of snails in the trophic chain and the existing bridges between contaminant bioavailability to snails and bioaccessibility to humans reinforce the value of land snail-based ecotoxicological assessment.
Collapse
Affiliation(s)
- Maxime Louzon
- Ecosystem department, ENVISOL, 2 rue Hector Berlioz, 38110 La Tour du Pin, France
| | - Annette de Vaufleury
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Nicolas Capelli
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France.
| |
Collapse
|
6
|
Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson. Int J Mol Sci 2023; 24:ijms24087221. [PMID: 37108382 PMCID: PMC10138549 DOI: 10.3390/ijms24087221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
7
|
Prasad KN. A micronutrient mixture with collagen peptides, probiotics, cannabidiol, and diet may reduce aging, and development and progression of age-related alzheimer's disease, and improve its treatment. Mech Ageing Dev 2023; 210:111757. [PMID: 36460123 DOI: 10.1016/j.mad.2022.111757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Human aging involves gradual decline in organ functions leading to organ specific age-related chronic diseases such as Alzheimer's disease (AD). Although advances in the development of new drugs, novel surgical procedures, improved diet and lifestyle, have resulted in doubling of lifespan of humans, the quality of life in many cases remains poor because of increased incidence of age-related chronic diseases. Using experimental models of accelerated aging, several cellular defects associated with aging and AD have been identified. Some cellular defects due to increased oxidative stress, chronic inflammation, autophagy defects, mitochondrial dysfunction, and imbalances in the composition probiotics in favor of harmful bacteria over beneficial bacteria are common to both aging and AD, while others such as telomere attrition, loss of collagen, elastin, and hyaluronic acid, failure of DNA repair system, and impaired immune function are unique to aging; and some such as increased production of beta-amyloids, hyperphosphorylation of tau protein, and abnormal behaviors are unique to AD. It is suggested that supplementation with a micronutrient mixture, probiotics, collagen peptides, CBD, and modifications in the diet and lifestyle may reduce the aging processes, and the development, progression of AD, and improve the treatments of this disease.
Collapse
Affiliation(s)
- Kedar N Prasad
- Engage Global, Inc. 245 El Faisan Dr., San Rafael, CA 94903, USA.
| |
Collapse
|
8
|
Sua-Cespedes C, Lacerda JT, Zanetti G, David DD, Moraes MN, de Assis LVM, Castrucci AML. Melanopsin (OPN4) is a novel player in skin homeostasis and attenuates UVA-induced effects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2023; 242:112702. [PMID: 37018912 DOI: 10.1016/j.jphotobiol.2023.112702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The presence of melanopsin (OPN4) has been shown in cultured murine melanocytes and was associated with ultraviolet A radiation (UVA) reception. Here we demonstrated the protective role of OPN4 in skin physiology and the increased UVA-induced damage in its absence. Histological analysis showed a thicker dermis and thinner hypodermal white adipose tissue layer in Opn4-/- (KO) mice than in wild-type (WT) animals. Proteomics analyses revealed molecular signatures associated with proteolysis, remodeling chromatin, DNA damage response (DDR), immune response, and oxidative stress coupled with antioxidant responses in the skin of Opn4 KO mice compared to WT. Skin protein variants were found in Opn4 KO mice and Opn2, Opn3, and Opn5 gene expressions were increased in the genotype. We investigated each genotype response to UVA stimulus (100 kJ/m2). We found an increase of Opn4 gene expression following stimulus on the skin of WT mice suggesting melanopsin as a UVA sensor. Proteomics findings suggest that UVA decreases DDR pathways associated with ROS accumulation and lipid peroxidation in the skin of Opn4 KO mice. Relative changes in methylation (H3-K79) and acetylation sites of histone between genotypes and differentially modulated by UVA stimulus were also observed. We also identified alterations of molecular traits of the central hypothalamus-pituitary- adrenal (HPA) and the skin HPA-like axes in the absence of OPN4. Higher skin corticosterone levels were detected in UVA-stimulated Opn4 KO compared to irradiated WT mice. Taken altogether, functional proteomics associated with gene expression experiments allowed a high-throughput evaluation that suggests an important protective role of OPN4 in regulating skin physiology in the presence and absence of UVA radiation.
Collapse
Affiliation(s)
- Cristhian Sua-Cespedes
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - José Thalles Lacerda
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Zanetti
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Dantas David
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Maria L Castrucci
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, USA.
| |
Collapse
|
9
|
Nikfarjam S, Singh KK. DNA damage response signaling: A common link between cancer and cardiovascular diseases. Cancer Med 2023; 12:4380-4404. [PMID: 36156462 PMCID: PMC9972122 DOI: 10.1002/cam4.5274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
DNA damage response (DDR) signaling ensures genomic and proteomic homeostasis to maintain a healthy genome. Dysregulation either in the form of down- or upregulation in the DDR pathways correlates with various pathophysiological states, including cancer and cardiovascular diseases (CVDs). Impaired DDR is studied as a signature mechanism for cancer; however, it also plays a role in ischemia-reperfusion injury (IRI), inflammation, cardiovascular function, and aging, demonstrating a complex and intriguing relationship between cancer and pathophysiology of CVDs. Accordingly, there are increasing number of reports indicating higher incidences of CVDs in cancer patients. In the present review, we thoroughly discuss (1) different DDR pathways, (2) the functional cross talk among different DDR mechanisms, (3) the role of DDR in cancer, (4) the commonalities and differences of DDR between cancer and CVDs, (5) the role of DDR in pathophysiology of CVDs, (6) interventional strategies for targeting genomic instability in CVDs, and (7) future perspective.
Collapse
Affiliation(s)
- Sepideh Nikfarjam
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Krishna K Singh
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
10
|
Prevalence of Hypertension and Obesity: Profile of Mitochondrial Function and Markers of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12010165. [PMID: 36671026 PMCID: PMC9854635 DOI: 10.3390/antiox12010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Obesity and hypertension are health problems of increasing prevalence in developed countries. The link between obesity and hypertension is not yet fully determined. Oxidative stress (OS) and mitochondrial function may play a role in obesity-associated hypertension. A cross-sectional study with 175 subjects with normal weight, overweight, or obese who attended a medical check-up was included. The subjects were divided according to the body mass index (BMI) into normal-weight (n-53), overweight (n-84), and obesity (n-38). Hypertension was also evaluated. To measure mitochondrial function, ATP hydrolysis and ATP synthesis in platelets and serum, respectively, were determined. Superoxide dismutase (SOD), catalase, lipohydroperoxides, 8-isoprostanes, carbonyl groups in proteins, nitric oxide (NO) metabolites, 8-hydroxy-2′-deoxyguanosine (8-OHG), 8-oxoguanine glycosylase (hOGG1), tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were measured by standard colorimetric or immunoassay methods. Obese subjects showed lower ATP hydrolysis activity than normal weight and overweight subjects (p < 0.01). No differences between those groups were found in ATP synthase and catalase activities, lipid hydroperoxides, carbonyl groups in proteins, 8-isoprostanes, and NO metabolites. In the obesity group, SOD activity (p < 0.01) was decreased while 8-OHG (p < 0.01) was increased. Subjects with hypertension showed increased 8-OHG (p < 0.01) and less reparative enzyme (hOGG1 p = 0.04) than subjects with normal weight. Moreover, we found a decrease of SOD (p < 0.01), catalase activities (p = 0.04), NO metabolites (p < 0.01), and increases of carbonyl groups in proteins (p = 0.01), TNF-α (p < 0.01) and IL-6 (p < 0.01 in hypertensive subjects. Obese subjects show a decrease in ATP hydrolysis. The decrease in ATP hydrolysis rate and ATP synthesis and an increase in OS and inflammation markers were associated with the hypertensive state.
Collapse
|
11
|
Acosta S, Canclini L, Marizcurrena JJ, Castro-Sowinski S, Hernández P. Photo-repair effect of a bacterial Antarctic CPD-photolyase on UVC-induced DNA lesions in human keratinocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104001. [PMID: 36273708 DOI: 10.1016/j.etap.2022.104001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Exposure to ultraviolet radiation from sunlight induces oxidative DNA lesions and bipyrimidine photoproducts that can lead to photo-aging and skin carcinogenesis. CPD-photolyases are flavoproteins that repair cyclobutane pyrimidine dimers using blue light as an energy source. In the present work, we evaluated the photo-repair effect of the recombinant CPD-photolyase PhrAHym from the Antarctic bacterium Hymenobacter sp. UV11 on DNA lesions in human keratinocytes induced by UVC light. By performing immunochemistry assays we observed that PhrAHym repairs in a highly efficient way the CPD-photoproducts and reduces the γH2AX formation. Since this enzyme is non-cytotoxic and repairs UVC-induced DNA lesions in human keratinocytes, we propose that PhrAHym could be used as a biotherapeutic agent against UV-induced skin cancer, photoaging, and related diseases.
Collapse
Affiliation(s)
- Silvina Acosta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
| | - Lucía Canclini
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
| | - Juan José Marizcurrena
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Laboratorio de Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
| | - Paola Hernández
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay.
| |
Collapse
|
12
|
Ghosh DK, Pande S, Kumar J, Yesodharan D, Nampoothiri S, Radhakrishnan P, Reddy CG, Ranjan A, Girisha KM. The E262K mutation in Lamin A links nuclear proteostasis imbalance to laminopathy-associated premature aging. Aging Cell 2022; 21:e13688. [PMID: 36225129 PMCID: PMC9649601 DOI: 10.1111/acel.13688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023] Open
Abstract
Deleterious, mostly de novo, mutations in the lamin A (LMNA) gene cause spatio-functional nuclear abnormalities that result in several laminopathy-associated progeroid conditions. In this study, exome sequencing in a sixteen-year-old male with manifestations of premature aging led to the identification of a mutation, c.784G>A, in LMNA, resulting in a missense protein variant, p.Glu262Lys (E262K), that aggregates in nucleoplasm. While bioinformatic analyses reveal the instability and pathogenicity of LMNAE262K , local unfolding of the mutation-harboring helical region drives the structural collapse of LMNAE262K into aggregates. The E262K mutation also disrupts SUMOylation of lysine residues by preventing UBE2I binding to LMNAE262K , thereby reducing LMNAE262K degradation, aggregated LMNAE262K sequesters nuclear chaperones, proteasomal proteins, and DNA repair proteins. Consequently, aggregates of LMNAE262K disrupt nuclear proteostasis and DNA repair response. Thus, we report a structure-function association of mutant LMNAE262K with toxicity, which is consistent with the concept that loss of nuclear proteostasis causes early aging in laminopathies.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Shruti Pande
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Jeevan Kumar
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Periyasamy Radhakrishnan
- Suma Genomics Private Limited, Manipal Center for Biotherapeutics Research and Department of Reproductive Science, Manipal Academy of Higher Education, Manipal, India
| | - Chilakala Gangi Reddy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Katta M Girisha
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| |
Collapse
|
13
|
Langeh U, Kumar V, Kumar A, Kumar P, Singh C, Singh A. Cellular and mitochondrial quality control mechanisms in maintaining homeostasis in ageing. Rejuvenation Res 2022; 25:208-222. [PMID: 35850516 DOI: 10.1089/rej.2022.0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aging is a natural process in all living organisms defined as destruction of cell function as a result of long-term accumulation of damages. Autophagy is a cellular house safeguard pathway which responsible for degrading damaged cellular organelles. Moreover, it maintains cellular homeostasis, control lifetime, and longevity. Damaged mitochondrial accumulation is a characteristic of aging which associated with neurodegeneration. Mitochondria functions as a principal energy source via supplying ATP through oxidative phosphorylation which serves as fuel for neuronal function. Mitophagy and mitochondrial specific autophagy plays an important role in maintenance of neuronal health via the removal of dysfunctional and aged mitochondria. The mitochondrial QC system involves different strategies for protecting against mitochondrial dysfunction and maintaining healthy mitochondria in cells. Mitochondrial function protection could be a strategy for the promotion of neuroprotection. Mitophagy, could be an effective target for drug discovery. Therefore, further detailed studies for mechanism of mitophagy will advance our mitochondrial phenotype knowledge and understanding to disease pathogenesis. This review mainly focuses on ageing mediated mechanism of autophagy and mitophagy for maintaining the cellular homeostasis and longevity.
Collapse
Affiliation(s)
- Urvashi Langeh
- ISF College of Pharmacy, 75126, Pharmacology, Moga, Punjab, India;
| | - Vishal Kumar
- ISF College of Pharmacy, 75126, Pharmacology, Moga, Punjab, India;
| | | | - Pradeep Kumar
- University of the Witwatersrand, 37707, Department of Pharmacy and Pharmacology, Johannesburg-Braamfontein, Gauteng, South Africa;
| | - Charan Singh
- ISF College of Pharmacy, 75126, Pharmacology, Moga, Punjab, India;
| | - Arti Singh
- ISF College of Pharmacy, 75126, Pharmacology, ISF College of Pharmacy, Department of Pharmacology, Moga, Moga, Punjab, India, 142001;
| |
Collapse
|
14
|
Wang SC, Yen CY, Shiau JP, Chang MY, Hou MF, Tang JY, Chang HW. Combined Treatment of Nitrated [6,6,6]Tricycles Derivative (SK2)/Ultraviolet C Highly Inhibits Proliferation in Oral Cancer Cells In Vitro. Biomedicines 2022; 10:biomedicines10051196. [PMID: 35625933 PMCID: PMC9138449 DOI: 10.3390/biomedicines10051196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Combined treatment is an effective strategy to improve anticancer therapy, but severe side effects frequently limit this application. Drugs inhibiting the proliferation of cancer cells, but not normal cells, display preferential antiproliferation to cancer cells. It shows the benefits of avoiding side effects and enhancing antiproliferation for combined treatment. Nitrated [6,6,6]tricycles derivative (SK2), a novel chemical exhibiting benzo-fused dioxabicyclo[3.3.1]nonane core with an n-butyloxy substituent, exhibiting preferential antiproliferation, was chosen to evaluate its potential antioral cancer effect in vitro by combining it with ultraviolet C (UVC) irradiation. Combination treatment (UVC/SK2) caused lower viability in oral cancer cells (Ca9-22 and OC-2) than single treatment (20 J/m2 UVC or 10 μg/mL SK2), i.e., 42.3%/41.1% vs. 81.6%/69.2%, and 89.5%/79.6%, respectively. In contrast, it showed a minor effect on cell viability of normal oral cells (HGF-1), ranging from 82.2 to 90.6%. Moreover, UVC/SK2 caused higher oxidative stress in oral cancer cells than normal cells through the examination of reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane potential. UVC/SK2 also caused subG1 increment associated with apoptosis detections by assessing annexin V; panaspase; and caspases 3, 8, and 9. The antiproliferation and oxidative stress were reverted by N-acetylcysteine, validating the involvement of oxidative stress in antioral cancer cells. UVC/SK2 also caused DNA damage by detecting γH2AX and 8-hydroxy-2′-deoxyguanosine in oral cancer cells. In conclusion, SK2 is an effective enhancer for improving the UVC-caused antiproliferation against oral cancer cells in vitro. UVC/SK2 demonstrated a preferential and synergistic antiproliferation ability towards oral cancer cells with little adverse effects on normal cells.
Collapse
Affiliation(s)
- Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan;
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Jun-Ping Shiau
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ming-Feng Hou
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +7-886-7-312-1101 (ext. 7158) (J.-Y.T.); +7-886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +7-886-7-312-1101 (ext. 7158) (J.-Y.T.); +7-886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
15
|
Soheilifar MH, Masoudi-Khoram N, Shirkavand A, Ghorbanifar S. Non-coding RNAs in photoaging-related mechanisms: a new paradigm in skin health. Biogerontology 2022; 23:289-306. [PMID: 35587318 DOI: 10.1007/s10522-022-09966-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
The aging of skin is a biological process affected by environmental or genetic factors. Exposure to ultraviolet (UV) radiation is the main environmental factor causing skin aging. Cumulative UV-induced photodamage of the skin tissue is associated with premature cellular senescence, extracellular degradation, and inflammatory responses in photoaging processes. Non-coding RNAs (ncRNAs) are untranslated transcripts and master regulators of protein-coding genes. ncRNAs have a critical regulatory role in maintaining skin structure, skin barrier function, morphogenesis, and development. Altered ncRNA expression has been reported in various skin disorders such as photoaging and skin cancers. ncRNAs contribute to the suppression and promotion of photoaging by modulating signaling pathways such as mitogen-activated protein kinase (MAPK) pathway and regulating inflammatory cytokines, matrix metalloproteinases (MMPs), and senescence-associated genes. Elucidation of the functions of ncRNAs will improve the identification of molecular mechanisms underlying photoaging, and can be used in the development of therapeutic approaches in skin health and prevention of sun-induced aging. This review summarized the currently described ncRNAs and their functions in photoaging.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, 1315795613, Tehran, Iran.
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afshan Shirkavand
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, 1315795613, Tehran, Iran
| | - Shima Ghorbanifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, 1315795613, Tehran, Iran
| |
Collapse
|
16
|
Fieres J, Fischer M, Sauter C, Moreno-Villanueva M, Bürkle A, Wirtz PH. The burden of overweight: Higher body mass index, but not vital exhaustion, is associated with higher DNA damage and lower DNA repair capacity. DNA Repair (Amst) 2022; 114:103323. [DOI: 10.1016/j.dnarep.2022.103323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/01/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
|
17
|
Pourzand C, Albieri-Borges A, Raczek NN. Shedding a New Light on Skin Aging, Iron- and Redox-Homeostasis and Emerging Natural Antioxidants. Antioxidants (Basel) 2022; 11:471. [PMID: 35326121 PMCID: PMC8944509 DOI: 10.3390/antiox11030471] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Reactive oxygen species (ROS) are necessary for normal cell signaling and the antimicrobial defense of the skin. However excess production of ROS can disrupt the cellular redox balance and overwhelm the cellular antioxidant (AO) capacity, leading to oxidative stress. In the skin, oxidative stress plays a key role in driving both extrinsic and intrinsic aging. Sunlight exposure has also been a major contributor to extrinsic photoaging of the skin as its oxidising components disrupt both redox- and iron-homeostasis, promoting oxidative damage to skin cells and tissue constituents. Upon oxidative insults, the interplay between excess accumulation of ROS and redox-active labile iron (LI) and its detrimental consequences to the skin are often overlooked. In this review we have revisited the oxidative mechanisms underlying skin damage and aging by focussing on the concerted action of ROS and redox-active LI in the initiation and progression of intrinsic and extrinsic skin aging processes. Based on these, we propose to redefine the selection criteria for skin antiaging and photoprotective ingredients to include natural antioxidants (AOs) exhibiting robust redox-balancing and/or iron-chelating properties. This would promote the concept of natural-based or bio-inspired bifunctional anti-aging and photoprotective ingredients for skincare and sunscreen formulations with both AO and iron-chelating properties.
Collapse
Affiliation(s)
- Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Andrea Albieri-Borges
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| | - Nico N. Raczek
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| |
Collapse
|
18
|
Lawrence KP, Delinasios GJ, Premi S, Young AR, Cooke MS. Perspectives on Cyclobutane Pyrimidine Dimers-Rise of the Dark Dimers †. Photochem Photobiol 2021; 98:609-616. [PMID: 34706095 DOI: 10.1111/php.13551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Some early reports demonstrate that levels of cyclobutane pyrimidine dimers (CPD) may increase after UVR exposure had ended, although these observations were treated as artifacts. More recently, it has been shown unequivocally that CPD formation does occur post-irradiation, with maximal levels occurring after about 2-3 h. These lesions have been termed "dark CPD" (dCPD). Subsequent studies have confirmed their presence in vitro, in mouse models and in human skin in vivo. Melanin carbonyls have a role in the formation of dCPD, but they have also been observed in amelanotic systems, indicating other, unknown process(es) exist. In both cases, the formation of dCPD can be prevented by the presence of certain antioxidants. We lack data on the spectral dependence of dCPD, but it is unlikely to be the same as for incident CPD (iCPD), which are formed only during irradiation. There is evidence that iCPD and dCPD may have different repair kinetics, although this remains to be elucidated. It is also unknown whether iCPD and dCPD have different biological properties. The formation of dCPD in human skin in vivo has implications for post solar exposure photoprotection, and skin carcinogenesis, with a need for this to be investigated further.
Collapse
Affiliation(s)
- Karl P Lawrence
- St. John's Institute of Dermatology, King's College London, London, UK
| | | | - Sanjay Premi
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Antony R Young
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
19
|
Liu SL, Yang KH, Yang CW, Lee MY, Chuang YT, Chen YN, Chang FR, Chen CY, Chang HW. Burmannic Acid Inhibits Proliferation and Induces Oxidative Stress Response of Oral Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10101588. [PMID: 34679723 PMCID: PMC8533162 DOI: 10.3390/antiox10101588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
Burmannic acid (BURA) is a new apocarotenoid bioactive compound derived from Indonesian cinnamon; however, its anticancer effect has rarely been investigated in oral cancer cells. In this investigation, the consequences of the antiproliferation of oral cancer cells effected by BURA were evaluated. BURA selectively suppressed cell proliferation of oral cancer cells (Ca9-22 and CAL 27) but showed little cytotoxicity to normal oral cells (HGF-1). In terms of mechanism, BURA perturbed cell cycle distribution, upregulated mitochondrial superoxide, induced mitochondrial depolarization, triggered γH2AX and 8-hydroxy-2-deoxyguanosine DNA damage, and induced apoptosis and caspase 3/8/9 activation in oral cancer cells. Application of N-acetylcysteine confirmed oxidative stress as the critical factor in promoting antiproliferation, apoptosis, and DNA damage in oral cancer cells.
Collapse
Affiliation(s)
- Su-Ling Liu
- Experimental Forest College of Bioresources and Agriculture, National Taiwan University, Zhushan Township, Nantou County 55750, Taiwan;
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (C.-W.Y.); (F.-R.C.)
| | - Che-Wei Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (C.-W.Y.); (F.-R.C.)
| | - Min-Yu Lee
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
| | - Yan-Ning Chen
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (C.-W.Y.); (F.-R.C.)
| | - Chung-Yi Chen
- Department of Nutrition and Health Sciences, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: (C.-Y.C.); (H.-W.C.); Tel.: +886-7-781-1151 (ext. 6200) (C.-Y.C.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (C.-Y.C.); (H.-W.C.); Tel.: +886-7-781-1151 (ext. 6200) (C.-Y.C.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
20
|
Yang KH, Lin YS, Wang SC, Lee MY, Tang JY, Chang FR, Chuang YT, Sheu JH, Chang HW. Soft Coral-Derived Dihydrosinularin Exhibits Antiproliferative Effects Associated with Apoptosis and DNA Damage in Oral Cancer Cells. Pharmaceuticals (Basel) 2021; 14:994. [PMID: 34681218 PMCID: PMC8539362 DOI: 10.3390/ph14100994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Dihydrosinularin (DHS) is an analog of soft coral-derived sinularin; however, the anticancer effects and mechanisms of DHS have seldom been reported. This investigation examined the antiproliferation ability and mechanisms of DHS on oral cancer cells. In a cell viability assay, DHS showed growth inhibition against several types of oral cancer cell lines (Ca9-22, SCC-9, OECM-1, CAL 27, OC-2, and HSC-3) with no cytotoxic side effects on non-malignant oral cells (HGF-1). Ca9-22 and SCC-9 cell lines showing high susceptibility to DHS were selected to explore the antiproliferation mechanisms of DHS. DHS also causes apoptosis as detected by annexin V, pancaspase, and caspase 3 activation. DHS induces oxidative stress, leading to the generation of reactive oxygen species (ROS)/mitochondrial superoxide (MitoSOX) and mitochondrial membrane potential (MitoMP) depletion. DHS also induced DNA damage by probing γH2AX phosphorylation. Pretreatment with the ROS scavenger N-acetylcysteine (NAC) can partly counter these DHS-induced changes. We report that the marine natural product DHS can inhibit the cell growth of oral cancer cells. Exploring the mechanisms of this cancer cell growth inhibition, we demonstrate the prominent role DHS plays in oxidative stress.
Collapse
Affiliation(s)
- Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Yu-Sheng Lin
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.L.); (S.-C.W.); (M.-Y.L.); (Y.-T.C.)
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.L.); (S.-C.W.); (M.-Y.L.); (Y.-T.C.)
| | - Min-Yu Lee
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.L.); (S.-C.W.); (M.-Y.L.); (Y.-T.C.)
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.L.); (S.-C.W.); (M.-Y.L.); (Y.-T.C.)
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.L.); (S.-C.W.); (M.-Y.L.); (Y.-T.C.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
21
|
Fukuda T, Komaki Y, Mori Y, Ibuki Y. Low extracellular pH inhibits nucleotide excision repair. Mutat Res 2021; 867:503374. [PMID: 34266626 DOI: 10.1016/j.mrgentox.2021.503374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022]
Abstract
Nucleotide excision repair (NER) is the main pathway to repair bulky DNA damages including pyrimidine dimers, and the genetic dysregulation of NER associated proteins is well known to cause diseases such as cancer and neurological disorder. Other than the genetic defects, 'external factors' such as oxidative stress and environmental chemicals also affect NER. In this study, we examined the impact of extracellular pH on NER. We prepared the culture media, whose pH values are 8.4 (normal condition), 7.6, 6.6 and 6.2 under atmospheric CO2 conditions. Human keratinocytes, HaCaT, slightly died after 48 h incubation in DMEM at pH 8.4, 7.6 and 6.6, while in pH 6.2 condition, marked cell death was induced. UV-induced pyrimidine dimers, pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) and cyclobutane pyrimidine dimers (CPDs), were effectively repaired at 60 min and 24 h, respectively, which were remarkably inhibited at pH 6.6 and 6.2. The associated repair molecule, TFIIH, was accumulated to the damaged sites 5 min after UVC irradiation in all pH conditions, but the release was delayed as the pH got lower. Furthermore, accumulation of XPG at 5 min was delayed at pH 6.2 and 6.6, and the release at 60 min was completely suppressed. At the low pH, the DNA synthesis at the gaps created by incision of oligonucleotides containing pyrimidine dimers was significantly delayed. In this study, we found that the low extracellular pH inhibited NER pathway. This might partially contribute to carcinogenesis in inflamed tissues, which exhibit acidic pH.
Collapse
Affiliation(s)
- Tetsuya Fukuda
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Yuta Mori
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| |
Collapse
|
22
|
Alfonso-Garcia A, Bec J, Weyers B, Marsden M, Zhou X, Li C, Marcu L. Mesoscopic fluorescence lifetime imaging: Fundamental principles, clinical applications and future directions. JOURNAL OF BIOPHOTONICS 2021; 14:e202000472. [PMID: 33710785 PMCID: PMC8579869 DOI: 10.1002/jbio.202000472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 05/16/2023]
Abstract
Fluorescence lifetime imaging (FLIm) is an optical spectroscopic imaging technique capable of real-time assessments of tissue properties in clinical settings. Label-free FLIm is sensitive to changes in tissue structure and biochemistry resulting from pathological conditions, thus providing optical contrast to identify and monitor the progression of disease. Technical and methodological advances over the last two decades have enabled the development of FLIm instrumentation for real-time, in situ, mesoscopic imaging compatible with standard clinical workflows. Herein, we review the fundamental working principles of mesoscopic FLIm, discuss the technical characteristics of current clinical FLIm instrumentation, highlight the most commonly used analytical methods to interpret fluorescence lifetime data and discuss the recent applications of FLIm in surgical oncology and cardiovascular diagnostics. Finally, we conclude with an outlook on the future directions of clinical FLIm.
Collapse
Affiliation(s)
- Alba Alfonso-Garcia
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Julien Bec
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Brent Weyers
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Mark Marsden
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Xiangnan Zhou
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Cai Li
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, Davis, California
- Department Neurological Surgery, University of California, Davis, California
| |
Collapse
|
23
|
Song Y, Kurose A, Li R, Takeda T, Onomura Y, Koga T, Mutoh J, Ishida T, Tanaka Y, Ishii Y. Ablation of Selenbp1 Alters Lipid Metabolism via the Pparα Pathway in Mouse Kidney. Int J Mol Sci 2021; 22:ijms22105334. [PMID: 34069420 PMCID: PMC8159118 DOI: 10.3390/ijms22105334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium-binding protein 1 (Selenbp1) is a 2,3,7,8-tetrechlorodibenzo-p-dioxin inducible protein whose function is yet to be comprehensively elucidated. As the highly homologous isoform, Selenbp2, is expressed at low levels in the kidney, it is worthwhile comparing wild-type C57BL mice and Selenbp1-deficient mice under dioxin-free conditions. Accordingly, we conducted a mouse metabolomics analysis under non-dioxin-treated conditions. DNA microarray analysis was performed based on observed changes in lipid metabolism-related factors. The results showed fluctuations in the expression of numerous genes. Real-time RT-PCR confirmed the decreased expression levels of the cytochrome P450 4a (Cyp4a) subfamily, known to be involved in fatty acid ω- and ω-1 hydroxylation. Furthermore, peroxisome proliferator-activated receptor-α (Pparα) and retinoid-X-receptor-α (Rxrα), which form a heterodimer with Pparα to promote gene expression, were simultaneously reduced. This indicated that reduced Cyp4a expression was mediated via decreased Pparα and Rxrα. In line with this finding, increased levels of leukotrienes and prostaglandins were detected. Conversely, decreased hydrogen peroxide levels and reduced superoxide dismutase (SOD) activity supported the suppression of the renal expression of Sod1 and Sod2 in Selenbp1-deficient mice. Therefore, we infer that ablation of Selenbp1 elicits oxidative stress caused by increased levels of superoxide anions, which alters lipid metabolism via the Pparα pathway.
Collapse
Affiliation(s)
- Yingxia Song
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Atsushi Kurose
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Renshi Li
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
| | - Yuko Onomura
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Takayuki Koga
- Laboratory of Hygienic Chemistry, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan;
| | - Junpei Mutoh
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Daigakudori 1-1-1, Sanyo-Onoda 756-0884, Japan;
| | - Takumi Ishida
- School of Pharmacy, International University of Health and Welfare Fukuoka, Ohkawa, Fukuoka 831-8501, Japan;
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Correspondence: ; Tel.: +81-92-642-6586
| |
Collapse
|
24
|
Ibuki Y, Komaki Y, Yang G, Toyooka T. Long-wavelength UVA enhances UVB-induced cell death in cultured keratinocytes: DSB formation and suppressed survival pathway. Photochem Photobiol Sci 2021; 20:639-652. [PMID: 33978941 DOI: 10.1007/s43630-021-00050-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
Solar UV radiation consists of both UVA and UVB. The wavelength-specific molecular responses to UV radiation have been studied, but the interaction between UVA and UVB has not been well understood. In this study, we found that long-wavelength UVA, UVA1, augmented UVB-induced cell death, and examined the underlying mechanisms. Human keratinocytes HaCaT were exposed to UVA1, followed by UVB irradiation. Irradiation by UVA1 alone showed no effect on cell survival, whereas the UVA1 pre-irradiation remarkably enhanced UVB-induced cell death. UVA1 delayed the repair of pyrimidine dimers formed by UVB and the accumulation of nucleotide excision repair (NER) proteins to damaged sites. Gap synthesis during NER was also decreased, suggesting that UVA1 delayed NER, and unrepaired pyrimidine dimers and single-strand breaks generated in the process of NER were left behind. Accumulation of this unrepaired DNA damage might have led to the formation of DNA double-strand breaks (DSBs), as was detected using gel electrophoresis analysis and phosphorylated histone H2AX assay. Combined exposure enhanced the ATM-Chk2 signaling pathway, but not the ATR-Chk1 pathway, confirming the enhanced formation of DSBs. Moreover, UVA1 suppressed the UVB-induced phosphorylation of Akt, a survival signal pathway. These results indicated that UVA1 influenced the repair of UVB-induced DNA damage, which resulted in the formation of DSBs and enhanced cell death, suggesting the risk of simultaneous exposure to high doses of UVA1 and UVB.
Collapse
Affiliation(s)
- Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan.
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Guang Yang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Tatsushi Toyooka
- National Institute of Occupational Safety and Health, Kawasaki, Japan
| |
Collapse
|
25
|
Choe JH, Mazambani S, Kim TH, Kim JW. Oxidative Stress and the Intersection of Oncogenic Signaling and Metabolism in Squamous Cell Carcinomas. Cells 2021; 10:606. [PMID: 33803326 PMCID: PMC8000417 DOI: 10.3390/cells10030606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinomas (SCCs) arise from both stratified squamous and non-squamous epithelium of diverse anatomical sites and collectively represent one of the most frequent solid tumors, accounting for more than one million cancer deaths annually. Despite this prevalence, SCC patients have not fully benefited from recent advances in molecularly targeted therapy or immunotherapy. Rather, decades old platinum-based or radiation regimens retaining limited specificity to the unique characteristics of SCC remain first-line treatment options. Historically, a lack of a consolidated perspective on genetic aberrations driving oncogenic transformation and other such factors essential for SCC pathogenesis and intrinsic confounding cellular heterogeneity in SCC have contributed to a critical dearth in effective and specific therapies. However, emerging evidence characterizing the distinct genomic, epigenetic, and metabolic landscapes of SCC may be elucidating unifying features in a seemingly heterogeneous disease. In this review, by describing distinct metabolic alterations and genetic drivers of SCC revealed by recent studies, we aim to establish a conceptual framework for a previously unappreciated network of oncogenic signaling, redox perturbation, and metabolic reprogramming that may reveal targetable vulnerabilities at their intersection.
Collapse
Affiliation(s)
- Joshua H. Choe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Simbarashe Mazambani
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
| | - Jung-whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
- Research and Development, VeraVerse Inc., 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
26
|
The viability of human cells irradiated with 470-nm light at various radiant energies in vitro. Lasers Med Sci 2021; 36:1661-1670. [PMID: 33486613 DOI: 10.1007/s10103-021-03250-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Blue light is known to be antimicrobial, but its effect on normal cutaneous and subcutaneous cells remains unclear. Therefore, we studied the effect of 470-nm light on the viability of adult and neonatal human dermal fibroblasts, Jurkat T-cells, and THP-1 monocytes in vitro. Each culture was irradiated with 0, 3, 55, or 110 J/cm2 of 470-nm light and subjected to trypan blue assay to ascertain viability. Further, MTT, neutral red, and fluorescence assays of fibroblasts were performed, and cell morphology visualized using bright field and fluorescence microscopy. At each dose and in each of the four cell lines, there was no significant difference in cell concentration between irradiated and non-irradiated cultures, even though irradiation with 55 J/cm2 or 110 J/cm2 slightly decreased cell count. Light microscopy showed progressive morphological changes in the fibroblasts as energy fluence increased from 55 to 110 J/cm2. Irradiation at 3 J/cm2 produced a slight but non-significant increase in the viability of Jurkat T-cells and THP-1 monocytes. In contrast, at 110 J/cm2 radiant exposure, irradiation slightly decreased the viability of all four cells. While 3 J/cm2 appears stimulatory, our finding that 110 J/cm2 produces a slight decrease in viability and engenders morphological changes in fibroblasts, suggesting that such high doses should be avoided in blue light treatments.
Collapse
|
27
|
Geraldes V, Pinto E. Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. Pharmaceuticals (Basel) 2021; 14:63. [PMID: 33466685 PMCID: PMC7828830 DOI: 10.3390/ph14010063] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
Mycosporines and mycosporine-like amino acids are ultra-violet-absorbing compounds produced by several organisms such as lichens, fungi, algae and cyanobacteria, especially upon exposure to solar ultraviolet radiation. These compounds have photoprotective and antioxidant functions. Mycosporine-like amino acids have been used as a natural bioactive ingredient in cosmetic products. Several reviews have already been developed on these photoprotective compounds, but they focus on specific features. Herein, an extremely complete database on mycosporines and mycosporine-like amino acids, covering the whole class of these natural sunscreen compounds known to date, is presented. Currently, this database has 74 compounds and provides information about the chemistry, absorption maxima, protonated mass, fragments and molecular structure of these UV-absorbing compounds as well as their presence in organisms. This platform completes the previous reviews and is available online for free and in the public domain. This database is a useful tool for natural product data mining, dereplication studies, research working in the field of UV-absorbing compounds mycosporines and being integrated in mass spectrometry library software.
Collapse
Affiliation(s)
- Vanessa Geraldes
- School of Pharmaceutical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo-SP CEP 05508-000, Brazil;
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| |
Collapse
|
28
|
Fitsiou E, Pulido T, Campisi J, Alimirah F, Demaria M. Cellular Senescence and the Senescence-Associated Secretory Phenotype as Drivers of Skin Photoaging. J Invest Dermatol 2020; 141:1119-1126. [PMID: 33349436 DOI: 10.1016/j.jid.2020.09.031] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023]
Abstract
Chronic exposure to UVR is known to disrupt tissue homeostasis, accelerate the onset of age-related phenotypes, and increase the risk for skin cancer-a phenomenon defined as photoaging. In this paper, we review the current knowledge on how UV exposure causes cells to prematurely enter cellular senescence. We describe the mechanisms contributing to the accumulation of senescent cells in the skin and how the persistence of cellular senescence can promote impaired regenerative capacity, chronic inflammation, and tumorigenesis associated with photoaging. We conclude by highlighting the potential of senolytic drugs in delaying the onset and progression of age-associated phenotypes in the skin.
Collapse
Affiliation(s)
- Eleni Fitsiou
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, The Netherlands
| | - Tanya Pulido
- Buck Institute for Research on Aging, Novato, California, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California, USA; Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Marco Demaria
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
29
|
de Oliveira Alves N, Martins Pereira G, Di Domenico M, Costanzo G, Benevenuto S, de Oliveira Fonoff AM, de Souza Xavier Costa N, Ribeiro Júnior G, Satoru Kajitani G, Cestari Moreno N, Fotoran W, Iannicelli Torres J, de Andrade JB, Matera Veras M, Artaxo P, Menck CFM, de Castro Vasconcellos P, Saldiva P. Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. ENVIRONMENT INTERNATIONAL 2020; 145:106150. [PMID: 33039876 DOI: 10.1016/j.envint.2020.106150] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Air pollution represents a considerable threat to health worldwide. The São Paulo Metropolitan area, in Brazil, has a unique composition of atmospheric pollutants with a population of nearly 20 million people and 9 million passenger cars. It is long known that exposure to particulate matter less than 2.5 µm (PM2.5) can cause various health effects such as DNA damage. One of the most versatile defense mechanisms against the accumulation of DNA damage is the nucleotide excision repair (NER), which includes XPC protein. However, the mechanisms by which NER protects against adverse health effects related to air pollution are largely unknown. We hypothesized that reduction of XPC activity may contribute to inflammation response, oxidative stress and DNA damage after PM2.5 exposure. To address these important questions, XPC knockout and wild type mice were exposed to PM2.5 using the Harvard Ambient Particle concentrator. Results from one-single exposure have shown a significant increase in the levels of anti-ICAM, IL-1β, and TNF-α in the polluted group when compared to the filtered air group. Continued chronic PM2.5 exposure increased levels of carbonylated proteins, especially in the lung of XPC mice, probably as a consequence of oxidative stress. As a response to DNA damage, XPC mice lungs exhibit increased γ-H2AX, followed by severe atypical hyperplasia. Emissions from vehicles are composed of hazardous substances, with polycyclic aromatic hydrocarbons (PAHs) and metals being most frequently cited as the major contributors to negative health impacts. This analysis showed that benzo[b]fluoranthene, 2-nitrofluorene and 9,10-anthraquinone were the most abundant PAHs and derivatives. Taken together, these findings demonstrate the participation of XPC protein, and NER pathway, in the protection of mice against the carcinogenic potential of air pollution. This implicates that DNA is damaged directly (forming adducts) or indirectly (Reactive Oxygen Species) by the various compounds detected in urban PM2.5.
Collapse
Affiliation(s)
| | | | - Marlise Di Domenico
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Giovanna Costanzo
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sarah Benevenuto
- Department of Surgery, Sector of Anatomy, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Gustavo Satoru Kajitani
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Wesley Fotoran
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Mariana Matera Veras
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Paulo Artaxo
- Institute of Physics, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Paulo Saldiva
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
30
|
Guo SW. Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 2020; 26:423-449. [PMID: 32154564 DOI: 10.1093/humupd/dmz047] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disease. Thus, it came as a complete surprise when it was reported recently that the majority of deep endometriosis lesions harbour somatic mutations and a sizeable portion of them contain known cancer-associated mutations (CAMs). Four more studies have since been published, all demonstrating the existence of CAMs in different subtypes of endometriosis. While the field is still evolving, the confirmation of CAMs has raised many questions that were previously overlooked. OBJECTIVE AND RATIONALE A comprehensive overview of CAMs in endometriosis has been produced. In addition, with the recently emerged understanding of the natural history of endometriotic lesions as well as CAMs in normal and apparently healthy tissues, this review attempts to address the following questions: Why has there been such a wild discrepancy in reported mutation frequencies? Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium? Would the presence of CAMs in endometriotic lesions increase the risk of cancer to the bearers? Why do endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart? What clinical implications, if any, do the CAMs have for the bearers? Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis? SEARCH METHODS The PubMed database was searched, from its inception to September 2019, for all papers in English using the term 'endometriosis and CAM', 'endometriosis and cancer-driver mutation', 'somatic mutations', 'fibrosis', 'fibrosis and epigenetic', 'CAMs and tumorigenesis', 'somatic mutation and normal tissues', 'oestrogen receptor and fibrosis', 'oxidative stress and fibrosis', 'ARID1A mutation', and 'Kirsten rat sarcoma mutation and therapeutics'. All retrieved papers were read and, when relevant, incorporated into the review results. OUTCOMES Seven papers that identified CAMs in endometriosis using various sequencing methods were retrieved, and their results were somewhat different. Yet, it is apparent that those using microdissection techniques and more accurate sequencing methods found more CAMs, echoing recent discoveries that apparently healthy tissues also harbour CAMs as a result of the replicative aging process. Hence endometriotic lesions, irrespective of subtype, if left intact, would generate CAMs as part of replicative aging, oxidative stress and perhaps other factors yet to be identified and, in some rare cases, develop cancer. The published data still are unable to paint a clear picture on pathogenesis of endometriosis. However, since endometriotic epithelial cells have a higher turnover than their stromal counterpart due to cyclic bleeding, and since the endometriotic stromal component can be formed by refresh influx of mesenchymal cells through epithelial-mesenchymal transition, endothelial-mesenchymal transition, mesothelial-mesenchymal transition and other processes as well as recruitment of bone-marrow-derived stem cells and outflow due to smooth muscle metaplasia, endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart. The epithelial and stromal cellular components develop in a dependent and co-evolving manner. Genes involved in CAMs are likely to be active players in lesional fibrogenesis, and hyperestrogenism and oxidative stress are likely drivers of both CAMs and fibrogenesis. Finally, endometriotic lesions harbouring CAMs would conceivably be more refractory to medical treatment, due, in no small part, to their high fibrotic content and reduced vascularity and cellularity. WIDER IMPLICATIONS The accumulating data on CAMs in endometriosis have shed new light on the pathogenesis and pathophysiology of endometriosis. They also suggest new challenges in management. The distinct yet co-evolving developmental trajectories of endometriotic stroma and epithelium underscore the importance of the lesional microenvironment and ever-changing cellular identity. Mutational profiling of normal endometrium from women of different ages and reproductive history is needed in order to gain a deeper understanding of the pathogenesis. Moreover, one area that has conspicuously received scant attention is the epigenetic landscape of ectopic, eutopic and normal endometrium.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| |
Collapse
|
31
|
Natural Exogenous Antioxidant Defense against Changes in Human Skin Fibroblast Proteome Disturbed by UVA Radiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3216415. [PMID: 33204393 PMCID: PMC7661135 DOI: 10.1155/2020/3216415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Daily exposure of the skin to UVA radiation causes oxidative modifications to cellular components and biomolecules. These include proteins involved in the metabolism and cytoprotection of fibroblasts, and their modification can contribute to the disruption of cell function and the development of skin disorders. Therefore, there remains a need for highly active cytoprotective compounds with antioxidant properties. The purpose of this study was to investigate the effect of ascorbic acid on the activity of rutin against UVA-induced changes in the proteome of human fibroblasts. All analyses were carried out on fibroblasts cultured in a three-dimensional system exposed to UVA radiation and incubated with rutin and ascorbic acid. Their proteomic profile was analyzed using nano-HPLC, which revealed 150 proteins whose expression was significantly altered between treatment conditions. UVA radiation led to changes in the expression of 82 proteins. However, some of these changes were mitigated by rutin and ascorbic acid separately (23 and 25 proteins, respectively) and rutin and ascorbic acid together (23 proteins). UVA radiation has led to the upregulation of proteins involved in gene expression, catalytic processes and antioxidant pathways, and downregulation of proteins with binding activity. Nevertheless, rutin and ascorbic acid used separately or together have countered these changes to varying degrees. Moreover, rutin and ascorbic acid stimulated fibroblasts irradiated by UVA to increase the expression of the signalling molecules responsible for the opening of the transmembrane channels. In the context of the results obtained, the observed cytoprotective effect of the cooperation of rutin and ascorbic acid results not only from the overlapping properties of the compounds. The effect of rutin alone is probably inhibited by its limited bioavailability. Therefore, its interaction with ascorbic acid increases membrane penetration and improves the cytoprotective effect on skin fibroblasts.
Collapse
|
32
|
Paiva JP, Diniz RR, Leitão AC, Cabral LM, Fortunato RS, Santos BAMC, de Pádula M. Insights and controversies on sunscreen safety. Crit Rev Toxicol 2020; 50:707-723. [PMID: 33064037 DOI: 10.1080/10408444.2020.1826899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although sunlight provides several benefits, ultraviolet (UV) radiation plays an important role in the development of various skin damages such as erythema, photoaging, and photocarcinogenesis. Despite cells having endogenous defense systems, damaged DNA may not be efficiently repaired at chronic exposure. In this sense, it is necessary to use artificial defense strategies such as sunscreen formulations. UV filters should scatter, reflect, or absorb solar UV radiation in order to prevent direct or indirect DNA lesions. However, the safety of UV filters is a matter of concern due to several controversies reported in literature, such as endocrine alterations, allergies, increased oxidative stress, phototoxic events, among others. Despite these controversies, the way in which sunscreens are tested is essential to ensure safety. Sunscreen regulation includes mandatory test for phototoxicity, but photogenotoxicity testing is not recommended as a part of the standard photosafety testing program. Although available photobiological tests are still the first approach to assess photosafety, they are limited. Some existing tests do not always provide reliable results, mainly due to limitations regarding the nature of the assessed phototoxic effect, cell UV sensitivity, and the irradiation protocols. These aspects bring queries regarding the safety of sunscreen wide use and suggest the demand for the development of robust and efficient in vitro screening tests to overcome the existing limitations. In this way, Saccharomyces cerevisiae has stood out as a promising model to fill the gaps in photobiology and to complete the mandatory tests enabling a more extensive and robust photosafety assessment.
Collapse
Affiliation(s)
- Juliana P Paiva
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raiane R Diniz
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alvaro C Leitão
- Laboratório de Radiobiologia Molecular (Radmol), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca A M C Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Umar SA, Tasduq SA. Integrating DNA damage response and autophagy signalling axis in ultraviolet-B induced skin photo-damage: a positive association in protecting cells against genotoxic stress. RSC Adv 2020; 10:36317-36336. [PMID: 35517978 PMCID: PMC9057019 DOI: 10.1039/d0ra05819j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/13/2020] [Indexed: 01/27/2023] Open
Abstract
The skin acts as both physical as well as an immunological barrier against hazardous agents from the outside environment and protects the internal organs against damage. Skin ageing is a dynamic process caused by the influence of various external factors, including damage from ultraviolet (UV-B) radiation, which is known as photo-ageing, and due to internal chronological mechanisms. A normal ageing process requires several orchestrated defense mechanisms to diverse types of stress responses, the concomitant renewal of cellular characteristics, and the homeostasis of different cell types that directly or indirectly protect the integrity of skin. Cumulative oxidative and endoplasmic reticulum (ER) stress responses and their adverse impact on biological systems in the skin are a common mechanism of the ageing process, negatively impacting DNA by causing mutations that lead to many physiological, functional, and aesthetic changes in the skin, culminating in the development of many diseases, including photo-damage and photo-carcinogenesis. Exposure of the skin to ultraviolet-(B) elicits the activation of signal transduction pathways, including DNA damage response, autophagy, and checkpoint signal adaptations associated with clearing radiation-induced DNA damage. Recent experimental reports suggest that autophagy is involved in maintaining skin homeostasis upon encountering different stresses, notably genotoxic stress. It has also been revealed that autophagy positively regulates the recognition of DNA damage by nucleotide excision repair and that skin ageing is associated with defects in the autophagy process. Moreover, autophagy is constitutively active in the skin epithelium, imparting protection to skin cells against a diverse range of outside insults, thus increasing resistance to environmental stressors. It has also been found that the stress-induced suppression of the autophagy response in experimental settings leads to enhanced apoptosis during photo-ageing upon UV-B exposure and that the maintenance of homeostasis depends on cellular autophagy levels. More recent reports in this domain claim that relieving the oxidative-stress-mediated induction of the ER stress response upon UV-B irradiation protects skin cells from photo-damage effects. The integration of autophagy and the DNA damage response under genotoxic stress is being considered as a meaningful partnership for finding novel molecular targets and devising suitable therapeutic strategies against photo-ageing disorders. Here, we summarize and review the current understanding of the mechanisms governing the intricate interplay between autophagy and the DNA damage response and its regulation by UV-B, the roles of autophagy in regulating the cellular response to UV-B-induced photodamage, and the implications of the modulation of autophagy as a meaningful partnership in the treatment and prevention of photoaging disorders.
Collapse
Affiliation(s)
- Sheikh Ahmad Umar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| | - Sheikh Abdullah Tasduq
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| |
Collapse
|
34
|
Combined Treatment of Sulfonyl Chromen-4-Ones (CHW09) and Ultraviolet-C (UVC) Enhances Proliferation Inhibition, Apoptosis, Oxidative Stress, and DNA Damage against Oral Cancer Cells. Int J Mol Sci 2020; 21:ijms21176443. [PMID: 32899415 PMCID: PMC7504536 DOI: 10.3390/ijms21176443] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The sensitizing effect of chromone-derived compounds on UVC-induced proliferation inhibition has not been comprehensively investigated so far. The subject of this study was to examine the proliferation change of oral cancer cells while using the combined treatment of UVC (254 nm) with our previously developed sulfonyl chromen-4-ones (CHW09), namely UVC/CHW09. Cell viability, apoptosis, oxidative stress, and DNA damage for the individual and combined treatments for UVC and/or CHW09 were examined in oral cancer Ca9-22 cells. In 24 h MTS assay, UVC (30 J/m2; UVC30), or CHW09 (25 and 50 µg/mL; namely, CHW09-25 and CHW09-50) show 54%, 59%, and 45% viability. The combined treatment (UVC30/CHW09-25 and UVC30/CHW09-50) show lower cell viability (45% and 35%). Mechanistically, UVC/CHW09 induced higher apoptosis than individual treatments and untreated control, which were supported by the evidence of flow cytometry for subG1, annexin V/7-aminoactinomycin D, pancaspase and caspases 3/7 activity, and western blotting for cleaved poly(ADP-ribose) polymerase. Moreover, this cleaved PARP expression was downregulated by pancaspase inhibitor Z-VAD-FMK. UVC/CHW09 showed higher oxidative stress than individual treatments and untreated control in terms of flow cytometry for reactive oxygen species, mitochondrial membrane potential, and mitochondrial mass. Furthermore, UVC/CHW09 showed higher DNA damage than individual treatments and untreated control in terms of flow cytometry for H2A histone family member X and 8-oxo-2’-deoxyguanosine. In conclusion, combined treatment UVC/CHW09 suppresses proliferation, and promotes apoptosis, oxidative stress, and DNA damage against oral cancer cells, providing a novel application of sulfonyl chromen-4-ones in order to sensitize UVC induced proliferation inhibition for oral cancer therapy.
Collapse
|
35
|
Cytoprotective Effect of Ascorbic Acid and Rutin against Oxidative Changes in the Proteome of Skin Fibroblasts Cultured in a Three-Dimensional System. Nutrients 2020; 12:nu12041074. [PMID: 32294980 PMCID: PMC7230807 DOI: 10.3390/nu12041074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/16/2023] Open
Abstract
The combination of ascorbic acid and rutin, commonly used in oral preparations for their antioxidant and anti-inflammatory properties, can also be used to protect skin cells from the effects of UV radiation in sunlight. Here, we tested the potential protective effect of ascorbic acid and rutin used together in UVB-irradiated human skin fibroblasts, and assessed the proteomic profile of these cells, grown in a three-dimensional (3D) system. Proteomic findings revealed a combined effect of ascorbic acid and rutin in UV-irradiated fibroblasts against overexpression of pro-inflammatory signaling proteins and DNA reorganization/expression. These effects were not observed when cells were treated with either compounds alone. The antioxidant effects of ascorbic acid and rutin also prevented protein modifications by lipid peroxidation products. Further, ascorbic acid stimulated rutin-protein adduct formation, which supports intra/extracellular signaling and the Nrf2/ARE antioxidant pathway, contributing to the protective effects against UV-induced oxidative stress. The combined effect of ascorbic acid and rutin suggests that this combination of compounds is potentially effective against skin damage caused by UV radiation.
Collapse
|
36
|
Abstract
Ageing is considered as a snowballing phenotype of the accumulation of damaged dysfunctional or toxic proteins and silent mutations (polymorphisms) that sensitize relevant proteins to oxidative damage as inborn predispositions to age-related diseases. Ageing is not a disease, but it causes (or shares common cause with) age-related diseases as suggested by similar slopes of age-related increase in the incidence of diseases and death. Studies of robust and more standard species revealed that dysfunctional oxidatively damaged proteins are the root cause of radiation-induced morbidity and mortality. Oxidized proteins accumulate with age and cause reversible ageing-like phenotypes with some irreversible consequences (e.g. mutations). Here, we observe in yeast that aggregation rate of damaged proteins follows the Gompertz law of mortality and review arguments for a causal relationship between oxidative protein damage, ageing and disease. Aerobes evolved proteomes remarkably resistant to oxidative damage, but imperfectly folded proteins become sensitive to oxidation. We show that α-synuclein mutations that predispose to early-onset Parkinson's disease bestow an increased intrinsic sensitivity of α-synuclein to in vitro oxidation. Considering how initially silent protein polymorphism becomes phenotypic while causing age-related diseases and how protein damage leads to genome alterations inspires a vision of predictive diagnostic, prognostic, prevention and treatment of degenerative diseases.
Collapse
Affiliation(s)
- Anita Krisko
- 1 Mediterranean Institute for Life Sciences (MedILS) , 21000 Split , Croatia
| | - Miroslav Radman
- 1 Mediterranean Institute for Life Sciences (MedILS) , 21000 Split , Croatia.,2 Naos Institute for Life Sciences , 13290 Aix-en-Provence , France.,3 Inserm U-1001, Université Paris-Descartes, Faculté de Médecine Paris-Descartes , 74014 Paris , France
| |
Collapse
|
37
|
Kumar N, Moreno NC, Feltes BC, Menck CF, Houten BV. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet Mol Biol 2020; 43:e20190104. [PMID: 32141475 PMCID: PMC7198027 DOI: 10.1590/1678-4685-gmb-2019-0104] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023] Open
Abstract
Base and nucleotide excision repair (BER and NER) pathways are normally associated with removal of specific types of DNA damage: small base modifications (such as those induced by DNA oxidation) and bulky DNA lesions (such as those induced by ultraviolet or chemical carcinogens), respectively. However, growing evidence indicates that this scenario is much more complex and these pathways exchange proteins and cooperate with each other in the repair of specific lesions. In this review, we highlight studies discussing the involvement of NER in the repair of DNA damage induced by oxidative stress, and BER participating in the removal of bulky adducts on DNA. Adding to this complexity, UVA light experiments revealed that oxidative stress also causes protein oxidation, directly affecting proteins involved in both NER and BER. This reduces the cell’s ability to repair DNA damage with deleterious implications to the cells, such as mutagenesis and cell death, and to the organisms, such as cancer and aging. Finally, an interactome of NER and BER proteins is presented, showing the strong connection between these pathways, indicating that further investigation may reveal new functions shared by them, and their cooperation in maintaining genome stability.
Collapse
Affiliation(s)
- Namrata Kumar
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Natália C Moreno
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bruno C Feltes
- Universidade Federal do Rio Grande do Sul, Instituto de Informática, Porto Alegre, RS, Brazil
| | - Carlos Fm Menck
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bennett Van Houten
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| |
Collapse
|
38
|
Protein Oxidative Damage in UV-Related Skin Cancer and Dysplastic Lesions Contributes to Neoplastic Promotion and Progression. Cancers (Basel) 2020; 12:cancers12010110. [PMID: 31906275 PMCID: PMC7017152 DOI: 10.3390/cancers12010110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
The ultraviolet (UV) component of solar radiation is the major driving force of skin carcinogenesis. Most of studies on UV carcinogenesis actually focus on DNA damage while their proteome-damaging ability and its contribution to skin carcinogenesis have remained largely underexplored. A redox proteomic analysis of oxidized proteins in solar-induced neoplastic skin lesion and perilesional areas has been conducted showing that the protein oxidative burden mostly concerns a selected number of proteins participating to a defined set of functions, namely: chaperoning and stress response; protein folding/refolding and protein quality control; proteasomal function; DNA damage repair; protein- and vesicle-trafficking; cell architecture, adhesion/extra-cellular matrix (ECM) interaction; proliferation/oncosuppression; apoptosis/survival, all of them ultimately concurring either to structural damage repair or to damage detoxication and stress response. In peri-neoplastic areas the oxidative alterations are conducive to the persistence of genetic alterations, dysfunctional apoptosis surveillance, and a disrupted extracellular environment, thus creating the condition for transformant clones to establish, expand and progress. A comparatively lower burden of oxidative damage is observed in neoplastic areas. Such a finding can reflect an adaptive selection of best fitting clones to the sharply pro-oxidant neoplastic environment. In this context the DNA damage response appears severely perturbed, thus sustaining an increased genomic instability and an accelerated rate of neoplastic evolution. In conclusion UV radiation, in addition to being a cancer-initiating agent, can act, through protein oxidation, as a cancer-promoting agent and as an inducer of genomic instability concurring with the neoplastic progression of established lesions.
Collapse
|
39
|
García-Sánchez A, Gámez-Nava JI, Díaz-de la Cruz EN, Cardona-Muñoz EG, Becerra-Alvarado IN, Aceves-Aceves JA, Sánchez-Rodríguez EN, Miranda-Díaz AG. The Effect of Visceral Abdominal Fat Volume on Oxidative Stress and Proinflammatory Cytokines in Subjects with Normal Weight, Overweight and Obesity. Diabetes Metab Syndr Obes 2020; 13:1077-1087. [PMID: 32308457 PMCID: PMC7152535 DOI: 10.2147/dmso.s245494] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE The increase of visceral abdominal fat (VAF) and oxidative stress (OS) are independent predictors for cardiovascular risk. This study aimed to determine the association of VAF with proinflammatory cytokines, oxidants, antioxidants, and oxidative damage to DNA in subjects with normal weight, overweight, and obesity. PATIENTS AND METHODS A cross-sectional study that included 21 men and 71 women who attended for a medical check-up was conducted. Dual-energy X-ray absorptiometry (DXA) was used to measure the VAF volume. ELISA and colorimetric techniques were used for chemical analysis. RESULTS Low activity of superoxide dismutase (SOD) was found in overweight and obese subjects compared to the normal weight group (p=0.005). In contrast, the activity of glutathione peroxidase (GPx) was higher in the overweight and obesity groups compared to the normal weight subjects (p=0.017). The total antioxidant capacity (TAC) was also increased in the overweight group compared to the normal weight group (p=0.04). According to the volume of VAF, the levels of tumor necrosis factor alfa and interleukin 6 showed no differences between subjects with normal and high VAF. Subjects with high VAF show higher levels of 8-isoprostans compared to normal VAF group (p=0.039). Less concentration of 8-oxoguanine-DNA-N-glycosylase-1 (hOGG1) was found in the high VAF group (p=0.032) compared to the normal VAF subjects. VAF was positively correlated with lipoperoxides (LPO) (r=0.27, p<0.05) and 8-isoprostanes (r=0.25, p<0.05). We also found correlations between oxidative stress markers and anthropometric ratios for intra-abdominal fat. The waist-hip ratio was positively correlated with LPO (r=0.30, p<0.05) and TAC (r=0.24, p<0.05). CONCLUSION These findings suggest that the predominantly oxidative damage associated with VAF in overweight or obesity is lipoperoxidation and oxidative DNA damage. Alterations in endogenous antioxidant defenses may not be linked to the amount of VAF.
Collapse
Affiliation(s)
- Andrés García-Sánchez
- Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jorge Iván Gámez-Nava
- Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Elodia Nataly Díaz-de la Cruz
- Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Itzel Nayar Becerra-Alvarado
- Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
- Correspondence: Alejandra Guillermina Miranda-Díaz Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico Email
| |
Collapse
|
40
|
Passeron T, Bouillon R, Callender V, Cestari T, Diepgen TL, Green AC, van der Pols JC, Bernard BA, Ly F, Bernerd F, Marrot L, Nielsen M, Verschoore M, Jablonski NG, Young AR. Sunscreen photoprotection and vitamin D status. Br J Dermatol 2019; 181:916-931. [PMID: 31069788 PMCID: PMC6899926 DOI: 10.1111/bjd.17992] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2019] [Indexed: 12/16/2022]
Abstract
Background Global concern about vitamin D deficiency has fuelled debates on photoprotection and the importance of solar exposure to meet vitamin D requirements. Objectives To review the published evidence to reach a consensus on the influence of photoprotection by sunscreens on vitamin D status, considering other relevant factors. Methods An international panel of 13 experts in endocrinology, dermatology, photobiology, epidemiology and biological anthropology reviewed the literature prior to a 1‐day meeting in June 2017, during which the evidence was discussed. Methods of assessment and determining factors of vitamin D status, and public health perspectives were examined and consequences of sun exposure and the effects of photoprotection were assessed. Results A serum level of ≥ 50 nmol L−1 25(OH)D is a target for all individuals. Broad‐spectrum sunscreens that prevent erythema are unlikely to compromise vitamin D status in healthy populations. Vitamin D screening should be restricted to those at risk of hypovitaminosis, such as patients with photosensitivity disorders, who require rigorous photoprotection. Screening and supplementation are advised for this group. Conclusions Sunscreen use for daily and recreational photoprotection does not compromise vitamin D synthesis, even when applied under optimal conditions. What's already known about this topic? Knowledge of the relationship between solar exposure behaviour, sunscreen use and vitamin D is important for public health but there is confusion about optimal vitamin D status and the safest way to achieve this. Practical recommendations on the potential impact of daily and/or recreational sunscreens on vitamin D status are lacking for healthy people.
What does this study add? Judicious use of daily broad‐spectrum sunscreens with high ultraviolet (UV) A protection will not compromise vitamin D status in healthy people. However, photoprotection strategies for patients with photosensitivity disorders that include high sun‐protection factor sunscreens with high UVA protection, along with protective clothing and shade‐seeking behaviour are likely to compromise vitamin D status. Screening for vitamin D status and supplementation are recommended in patients with photosensitivity disorders.
Linked Comment: https://doi.org/10.1111/bjd.18126. https://doi.org/10.1111/bjd.18494 available online
Collapse
Affiliation(s)
- T Passeron
- Department of Dermatology, CHU Nice, Université Côte d'Azur, CHU Nice, 151, route de Ginestière, 06200, Nice, France.,C3M, INSERM U1065 Université Côte d'Azur, 151, route de Ginestière, 06200, Nice, France
| | - R Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Gasthuisberg, 3000, Leuven, Belgium
| | - V Callender
- Callender Dermatology & Cosmetic Center, 12200 Annapolis Road, Suite 315, Glenn Dale, MD, 20769, U.S.A
| | - T Cestari
- Federal University of Rio Grande do Sul, Hospital de Clinicas de Porto Alegre, Ramiro Barcellos 2350 zone 13, Porto Alegre, RS, 90035-903, Brazil
| | - T L Diepgen
- Department of Clinical Social Medicine, University of Heidelberg, Voßstr. 2, 69115, Heidelberg, Germany
| | - A C Green
- Cancer and Population Studies Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.,CRUK Manchester Institute and Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9NQ, U.K
| | - J C van der Pols
- School of Exercise and Nutrition Science, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - B A Bernard
- L'Oréal R&I, Scientific Directorate, 9 rue Pierre Dreyfus, 92110, Clichy, France
| | - F Ly
- Faculty of Medicine, Pharmacy and Odontology, University Cheikh Anta Diop of Dakar, BP 5825, Dakar, Senegal
| | - F Bernerd
- L'Oréal R&I, 1 Avenue Eugène Schueller, 93600, Aulnay-sous-bois, France
| | - L Marrot
- L'Oréal R&I, 1 Avenue Eugène Schueller, 93600, Aulnay-sous-bois, France
| | - M Nielsen
- L'Oréal R&I, Scientific Directorate, 9 rue Pierre Dreyfus, 92110, Clichy, France
| | - M Verschoore
- L'Oréal R&I, Scientific Directorate, 9 rue Pierre Dreyfus, 92110, Clichy, France
| | - N G Jablonski
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA, 16802, U.S.A
| | - A R Young
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, U.K
| |
Collapse
|
41
|
Bender CM, Merriman JD, Sereika SM, Gentry AL, Casillo FE, Koleck TA, Rosenzweig MQ, Brufsky AM, McAuliffe P, Zhu Y, Conley YP. Trajectories of Cognitive Function and Associated Phenotypic and Genotypic Factors in Breast Cancer. Oncol Nurs Forum 2019; 45:308-326. [PMID: 29683114 DOI: 10.1188/18.onf.308-326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES This study identified women with unique trajectories of executive function, concentration, and visual working memory before and during adjuvant therapy for breast cancer, and examined phenotypic and genotypic predictors associated with subgroups. SAMPLE & SETTING 399 postmenopausal women, of whom 288 were women with early-stage breast cancer and 111 were women without breast cancer, matched on age and years of education to the women with breast cancer, and all at an urban cancer center. METHODS & VARIABLES A repeated-measures design was used; assessments occurred before adjuvant therapy and every six months post-therapy initiation. Group-based trajectory modeling determined subgroups. Multinomial logistic regression identified phenotypic and genotypic characteristics. RESULTS Three executive function and concentration trajectory subgroups were identified. IMPLICATIONS FOR NURSING Advancing age, greater pretherapy fatigue, and poorer pretherapy cognitive function are associated with the low subgroups. DNA repair and oxidative stress mechanisms may be involved in the cognitive changes that women experience.
Collapse
Affiliation(s)
| | | | - Susan M Sereika
- Associate professors School of Nursing, University of Pittsburgh, Pennsylvania
| | - Amanda L Gentry
- Department of Health and Community Systems, School of Medicine
| | - Frances E Casillo
- Department of Acute and Tertiary Care, Office of Community Partnerships
| | | | | | | | | | | | | |
Collapse
|
42
|
Young AR, Narbutt J, Harrison GI, Lawrence KP, Bell M, O'Connor C, Olsen P, Grys K, Baczynska KA, Rogowski-Tylman M, Wulf HC, Lesiak A, Philipsen PA. Optimal sunscreen use, during a sun holiday with a very high ultraviolet index, allows vitamin D synthesis without sunburn. Br J Dermatol 2019; 181:1052-1062. [PMID: 31069787 PMCID: PMC6899952 DOI: 10.1111/bjd.17888] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2019] [Indexed: 12/17/2022]
Abstract
Background Sunlight contains ultraviolet (UV)A and UVB radiation. UVB is essential for vitamin D synthesis but is the main cause of sunburn and skin cancer. Sunscreen use is advocated to reduce the sun's adverse effects but may compromise vitamin D status. Objectives To assess the ability of two intervention sunscreens to inhibit vitamin D synthesis during a week‐long sun holiday. Methods The impact of sunscreens on vitamin D status was studied during a 1‐week sun holiday in Tenerife (28° N). Comparisons were made between two formulations, each with a sun protection factor (SPF) of 15. The UVA‐protection factor (PF) was low in one case and high in the other. Healthy Polish volunteers (n = 20 per group) were given the sunscreens and advised on the correct application. Comparisons were also made with discretionary sunscreen use (n = 22) and nonholiday groups (51·8° N, n = 17). Sunscreen use in the intervention groups was measured. Behaviour, UV radiation exposure, clothing cover and sunburn were monitored. Serum 25‐hydroxyvitamin D3 [25(OH)D3] was assessed by high‐performance liquid chromatography–tandem mass spectrometry. Results Use of intervention sunscreens was the same (P = 0·60), and both equally inhibited sunburn, which was present in the discretionary use group. There was an increase (P < 0·001) in mean ± SD 25(OH)D3 (28·0 ± 16·5 nmol L−1) in the discretionary use group. The high and low UVA‐PF sunscreen groups showed statistically significant increases (P < 0·001) of 19·0 ± 14·2 and 13·0 ± 11·4 nmol L−1 25(OH)D3, respectively with P = 0·022 for difference between the intervention sunscreens. The nonholiday group showed a fall (P = 0·08) of 2·5 ± 5·6 nmol L−1 25(OH)D3. Conclusions Sunscreens may be used to prevent sunburn yet allow vitamin D synthesis. A high UVA‐PF sunscreen enables significantly higher vitamin D synthesis than a low UVA‐PF sunscreen because the former, by default, transmits more UVB than the latter. What's already known about this topic? Action spectra (wavelength dependence) for erythema and the cutaneous formation of vitamin D overlap considerably in the ultraviolet (UV)B region. Theoretically, sunscreens that inhibit erythema should also inhibit vitamin D synthesis. To date, studies on the inhibitory effects of sunscreens on vitamin D synthesis have given conflicting results, possibly, in part, because people typically apply sunscreen suboptimally. Many studies have design flaws.
What does this study add? Sunscreens (sun protection factor, SPF 15) applied at sufficient thickness to inhibit sunburn during a week‐long holiday with a very high UV index still allow a highly significant improvement of serum 25‐hydroxyvitamin D3 concentration. An SPF 15 formulation with high UVA protection enables better vitamin D synthesis than a low UVA protection product. The former allows more UVB transmission.
Linked Editorial: https://doi.org/10.1111/bjd.18273. https://doi.org/10.1111/bjd.18492 available online https://www.bjdonline.com/article/optimal-sunscreen-use-during-a-sun-holiday-with-a-very-high-ultraviolet-index-allows-vitamin-d-synthesis-without-sunburn/
Collapse
Affiliation(s)
- A R Young
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - J Narbutt
- Medical University of Łódź, Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Łódź, 90-647, Poland
| | - G I Harrison
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - K P Lawrence
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - M Bell
- Walgreens Boots Alliance Inc., Nottingham, NG90 5EF, U.K
| | - C O'Connor
- Walgreens Boots Alliance Inc., Nottingham, NG90 5EF, U.K
| | - P Olsen
- Bispebjerg Hospital, Department of Dermatological Research, Copenhagen, 2400, Denmark
| | - K Grys
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - K A Baczynska
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire, OX11 0RQ, U.K
| | | | - H C Wulf
- Bispebjerg Hospital, Department of Dermatological Research, Copenhagen, 2400, Denmark
| | - A Lesiak
- Medical University of Łódź, Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Łódź, 90-647, Poland
| | - P A Philipsen
- Bispebjerg Hospital, Department of Dermatological Research, Copenhagen, 2400, Denmark
| |
Collapse
|
43
|
Lawrence KP, Long PF, Young AR. Mycosporine-Like Amino Acids for Skin Photoprotection. Curr Med Chem 2019; 25:5512-5527. [PMID: 28554325 PMCID: PMC6446518 DOI: 10.2174/0929867324666170529124237] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Excessive human exposure to solar ultraviolet radiation (UVR) continues to be a major public health concern, with skin cancer rates increasing year on year. The major protective measure is the use of synthetic UVR filters formulated into sunscreens, but there is a growing concern that some of these chemicals cause damage to delicate marine ecosystems. One alternative is the use of biocompatible mycosporine-like amino acids (MAA), which occur naturally in a wide range of marine species. Their role within nature is mainly thought to be photoprotective. However, their potential for human photoprotection is largely understudied. OBJECTIVE To review the role of MAA in nature and assess their potential as natural sunscreens for human skin photoprotection. METHOD A literature review of all relevant papers was conducted. CONCLUSION MAA are natural photostable compounds that are thought to offer photoprotection to marine species. Initially thought of as protective based on their absorption properties in the solar UVR spectrum, it is clear that MAA are multifunctional photoprotective compounds acting as chemical and biological anti-oxidants. This suggests that MAA may offer a novel eco-friendly approach to human skin photoprotection. Most studies have been carried out in vitro and current data strongly suggest that MAA have potential for development as natural biocompatible sunscreens that protect against a diverse range of solar UVR induced adverse effects on human health.
Collapse
Affiliation(s)
- Karl P Lawrence
- St. John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Paul F Long
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Antony R Young
- St. John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
44
|
Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1279250. [PMID: 30992736 PMCID: PMC6434272 DOI: 10.1155/2019/1279250] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) are common by-products of normal aerobic cellular metabolism and play important physiological roles in intracellular cell signaling and homeostasis. The human body is equipped with antioxidant systems to regulate the levels of these free radicals and maintain proper physiological function. However, a condition known as oxidative stress (OS) occurs, when ROS overwhelm the body's ability to readily detoxify them. Excessive amounts of free radicals generated under OS conditions cause oxidative damage to proteins, lipids, and nucleic acids, severely compromising cell health and contributing to disease development, including cancer. Biomarkers of OS can therefore be exploited as important tools in the assessment of disease status in humans. In the present review, we discuss different approaches used for the evaluation of OS in clinical samples. The described methods are limited in their ability to reflect on OS only partially, revealing the need of more integrative approaches examining both pro- and antioxidant reactions with higher sensitivity to physiological/pathological alternations. We also provide an overview of recent findings of OS in patients with different types of cancer. Identification of OS biomarkers in clinical samples of cancer patients and defining their roles in carcinogenesis hold great promise in promoting the development of targeted therapeutic approaches and diagnostic strategies assessing disease status. However, considerable data variability across laboratories makes it difficult to draw general conclusions on the significance of these OS biomarkers. To our knowledge, no adequate comparison has yet been performed between different biomarkers and the methodologies used to measure them, making it difficult to conduct a meta-analysis of findings from different groups. A critical evaluation and adaptation of proposed methodologies available in the literature should therefore be undertaken, to enable the investigators to choose the most suitable procedure for each chosen biomarker.
Collapse
|
45
|
Obesity, DNA Damage, and Development of Obesity-Related Diseases. Int J Mol Sci 2019; 20:ijms20051146. [PMID: 30845725 PMCID: PMC6429223 DOI: 10.3390/ijms20051146] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity has been recognized to increase the risk of such diseases as cardiovascular diseases, diabetes, and cancer. It indicates that obesity can impact genome stability. Oxidative stress and inflammation, commonly occurring in obesity, can induce DNA damage and inhibit DNA repair mechanisms. Accumulation of DNA damage can lead to an enhanced mutation rate and can alter gene expression resulting in disturbances in cell metabolism. Obesity-associated DNA damage can promote cancer growth by favoring cancer cell proliferation and migration, and resistance to apoptosis. Estimation of the DNA damage and/or disturbances in DNA repair could be potentially useful in the risk assessment and prevention of obesity-associated metabolic disorders as well as cancers. DNA damage in people with obesity appears to be reversible and both weight loss and improvement of dietary habits and diet composition can affect genome stability.
Collapse
|
46
|
Narbutt J, Philipsen PA, Harrison GI, Morgan KA, Lawrence KP, Baczynska KA, Grys K, Rogowski-Tylman M, Olejniczak-Staruch I, Tewari A, Bell M, O'Connor C, Wulf HC, Lesiak A, Young AR. Sunscreen applied at ≥ 2 mg cm -2 during a sunny holiday prevents erythema, a biomarker of ultraviolet radiation-induced DNA damage and suppression of acquired immunity. Br J Dermatol 2018; 180:604-614. [PMID: 30307614 DOI: 10.1111/bjd.17277] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Sun protection factor (SPF) is assessed with sunscreen applied at 2 mg cm-2 . People typically apply around 0·8 mg cm-2 and use sunscreen daily for holidays. Such use results in erythema, which is a risk factor for skin cancer. OBJECTIVES To determine (i) whether typical sunscreen use resulted in erythema, epidermal DNA damage and photoimmunosuppression during a sunny holiday, (ii) whether optimal sunscreen use inhibited erythema and (iii) whether erythema is a biomarker for photoimmunosuppression in a laboratory study. METHODS Holidaymakers (n = 22) spent a week in Tenerife (very high ultraviolet index) using their own sunscreens without instruction (typical sunscreen use). Others (n = 40) were given SPF 15 sunscreens with instructions on how to achieve the labelled SPF (sunscreen intervention). Personal ultraviolet radiation (UVR) exposure was monitored electronically as the standard erythemal dose (SED) and erythema was quantified. Epidermal cyclobutane pyrimidine dimers (CPDs) were determined by immunostaining, and immunosuppression was assessed by contact hypersensitivity (CHS) response. RESULTS There was no difference between personal UVR exposure in the typical sunscreen use and sunscreen intervention groups (P = 0·08). The former had daily erythema on five UVR-exposed body sites, increased CPDs (P < 0·001) and complete CHS suppression (20 of 22). In comparison, erythema was virtually absent (P < 0·001) when sunscreens were used at ≥ 2 mg cm-2 . A laboratory study showed that 3 SED from three very different spectra suppressed CHS by around ~50%. CONCLUSIONS Optimal sunscreen use prevents erythema during a sunny holiday. Erythema predicts suppression of CHS (implying a shared action spectrum). Given that erythema and CPDs share action spectra, the data strongly suggest that optimal sunscreen use will also reduce CPD formation and UVR-induced immunosuppression.
Collapse
Affiliation(s)
- J Narbutt
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Łódź, 90-647, Łódź, Poland
| | - P A Philipsen
- University of Copenhagen, Bispebjerg Hospital, Department of Dermatological Research, Copenhagen, 2400, Denmark
| | - G I Harrison
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - K A Morgan
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - K P Lawrence
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - K A Baczynska
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, U.K
| | - K Grys
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | | | - I Olejniczak-Staruch
- Dermoklinika Centrum Medyczne, Łódź, 90-436, Poland.,Department of Dermatology and Venereology, Medical University of Łódź, 90-647, Łódź, Poland
| | - A Tewari
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - M Bell
- Walgreens Boots Alliance Inc., Nottingham, NG90 5EF, U.K
| | - C O'Connor
- Walgreens Boots Alliance Inc., Nottingham, NG90 5EF, U.K
| | - H C Wulf
- University of Copenhagen, Bispebjerg Hospital, Department of Dermatological Research, Copenhagen, 2400, Denmark
| | - A Lesiak
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Łódź, 90-647, Łódź, Poland
| | - A R Young
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| |
Collapse
|
47
|
Wilmott JS, Johansson PA, Newell F, Waddell N, Ferguson P, Quek C, Patch AM, Nones K, Shang P, Pritchard AL, Kazakoff S, Holmes O, Leonard C, Wood S, Xu Q, Saw RPM, Spillane AJ, Stretch JR, Shannon KF, Kefford RF, Menzies AM, Long GV, Thompson JF, Pearson JV, Mann GJ, Hayward NK, Scolyer RA. Whole genome sequencing of melanomas in adolescent and young adults reveals distinct mutation landscapes and the potential role of germline variants in disease susceptibility. Int J Cancer 2018; 144:1049-1060. [DOI: 10.1002/ijc.31791] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
|
48
|
Aldehyde-mediated protein degradation is responsible for the inhibition of nucleotide excision repair by cigarette sidestream smoke. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 834:42-50. [DOI: 10.1016/j.mrgentox.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/28/2022]
|
49
|
Lawrence KP, Douki T, Sarkany RPE, Acker S, Herzog B, Young AR. The UV/Visible Radiation Boundary Region (385-405 nm) Damages Skin Cells and Induces "dark" Cyclobutane Pyrimidine Dimers in Human Skin in vivo. Sci Rep 2018; 8:12722. [PMID: 30143684 PMCID: PMC6109054 DOI: 10.1038/s41598-018-30738-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
The adverse effects of terrestrial solar ultraviolet radiation (UVR) (~295–400 nm) on the skin are well documented, especially in the UVB region (~295–320 nm). The effects of very long-wave UVA (>380 nm) and visible radiation (≥400 nm) are much less known. Sunscreens have been beneficial in inhibiting a wide range of photodamage, however most formulations provide very little protection in the long wave UVA region (380–400 nm) and almost none from shortwave visible wavelengths (400–420 nm). We demonstrate photodamage in this region for a number of different endpoints including cell viability, DNA damage (delayed cyclobutane pyrimidine dimers), differential gene expression (for genes associated with inflammation, oxidative stress and photoageing) and induction of oxidizing species in vitro in HaCaT keratinocytes and in vivo in human volunteers. This work has implications for phototherapy and photoprotection.
Collapse
Affiliation(s)
- Karl P Lawrence
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Thierry Douki
- University Grenoble Alpes, CEA, CNRS, INAC-SyMMES/CIBEST, 38000, Grenoble, France
| | - Robert P E Sarkany
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | | | - Bernd Herzog
- BASF Grenzach GmbH, Grenzach-Whylen, 79639, Germany
| | - Antony R Young
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
50
|
Zhang D, Kaushiva A, Xi Y, Wang T, Li N. Non-herbal tea consumption and ovarian cancer risk: a systematic review and meta-analysis of observational epidemiologic studies with indirect comparison and dose–response analysis. Carcinogenesis 2018; 39:808-818. [DOI: 10.1093/carcin/bgy048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/17/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dongyu Zhang
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, CB, Chapel Hill, NC, USA
| | - Alpana Kaushiva
- Department of Epidemiology, University of Illinois at Chicago School of Public Health, Chicago, IL, USA
| | - Yuzhi Xi
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, CB, Chapel Hill, NC, USA
| | - Tengteng Wang
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, CB, Chapel Hill, NC, USA
| | - Nan Li
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|