1
|
Koivunen E, Madhavan S, Bermudez-Garrido L, Grönholm M, Kaprio T, Haglund C, Andersson LC, Gahmberg CG. Hypoxia favors tumor growth in colorectal cancer in an integrin αDβ1/hemoglobin δ-dependent manner. Life Sci Alliance 2025; 8:e202402925. [PMID: 39626964 PMCID: PMC11629678 DOI: 10.26508/lsa.202402925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Low oxygen tension (PO2), characterizes the tissue environment of tumors. The colorectal tumor line Colo205, grown under reduced oxygen tension expresses a novel αDβ1 integrin, which forms a cell surface complex with hemoglobin δ. This resulted in high local affinity for oxygen, which increased cell adhesion as compared with cells grown under normal oxygen tension. Staining with antibodies to the integrin αD polypeptide and hemoglobin δ, and transfection with cDNAs for GFP-hemoglobin δ and mCherry-αD, showed co-localization of αD and hemoglobin δ. Antibodies to αD and β1 integrins, an RGD peptide, and an αDβ1 binding peptide from hemoglobin δ, blocked the αDβ1-hemoglobin interaction and lowered oxygen consumption. Downregulation of integrin αD or hemoglobin δ expression inhibited cell proliferation in hypoxia. The very frequent expression of complexes between αDβ1 and hemoglobin δ on the cell surface offers potential diagnostic and therapeutic targets in colorectal cancer.
Collapse
Affiliation(s)
- Erkki Koivunen
- Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sudarrshan Madhavan
- Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Laura Bermudez-Garrido
- Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mikaela Grönholm
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tuomas Kaprio
- Programme in Translational Cancer Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Programme in Translational Cancer Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leif C Andersson
- Department of Pathology. Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carl G Gahmberg
- Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Messé M, Bernhard C, Foppolo S, Thomas L, Marchand P, Herold-Mende C, Idbaih A, Kessler H, Etienne-Selloum N, Ochoa C, Tambar UK, Elati M, Laquerriere P, Entz-Werle N, Martin S, Reita D, Dontenwill M. Hypoxia-driven heterogeneous expression of α5 integrin in glioblastoma stem cells is linked to HIF-2α. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167471. [PMID: 39154793 DOI: 10.1016/j.bbadis.2024.167471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Despite numerous molecular targeted therapies tested in glioblastoma (GBM), no significant progress in patient survival has been achieved in the last 20 years in the overall population of GBM patients except with TTfield setup associated with the standard of care chemoradiotherapy. Therapy resistance is associated with target expression heterogeneity and plasticity between tumors and in tumor niches. We focused on α5 integrin implicated in aggressive GBM in preclinical and clinical samples. To address the characteristics of α5 integrin heterogeneity we started with patient data indicating that elevated levels of its mRNA are related to hypoxia pathways. We turned on glioma stem cells which are considered at the apex of tumor formation and recurrence but also as they localize in hypoxic niches. We demonstrated that α5 integrin expression is stem cell line dependent and is modulated positively by hypoxia in vitro. Importantly, heterogeneity of expression is conserved in in vivo stem cell-derived mice xenografts. In hypoxic niches, HIF-2α is preferentially implicated in α5 integrin expression which confers migratory capacity to GBM stem cells. Hence combining HIF-2α and α5 integrin inhibitors resulted in proliferation and migration impairment of α5 integrin expressing cells. Stabilization of HIF-2α is however not sufficient to control integrin α5 expression. Our results show that AHR (aryl hydrocarbon receptor) expression is inversely related to HIF-2α and α5 integrin expressions suggesting a functional competition between the two transcription factors. Collectively, data confirm the high heterogeneity of a GBM therapeutic target, its induction in hypoxic niches by HIF-2α and suggest a new way to attack molecularly defined GBM stem cells.
Collapse
Affiliation(s)
- Mélissa Messé
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Chloé Bernhard
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Sophie Foppolo
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Lionel Thomas
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Patrice Marchand
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013 Paris, France
| | - Horst Kessler
- Institute for Advanced Study, Department Chemie, Technical University Munich (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Nelly Etienne-Selloum
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Pharmacy department, Institut de Cancérologie Strasbourg Europe (ICANS), 67200 Strasbourg, France
| | - Charles Ochoa
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, United States
| | - Uttam K Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, United States
| | - Mohamed Elati
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
| | - Patrice Laquerriere
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Natacha Entz-Werle
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Pédiatrie Onco-Hématologie-Pédiatrie III, Strasbourg University Hospital, 67091 Strasbourg, France
| | - Sophie Martin
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Damien Reita
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Monique Dontenwill
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France.
| |
Collapse
|
3
|
Yang H, Yang J, Zheng X, Chen T, Zhang R, Chen R, Cao T, Zeng F, Liu Q. The Hippo Pathway in Breast Cancer: The Extracellular Matrix and Hypoxia. Int J Mol Sci 2024; 25:12868. [PMID: 39684583 DOI: 10.3390/ijms252312868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As one of the most prevalent malignant neoplasms among women globally, the optimization of therapeutic strategies for breast cancer has perpetually been a research hotspot. The tumor microenvironment (TME) is of paramount importance in the progression of breast cancer, among which the extracellular matrix (ECM) and hypoxia are two crucial factors. The alterations of these two factors are predominantly regulated by the Hippo signaling pathway, which promotes tumor invasiveness, metastasis, therapeutic resistance, and susceptibility. Hence, this review focuses on the Hippo pathway in breast cancer, specifically, how the ECM and hypoxia impact the biological traits and therapeutic responses of breast cancer. Moreover, the role of miRNAs in modulating ECM constituents was investigated, and hsa-miR-33b-3p was identified as a potential therapeutic target for breast cancer. The review provides theoretical foundations and potential therapeutic direction for clinical treatment strategies in breast cancer, with the aspiration of attaining more precise and effective treatment alternatives in the future.
Collapse
Affiliation(s)
- Hanyu Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jiaxin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiang Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tianshun Chen
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tingting Cao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
4
|
Liu Q, Guo L, Zhang H, Ge J, Luo J, Song K, Zhao L, Yang S. Hypoxia induces reversible gill remodeling in largemouth bass (Micropterus salmoides) through integrins-mediated cell adhesion. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109918. [PMID: 39307257 DOI: 10.1016/j.fsi.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Gill remodeling is an important strategy for fish to cope with hypoxia, and many of the teleost possess this ability, but the underlying mechanism is not well understood. To investigate the mechanism of hypoxia-induced gill remodeling, largemouth bass (Micropterus salmoides) exposed to hypoxia (dissolved oxygen level: 2.0 ± 0.2 mg L-1) for 7 days, followed by 7 days of reoxygenation. Hypoxia tests were also performed on primary gill cells from largemouth bass. We found that hypoxia-induced gill remodeling increased the respiratory surface area of the gills. This change in gill morphology was reversible and recovered after reoxygenation. A reduction in the number of mucous cells and rearrangement of mitochondria-rich cells (MRCs) were observed during gill remodeling. After 7 days of reoxygenation, the number of mucous cells and the position of the MRCs were restored. Hypoxia resulted in a 2.92-fold increase in the number of primary gill cells that underwent migration over a 12-h period. The mRNA levels of nine integrin subunits (α1, α2, α5, α7, α8, α10, αL, β1 and β2) were significantly up-regulated after 12 h of hypoxia in vivo, and the changes in the expression of these subunits were consistent with the HIF-1α trend. Immunohistochemistry showed that integrin β1 protein levels were significantly increased and were abundantly expressed in the interlamellar cell mass after exposure to hypoxia. Taken together, the results of the present study demonstrated that changes in mucosal cells and MRCs play an important role in hypoxia-induced gill remodeling in largemouth bass and that these changes are regulated by integrins.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lipeng Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Hanwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jiayu Ge
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kaige Song
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
5
|
Godet I, Oza HH, Shi Y, Joe NS, Weinstein AG, Johnson J, Considine M, Talluri S, Zhang J, Xu R, Doctorman S, Mbulaiteye D, Stein-O'Brien G, Kagohara LT, Santa-Maria CA, Fertig EJ, Gilkes DM. Hypoxia induces ROS-resistant memory upon reoxygenation in vivo promoting metastasis in part via MUC1-C. Nat Commun 2024; 15:8416. [PMID: 39341835 PMCID: PMC11438863 DOI: 10.1038/s41467-024-51995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Hypoxia occurs in 90% of solid tumors and is associated with metastasis and mortality. Breast cancer cells that experience intratumoral hypoxia are 5x more likely to develop lung metastasis in animal models. Using spatial transcriptomics, we determine that hypoxic cells localized in more oxygenated tumor regions (termed 'post-hypoxic') retain expression of hypoxia-inducible and NF-kB-regulated genes, even in the oxygen-rich bloodstream. This cellular response is reproduced in vitro under chronic hypoxic conditions followed by reoxygenation. A subset of genes remains increased in reoxygenated cells. MUC1/MUC1-C is upregulated by both HIF-1α and NF-kB-p65 during chronic hypoxia. Abrogating MUC1 decreases the expression of superoxide dismutase enzymes, causing reactive oxygen species (ROS) production and cell death. A hypoxia-dependent genetic deletion of MUC1, or MUC1-C inhibition by GO-203, increases ROS levels in circulating tumor cells (CTCs), reducing the extent of metastasis. High MUC1 expression in tumor biopsies is associated with recurrence, and MUC1+ CTCs have lower ROS levels than MUC1- CTCs in patient-derived xenograft models. This study demonstrates that therapeutically targeting MUC1-C reduces hypoxia-driven metastasis.
Collapse
Affiliation(s)
- Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA
| | - Harsh H Oza
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Shi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalie S Joe
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa G Weinstein
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biochemistry and Molecular Biology Program, The Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Jeanette Johnson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Considine
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Swathi Talluri
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jingyuan Zhang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biochemistry and Molecular Biology Program, The Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Reid Xu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Steven Doctorman
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Delma Mbulaiteye
- NIDDK STEP-UP Program, National Institutes of Health, Bethesda, USA
| | - Genevieve Stein-O'Brien
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luciane T Kagohara
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cesar A Santa-Maria
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elana J Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA.
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Zhang D, Sun B, Wang J, Chen SPR, Bobrin VA, Gu Y, Ng CK, Gu W, Monteiro MJ. RGD Density on Tadpole Nanostructures Regulates Cancer Stem Cell Proliferation and Stemness. Biomacromolecules 2024; 25:5260-5272. [PMID: 39056889 DOI: 10.1021/acs.biomac.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Cancer stem cells (CSCs) make up a small population of cancer cells, primarily responsible for tumor initiation, metastasis, and drug resistance. They overexpress Arg-Gly-Asp (RGD) binding integrin receptors that play crucial roles in cell proliferation and stemness through interaction with the extracellular matrix. Here, we showed that monodisperse polymeric tadpole nanoparticles covalently coupled with different RGD densities regulated colon CSC proliferation and stemness in a RGD density-dependent manner. These tadpoles penetrated deeply and evenly into tumor spheroids and specifically entered cells with cancer stem markers CD24 and CD133. Low RGD density tadpoles triggered integrin α5 expression that further activated TGF-β3 and TGF-β2 signaling pathways, confirmed by the increase of pERK and Bcl-2 protein levels. This process is associated with the RGD cluster presentation controlled by the RGD density on the tadpole surface.
Collapse
Affiliation(s)
- Dayong Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jingyi Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Sung-Po R Chen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Yushu Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Chun Ki Ng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Lu X, Yang Y, Chen J, Zhao T, Zhao X. RUNX1/miR-429 feedback loop promotes growth, metastasis, and epithelial-mesenchymal transition in oral squamous cell carcinoma by targeting ITGB1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5289-5302. [PMID: 38277041 DOI: 10.1007/s00210-024-02960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
This study aimed to explore the role of miR-429 on the progression of oral squamous cell carcinoma (OSCC). OSCC cell lines were transfected with miR-429 mimic, pcDNA3.1-RUNX1, or pcDNA3.1-ITGB1, and their cell viability, apoptosis, migration, and invasion abilities were analyzed by cell counting, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, wound healing, and transwell assays, respectively. Furthermore, luciferase reporter assay, RNA pull-down, and ChIP were used to assess the regulation of miR-429, RUNX1, and ITGB1 expression in OSCC. Lastly, the biological role of the RUNX1/miR-429 feedback loop was explored in nude mice. The results revealed that miR-429 level was down-regulated, while RUNX1 and ITGB1 levels were up-regulated in OSCC tissues and that miR-429 was negatively correlated with RUNX1 and ITGB1 in OSCC tissues. Transfection of miR-429 mimic suppressed OSCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Moreover, we found that miR-429 participated in OSCC progression by directly targeting ITGB1. Additionally, we found that RUNX1 negatively regulated miR-429 expression by binding to its promoter. Our results also revealed that the RUNX1/miR-429 feedback loop regulated ITGB1 expression and that RUNX1 overexpression rescued the inhibitory effects of miR-429 mimic on OSCC cells. In addition, miR-429 mimic significantly suppressed tumor growth, inflammatory cell infiltration, EMT, and ITGB1 expression in vivo, which were inhibited by RUNX1 overexpression. Altogether, these results indicate that the RUNX1/miR-429 feedback loop promoted growth, metastasis, and EMT in OSCC by targeting ITGB1.
Collapse
Affiliation(s)
- Xun Lu
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Yiqiang Yang
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Jia Chen
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Tian Zhao
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Xiaofan Zhao
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China.
| |
Collapse
|
8
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Yu KX, Yuan WJ, Wang HZ, Li YX. Extracellular matrix stiffness and tumor-associated macrophage polarization: new fields affecting immune exclusion. Cancer Immunol Immunother 2024; 73:115. [PMID: 38693304 PMCID: PMC11063025 DOI: 10.1007/s00262-024-03675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024]
Abstract
In the malignant progression of tumors, there is deposition and cross-linking of collagen, as well as an increase in hyaluronic acid content, which can lead to an increase in extracellular matrix stiffness. Recent research evidence have shown that the extracellular matrix plays an important role in angiogenesis, cell proliferation, migration, immunosuppression, apoptosis, metabolism, and resistance to chemotherapeutic by the alterations toward both secretion and degradation. The clinical importance of tumor-associated macrophage is increasingly recognized, and macrophage polarization plays a central role in a series of tumor immune processes through internal signal cascade, thus regulating tumor progression. Immunotherapy has gradually become a reliable potential treatment strategy for conventional chemotherapy resistance and advanced cancer patients, but the presence of immune exclusion has become a major obstacle to treatment effectiveness, and the reasons for their resistance to these approaches remain uncertain. Currently, there is a lack of exact mechanism on the regulation of extracellular matrix stiffness and tumor-associated macrophage polarization on immune exclusion. An in-depth understanding of the relationship between extracellular matrix stiffness, tumor-associated macrophage polarization, and immune exclusion will help reveal new therapeutic targets and guide the development of clinical treatment methods for advanced cancer patients. This review summarized the different pathways and potential molecular mechanisms of extracellular matrix stiffness and tumor-associated macrophage polarization involved in immune exclusion and provided available strategies to address immune exclusion.
Collapse
Affiliation(s)
- Ke-Xun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei-Jie Yuan
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Hui-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yong-Xiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
10
|
Hurst R, Brewer DS, Gihawi A, Wain J, Cooper CS. Cancer invasion and anaerobic bacteria: new insights into mechanisms. J Med Microbiol 2024; 73:001817. [PMID: 38535967 PMCID: PMC10995961 DOI: 10.1099/jmm.0.001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp. and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.
Collapse
Affiliation(s)
- Rachel Hurst
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Quadram Institute Biosciences, Colney Lane, Norwich, Norfolk, NR4 7UQ, UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
11
|
Fuchino T, Kurogi S, Tsukamoto Y, Shibata T, Fumoto S, Fujishima H, Kinoshita K, Hirashita Y, Fukuda M, Nakada C, Itai Y, Suzuki K, Uchida T, Shiroshita H, Matsumoto T, Yamaoka Y, Tsutsumi K, Fukuda K, Ogawa R, Mizukami K, Kodama M, Inomata M, Murakami K, Moriyama M, Hijiya N. Characterization of residual cancer by comparison of a pair of organoids established from a patient with esophageal squamous cell carcinoma before and after neoadjuvant chemotherapy. Hum Cell 2024; 37:491-501. [PMID: 38184488 DOI: 10.1007/s13577-023-01020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024]
Abstract
Neoadjuvant chemotherapy (NAC) followed by surgery is a standard approach for management of locally advanced esophageal squamous cell carcinoma (ESCC). Patients who do not respond well to NAC have a poor prognosis. Despite extensive research, the mechanisms of chemoresistance in ESCC remain largely unknown. Here, we established paired tumor organoids-designated as PreNAC-O and PostNAC-O-from one ESCC patient before and after NAC, respectively. Although the two organoids did not exhibit significant differences in proliferation, morphology or drug sensitivity in vitro, the tumorigenicity of PostNAC-O in vivo was significantly higher than that of PreNAC-O. Xenografts from PreNAC-O tended to exhibit keratinization, while those from PostNAC-O displayed conspicuous necrotic areas. The tumorigenicity of PostNAC-O xenografts during the chemotherapy was comparable to that of PreNAC-O without treatment. Furthermore, the gene expression profiles of the xenografts suggested that expression of genes involved in the EMT and/or hypoxia response might be related to the tumorigenicity of PostNAC-O. Our data suggested that the tumorigenicity of residual cancer had been enhanced, outweighing the effects of chemotherapy, rather than being attributable to intrinsic chemoresistance. Further studies are required to clarify the extent to which residual cancers share a common mechanism similar to that revealed here.
Collapse
Affiliation(s)
- Takafumi Fuchino
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Shusaku Kurogi
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan.
| | - Tomotaka Shibata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Shoichi Fumoto
- Department of Surgery, Oita Nakamura Hospital, Oita, Japan
| | - Hajime Fujishima
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Keisuke Kinoshita
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yuka Hirashita
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masahide Fukuda
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
- Department of Urology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yusuke Itai
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Kosuke Suzuki
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Hidefumi Shiroshita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Koshiro Tsutsumi
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kensuke Fukuda
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryo Ogawa
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
| |
Collapse
|
12
|
Bigos KJA, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EGC, West CM, Hoskin P, Choudhury A. Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol 2024; 14:1331355. [PMID: 38352889 PMCID: PMC10861654 DOI: 10.3389/fonc.2024.1331355] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Hypoxia is a common feature of solid tumours affecting their biology and response to therapy. One of the main transcription factors activated by hypoxia is hypoxia-inducible factor (HIF), which regulates the expression of genes involved in various aspects of tumourigenesis including proliferative capacity, angiogenesis, immune evasion, metabolic reprogramming, extracellular matrix (ECM) remodelling, and cell migration. This can negatively impact patient outcomes by inducing therapeutic resistance. The importance of hypoxia is clearly demonstrated by continued research into finding clinically relevant hypoxia biomarkers, and hypoxia-targeting therapies. One of the problems is the lack of clinically applicable methods of hypoxia detection, and lack of standardisation. Additionally, a lot of the methods of detecting hypoxia do not take into consideration the complexity of the hypoxic tumour microenvironment (TME). Therefore, this needs further elucidation as approximately 50% of solid tumours are hypoxic. The ECM is important component of the hypoxic TME, and is developed by both cancer associated fibroblasts (CAFs) and tumour cells. However, it is important to distinguish the different roles to develop both biomarkers and novel compounds. Fibronectin (FN), collagen (COL) and hyaluronic acid (HA) are important components of the ECM that create ECM fibres. These fibres are crosslinked by specific enzymes including lysyl oxidase (LOX) which regulates the stiffness of tumours and induces fibrosis. This is partially regulated by HIFs. The review highlights the importance of understanding the role of matrix stiffness in different solid tumours as current data shows contradictory results on the impact on therapeutic resistance. The review also indicates that further research is needed into identifying different CAF subtypes and their exact roles; with some showing pro-tumorigenic capacity and others having anti-tumorigenic roles. This has made it difficult to fully elucidate the role of CAFs within the TME. However, it is clear that this is an important area of research that requires unravelling as current strategies to target CAFs have resulted in worsened prognosis. The role of immune cells within the tumour microenvironment is also discussed as hypoxia has been associated with modulating immune cells to create an anti-tumorigenic environment. Which has led to the development of immunotherapies including PD-L1. These hypoxia-induced changes can confer resistance to conventional therapies, such as chemotherapy, radiotherapy, and immunotherapy. This review summarizes the current knowledge on the impact of hypoxia on the TME and its implications for therapy resistance. It also discusses the potential of hypoxia biomarkers as prognostic and predictive indictors of treatment response, as well as the challenges and opportunities of targeting hypoxia in clinical trials.
Collapse
Affiliation(s)
- Kamilla JA. Bigos
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Conrado G. Quiles
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Danielle J. Smith
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Mechthild Krause
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Esther GC. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Radiooncology – OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany
| | - Catharine M. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Christie Hospital NHS Foundation Trust, Manchester, Germany
| |
Collapse
|
13
|
Su C, Mo J, Dong S, Liao Z, Zhang B, Zhu P. Integrinβ-1 in disorders and cancers: molecular mechanisms and therapeutic targets. Cell Commun Signal 2024; 22:71. [PMID: 38279122 PMCID: PMC10811905 DOI: 10.1186/s12964-023-01338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 01/28/2024] Open
Abstract
Integrinβ-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Shuilin Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Oza HH, Gilkes DM. Multiplex Immunofluorescence Staining Protocol for the Dual Imaging of Hypoxia-Inducible Factors 1 and 2 on Formalin-Fixed Paraffin-Embedded Samples. Methods Mol Biol 2024; 2755:167-178. [PMID: 38319577 DOI: 10.1007/978-1-0716-3633-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Hypoxia is a common condition in rapidly proliferating tumors and occurs when oxygen delivery to the tissue is scarce. It is a prevalent feature in ~90% of solid tumors. The family of HIF (hypoxia-inducible factor) proteins-HIF1α and HIF2α-are the main transcription factors that regulate the response to hypoxia. These transcription factors regulate numerous downstream gene targets that promote the aggressiveness of tumors and therefore have been linked to worse prognosis in patients. This makes them a potential biomarker to be tested in the clinical setting to predict patient outcomes. However, HIFs have been notoriously challenging to immunolabel, in part due to their fast turnover under normal oxygen conditions. In this work, we developed a multiplexed immunofluorescence (mIF) staining protocol for the simultaneous detection of HIF1α and HIF2α in the same formalin-fixed paraffin-embedded (FFPE) tissue section.
Collapse
Affiliation(s)
- Harsh H Oza
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Kvergelidze E, Barbakadze T, Bátor J, Kalandadze I, Mikeladze D. Thyroid hormone T3 induces Fyn modification and modulates palmitoyltransferase gene expression through αvβ3 integrin receptor in PC12 cells during hypoxia. Transl Neurosci 2024; 15:20220347. [PMID: 39118829 PMCID: PMC11306964 DOI: 10.1515/tnsci-2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid hormones (THs) are essential in neuronal and glial cell development and differentiation, synaptogenesis, and myelin sheath formation. In addition to nuclear receptors, TH acts through αvβ3-integrin on the plasma membrane, influencing transcriptional regulation of signaling proteins that, in turn, affect adhesion and survival of nerve cells in various neurologic disorders. TH exhibits protective properties during brain hypoxia; however, precise intracellular mechanisms responsible for the preventive effects of TH remain unclear. In this study, we investigated the impact of TH on integrin αvβ3-dependent downstream systems in normoxic and hypoxic conditions of pheochromocytoma PC12 cells. Our findings reveal that triiodothyronine (T3), acting through αvβ3-integrin, induces activation of the JAK2/STAT5 pathway and suppression of the SHP2 in hypoxic PC12 cells. This activation correlates with the downregulation of the expression palmitoyltransferase-ZDHHC2 and ZDHHC9 genes, leading to a subsequent decrease in palmitoylation and phosphorylation of Fyn tyrosine kinase. We propose that these changes may occur due to STAT5-dependent epigenetic silencing of the palmitoyltransferase gene, which in turn reduces palmitoylation/phosphorylation of Fyn with a subsequent increase in the survival of cells. In summary, our study provides the first evidence demonstrating the involvement of integrin-dependent JAK/STAT pathway, SHP2 suppression, and altered post-translational modification of Fyn in protective effects of T3 during hypoxia.
Collapse
Affiliation(s)
- Elisabed Kvergelidze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
| | - Tamar Barbakadze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - Judit Bátor
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, Pécs, 7624, Hungary
- Janos Szentagothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Irine Kalandadze
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - David Mikeladze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| |
Collapse
|
16
|
Oza HH, Ng E, Gilkes DM. Staining Hypoxic Areas of Frozen and FFPE Tissue Sections with Hypoxyprobe™. Methods Mol Biol 2024; 2755:149-163. [PMID: 38319576 DOI: 10.1007/978-1-0716-3633-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Hypoxia occurs due to inadequate levels of oxygen in tissue and has been implicated in numerous diseases such as cancer, diabetes, cardiovascular, and neurodegenerative diseases. Hypoxia activates hypoxia-inducible factors (HIF) which mediate the expression of several downstream genes. Within the context of cancer biology, these genes affect cellular processes including metabolism, proliferation, migration, invasion, and metastasis. Pimonidazole hydrochloride (HCl) is an exogenous marker that is reduced and binds to thiols under hypoxic conditions resulting in adducts that can be visualized using antibodies such as Hypoxyprobe™. This chapter describes a method for using Hypoxyprobe™ to detect hypoxic areas in frozen and FFPE mouse samples by immunofluorescence (IF) and immunohistochemistry (IHC) staining.
Collapse
Affiliation(s)
- Harsh H Oza
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esther Ng
- Department of Biology, The Zanvyl Krieger School of Arts & Sciences, The Johns Hopkins University, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Buryska S, Patel K, Wuertz B, Gaffney PM, Ondrey F. Potential Roles of Activin in Head and Neck Squamous Cell Carcinoma Progression and Mortality. Anticancer Res 2023; 43:5299-5310. [PMID: 38030164 PMCID: PMC11285815 DOI: 10.21873/anticanres.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND/AIM Activin, a member of the TGF-β super family of cytokines, is involved in head and neck squamous cell carcinoma (HNSCC). This study examined the constituents of the activin axis in order to further elucidate the role of activin A in HNSCC progression. MATERIALS AND METHODS Immunohistochemistry (IHC), reverse transcription polymerase chain reaction (RT-PCR), MTT, and matrigel invasion assays, in addition to analysis of the tumor cancer genome atlas (TCGA), were employed. RESULTS IHC in HNSCC and oral leukoplakia (OPL) lesions demonstrated increased expression of the inhibin subunit βA (INHBA) (p<0.0001), as well as activin receptor type IB (ACVR1B) (p<0.0032) compared to normal mucosa. TCGA analysis revealed increased INHBA expression was associated with lymph node positive tumors (p=0.024), decreased overall survival (p=0.0167), and decreased promoter methylation (p<0.0001). Concomitant up-regulated expression of gene pathways strongly correlated with INHBA expression demonstrated further deleterious effects on survival (p<0.0148). CONCLUSION Activin may be an important component of early carcinogenesis in OPL and HNSCC with unfavorable effects on clinical end-points such as survival.
Collapse
Affiliation(s)
- Seth Buryska
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A
| | - Ketan Patel
- North Memorial Health/Blaze Health, Minneapolis, MN, U.S.A
| | - Beverly Wuertz
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A.;
| | | | - Frank Ondrey
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
18
|
Wu C, Weis SM, Cheresh DA. Upregulation of fibronectin and its integrin receptors - an adaptation to isolation stress that facilitates tumor initiation. J Cell Sci 2023; 136:jcs261483. [PMID: 37870164 PMCID: PMC10652044 DOI: 10.1242/jcs.261483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Tumor initiation at either primary or metastatic sites is an inefficient process in which tumor cells must fulfill a series of conditions. One critical condition involves the ability of individual tumor-initiating cells to overcome 'isolation stress', enabling them to survive within harsh isolating microenvironments that can feature nutrient stress, hypoxia, oxidative stress and the absence of a proper extracellular matrix (ECM). In response to isolation stress, tumor cells can exploit various adaptive strategies to develop stress tolerance and gain stemness features. In this Opinion, we discuss how strategies such as the induction of certain cell surface receptors and deposition of ECM proteins enable tumor cells to endure isolation stress, thereby gaining tumor-initiating potential. As examples, we highlight recent findings from our group demonstrating how exposure of tumor cells to isolation stress upregulates the G-protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), its downstream target fibronectin and two fibronectin-binding integrins, α5β1 and αvβ3. These responses create a fibronectin-rich niche for tumor cells, ultimately driving stress tolerance, cancer stemness and tumor initiation. We suggest that approaches to prevent cancer cells from adapting to stress by suppressing LPAR4 induction, blocking its downstream signaling or disrupting fibronectin-integrin interactions hold promise as potential strategies for cancer treatment.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Sara M. Weis
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - David A. Cheresh
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Dwivedi N, Shukla N, Prathima KM, Das M, Dhar SK. Novel CAF-identifiers via transcriptomic and protein level analysis in HNSC patients. Sci Rep 2023; 13:13899. [PMID: 37626157 PMCID: PMC10457345 DOI: 10.1038/s41598-023-40908-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a prominent component of the tumor microenvironment, play an important role in tumor development, invasion, and drug resistance. The expression of distinct "CAF-markers" which separates CAFs from normal fibroblasts and epithelial cells, have traditionally been used to identify them. These commonly used CAF-markers have been reported to differ greatly across different CAF subpopulations, even within a cancer type. Using an unbiased -omic approach from public data and in-house RNAseq data from patient derived novel CAF cells, TIMP-1, SPARC, COL1A2, COL3A1 and COL1A1 were identified as potential CAF-markers by differential gene expression analysis using publicly available single cell sequencing data and in-house RNAseq data to distinguish CAF populations from tumor epithelia and normal oral fibroblasts. Experimental validation using qPCR and immunofluorescence revealed CAF-specific higher expression of TIMP-1 and COL1A2 as compared to other markers in 5 novel CAF cells, derived from patients of diverse gender, habits and different locations of head and neck squamous cell carcinoma (HNSC). Upon immunohistochemical (IHC) analysis of FFPE blocks however, COL1A2 showed better differential staining between tumor epithelia and tumor stroma. Similar data science driven approach utilizing single cell sequencing and RNAseq data from stabilized CAFs can be employed to identify CAF-markers in various cancers.
Collapse
Affiliation(s)
- Nehanjali Dwivedi
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, 560099, India
- MAHE, Manipal, 576104, India
| | - Nidhi Shukla
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, 560099, India
| | - K M Prathima
- Manipal Hospital, Miller's Road, Bangalore, Karnataka, 560052, India
| | - Manjula Das
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, 560099, India
| | - Sujan K Dhar
- Computational Biology, Mazumdar Shaw Medical Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, 560099, India.
| |
Collapse
|
20
|
Tiwari PK, Ko TH, Dubey R, Chouhan M, Tsai LW, Singh HN, Chaubey KK, Dayal D, Chiang CW, Kumar S. CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: from bench to clinics. Front Mol Biosci 2023; 10:1214489. [PMID: 37469704 PMCID: PMC10352522 DOI: 10.3389/fmolb.2023.1214489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a third-generation genome editing method that has revolutionized the world with its high throughput results. It has been used in the treatment of various biological diseases and infections. Various bacteria and other prokaryotes such as archaea also have CRISPR/Cas9 systems to guard themselves against bacteriophage. Reportedly, CRISPR/Cas9-based strategy may inhibit the growth and development of triple-negative breast cancer (TNBC) via targeting the potentially altered resistance genes, transcription, and epigenetic regulation. These therapeutic activities could help with the complex issues such as drug resistance which is observed even in TNBC. Currently, various methods have been utilized for the delivery of CRISPR/Cas9 into the targeted cell such as physical (microinjection, electroporation, and hydrodynamic mode), viral (adeno-associated virus and lentivirus), and non-viral (liposomes and lipid nano-particles). Although different models have been developed to investigate the molecular causes of TNBC, but the lack of sensitive and targeted delivery methods for in-vivo genome editing tools limits their clinical application. Therefore, based on the available evidences, this review comprehensively highlighted the advancement, challenges limitations, and prospects of CRISPR/Cas9 for the treatment of TNBC. We also underscored how integrating artificial intelligence and machine learning could improve CRISPR/Cas9 strategies in TNBC therapy.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tin-Hsien Ko
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei City, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei City, Taiwan
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Centre, New York, NY, United States
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Deen Dayal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Chih-Wei Chiang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
21
|
Zuo Q, Yang Y, Lyu Y, Yang C, Chen C, Salman S, Huang TYT, Wicks EE, Jackson W, Datan E, Qin W, Semenza GL. Plexin-B3 expression stimulates MET signaling, breast cancer stem cell specification, and lung metastasis. Cell Rep 2023; 42:112164. [PMID: 36857181 DOI: 10.1016/j.celrep.2023.112164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/21/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Intratumoral hypoxia is a microenvironmental feature that promotes breast cancer progression and is associated with cancer mortality. Plexin B3 (PLXNB3) is highly expressed in estrogen receptor-negative breast cancer, but the underlying mechanisms and consequences have not been thoroughly investigated. Here, we report that PLXNB3 expression is increased in response to hypoxia and that PLXNB3 is a direct target gene of hypoxia-inducible factor 1 (HIF-1) in human breast cancer cells. PLXNB3 expression is correlated with HIF-1α immunohistochemistry, breast cancer grade and stage, and patient mortality. Mechanistically, PLXNB3 is required for hypoxia-induced MET/SRC/focal adhesion kinase (FAK) and MET/SRC/STAT3/NANOG signaling as well as hypoxia-induced breast cancer cell migration, invasion, and cancer stem cell specification. PLXNB3 knockdown impairs tumor formation and lung metastasis in orthotopic breast cancer mouse models.
Collapse
Affiliation(s)
- Qiaozhu Zuo
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yongkang Yang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Yajing Lyu
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chelsey Chen
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tina Yi-Ting Huang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth E Wicks
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Walter Jackson
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emmanuel Datan
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Gregg L Semenza
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA; Departments of Biological Chemistry, Medicine, Pediatrics, and Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Jayaraman H, Anandhapadman A, Ghone NV. In Vitro and In Vivo Comparative Analysis of Differentially Expressed Genes and Signaling Pathways in Breast Cancer Cells on Interaction with Mesenchymal Stem Cells. Appl Biochem Biotechnol 2023; 195:401-431. [PMID: 36087230 DOI: 10.1007/s12010-022-04119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
The interaction of breast cancer cells (BCC) with mesenchymal stem cells (MSC) plays a vital role in influencing the gene expression in breast cancer cells and thereby its uncontrolled proliferation, metastasis, and drug resistance. The extent of MSC governing the BCC or the extent of BCC influencing the MSC is a complex process, and the interaction strongly depends upon conditions such as the presence or absence of other cell types and in vivo tumor microenvironment or simple in vitro conditions. Hence, understanding this interaction through gene expression profiling may provide key insights about potential genes which can be targeted for breast cancer treatment. In the current study, in vitro microarray dataset and in vivo RNA-seq dataset of BCC on interaction with the MSC were downloaded from NCBI GEO database and analyzed for differentially expressed genes (DEGs), gene ontology (GO) term enrichment, and Reactome pathway analysis. To target the genes which have similar effect on both in vitro and in vivo, a comparative analysis was performed, 24 genes were commonly upregulated in both in vitro and in vivo datasets, while no common downregulated genes were observed. Out of which, 16 significant genes based upon fold change (logFC > 2) are identified for manipulating the interactions between MSC and BCC. Among them, 6 of the identified genes (FSTL1, LOX, SERPINE1, INHBA, FN1, and VEGFA) have already been reported to be upregulated in BCC on interaction with MSC by various studies. Further experiments need to be conducted to understand the role of remaining 10 identified genes (EFEMP1, IGFBP3, EDIL3, IFITM1, IGFBP4, ITGA5, SLC3A2, HRH1, PPP1R15A, and NNMT) in MSC-BCC interaction. In addition to the reported significant genes and its associated pathways, the expression of long non-coding RNA identified in this study may increase our understanding about the way MSC interacts with BCC and accelerate MSC-based treatment strategies for breast cancer.
Collapse
Affiliation(s)
- Hariharan Jayaraman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No. 1, Sriperumbudur Taluk, 602117, Kancheepuram, Tamil Nadu, India
| | - Ashwin Anandhapadman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No. 1, Sriperumbudur Taluk, 602117, Kancheepuram, Tamil Nadu, India
| | - Nalinkanth Veerabadran Ghone
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam, 603110, Tamil Nadu, India.
| |
Collapse
|
23
|
Bao L, Festa F, Hirschler-Laszkiewicz I, Keefer K, Wang HG, Cheung JY, Miller BA. The human ion channel TRPM2 modulates migration and invasion in neuroblastoma through regulation of integrin expression. Sci Rep 2022; 12:20544. [PMID: 36446940 PMCID: PMC9709080 DOI: 10.1038/s41598-022-25138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Transient receptor potential channel TRPM2 is highly expressed in many cancers and involved in regulation of key physiological processes including mitochondrial function, bioenergetics, and oxidative stress. In Stage 4 non-MYCN amplified neuroblastoma patients, high TRPM2 expression is associated with worse outcome. Here, neuroblastoma cells with high TRPM2 expression demonstrated increased migration and invasion capability. RNA sequencing, RT-qPCR, and Western blotting demonstrated that the mechanism involved significantly greater expression of integrins α1, αv, β1, and β5 in cells with high TRPM2 expression. Transcription factors HIF-1α, E2F1, and FOXM1, which bind promoter/enhancer regions of these integrins, were increased in cells with high TRPM2 expression. Subcellular fractionation confirmed high levels of α1, αv, and β1 membrane localization and co-immunoprecipitation confirmed the presence of α1β1, αvβ1, and αvβ5 complexes. Inhibitors of α1β1, αvβ1, and αvβ5 complexes significantly reduced migration and invasion in cells highly expressing TRPM2, confirming their functional role. Increased pAktSer473 and pERKThr202/Tyr204, which promote migration through mechanisms including integrin activation, were found in cells highly expressing TRPM2. TRPM2 promotes migration and invasion in neuroblastoma cells with high TRPM2 expression through modulation of integrins together with enhancing cell survival, negatively affecting patient outcome and providing rationale for TRPM2 inhibition in anti-neoplastic therapy.
Collapse
Affiliation(s)
- Lei Bao
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Fernanda Festa
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Iwona Hirschler-Laszkiewicz
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Kerry Keefer
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Hong-Gang Wang
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Departments of Pharmacology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Joseph Y. Cheung
- grid.62560.370000 0004 0378 8294Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Barbara A. Miller
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| |
Collapse
|
24
|
The Role of Hypoxia-Inducible Factor Isoforms in Breast Cancer and Perspectives on Their Inhibition in Therapy. Cancers (Basel) 2022; 14:cancers14184518. [PMID: 36139678 PMCID: PMC9496909 DOI: 10.3390/cancers14184518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In many types of cancers, the activity of the hypoxia-inducible factors enhances hallmarks such as suppression of the immune response, altered metabolism, angiogenesis, invasion, metastasis, and more. As a result of observing these features, HIFs became attractive targets in designing anticancer therapy. The lack of effective breast treatment based on HIFs inhibitors and the elusive role of those factors in this type of cancer raises the concern wheter targeting hypoxia-inducible factors is the right path. Results of the study on breast cancer cell lines suggest the need to consider aspects like HIF-1α versus HIF-2α isoforms inhibition, double versus singular isoform inhibition, different hormone receptors status, metastases, and perhaps different not yet investigated issues. In other words, targeting hypoxia-inducible factors in breast cancers should be preceded by a better understanding of their role in this type of cancer. The aim of this paper is to review the role, functions, and perspectives on hypoxia-inducible factors inhibition in breast cancer. Abstract Hypoxia is a common feature associated with many types of cancer. The activity of the hypoxia-inducible factors (HIFs), the critical element of response and adaptation to hypoxia, enhances cancer hallmarks such as suppression of the immune response, altered metabolism, angiogenesis, invasion, metastasis, and more. The HIF-1α and HIF-2α isoforms show similar regulation characteristics, although they are active in different types of hypoxia and can show different or even opposite effects. Breast cancers present several unique ways of non-canonical hypoxia-inducible factors activity induction, not limited to the hypoxia itself. This review summarizes different effects of HIFs activation in breast cancer, where areas such as metabolism, evasion of the immune response, cell survival and death, angiogenesis, invasion, metastasis, cancer stem cells, and hormone receptors status have been covered. The differences between HIF-1α and HIF-2α activity and their impacts are given special attention. The paper also discusses perspectives on using hypoxia-inducible factors as targets in anticancer therapy, given current knowledge acquired in molecular studies.
Collapse
|
25
|
He F, Yi L, Lai C. Fut7 Promotes Adhesion and Invasion of Acute Lymphoblastic Leukemia Cells through the Integrin/Fak/Akt Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1864116. [PMID: 35795270 PMCID: PMC9252643 DOI: 10.1155/2022/1864116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
Purpose To investigate the role and mechanism of N-fucosyltransferase VII (FUT7) in acute lymphoblastic leukemia (ALL). Methods Bone marrow tissues were collected from patients with ALL and children with immune thrombocytopenic purpura (control) hospitalized in our hospital during the same period. Then, the FUT7 expression in bone marrow tissues was detected by qRT-PCR and western blotting. Human ALL cell strain Jurkat was cultured, and after knockdown or overexpression of FUT7, cell proliferation, apoptosis, adhesion and invasion were examined by MTT assay, flow cytometry, fibronectin adhesion assay and transwell, respectively; the protein expression level of integrin α5, integrin β1, p-FAK, and p-AKT was tested by western blotting. Results The FUT7 expression was up-regulated in bone marrow cells of ALL patients. After knockdown of FUT7, the proliferation, adhesion and migration ability of ALL cells were significantly reduced, and apoptosis was increased, while the overexpression of FUT7 obtained the opposite results. Moreover, the overexpression of FUT7 also promoted the protein expression of integrin α5, integrin β1, p-FAK, p-AKT. Conclusion FUT7 can promote the adhesion and invasion of ALL cells by activating the integrin/FAK/AKT pathway.
Collapse
Affiliation(s)
- Fei He
- Department of Hematology and Oncology, Jiangxi Province Children's Hospital, Nanchang, Jiangxi 330006, China
| | - Lijun Yi
- Department of Hematology and Oncology, Jiangxi Province Children's Hospital, Nanchang, Jiangxi 330006, China
| | - Changcheng Lai
- Department of Hematology and Oncology, Jiangxi Province Children's Hospital, Nanchang, Jiangxi 330006, China
| |
Collapse
|
26
|
Wicks EE, Semenza GL. Hypoxia-inducible factors: cancer progression and clinical translation. J Clin Invest 2022; 132:159839. [PMID: 35642641 PMCID: PMC9151701 DOI: 10.1172/jci159839] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are master regulators of oxygen homeostasis that match O2 supply and demand for each of the 50 trillion cells in the adult human body. Cancer cells co-opt this homeostatic system to drive cancer progression. HIFs activate the transcription of thousands of genes that mediate angiogenesis, cancer stem cell specification, cell motility, epithelial-mesenchymal transition, extracellular matrix remodeling, glucose and lipid metabolism, immune evasion, invasion, and metastasis. In this Review, the mechanisms and consequences of HIF activation in cancer cells are presented. The current status and future prospects of small-molecule HIF inhibitors for use as cancer therapeutics are discussed.
Collapse
Affiliation(s)
| | - Gregg L Semenza
- Department of Genetic Medicine.,Institute for Cell Engineering, and.,Stanley Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Targeting HIF1-alpha/miR-326/ITGA5 axis potentiates chemotherapy response in triple-negative breast cancer. Breast Cancer Res Treat 2022; 193:331-348. [PMID: 35338412 DOI: 10.1007/s10549-022-06569-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/13/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer that is frequently treated with chemotherapy. However, many patients exhibit either de novo chemoresistance or ultimately develop resistance to chemotherapy, leading to significantly high mortality rates. Therefore, increasing the efficacy of chemotherapy has potential to improve patient outcomes. METHODS Here, we performed whole transcriptome sequencing (both RNA and small RNA-sequencing), coupled with network simulations and patient survival data analyses to build a novel miRNA-mRNA interaction network governing chemoresistance in TNBC. We performed cell proliferation assay, Western blotting, RNAi/miRNA mimic experiments, FN coating, 3D cultures, and ChIP assays to validate the interactions in the network, and their functional roles in chemoresistance. We developed xenograft models to test the therapeutic potential of the identified key miRNA/proteins in potentiating chemoresponse in vivo. We also analyzed several patient datasets to evaluate the clinical relevance of our findings. RESULTS We identified fibronectin (FN1) as a central chemoresistance driver gene. Overexpressing miR-326 reversed FN1-driven chemoresistance by targeting FN1 receptor, ITGA5. miR-326 was downregulated by increased hypoxia/HIF1A and ECM stiffness in chemoresistant tumors, leading to upregulation of ITGA5 and activation of the downstream FAK/Src signaling pathways. Overexpression of miR-326 or inhibition of ITGA5 overcame FN1-driven chemotherapy resistance in vitro by inhibiting FAK/Src pathway and potentiated the efficacy of chemotherapy in vivo. Importantly, lower expression of miR-326 or higher levels of predicted miR-326 target genes was significantly associated with worse overall survival in chemotherapy-treated TNBC patients. CONCLUSION FN1 is central in chemoresistance. In chemoresistant tumors, hypoxia and resulting ECM stiffness repress the expression of the tumor suppressor miRNA, miR-326. Hence, re-expression of miR-326 or inhibition of its target ITGA5 reverses FN1-driven chemoresistance making them attractive therapeutic approaches to enhance chemotherapy response in TNBCs.
Collapse
|
28
|
Godet I, Doctorman S, Wu F, Gilkes DM. Detection of Hypoxia in Cancer Models: Significance, Challenges, and Advances. Cells 2022; 11:686. [PMID: 35203334 PMCID: PMC8869817 DOI: 10.3390/cells11040686] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The rapid proliferation of cancer cells combined with deficient vessels cause regions of nutrient and O2 deprivation in solid tumors. Some cancer cells can adapt to these extreme hypoxic conditions and persist to promote cancer progression. Intratumoral hypoxia has been consistently associated with a worse patient prognosis. In vitro, 3D models of spheroids or organoids can recapitulate spontaneous O2 gradients in solid tumors. Likewise, in vivo murine models of cancer reproduce the physiological levels of hypoxia that have been measured in human tumors. Given the potential clinical importance of hypoxia in cancer progression, there is an increasing need to design methods to measure O2 concentrations. O2 levels can be directly measured with needle-type probes, both optical and electrochemical. Alternatively, indirect, noninvasive approaches have been optimized, and include immunolabeling endogenous or exogenous markers. Fluorescent, phosphorescent, and luminescent reporters have also been employed experimentally to provide dynamic measurements of O2 in live cells or tumors. In medical imaging, modalities such as MRI and PET are often the method of choice. This review provides a comparative overview of the main methods utilized to detect hypoxia in cell culture and preclinical models of cancer.
Collapse
Affiliation(s)
- Inês Godet
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; (S.D.); (F.W.)
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Steven Doctorman
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; (S.D.); (F.W.)
| | - Fan Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; (S.D.); (F.W.)
| | - Daniele M. Gilkes
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; (S.D.); (F.W.)
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
29
|
Li Q, Lan T, Xie J, Lu Y, Zheng D, Su B. Integrin-Mediated Tumorigenesis and Its Therapeutic Applications. Front Oncol 2022; 12:812480. [PMID: 35223494 PMCID: PMC8873568 DOI: 10.3389/fonc.2022.812480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Integrins, a family of adhesion molecules generally exist on the cell surface, are essential for regulating cell growth and its function. As a bi-directional signaling molecule, they mediate cell-cell and cell-extracellular matrix interaction. The recognitions of their key roles in many human pathologies, including autoimmunity, thrombosis and neoplasia, have revealed their great potential as a therapeutic target. This paper focuses on the activation of integrins, the role of integrins in tumorigenesis and progression, and advances of integrin-dependent tumor therapeutics in recent years. It is expected that understanding function and signaling transmission will fully exploit potentialities of integrin as a novel target for tumors.
Collapse
Affiliation(s)
- Qingling Li
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ting Lan
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jian Xie
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Dali Zheng, ; Bohua Su,
| | - Bohua Su
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Dali Zheng, ; Bohua Su,
| |
Collapse
|
30
|
The Effects of αvβ3 Integrin Blockage in Breast Tumor and Endothelial Cells under Hypoxia In Vitro. Int J Mol Sci 2022; 23:ijms23031745. [PMID: 35163668 PMCID: PMC8835904 DOI: 10.3390/ijms23031745] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is characterized by a hypoxic microenvironment inside the tumor mass, contributing to cell metastatic behavior. Hypoxia induces the expression of hypoxia-inducible factor (HIF-1α), a transcription factor for genes involved in angiogenesis and metastatic behavior, including the vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), and integrins. Integrin receptors play a key role in cell adhesion and migration, being considered targets for metastasis prevention. We investigated the migratory behavior of hypoxia-cultured triple-negative breast cancer cells (TNBC) and endothelial cells (HUVEC) upon αvβ3 integrin blocking with DisBa-01, an RGD disintegrin with high affinity to this integrin. Boyden chamber, HUVEC transmigration, and wound healing assays in the presence of DisBa-01 were performed in hypoxic conditions. DisBa-01 produced similar effects in the two oxygen conditions in the Boyden chamber and transmigration assays. In the wound healing assay, hypoxia abolished DisBa-01′s inhibitory effect on cell motility and decreased the MMP-9 activity of conditioned media. These results indicate that αvβ3 integrin function in cell motility depends on the assay and oxygen levels, and higher inhibitor concentrations may be necessary to achieve the same inhibitory effect as in normoxia. These versatile responses add more complexity to the role of the αvβ3 integrin during tumor progression.
Collapse
|
31
|
Xia T, Xiang T, Xie H. Update on the role of C1GALT1 in cancer (Review). Oncol Lett 2022; 23:97. [PMID: 35154428 PMCID: PMC8822393 DOI: 10.3892/ol.2022.13217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer remains one of the most difficult diseases to treat. In the quest for early diagnoses to improve patient survival and prognosis, targeted therapies have become a hot research topic in recent years. Glycosylation is the most common posttranslational modification in mammalian cells. Core 1β1,3-galactosyltransferase (C1GALT1) is a key glycosyltransferase in the glycosylation process and is the key enzyme in the formation of the core 1 structure on which most complex and branched O-glycans are formed. A recent study reported that C1GALT1 was aberrantly expressed in tumors. In cancer cells, C1GALT1 is regulated by different factors. In the present review, the expression of C1GALT1 in different tumors and its possible molecular mechanisms of action are described and the role of C1GALT1 in cancer development is discussed.
Collapse
Affiliation(s)
- Tong Xia
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ting Xiang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hailong Xie
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
32
|
Chaudhary B, Kumar P, Arya P, Singla D, Kumar V, Kumar D, S R, Wadhwa S, Gulati M, Singh SK, Dua K, Gupta G, Gupta MM. Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery. Curr Drug Metab 2022; 23:1027-1053. [PMID: 36627789 DOI: 10.2174/1389200224666230110145513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023]
Abstract
Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.
Collapse
Affiliation(s)
- Benu Chaudhary
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Parveen Kumar
- Department of Life Science, Shri Ram College of Pharmacy, Karnal, Haryana, India
| | - Preeti Arya
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Deepak Singla
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Virender Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Davinder Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Roshan S
- Department of Pharmacology, Deccan School of Pharmacy, Hyderabad, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| |
Collapse
|
33
|
Cardiac-derived stem cell engineered with constitutively active HIF-1α gene enhances blood perfusion of hindlimb ischemia. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Knyazev E, Maltseva D, Raygorodskaya M, Shkurnikov M. HIF-Dependent NFATC1 Activation Upregulates ITGA5 and PLAUR in Intestinal Epithelium in Inflammatory Bowel Disease. Front Genet 2021; 12:791640. [PMID: 34858489 PMCID: PMC8632048 DOI: 10.3389/fgene.2021.791640] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal epithelial cells exist in physiological hypoxia, leading to hypoxia-inducible factor (HIF) activation and supporting barrier function and cell metabolism of the intestinal epithelium. In contrast, pathological hypoxia is a common feature of some chronic disorders, including inflammatory bowel disease (IBD). This work was aimed at studying HIF-associated changes in the intestinal epithelium in IBD. In the first step, a list of genes responding to chemical activation of hypoxia was obtained in an in vitro intestinal cell model with RNA sequencing. Cobalt (II) chloride and oxyquinoline treatment of both undifferentiated and differentiated Caco-2 cells activate the HIF-signaling pathway according to gene set enrichment analysis. The core gene set responding to chemical hypoxia stimulation in the intestinal model included 115 upregulated and 69 downregulated genes. Of this set, protein product was detected for 32 genes, and fold changes in proteome and RNA sequencing significantly correlate. Analysis of publicly available RNA sequencing set of the intestinal epithelial cells of patients with IBD confirmed HIF-1 signaling pathway activation in sigmoid colon of patients with ulcerative colitis and terminal ileum of patients with Crohn's disease. Of the core gene set from the gut hypoxia model, expression activation of ITGA5 and PLAUR genes encoding integrin α5 and urokinase-type plasminogen activator receptor (uPAR) was detected in IBD specimens. The interaction of these molecules can activate cell migration and regenerative processes in the epithelium. Transcription factor analysis with the previously developed miRGTF tool revealed the possible role of HIF1A and NFATC1 in the regulation of ITGA5 and PLAUR gene expression. Detected genes can serve as markers of IBD progression and intestinal hypoxia.
Collapse
Affiliation(s)
- Evgeny Knyazev
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Maria Raygorodskaya
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Maxim Shkurnikov
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia.,National Center of Medical Radiological Research, P. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| |
Collapse
|
35
|
Zhang H, Zhang L, Lu M. Inhibition of integrin subunit alpha 11 restrains gastric cancer progression through phosphatidylinositol 3-kinase/Akt pathway. Bioengineered 2021; 12:11909-11921. [PMID: 34802381 PMCID: PMC8810121 DOI: 10.1080/21655979.2021.2006551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
Gastric cancer (GC) is among the most frequent malignancies originating from the digestive system worldwide, while the role and specific mechanism of integrin-subunit alpha 11 (ITGA11) in GC remain unclear. This study probes the expression characteristics and function of ITGA11 in GC. Firstly, the ITGA11 profile in GC tissues and paracancerous non-tumor tissues was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot (WB), and the association between ITGA11 and GC patients' clinicopathological indicators was evaluated. ITGA11 knockdown models were set up in GC cell lines MKN45 and AGS. Cell proliferation was determined by the cell counting kit-8 (CCK-8) assay and colony formation assay. WB was utilized to gauge the expression of apoptosis-related proteins (Bax, Bcl2, Bad, and C-Caspase3) and the PI3K/AKT pathway. We discovered that the ITGA11 expression was boosted in GC tissues and was related to the unfavorable prognosis of GC patients. Additionally, ITGA11 knockdown abated GC cell proliferation, invasion and migration, and enhanced cell apoptosis. In animal experiments, the tumorigenesis of GC cells knocking down ITGA11 was reduced. Mechanically, knocking down ITGA11 notably inactivated the PI3K/AKT axis. The tumor-suppressive effect mediated by ITGA11 knockdown was attenuated after activating the PI3K/AKT pathway with insulin-like growth factor 1 (IGF-1). Overall, this study substantiated that the ITGA11 expression was heightened in GC tissues, which affected GC progression by modulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Haijun Zhang
- Second Department of General Surgery, The First Hospital of Qiqihar, Qiqihar, P. R. China
| | - Lin Zhang
- Pharmacy Department of the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, P. R. China
| | - Ming Lu
- First Department of Surgery, Gannan People’s Hospital, Qiqihar, P. R. China
| |
Collapse
|
36
|
Patel N, Kommineni N, Surapaneni SK, Kalvala A, Yaun X, Gebeyehu A, Arthur P, Duke LC, York SB, Bagde A, Meckes DG, Singh M. Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models. Int J Pharm 2021; 607:120943. [PMID: 34324983 PMCID: PMC8528640 DOI: 10.1016/j.ijpharm.2021.120943] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022]
Abstract
Extracellular Vesicles (EVs) were isolated from human umbilical cord mesenchymal stem cells (hUCMSCs) and were further encapsulated with cannabidiol (CBD) through sonication method (CBD EVs). CBD EVs displayed an average particle size of 114.1 ± 1.02 nm, zeta potential of -30.26 ± 0.12 mV, entrapment efficiency of 92.3 ± 2.21% and stability for several months at 4 °C. CBD release from the EVs was observed as 50.74 ± 2.44% and 53.99 ± 1.4% at pH 6.8 and pH 7.4, respectively after 48 h. Our in-vitro studies demonstrated that CBD either alone or in EVs form significantly sensitized MDA-MB-231 cells to doxorubicin (DOX) (*P < 0.05). Flow cytometry and migration studies revealed that CBD EVs either alone or in combination with DOX induced G1 phase cell cycle arrest and decreased migration of MDA-MB-231 cells, respectively. CBD EVs and DOX combination significantly reduced tumor burden (***P < 0.001) in MDA-MB-231 xenograft tumor model. Western blotting and immunocytochemical analysis demonstrated that CBD EVs and DOX combination decreased the expression of proteins involved in inflammation, metastasis and increased the expression of proteins involved in apoptosis. CBD EVs and DOX combination will have profound clinical significance in not only decreasing the side effects but also increasing the therapeutic efficacy of DOX in TNBC.
Collapse
Affiliation(s)
- Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Anil Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Xuegang Yaun
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, USA; The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Leanne C Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Sara B York
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|
37
|
Rocha HL, Godet I, Kurtoglu F, Metzcar J, Konstantinopoulos K, Bhoyar S, Gilkes DM, Macklin P. A persistent invasive phenotype in post-hypoxic tumor cells is revealed by fate mapping and computational modeling. iScience 2021; 24:102935. [PMID: 34568781 PMCID: PMC8449249 DOI: 10.1016/j.isci.2021.102935] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022] Open
Abstract
Hypoxia is a critical factor in solid tumors that has been associated with cancer progression and aggressiveness. We recently developed a hypoxia fate mapping system to trace post-hypoxic cells within a tumor for the first time. This approach uses an oxygen-dependent fluorescent switch and allowed us to measure key biological features such as oxygen distribution, cell proliferation, and migration. We developed a computational model to investigate the motility and phenotypic persistence of hypoxic and post-hypoxic cells during tumor progression. The cellular behavior was defined by phenotypic persistence time, cell movement bias, and the fraction of cells that respond to an enhanced migratory stimulus. This work combined advanced cell tracking and imaging techniques with mathematical modeling, to reveal that a persistent invasive migratory phenotype that develops under hypoxia is required for cellular escape into the surrounding tissue, promoting the formation of invasive structures (“plumes”) that expand toward the oxygenated tumor regions. A fluorescent fate mapping system allows tracking of hypoxic and post-hypoxic cells Computational modeling predicts the formation of post-hypoxic invasive plumes Simulations show post-hypoxic cells must maintain persistant migration to form plumes Tracking cells exposed to intratumoral hypoxia confirms persistent migration
Collapse
Affiliation(s)
- Heber L Rocha
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA
| | - Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Furkan Kurtoglu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.,Department of Informatics, Indiana University, Bloomington, IN 47408, USA
| | - Kali Konstantinopoulos
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA
| | - Soumitra Bhoyar
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.,Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA
| |
Collapse
|
38
|
Li M, Wang Y, Li M, Wu X, Setrerrahmane S, Xu H. Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B 2021; 11:2726-2737. [PMID: 34589393 PMCID: PMC8463276 DOI: 10.1016/j.apsb.2021.01.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Integrins are transmembrane receptors that have been implicated in the biology of various human physiological and pathological processes. These molecules facilitate cell–extracellular matrix and cell–cell interactions, and they have been implicated in fibrosis, inflammation, thrombosis, and tumor metastasis. The role of integrins in tumor progression makes them promising targets for cancer treatment, and certain integrin antagonists, such as antibodies and synthetic peptides, have been effectively utilized in the clinic for cancer therapy. Here, we discuss the evidence and knowledge on the contribution of integrins to cancer biology. Furthermore, we summarize the clinical attempts targeting this family in anti-cancer therapy development.
Collapse
Key Words
- ADAMs, adisintegrin and metalloproteases
- AJ, adherens junctions
- Antagonists
- CAFs, cancer-associated fibroblasts
- CAR, chimeric antigen receptor
- CRC, colorectal cancer
- CSC, cancer stem cell
- Clinical trial
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial–mesenchymal transition
- ERK, extracellular regulated kinase
- Extracellular matrix
- FAK, focal adhesion kinase
- FDA, U.S. Food and Drug Administration
- HIF-1α, hypoxia-inducible factor-1α
- HUVECs, human umbilical vein endothelial cells
- ICAMs, intercellular adhesion molecules
- IGFR, insulin-like growth factor receptor
- IMD, integrin-mediated death
- Integrins
- JNK, c-Jun N-terminal kinase 16
- MAPK, mitogen-activated protein kinase
- MMP2, matrix metalloprotease 2
- NF-κB, nuclear factor-κB
- NSCLC, non-small cell lung cancer
- PDGFR, platelet-derived growth factor receptor
- PI3K, phosphatidylinositol 3-kinase
- RGD, Arg-Gly-Asp
- RTKs, receptor tyrosine kinases
- SAPKs, stress-activated MAP kinases
- SDF-1, stromal cell-derived factor-1
- SH2, Src homology 2
- STAT3, signal transducer and activator of transcription 3
- TCGA, The Cancer Genome Atlas
- TICs, tumor initiating cells
- TNF, tumor necrosis factor
- Targeted drug
- Tumor progression
- VCAMs, vascular cell adhesion molecules
- VEGFR, vascular endothelial growth factor receptor
- mAb, monoclonal antibodies
- sdCAR-T, switchable dual-receptor CAR-engineered T
- siRNA, small interference RNA
- uPA, urokinase-type plasminogen activator
Collapse
|
39
|
Tan ML, Ling L, Fischbach C. Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro. Adv Drug Deliv Rev 2021; 176:113852. [PMID: 34197895 PMCID: PMC8440401 DOI: 10.1016/j.addr.2021.113852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Despite decades of research and advancements in diagnostic and treatment modalities, cancer remains a major global healthcare challenge. This is due in part to a lack of model systems that allow investigating the mechanisms underlying tumor development, progression, and therapy resistance under relevant conditions in vitro. Tumor cell interactions with their surroundings influence all stages of tumorigenesis and are shaped by both biological and biophysical cues including cell-cell and cell-extracellular matrix (ECM) interactions, tissue architecture and mechanics, and mass transport. Engineered tumor models provide promising platforms to elucidate the individual and combined contributions of these cues to tumor malignancy under controlled and physiologically relevant conditions. This review will summarize current knowledge of the biological and biophysical microenvironmental cues that influence tumor development and progression, present examples of in vitro model systems that are presently used to study these interactions and highlight advancements in tumor engineering approaches to further improve these technologies.
Collapse
Affiliation(s)
- Matthew L Tan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
40
|
Dong X, Chen C, Deng X, Liu Y, Duan Q, Peng Z, Luo Z, Shen L. A novel mechanism for C1GALT1 in the regulation of gastric cancer progression. Cell Biosci 2021; 11:166. [PMID: 34452648 PMCID: PMC8393437 DOI: 10.1186/s13578-021-00678-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/15/2021] [Indexed: 01/02/2023] Open
Abstract
Background Gastric cancer (GC) is a highly aggressive and lethal disease around the world. High expression of core 1 β 1, 3-galactosyltransferase 1 (C1GALT1), the primary enzyme responsible for protein O-glycosylation, plays a critical role in gastric carcinogenesis. However, proteins that can be O-glycosylated by C1GALT1 in GC have not been completely elucidated. Also, the mechanism leading to its upregulation in GC is currently unknown. Results Using public databases and our patient samples, we confirmed that C1GALT1 expression was upregulated at both the mRNA and protein levels in GC tissues. Elevated expression of C1GALT1 protein was closely associated with advanced TNM stage, lymph node metastasis, tumor recurrence, and poor overall survival. With gain- and loss-of-function approaches, we demonstrated that C1GALT1 promoted GC cell proliferation, migration, and invasion. By employing lectin pull-down assay and mass spectrometry, integrin α5 was identified as a new downstream target of C1GALT1 in GC. C1GALT1 was able to modify O-linked glycosylation on integrin α5 and thereby modulate the activation of the PI3K/AKT pathway. Functional experiments indicated that integrin α5 inhibition could reverse C1GALT1-mediated tumor growth and metastasis both in vitro and in vivo. Moreover, transcription factor SP1 was found to bind to the C1GALT1 promoter region and activated its expression. Further investigation proved that miR-152 negatively regulated C1GALT1 expression by directly binding to its 3′ -UTR. Conclusions Our findings uncover a novel mechanism for C1GALT1 in the regulation of GC progression. Thus, C1GALT1 may serve as a promising target for the diagnosis and treatment of GC. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00678-2.
Collapse
Affiliation(s)
- Xiaoxia Dong
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Chunli Chen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xinzhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yongyu Liu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qiwen Duan
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhen Peng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
41
|
Heidarzadeh M, Gürsoy-Özdemir Y, Kaya M, Eslami Abriz A, Zarebkohan A, Rahbarghazi R, Sokullu E. Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls. Cell Biosci 2021; 11:142. [PMID: 34294165 PMCID: PMC8296716 DOI: 10.1186/s13578-021-00650-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Nowadays, a large population around the world, especially the elderly, suffers from neurological inflammatory and degenerative disorders/diseases. Current drug delivery strategies are facing different challenges because of the presence of the BBB, which limits the transport of various substances and cells to brain parenchyma. Additionally, the low rate of successful cell transplantation to the brain injury sites leads to efforts to find alternative therapies. Stem cell byproducts such as exosomes are touted as natural nano-drug carriers with 50-100 nm in diameter. These nano-sized particles could harbor and transfer a plethora of therapeutic agents and biological cargos to the brain. These nanoparticles would offer a solution to maintain paracrine cell-to-cell communications under healthy and inflammatory conditions. The main question is that the existence of the intact BBB could limit exosomal trafficking. Does BBB possess some molecular mechanisms that facilitate the exosomal delivery compared to the circulating cell? Although preliminary studies have shown that exosomes could cross the BBB, the exact molecular mechanism(s) beyond this phenomenon remains unclear. In this review, we tried to compile some facts about exosome delivery through the BBB and propose some mechanisms that regulate exosomal cross in pathological and physiological conditions.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.,Neurology Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Mehmet Kaya
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.,Physiology Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Aysan Eslami Abriz
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey. .,Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.
| |
Collapse
|
42
|
Garcia JH, Jain S, Aghi MK. Metabolic Drivers of Invasion in Glioblastoma. Front Cell Dev Biol 2021; 9:683276. [PMID: 34277624 PMCID: PMC8281286 DOI: 10.3389/fcell.2021.683276] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma is a primary malignant brain tumor with a median survival under 2 years. The poor prognosis glioblastoma caries is largely due to cellular invasion, which enables escape from resection, and drives inevitable recurrence. While most studies to date have focused on pathways that enhance the invasiveness of tumor cells in the brain microenvironment as the primary driving forces behind GBM’s ability to invade adjacent tissues, more recent studies have identified a role for adaptations in cellular metabolism in GBM invasion. Metabolic reprogramming allows invasive cells to generate the energy necessary for colonizing surrounding brain tissue and adapt to new microenvironments with unique nutrient and oxygen availability. Historically, enhanced glycolysis, even in the presence of oxygen (the Warburg effect) has dominated glioblastoma research with respect to tumor metabolism. More recent global profiling experiments, however, have identified roles for lipid, amino acid, and nucleotide metabolism in tumor growth and invasion. A thorough understanding of the metabolic traits that define invasive GBM cells may provide novel therapeutic targets for this devastating disease. In this review, we focus on metabolic alterations that have been characterized in glioblastoma, the dynamic nature of tumor metabolism and how it is shaped by interaction with the brain microenvironment, and how metabolic reprogramming generates vulnerabilities that may be ripe for exploitation.
Collapse
Affiliation(s)
- Joseph H Garcia
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
43
|
Hypoxia-inducible factor-dependent ADAM12 expression mediates breast cancer invasion and metastasis. Proc Natl Acad Sci U S A 2021; 118:2020490118. [PMID: 33952697 DOI: 10.1073/pnas.2020490118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer patients with increased expression of hypoxia-inducible factors (HIFs) in primary tumor biopsies are at increased risk of metastasis, which is the major cause of breast cancer-related mortality. The mechanisms by which intratumoral hypoxia and HIFs regulate metastasis are not fully elucidated. In this paper, we report that exposure of human breast cancer cells to hypoxia activates epidermal growth factor receptor (EGFR) signaling that is mediated by the HIF-dependent expression of a disintegrin and metalloprotease 12 (ADAM12), which mediates increased ectodomain shedding of heparin-binding EGF-like growth factor, an EGFR ligand, leading to EGFR-dependent phosphorylation of focal adhesion kinase. Inhibition of ADAM12 expression or activity decreased hypoxia-induced breast cancer cell migration and invasion in vitro, and dramatically impaired lung metastasis after orthotopic implantation of MDA-MB-231 human breast cancer cells into the mammary fat pad of immunodeficient mice.
Collapse
|
44
|
Magdaleno C, House T, Pawar JS, Carvalho S, Rajasekaran N, Varadaraj A. Fibronectin assembly regulates lumen formation in breast acini. J Cell Biochem 2021; 122:524-537. [PMID: 33438770 PMCID: PMC8016724 DOI: 10.1002/jcb.29885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 02/01/2023]
Abstract
Fibronectin (FN) is an extracellular matrix (ECM) glycoprotein that self-assembles into FN fibrils, forming a FN matrix contributing to the stiffness of the ECM. Stromal FN stiffness in cancer has been shown to impact epithelial functions such as migration, cancer metastasis, and epithelial-to-mesenchymal transition. The role of the FN matrix of epithelial cells in driving such processes remains less well understood and is the focus of this study. Hypoxia, defined by low oxygen tension (<5%) is one of the hallmarks of tumor microenvironments impacting fibril reorganization in stromal and epithelial cells. Here, using the MCF10 breast epithelial progression series of cell lines encompassing normal, preinvasive, and invasive states, we show that FN fibril formation decreases during hypoxia, coinciding with a decrease in migratory potential of these cells. Conversely, we find that FN fibril disruption during three-dimensional acinar growth of normal breast cells resulted in acinar luminal filling. Our data also demonstrates that the luminal filling upon fibril disruption in untransformed MCF10A cells results in a loss of apicobasal polarity, characteristic of pre-invasive and invasive breast cell lines MCF10AT and MCF10 DCIS.com. Overall this is the first study that relates fibril-mediated changes in epithelial cells as critical players in lumen clearing of breast acini and maintenance of the untransformed growth characteristic.
Collapse
Affiliation(s)
- Carina Magdaleno
- Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Trenton House
- Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Jogendra S. Pawar
- Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffArizonaUSA
- Present address:
Jogendra S. Pawar, Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndianaUSA
| | - Sophia Carvalho
- Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffArizonaUSA
| | | | - Archana Varadaraj
- Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
45
|
The Role of Biomimetic Hypoxia on Cancer Cell Behaviour in 3D Models: A Systematic Review. Cancers (Basel) 2021; 13:cancers13061334. [PMID: 33809554 PMCID: PMC7999912 DOI: 10.3390/cancers13061334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer remains one of the leading causes of death worldwide. The advancements in 3D tumour models provide in vitro test-beds to study cancer growth, metastasis and response to therapy. We conducted this systematic review on existing experimental studies in order to identify and summarize key biomimetic tumour microenvironmental features which affect aspects of cancer biology. The review noted the significance of in vitro hypoxia and 3D tumour models on epithelial to mesenchymal transition, drug resistance, invasion and migration of cancer cells. We highlight the importance of various experimental parameters used in these studies and their subsequent effects on cancer cell behaviour. Abstract The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.
Collapse
|
46
|
Shen M, Liu S, Stoyanova T. The role of Trop2 in prostate cancer: an oncogene, biomarker, and therapeutic target. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:73-87. [PMID: 33816696 PMCID: PMC8012837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Prostate cancer remains the second leading cause of cancer-associated deaths amongst American men. Trop2, a cell surface glycoprotein, correlates with poor clinical outcome and is highly expressed in metastatic, treatment-resistant prostate cancer. High levels of Trop2 are prognostic for biochemical recurrence. Trop2 regulates tumor growth and metastatic ability of prostate cancer. Moreover, overexpression of Trop2 drives the transdifferentiation to neuroendocrine phenotype in prostate cancer. In addition, Trop2 is overexpressed across epithelial cancers and has emerged as a promising therapeutic target in various solid epithelial cancers. The FDA (Food and Drug Administration) recently approved the use of a Trop2-targeting ADC (antibody-drug conjugate), Sacituzumab Govitecan (IMMU-132), for metastatic, triple-negative breast cancer with at least two prior therapies. Here, we review the role of Trop2 in prostate tumorigenesis and its potential as a promising biomarker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Michelle Shen
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University USA
| | - Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University USA
| |
Collapse
|
47
|
Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene 2021; 40:1043-1063. [PMID: 33420366 DOI: 10.1038/s41388-020-01588-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Integrins are cell adhesion receptors, which are typically transmembrane glycoproteins that connect to the extracellular matrix (ECM). The function of integrins regulated by biochemical events within the cells. Understanding the mechanisms of cell growth by integrins is important in elucidating their effects on tumor progression. One of the major events in integrin signaling is integrin binding to extracellular ligands. Another event is distant signaling that gathers chemical signals from outside of the cell and transmit the signals upon cell adhesion to the inside of the cell. In normal breast tissue, integrins function as checkpoints to monitor effects on cell proliferation, while in cancer tissue these functions altered. The combination of tumor microenvironment and its associated components determines the cell fate. Hypoxia can increase the expression of several integrins. The exosomal integrins promote the growth of metastatic cells. Expression of certain integrins is associated with increased metastasis and decreased prognosis in cancers. In addition, integrin-binding proteins promote invasion and metastasis in breast cancer. Targeting specific integrins and integrin-binding proteins may provide new therapeutic approaches for breast cancer therapies. This review will examine the current knowledge of integrins' role in breast cancer.
Collapse
|
48
|
Pantano F, Croset M, Driouch K, Bednarz-Knoll N, Iuliani M, Ribelli G, Bonnelye E, Wikman H, Geraci S, Bonin F, Simonetti S, Vincenzi B, Hong SS, Sousa S, Pantel K, Tonini G, Santini D, Clézardin P. Integrin alpha5 in human breast cancer is a mediator of bone metastasis and a therapeutic target for the treatment of osteolytic lesions. Oncogene 2021; 40:1284-1299. [PMID: 33420367 PMCID: PMC7892344 DOI: 10.1038/s41388-020-01603-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Bone metastasis remains a major cause of mortality and morbidity in breast cancer. Therefore, there is an urgent need to better select high-risk patients in order to adapt patient's treatment and prevent bone recurrence. Here, we found that integrin alpha5 (ITGA5) was highly expressed in bone metastases, compared to lung, liver, or brain metastases. High ITGA5 expression in primary tumors correlated with the presence of disseminated tumor cells in bone marrow aspirates from early stage breast cancer patients (n = 268; p = 0.039). ITGA5 was also predictive of poor bone metastasis-free survival in two separate clinical data sets (n = 855, HR = 1.36, p = 0.018 and n = 427, HR = 1.62, p = 0.024). This prognostic value remained significant in multivariate analysis (p = 0.028). Experimentally, ITGA5 silencing impaired tumor cell adhesion to fibronectin, migration, and survival. ITGA5 silencing also reduced tumor cell colonization of the bone marrow and formation of osteolytic lesions in vivo. Conversely, ITGA5 overexpression promoted bone metastasis. Pharmacological inhibition of ITGA5 with humanized monoclonal antibody M200 (volociximab) recapitulated inhibitory effects of ITGA5 silencing on tumor cell functions in vitro and tumor cell colonization of the bone marrow in vivo. M200 also markedly reduced tumor outgrowth in experimental models of bone metastasis or tumorigenesis, and blunted cancer-associated bone destruction. ITGA5 was not only expressed by tumor cells but also osteoclasts. In this respect, M200 decreased human osteoclast-mediated bone resorption in vitro. Overall, this study identifies ITGA5 as a mediator of breast-to-bone metastasis and raises the possibility that volociximab/M200 could be repurposed for the treatment of ITGA5-positive breast cancer patients with bone metastases.
Collapse
Affiliation(s)
- Francesco Pantano
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France ,grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Martine Croset
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France
| | - Keltouma Driouch
- grid.418596.70000 0004 0639 6384Institut Curie, Service de Génétique, Unité de Pharmacogénomique, Paris, France
| | - Natalia Bednarz-Knoll
- grid.13648.380000 0001 2180 3484Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.11451.300000 0001 0531 3426Laboratory of Translational Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Michele Iuliani
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Giulia Ribelli
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Edith Bonnelye
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France
| | - Harriet Wikman
- grid.13648.380000 0001 2180 3484Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Geraci
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France
| | - Florian Bonin
- grid.418596.70000 0004 0639 6384Institut Curie, Service de Génétique, Unité de Pharmacogénomique, Paris, France
| | - Sonia Simonetti
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Bruno Vincenzi
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Saw See Hong
- grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France ,grid.507621.7INRA, UMR-754, Lyon, France
| | - Sofia Sousa
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France
| | - Klaus Pantel
- grid.13648.380000 0001 2180 3484Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Giuseppe Tonini
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Daniele Santini
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Philippe Clézardin
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France ,grid.11835.3e0000 0004 1936 9262Oncology and Metabolism Department, University of Sheffield, Sheffield, UK
| |
Collapse
|
49
|
Li T, Wu Q, Liu D, Wang X. miR-27b Suppresses Tongue Squamous Cell Carcinoma Epithelial-Mesenchymal Transition by Targeting ITGA5. Onco Targets Ther 2020; 13:11855-11867. [PMID: 33239888 PMCID: PMC7680796 DOI: 10.2147/ott.s281211] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MicroRNA27b-3p (miR-27b) has been reported to be dysregulated in multiple types of human cancer. However, the expression levels, biological roles, and underlying mechanism of miR-27b in tongue squamous cell carcinoma (TSCC) remain to be elucidated. METHODS Bioinformatics analyses and quantitative real-time PCR (qRT-PCR) were used to determine miR-27b expression in TSCC tissues and cell lines. The influence of miR-27b overexpression or inhibition on TSCC cell proliferation, migration, and invasion in vitro, and on tumor growth in vivo, was explored via CCK8, colony formation, wound healing, and transwell assays, and in xenograft tumors in nude mice, respectively. Luciferase reporter assays, qRT-PCR, and Western blotting were performed to clarify the potential mechanisms involving miR-27b in TSCC cells. RESULTS miR-27b was significantly downregulated in TSCC tissues and cell lines, and its expression was correlated with cancer status. Overexpression of miR-27b led to diminished proliferation, migration, and invasion, and notably reduced tumor growth in vivo. Bioinformatics analysis followed by luciferase reporter assays demonstrated that miR-27b expression was inversely correlated with that of integrin subunit α5 (ITGA5)and that miR-27b directly bound to the 3'-untranslated region of ITGA5 in TSCC cells. The bioinformatics analysis also indicated that ITGA5 was upregulated in TSCC and that its expression was correlated with epithelial-mesenchymal transition (EMT) and poor prognosis. Moreover, we found that miRNA-27b could reverse ITGA5-induced promotion of TSCC cell proliferation and migration. Finally, we demonstrated that regulation of miR-27b expression in TSCC may result in alterations in the expression of ITGA5 and EMT-related marker genes at the mRNA and protein levels. CONCLUSION These results indicate that miR-27b hampers TSCC proliferation and migration via suppressing the EMT process by targeting ITGA5. These findings support consideration of miR-27b/ITGA5 as a valuable marker for the metastatic potential of TSCC, or as a therapeutic target for the treatment of TSCC.
Collapse
Affiliation(s)
- Tao Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People’s Republic of China
| | - Qian Wu
- Department of Nursing, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Duanqin Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People’s Republic of China
| | - Xuxia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
50
|
Okada M, Kawai K, Sonoda H, Shiratori H, Kishikawa J, Nagata H, Nozawa H, Sasaki K, Kaneko M, Murono K, Emoto S, Iida Y, Ishii H, Yokoyama Y, Anzai H, Hasegawa K, Ishihara S. Epithelial-mesenchymal transition and metastatic ability of CD133 + colorectal cancer stem-like cells under hypoxia. Oncol Lett 2020; 21:19. [PMID: 33240425 PMCID: PMC7681219 DOI: 10.3892/ol.2020.12280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Although CD133 is a representative cancer stem cell marker, its function in tumor aggressiveness under hypoxia remains unclear. Therefore, the present study aimed to investigate the associations between CD133, the epithelial-mesenchymal transition and distant metastasis in colorectal cancer. CD133+ and CD133− cells were isolated from a single colorectal cancer cell line LoVo, and their adhesive and migratory properties were compared under hypoxic conditions. Immunostaining analysis was performed to determine CD133 expression in clinical samples of primary tumors, as well as liver and peritoneal metastases. Under hypoxia, the expression levels of hypoxia-inducible factor (HIF)-1α and the epithelial-mesenchymal transition markers N-cadherin and vimentin were significantly higher in the CD133+ compared with those in the CD133− cells. Furthermore, the migratory ability of the CD133+ cells was higher compared with that of the CD133− cells under hypoxia. By contrast, the expression levels of β1 integrin were significantly lower in the CD133+ cells under hypoxia compared with those in the CD133− cells. Immunohistochemical analysis of clinical samples revealed that the levels of CD133 expression in metastatic tissues from the liver were significantly higher compared with those in the corresponding primary tumors, whereas CD133 expression levels in peritoneal metastatic tissues were significantly lower compared with those in the corresponding primary tumors. In conclusion, compared with the CD133− cells, the CD133+ colorectal cancer cells exhibited enhanced levels of HIF-1α expression and tumor cell migration during hypoxia. This was associated with an increased ability of epithelial-mesenchymal transition, possibly leading to the acquisition of an increased hematogenous metastatic potential and eventually resulting in liver metastasis. High β1 integrin expression levels in the CD133− cells under hypoxia may serve a key role in cell adhesion to the peritoneum, resulting in peritoneal metastasis.
Collapse
Affiliation(s)
- Masamichi Okada
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazushige Kawai
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hirofumi Sonoda
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroshi Shiratori
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Junko Kishikawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroshi Nagata
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroaki Nozawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuhito Sasaki
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Manabu Kaneko
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Koji Murono
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shigenobu Emoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuuki Iida
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroaki Ishii
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Yokoyama
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroyuki Anzai
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo 113-8655, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|