1
|
Siddique S, Ahmad KR, Nawaz SK, Raza AR, Ahmad SN, Ali R, Inayat I, Suleman S, Kanwal MA, Usman M. Evaluation of the anti-inflammatory, analgesic, anti-pyretic and anti-ulcerogenic potentials of synthetic indole derivatives. Sci Rep 2023; 13:8639. [PMID: 37244979 PMCID: PMC10224943 DOI: 10.1038/s41598-023-35640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023] Open
Abstract
A large number of new synthetic compounds are synthesized in the field of heterocyclic chemistry having a variety of biological potentials. In the present study, some synthetic indole derivatives are used to check anti-inflammatory, analgesic, antipyretic and gastroprotective activity in albino mice. Albino mice of either sex of reproductive age were used for each study (n = 5). In anti-inflammatory activity, the negative control (NC) and positive control group animals were treated with normal saline and 10 mg/kg of indomethacin respectively. The treated groups received the twenty four different synthetic chemicals, after 30 min of sub cutaneous injection of carrageenan. In analgesic activity, hot-plate method is used and for each group the latency period was recorded at zero moment of the provision of required dose and after 30, 60, 90, 120 and 180 min. In anti-pyretic activity, Pyrexia was induced by using Brewer's yeast method. Before any treatment and then after duration of 18 h, the rectal temperatures were recorded. Among all the chemicals, only those chemicals which show any potential related to above mentioned activities were selected for gastroprotective activity. The gastroprotective activity was performed to check the gastric ulcers by using 300 mg/kg of single oral dose of indomethacin to animals of all groups except NC group. This study helped to screen out the most potent indole derivatives 3a-II and 4a-II from the 24 synthetic indole derivatives which demonstrated the best biological potential (anti-inflammatory, analgesic, antipyretic, and gastroprotection) as compared to the remaining ones. The micrometric and biochemical results also support the histological findings. Out of the twenty-four novel indole amines tested, 3a-II and 4a-II have shown the effective pharmacological capacity and additionally have not shown any overt and systemic toxicity. Thus these two indole amines need further in-depth pharmacokinetic and pharmacodynamics studies before they are recommended for any pre-clinical trial.
Collapse
Affiliation(s)
- Saira Siddique
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan.
| | - Khawaja Raees Ahmad
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
- Govt. Graduate Ambala Muslim College, Sargodha, Pakistan
| | - Syed Kashif Nawaz
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Abdul Rauf Raza
- Institute of Chemistry, University of Sargodha, Punjab, Pakistan
| | | | - Rabiyah Ali
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Iram Inayat
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sadia Suleman
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | - Muhammad Usman
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| |
Collapse
|
2
|
Abstract
Estrogen receptors (ERs) are known to play an important role in the proper development of estrogen-sensitive organs, as well as in the development and progression of various types of cancer. ERα, the first ER to be discovered, has been the focus of most cancer research, especially in the context of breast cancer. However, ERβ expression also plays a significant role in cancer pathophysiology, notably its seemingly protective nature and loss of expression with oncogenesis and progression. Although ERβ exhibits antitumor activity in breast, ovarian, and prostate cancer, its expression is associated with disease progression and worse prognosis in lung cancer. The function of ERβ is complicated by the presence of multiple isoforms and single nucleotide polymorphisms, in addition to tissue-specific functions. This mini-review explores current literature on ERβ and its mechanism of action and clinical implications in breast, ovarian, prostate, and lung cancer.
Collapse
Affiliation(s)
- Nicole M Hwang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Research Center, Pittsburgh, PA 15232, USA
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Research Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
3
|
Williams DE. Indoles Derived From Glucobrassicin: Cancer Chemoprevention by Indole-3-Carbinol and 3,3'-Diindolylmethane. Front Nutr 2021; 8:734334. [PMID: 34660663 PMCID: PMC8517077 DOI: 10.3389/fnut.2021.734334] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrolysis of glucobrassicin by plant or bacterial myrosinase produces multiple indoles predominantly indole-3-carbinol (I3C). I3C and its major in vivo product, 3,3'-diindolylmethane (DIM), are effective cancer chemopreventive agents in pre-clinical models and show promise in clinical trials. The pharmacokinetics/pharmacodynamics of DIM have been studied in both rodents and humans and urinary DIM is a proposed biomarker of dietary intake of cruciferous vegetables. Recent clinical studies at Oregon State University show surprisingly robust metabolism of DIM in vivo with mono- and di-hydroxylation followed by conjugation with sulfate or glucuronic acid. DIM has multiple mechanisms of action, the most well-characterized is modulation of aryl hydrocarbon receptor (AHR) signaling. In rainbow trout dose-dependent cancer chemoprevention by dietary I3C is achieved when given prior to or concurrent with aflatoxin B1, polycyclic aromatic hydrocarbons, nitrosamines or direct acting carcinogens such as N-methyl-N'-nitro-nitrosoguanidine. Feeding pregnant mice I3C inhibits transplacental carcinogenesis. In humans much of the focus has been on chemoprevention of breast and prostate cancer. Alteration of cytochrome P450-dependent estrogen metabolism is hypothesized to be an important driver of DIM-dependent breast cancer prevention. The few studies done to date comparing glucobrassicin-rich crucifers such as Brussels sprouts with I3C/DIM supplements have shown the greater impact of the latter is due to dose. Daily ingestion of kg quantities of Brussels sprouts is required to produce in vivo levels of DIM achievable by supplementation. In clinical trials these supplement doses have elicited few if any adverse effects. Sulforaphane from glucoraphanin can act synergistically with glucobrassicin-derived DIM and this may lead to opportunities for combinatorial approaches (supplement and food-based) in the clinic.
Collapse
Affiliation(s)
- David E. Williams
- Department of Environmental and Molecular Toxicology, Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
4
|
Cruciferous vegetables and colorectal cancer risk: a hospital-based matched case-control study in Northeast China. Eur J Clin Nutr 2018; 73:450-457. [PMID: 30323175 DOI: 10.1038/s41430-018-0341-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES Conflicting results have been reported on the association of cruciferous vegetable intake and colorectal cancer risk. This study aimed to clarify the relationship of cruciferous vegetables and colorectal cancer among individuals in Northeast China, where large amounts of cruciferous vegetables are consumed habitually. SUBJECTS/METHODS We conducted a hospital-based case-control study in the First Hospital of China Medical University, the Shengjing Hospital of China Medical University and the First Hospital of Dalian Medical University from 2009 to 2011. Patients in the study were matched individually by age, gender, and city of residence. The study ultimately included 833 case-control pairs. A structured questionnaire was applied to collect data on general characteristics, dietary habits, and selected dietary intake. Differences between cases and controls were ascertained with the chi-square test or the Mann-Whitney U test. Unconditional logistic regression was employed to compute odds ratios (ORs) and 95% confidence intervals (CIs). Stratified analyses were conducted by gender. RESULTS In the total study cohort, no significant association was found between total cruciferous vegetable intake and colorectal cancer risk. The adjusted OR for the highest versus the lowest intake was 0.83 (95% CI: 0.59-1.18). In stratification analyses by gender, reduced colorectal cancer risk was related to higher consumption of total cruciferous vegetables in women but not in men. Significant inverse correlations were found in analyses of individual cruciferous vegetables, including greens (OR = 0.47; 95% CI: 0.32-0.68), cabbage (OR = 0.61; 95% CI: 0.44-0.86), and cauliflower (OR = 0.66; 95% CI: 0.48-0.92). CONCLUSIONS No significant association was found between total cruciferous vegetable intake and colorectal cancer risk. However, specific types of cruciferous vegetables might have protective roles against colorectal cancer.
Collapse
|
5
|
Słowikowski BK, Lianeri M, Jagodziński PP. Exploring estrogenic activity in lung cancer. Mol Biol Rep 2017; 44:35-50. [PMID: 27783191 PMCID: PMC5310573 DOI: 10.1007/s11033-016-4086-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/19/2016] [Indexed: 01/21/2023]
Abstract
It is well known that a connection between xenobiotics inhalation, especially tobacco combustion and Lung Cancer development is strongly significant and indisputable. However, recent studies provide evidence indicating that another factors such as, estrogens are also involved in lung carcinoma biology and metabolism. Although the status of estrogen receptors (ER), in both cancerous and healthy lung tissue has been well documented, there is still inconclusive data with respect of which isoform of the receptor is present in the lungs. However according to several studies, ERβ appears to be predominant form. Apart from ERs, estrogens can work through a recently discovered G-coupled estrogen receptor. Binding with both types of the receptors causes a signal, which leads to i.e. enhanced cell proliferation. There are many published reports which suggest that estrogen can be synthesized in situ in lung cancer. Some disturbances in the activity and expression levels of enzymes involved in estrogen synthesis were proved. This suggests that increased amounts of sex-steroid hormones can affect cells biology and be the reason of the accelerated development and pathogenesis of lung cancer. There also exist phenomena which associate estrogenic metabolism and tobacco combustion and its carcinogenic influence on the lungs. Compounds present in cigarette smoke induce the activity of CYP1B1, the enzyme responsible for estrogenic metabolism and synthesis of their cateholic derivatives. These structures during their redox cycle are able to release reactive oxygen species or form DNA adduct, which generally leads to destruction of genetic material. This process may explain the synergistic effect of smoking and estrogens on estrogen-dependent lung cancer development.
Collapse
Affiliation(s)
- Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland.
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| |
Collapse
|
6
|
Petrov I, Suntsova M, Mutorova O, Sorokin M, Garazha A, Ilnitskaya E, Spirin P, Larin S, Zhavoronkov A, Kovalchuk O, Prassolov V, Roumiantsev A, Buzdin A. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells. Aging (Albany NY) 2016; 8:2936-2947. [PMID: 27870639 PMCID: PMC5182073 DOI: 10.18632/aging.101102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022]
Abstract
Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Factors
- Biomarkers, Tumor
- Bone Marrow
- Case-Control Studies
- Child
- Child, Preschool
- Female
- Gene Expression
- Gene Expression Profiling
- Humans
- Infant
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
Collapse
Affiliation(s)
- Ivan Petrov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- First Oncology Research and Advisory Center, Moscow, 117997, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, 141700, Russia
| | - Maria Suntsova
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Olga Mutorova
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Morozov Pediatric Clinical Hospital, Moscow, 101000, Russia
| | - Maxim Sorokin
- National Research Centre “Kurchatov Institute”, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, 123182, Russia
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR
| | - Andrew Garazha
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, 141700, Russia
| | - Elena Ilnitskaya
- First Oncology Research and Advisory Center, Moscow, 117997, Russia
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia,119991
| | - Sergey Larin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - Alex Zhavoronkov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- First Oncology Research and Advisory Center, Moscow, 117997, Russia
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia,119991
| | - Alexander Roumiantsev
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - Anton Buzdin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- National Research Centre “Kurchatov Institute”, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, 123182, Russia
| |
Collapse
|
7
|
Gao C, Yang B, Zhang D, Chen M, Tian J. Enhanced metabolic process to indole alkaloids in Clematis terniflora DC. after exposure to high level of UV-B irradiation followed by the dark. BMC PLANT BIOLOGY 2016; 16:231. [PMID: 27776479 PMCID: PMC5078895 DOI: 10.1186/s12870-016-0920-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/17/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Indole alkaloids, which characteristically contain an indole nucleus, have pharmaceutical potential in a diverse range of applications. UV-B can elicit the accumulation of indole alkaloids. The indole alkaloid (6-hydroxyl-1H-indol-3-yl) carboxylic acid methyl ester with cytotoxic activity was found to accumulate in Clematis terniflora DC. leaves after exposure to high level of UV-B irradiation and the dark. However, a more in-depth analysis of the process behind this response has not yet been performed. Therefore, an integrated approach involving metabolomic, proteomic, and transcriptomic analyses is essential to detail the biosynthetic mechanisms of the regulation of indole alkaloid under binary stress. RESULTS Indole alkaloid (6-hydroxyl-1H-indol-3-yl) carboxylic acid methyl ester was found to increase 7-fold in C. terniflora leaves post-treatment with high level of UV-B irradiation followed by an incubation in the dark compared with pre-treatment. Analysis by proteomics and metabolomics indicates a decrease in photosynthesis and carbohydrate metabolism, respectively. By contrast, amino acid metabolism was activated by this binary stress, and, specifically, the genes involved in the metabolic pathway converting shikimate to L-tryptophan were concurrently upregulated. Metabolites involved in indole biosynthesis (shikimate metabolic) pathway were anthranilate, indole, and L-tryptophan, which increased 2-, 441-, and 1-fold, respectively. In addition, there was an increase of 2- and 9-fold in L-serine deaminase (L-SD) and L-tryptophan synthase activity in C. terniflora leaves after exposure to high level of UV-B irradiation and the dark. CONCLUSIONS (6-hydroxyl-1H-indol-3-yl) carboxylic acid methyl ester was found to increase in response to high level of UV-B irradiation followed by an incubation in the dark, implying that indole alkaloid biosynthesis was activated in C. terniflora leaves. Analysis of perturbations in metabolism in these leaves demonstrated that amino acid metabolism was specifically activated by this binary stress. In addition, an enhancement in serine level and L-SD activity was noted, which likely leads to an accumulation of pyruvate that, in turn, supplies shikimate metabolic pathway. The genes, metabolites, and L-tryptophan synthase activity that are involved in the metabolic pathway leading from shikimate to L-tryptophan all increased under the experimental binary stress, resulting in an enhancement of indole biosynthesis (shikimate metabolic) pathway. Therefore, the metabolic process to indole alkaloids in C. terniflora was enhanced after exposure to high level of UV-B irradiation followed by the dark.
Collapse
Affiliation(s)
- Cuixia Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Bingxian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Dandan Zhang
- Institute of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Meng Chen
- Institute of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Jingkui Tian
- Institute of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China.
- Ministry of Education Key Laboratory for Biomedical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Indole-3-carbinol protects against cisplatin-induced acute nephrotoxicity: role of calcitonin gene-related peptide and insulin-like growth factor-1. Sci Rep 2016; 6:29857. [PMID: 27417335 PMCID: PMC4945906 DOI: 10.1038/srep29857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
Nephrotoxicity associated with the clinical use of the anticancer drug cisplatin is a limiting problem. Thus, searching for new protective measures is required. Indole-3-carbinol is a powerful anti-oxidant, anti-inflammatory and anti-tumor agent. The present study aimed to investigate the potential protective effect of indole-3-carbinol against cisplatin-induced acute nephrotoxicity in rats. Rats were pre-treated with 20 mg/kg indole-3-carbinol orally before giving cisplatin (7 mg/kg). Cisplatin-induced acute nephrotoxicity was demonstrated where relative kidney weight, BUN and serum creatinine were significantly increased. Increased oxidative stress was evident in cisplatin group where GSH and SOD tissue levels were significantly depleted. Also, lipid peroxidation and NOX-1 were increased as compared to the control. Additionally, renal expression of pro-inflammatory mediators was induced by cisplatin. Cisplatin-induced cell death was shown by increased caspase-3 and decreased expression of EGF, IGF-1 and IGF-1 receptor. Nephrotoxicity, oxidative stress, inflammation and apoptotic effects induced by cisplatin were significantly ameliorated by indole-3-carbinol pre-treatment. Besides, the role of CGRP in cisplatin-induced nephrotoxicity was explored. Furthermore, cisplatin cytotoxic activity was significantly enhanced by indole-3-carbinol pre-treatment in vitro. In conclusion, indole-3-carbinol provides protection against cisplatin-induced nephrotoxicity. Also, reduced expression of CGRP may play a role in the pathogenesis of cisplatin-induced renal injury.
Collapse
|
9
|
Grassi TF, da Silva GN, Bidinotto LT, Rossi BF, Quinalha MM, Kass L, Muñoz-de-Toro M, Barbisan LF. Global gene expression and morphological alterations in the mammary gland after gestational exposure to bisphenol A, genistein and indole-3-carbinol in female Sprague-Dawley offspring. Toxicol Appl Pharmacol 2016; 303:101-109. [DOI: 10.1016/j.taap.2016.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/27/2022]
|
10
|
Ke H, Lisy JM. Influence of hydration on ion-biomolecule interactions: M(+)(indole)(H2O)(n) (M = Na, K; n = 3-6). Phys Chem Chem Phys 2015; 17:25354-64. [PMID: 26397000 DOI: 10.1039/c5cp01565k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The indole functional group can be found in many biologically relevant molecules, such as neurotransmitters, pineal hormones and medicines. Indole has been used as a tractable model to study the hydration structures of biomolecules as well as the interplay of non-covalent interactions within ion-biomolecule-water complexes, which largely determine their structure and dynamics. With three potential binding sites: above the six- or five-member ring, and the N-H group, the competition between π and hydrogen bond interactions involves multiple locations. Electrostatic interactions from monovalent cations are in direct competition with hydrogen bonding interactions, as structural configurations involving both direct cation-indole interactions and cation-water-indole bridging interactions were observed. The different charge densities of Na(+) and K(+) give rise to different structural conformers at the same level of hydration. Infrared spectra with parallel hybrid functional-based calculations and Gibbs free energy calculations revealed rich structural insights into the Na(+)/K(+)(indole)(H2O)3-6 cluster ion complexes. Isotopic (H/D) analyses were applied to decouple the spectral features originating from the OH and NH stretches. Results showed no evidence of direct interaction between water and the NH group of indole (via a σ-hydrogen bond) at current levels of hydration with the incorporation of cations. Hydrogen bonding to a π-system, however, was ubiquitous at hydration levels between two and five.
Collapse
Affiliation(s)
- Haochen Ke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
11
|
Stakisaitis D, Mozuraite R, Juodziukyniene N, Didziapetriene J, Uleckiene S, Matusevicius P, Valanciute A. Sodium Valproate Enhances the Urethane-Induced Lung Adenomas and Suppresses Malignization of Adenomas in Ovariectomized Female Mice. Int J Endocrinol 2015; 2015:218219. [PMID: 26491438 PMCID: PMC4600510 DOI: 10.1155/2015/218219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022] Open
Abstract
In the present study, the possible effect of sodium valproate (NaVP) on urethane-induced lung tumors in female mice has been evaluated. BALB/c mice (n = 60; 4-6 weeks old, females) were used in the following groups: (1) urethane-treated; (2) urethane-NaVP-treated; (3) only NaVP-treated; (4) control. In the same groups, ovariectomized female mice (n = 60) were investigated. Urethane was given intraperitoneally, with a total dose of 50 mg/mouse. In NaVP-treated mice groups, 0.4% aqueous solution of NaVP was offered to mice ad libitum. The duration of the experiment was 6 months. The number of tumors per mouse in ovariectomized mice and in those treated with urethane and NaVP was significantly higher than in mice treated with urethane only (8.29 ± 0.58 versus 6.0 ± 0.63, p < 0.02). No significant difference in the number of tumors per mouse was revealed while comparing the nonovariectomized urethane- and urethane-NaVP-treated groups (p = 0.13). A significant decrease of adenocarcinoma number in ovariectomized mice treated with a urethane-NaVP as compared with ovariectomized mice treated with urethane only was found (p = 0.031). NaVP together with low estrogen may have a protective effect on the malignization of adenomas in ovariectomized mice.
Collapse
Affiliation(s)
- Donatas Stakisaitis
- Laboratory of Carcinogenesis and Tumor Pathophysiology, National Cancer Institute, Vilnius University, Santariskiu 1, LT-08660 Vilnius, Lithuania
| | - Raminta Mozuraite
- Department of Histology and Embryology, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania
| | - Nomeda Juodziukyniene
- Department of Histology and Embryology, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania
- Veterinary Academy, Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
| | - Janina Didziapetriene
- Laboratory of Carcinogenesis and Tumor Pathophysiology, National Cancer Institute, Vilnius University, Santariskiu 1, LT-08660 Vilnius, Lithuania
| | - Saule Uleckiene
- Laboratory of Carcinogenesis and Tumor Pathophysiology, National Cancer Institute, Vilnius University, Santariskiu 1, LT-08660 Vilnius, Lithuania
| | - Paulius Matusevicius
- Veterinary Academy, Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
| | - Angelija Valanciute
- Department of Histology and Embryology, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
12
|
Synthesis of mono and bis-[3,3-di(indolyl)indolin-2-ones] and evaluation of their antimicrobial activity. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2007-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Song JM, Qian X, Molla K, Teferi F, Upadhyaya P, O Sullivan G, Luo X, Kassie F. Combinations of indole-3-carbinol and silibinin suppress inflammation-driven mouse lung tumorigenesis by modulating critical cell cycle regulators. Carcinogenesis 2015; 36:666-75. [PMID: 25896445 DOI: 10.1093/carcin/bgv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/30/2015] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is an important risk factor for lung cancer. Therefore, identification of chemopreventive agents that suppress inflammation-driven lung cancer is indispensable. We studied the efficacy of combinations of indole-3-carbinol (I3C) and silibinin (Sil), 20 µmol/g diet each, against mouse lung tumors induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and driven by lipopolysaccharide (LPS), a potent inflammatory agent and constituent of tobacco smoke. Mice treated with NNK + LPS developed 14.7±4.1 lung tumors/mouse, whereas mice treated with NNK + LPS and given combinations of I3C and Sil had 7.1±4.5 lung tumors/mouse, corresponding to a significant reduction of 52%. Moreover, the number of largest tumors (>1.0mm) was significantly reduced from 6.3±2.9 lung tumors/mouse in the control group to 1.0±1.3 and 1.6±1.8 lung tumors/mouse in mice given I3C + Sil and I3C alone, respectively. These results were paralleled by significant reductions in the level of proinflammatory and procarcinogenic proteins (pSTAT3, pIκBα and COX-2) and proteins that regulate cell proliferation (pAkt, cyclin D1, CDKs 2, 4, 6 and pRB). Further studies in premalignant bronchial cells showed that the antiproliferative effects of I3C + Sil were higher than the individual compounds and these effects were mediated by targeting cyclin D1, CDKs 2, 4 and 6 and pRB. I3C + Sil suppressed cyclin D1 by reducing its messenger RNA level and by enhancing its proteasomal degradation. Our results showed the potential lung cancer chemopreventive effects of I3C + Sil in smokers/former smokers with chronic pulmonary inflammatory conditions.
Collapse
Affiliation(s)
- Jung Min Song
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xuemin Qian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kalkidan Molla
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fistum Teferi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gerry O Sullivan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA and
| | - Xianghua Luo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA and
| |
Collapse
|
14
|
Abstract
Experimental and population-based evidence has been steadily accumulating that steroid hormones are fundamentally involved in the biology of the lung. Both estrogen and progesterone receptors are present in normal and malignant lung tissue, and the reproductive hormones that bind these receptors have a role in lung development, lung inflammation, and lung cancer. The estrogen receptor-β (ER-β) was discovered in the 1990s as a novel form of ER that is transcribed from a gene distinct from ER-α, the receptor previously isolated from breast tissue. Interestingly, ER-β is the predominate ER expressed in normal and malignant lung tissue, whereas inflammatory cells that infiltrate the lung are known to express both ER-α and ER-β. Although there is evidence from animal models for the preferential effects of ER-β in the lungs of females, human lung tumors from males often contain comparable numbers of ER-β-positive cells and male-derived lung cancer cell lines respond to estrogens. Lung tumors from both males and females also express CYP19 (aromatase), the rate-limiting enzyme in estrogen synthesis that converts testosterone to estrone and β-estradiol. Thus, testosterone acts as a precursor for local estrogen production within lung tumors, independent of reproductive organs. This review discusses the recent literature findings about the biology of the ERs, aromatase, and the progesterone receptor in lung cancer and highlights the ongoing clinical trials and future therapeutic implications of these findings.
Collapse
Affiliation(s)
- Jill M Siegfried
- University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455-0217.
| |
Collapse
|
15
|
Abstract
It is becoming increasingly clear that steroid hormones are involved in the biology of many organs outside the reproductive system. Evidence has been accumulating since the mid 1990s that the lung contains receptors for both estrogen and progesterone and that these hormones have some role in lung development, pulmonary inflammation, and lung cancer. The estrogen receptor β (ERβ) is the major ER expressed in lung tissues, while inflammatory cells capable of infiltrating the lung are reported to express both ERα and ERβ. Although there is evidence in animals of preferential effects of ERβ in the lungs of females, human lung tumors from males also contain ERβ-positive cells and express aromatase, the enzyme that converts testosterone to estrogens. This review will discuss current literature findings on the role of the ERs and the progesterone receptor (PR), as well CYP19 (aromatase), the rate-limiting enzyme in the synthesis of estrogen, in lung cancer.
Collapse
Affiliation(s)
- Jill M Siegfried
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA; Current address: Department of Pharmacology, University of Minnesota, Minneapolis, MN.
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
16
|
Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Biomedical importance of indoles. Molecules 2013; 18:6620-62. [PMID: 23743888 PMCID: PMC6270133 DOI: 10.3390/molecules18066620] [Citation(s) in RCA: 831] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022] Open
Abstract
The indole nucleus is an important element of many natural and synthetic molecules with significant biological activity. This review covers some of the relevant and recent achievements in the biological, chemical and pharmacological activity of important indole derivatives in the areas of drug discovery and analysis.
Collapse
Affiliation(s)
- Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
- Authors to whom correspondence should be addressed; E-Mails: (N.K.K); (N.K.); (A.K.V.); (E.H.C.); Tel.: +82-10-4187-8618 (N.K.K.) Fax: +82-940-5664 (N.K.K)
| | - Neha Kaushik
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
- Authors to whom correspondence should be addressed; E-Mails: (N.K.K); (N.K.); (A.K.V.); (E.H.C.); Tel.: +82-10-4187-8618 (N.K.K.) Fax: +82-940-5664 (N.K.K)
| | - Pankaj Attri
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
| | - Naresh Kumar
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
| | - Chung Hyeok Kim
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
| | - Akhilesh Kumar Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Authors to whom correspondence should be addressed; E-Mails: (N.K.K); (N.K.); (A.K.V.); (E.H.C.); Tel.: +82-10-4187-8618 (N.K.K.) Fax: +82-940-5664 (N.K.K)
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: (P.A.); (N.K.); (C.H.K.)
- Authors to whom correspondence should be addressed; E-Mails: (N.K.K); (N.K.); (A.K.V.); (E.H.C.); Tel.: +82-10-4187-8618 (N.K.K.) Fax: +82-940-5664 (N.K.K)
| |
Collapse
|