1
|
Ahn MH, Kim JH, Choi SJ, Kim HJ, Park DG, Oh KY, Yoon HJ, Hong SD, Lee JI, Shin JA, Cho SD. Neuropilin-2 acts a critical determinant for epithelial-to-mesenchymal transition and aggressive behaviors of human head and neck cancer. Cell Oncol (Dordr) 2024; 47:497-511. [PMID: 37787967 DOI: 10.1007/s13402-023-00878-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/04/2023] Open
Abstract
PURPOSE Neuropilin-2 (NRP2) is a multifunctional single-pass transmembrane receptor that binds to two disparate ligands, namely, vascular endothelial growth factors (VEGFs) and semaphorins (SEMAs). It is reportedly involved in neuronal and vascular development. In this study, we uncovered the exact functional role of NRP2 and its molecular mechanism during aggressive behaviors and lymph node (LN) metastasis in human head and neck cancer (HNC) and identified algal methanol extract as a potential novel NRP2 inhibitor. METHODS In silico analyses and immunohistochemistry were used to investigate the relationship between NRP2 expression and the prognosis of HNC patients. The functional role of NRP2 on the proliferation, migration, invasion, and cancer stem cell (CSC) properties of HNC cells was examined by MTS, soft agar, clonogenic, transwell migration and invasion assays, and sphere formation assays. Signaling explorer antibody array, western blot, and qPCR were performed toward the investigation of a molecular mechanism that is related to NRP2. RESULTS NRP2 was highly expressed in HNC and positively correlated with LN metastasis and advanced tumor stage and size in patients. Using loss- or gain-of-function approaches, we found that NRP2 promoted the proliferative, migratory, and invasive capacities of human HNC cells. Furthermore, NRP2 regulated Sox2 expression to exhibit aggressiveness and CSC properties of human HNC cells. We demonstrated that p90 ribosomal S6 kinase 1 (RSK1) elevates the aggressiveness and CSC properties of human HNC cells, possibly by mediating NRP2 and Sox2. Zeb1 was necessary for executing the NRP2/RSK1/Sox2 signaling pathway during the induction of epithelial-to-mesenchymal transition (EMT) and aggressive behaviors of human HNC cells. Moreover, the methanol extract of Codium fragile (MECF) repressed NRP2 expression, inhibiting the RSK1/Sox2/Zeb1 axis, which contributed to the reduction of aggressive behaviors of human HNC cells. CONCLUSIONS These findings suggest that NRP2 is a critical determinant in provoking EMT and aggressive behaviors in human HNC through the RSK1/Sox2/Zeb1 axis, and MECF may have the potential to be a novel NRP2 inhibitor for treating metastasis in HNC patients.
Collapse
Affiliation(s)
- Min-Hye Ahn
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, 28116, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyun-Ji Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Dong-Guk Park
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyu-Young Oh
- Department of Oral Pathology, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Hye-Jung Yoon
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jae-Il Lee
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Dhupar R, Powers AA, Eisenberg SH, Gemmill RM, Bardawil CE, Udoh HM, Cubitt A, Nangle LA, Soloff AC. Orchestrating Resilience: How Neuropilin-2 and Macrophages Contribute to Cardiothoracic Disease. J Clin Med 2024; 13:1446. [PMID: 38592275 PMCID: PMC10934188 DOI: 10.3390/jcm13051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Immunity has evolved to balance the destructive nature of inflammation with wound healing to overcome trauma, infection, environmental insults, and rogue malignant cells. The inflammatory response is marked by overlapping phases of initiation, resolution, and post-resolution remodeling. However, the disruption of these events can lead to prolonged tissue damage and organ dysfunction, resulting long-term disease states. Macrophages are the archetypic phagocytes present within all tissues and are important contributors to these processes. Pleiotropic and highly plastic in their responses, macrophages support tissue homeostasis, repair, and regeneration, all while balancing immunologic self-tolerance with the clearance of noxious stimuli, pathogens, and malignant threats. Neuropilin-2 (Nrp2), a promiscuous co-receptor for growth factors, semaphorins, and integrins, has increasingly been recognized for its unique role in tissue homeostasis and immune regulation. Notably, recent studies have begun to elucidate the role of Nrp2 in both non-hematopoietic cells and macrophages with cardiothoracic disease. Herein, we describe the unique role of Nrp2 in diseases of the heart and lung, with an emphasis on Nrp2 in macrophages, and explore the potential to target Nrp2 as a therapeutic intervention.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Amy A. Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Seth H. Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Robert M. Gemmill
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles E. Bardawil
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Hannah M. Udoh
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Andrea Cubitt
- aTyr Pharma, San Diego, CA 92121, USA; (A.C.); (L.A.N.)
| | | | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
3
|
Förster S, Chong YE, Siefker D, Becker Y, Bao R, Escobedo E, Qing Y, Rauch K, Burman L, Burkart C, Kainz P, Cubitt A, Muders M, Nangle LA. Development and Characterization of a Novel Neuropilin-2 Antibody for Immunohistochemical Staining of Cancer and Sarcoidosis Tissue Samples. Monoclon Antib Immunodiagn Immunother 2023; 42:157-165. [PMID: 37902990 DOI: 10.1089/mab.2023.0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Neuropilin-2 (NRP2) is a cell surface receptor that plays key roles in lymphangiogenesis, but also in pathophysiological conditions such as cancer and inflammation. NRP2 targeting by efzofitimod, a novel immunomodulatory molecule, is currently being tested for the treatment of pulmonary sarcoidosis. To date, no anti-NRP2 antibodies are available for companion diagnostics. Here we describe the development and characterization of a novel NRP2 antibody. Using a variety of research techniques, that is, enzyme-linked immunoassay, Western blot, biolayer interferometry, and immunohistochemistry, we demonstrate that our antibody detects all major NRP2 isoforms and does not cross-react with NRP1. Using this antibody, we show high NRP2 expression in granulomas from sarcoidosis patient skin and lung biopsies. Our novel anti-NRP2 antibody could prove to be a useful clinical tool for sarcoidosis and other indications where NRP2 has been implicated. Clinical Trial Registration: clinicaltrials.gov NCT05415137.
Collapse
Affiliation(s)
- Sarah Förster
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | | | - Yvonne Becker
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Ruizhi Bao
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Yang Qing
- aTyr Pharma, San Diego, California, USA
| | | | | | | | | | | | - Michael Muders
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
- MVZ Pathologie Bethesda GmbH, Duisburg, Germany
| | | |
Collapse
|
4
|
Verlinden L, Doms S, Janssens I, Meyer MB, Pike JW, Carmeliet G, Verstuyf A. Neuropilin 2 in osteoblasts regulates trabecular bone mass in male mice. Front Endocrinol (Lausanne) 2023; 14:1223021. [PMID: 37600714 PMCID: PMC10436209 DOI: 10.3389/fendo.2023.1223021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Neuropilin 2 (NRP2) mediates the effects of class 3 semaphorins and vascular endothelial growth factor and is implicated in axonal guidance and angiogenesis. Moreover, NRP2 expression is suggested to be involved in the regulation of bone homeostasis. Indeed, osteoblasts and osteoclasts express NRP2 and male and female global Nrp2 knockout mice have a reduced bone mass accompanied by reduced osteoblast and increased osteoclast counts. Methods We first examined the in vitro effect of the calciotropic hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on Nrp2 transcription in osteoblasts. We next generated mice with a conditional deletion of Nrp2 in the osteoblast cell lineage under control of the paired related homeobox 1 promoter and mice with a conditional Nrp2 knockdown in osteoclasts under control of the Lysozyme promoter. Mice were examined under basal conditions or after treatment with either the bone anabolic vitamin D3 analog WY 1048 or with 1,25(OH)2D3. Results and discussion We show that Nrp2 expression is induced by 1,25(OH)2D3 in osteoblasts and is associated with enrichment of the vitamin D receptor in an intronic region of the Nrp2 gene. In male mice, conditional deletion of Nrp2 in osteoblast precursors and mature osteoblasts recapitulated the bone phenotype of global Nrp2 knockout mice, with a reduced cortical cross-sectional tissue area and lower trabecular bone content. However, female mice with reduced osteoblastic Nrp2 expression display a reduced cross-sectional tissue area but have a normal trabecular bone mass. Treatment with the vitamin D3 analog WY 1048 (0.4 μg/kg/d, 14 days, ip) resulted in a similar increase in bone mass in both genotypes and genders. Deleting Nrp2 from the osteoclast lineage did not result in a bone phenotype, even though in vitro osteoclastogenesis of hematopoietic cells derived from mutant mice was significantly increased. Moreover, treatment with a high dose of 1,25(OH)2D3 (0.5 μg/kg/d, 6 days, ip), to induce osteoclast-mediated bone resorption, resulted in a similar reduction in trabecular and cortical bone mass. In conclusion, osteoblastic Nrp2 expression is suggested to regulate bone homeostasis in a sex-specific manner.
Collapse
Affiliation(s)
- Lieve Verlinden
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Stefanie Doms
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Iris Janssens
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madision, Madison, WI, United States
| | - J. Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madision, Madison, WI, United States
| | - Geert Carmeliet
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Wang M, Wisniewski CA, Xiong C, Chhoy P, Goel HL, Kumar A, Zhu LJ, Li R, St Louis PA, Ferreira LM, Pakula H, Xu Z, Loda M, Jiang Z, Brehm MA, Mercurio AM. Therapeutic blocking of VEGF binding to neuropilin-2 diminishes PD-L1 expression to activate antitumor immunity in prostate cancer. Sci Transl Med 2023; 15:eade5855. [PMID: 37134151 DOI: 10.1126/scitranslmed.ade5855] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Prostate cancers are largely unresponsive to immune checkpoint inhibitors (ICIs), and there is strong evidence that programmed death-ligand 1 (PD-L1) expression itself must be inhibited to activate antitumor immunity. Here, we report that neuropilin-2 (NRP2), which functions as a vascular endothelial growth factor (VEGF) receptor on tumor cells, is an attractive target to activate antitumor immunity in prostate cancer because VEGF-NRP2 signaling sustains PD-L1 expression. NRP2 depletion increased T cell activation in vitro. In a syngeneic model of prostate cancer that is resistant to ICI, inhibition of the binding of VEGF to NRP2 using a mouse-specific anti-NRP2 monoclonal antibody (mAb) resulted in necrosis and tumor regression compared with both an anti-PD-L1 mAb and control immunoglobulin G. This therapy also decreased tumor PD-L1 expression and increased immune cell infiltration. We observed that the NRP2, VEGFA, and VEGFC genes are amplified in metastatic castration-resistant and neuroendocrine prostate cancer. We also found that individuals with NRP2High PD-L1High metastatic tumors had lower androgen receptor expression and higher neuroendocrine prostate cancer scores than other individuals with prostate cancer. In organoids derived from patients with neuroendocrine prostate cancer, therapeutic inhibition of VEGF binding to NRP2 using a high-affinity humanized mAb suitable for clinical use also diminished PD-L1 expression and caused a substantial increase in immune-mediated tumor cell killing, consistent with the animal studies. These findings provide justification for the initiation of clinical trials using this function-blocking NRP2 mAb in prostate cancer, especially for patients with aggressive disease.
Collapse
Affiliation(s)
- Mengdie Wang
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Christi A Wisniewski
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Choua Xiong
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Peter Chhoy
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Ayush Kumar
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Rui Li
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Pamela A St Louis
- Department of Neurology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Lindsay M Ferreira
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Hubert Pakula
- Department of Pathology, Cornell Weill School of Medicine, New York, NY 10065, USA
| | - Zhiwen Xu
- aTyr Pharma Inc., San Diego CA, 92121, USA
| | - Massimo Loda
- Department of Pathology, Cornell Weill School of Medicine, New York, NY 10065, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute (DFCI) and Harvard Medical School, Boston, MA 02215, USA
| | - Zhong Jiang
- Department of Pathology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Emerging Role of IGF-1 in Prostate Cancer: A Promising Biomarker and Therapeutic Target. Cancers (Basel) 2023; 15:cancers15041287. [PMID: 36831629 PMCID: PMC9954466 DOI: 10.3390/cancers15041287] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Prostate cancer (PCa) is a highly heterogeneous disease driven by gene alterations and microenvironmental influences. Not only enhanced serum IGF-1 but also the activation of IGF-1R and its downstream signaling components has been increasingly recognized to have a vital driving role in the development of PCa. A better understanding of IGF-1/IGF-1R activity and regulation has therefore emerged as an important subject of PCa research. IGF-1/IGF-1R signaling affects diverse biological processes in cancer cells, including promoting survival and renewal, inducing migration and spread, and promoting resistance to radiation and castration. Consequently, inhibitory reagents targeting IGF-1/IGF-1R have been developed to limit cancer development. Multiple agents targeting IGF-1/IGF-1R signaling have shown effects against tumor growth in tumor xenograft models, but further verification of their effectiveness in PCa patients in clinical trials is still needed. Combining androgen deprivation therapy or cytotoxic chemotherapeutics with IGF-1R antagonists based on reliable predictive biomarkers and developing and applying novel agents may provide more desirable outcomes. This review will summarize the contribution of IGF-1 signaling to the development of PCa and highlight the relevance of this signaling axis in potential strategies for cancer therapy.
Collapse
|
7
|
Timmons C, Morris Q, Harrigan CF. Regional mutational signature activities in cancer genomes. PLoS Comput Biol 2022; 18:e1010733. [PMID: 36469539 PMCID: PMC9754594 DOI: 10.1371/journal.pcbi.1010733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/15/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer genomes harbor a catalog of somatic mutations. The type and genomic context of these mutations depend on their causes and allow their attribution to particular mutational signatures. Previous work has shown that mutational signature activities change over the course of tumor development, but investigations of genomic region variability in mutational signatures have been limited. Here, we expand upon this work by constructing regional profiles of mutational signature activities over 2,203 whole genomes across 25 tumor types, using data aggregated by the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium. We present GenomeTrackSig as an extension to the TrackSig R package to construct regional signature profiles using optimal segmentation and the expectation-maximization (EM) algorithm. We find that 426 genomes from 20 tumor types display at least one change in mutational signature activities (changepoint), and 306 genomes contain at least one of 54 recurrent changepoints shared by seven or more genomes of the same tumor type. Five recurrent changepoint locations are shared by multiple tumor types. Within these regions, the particular signature changes are often consistent across samples of the same type and some, but not all, are characterized by signatures associated with subclonal expansion. The changepoints we found cannot strictly be explained by gene density, mutation density, or cell-of-origin chromatin state. We hypothesize that they reflect a confluence of factors including evolutionary timing of mutational processes, regional differences in somatic mutation rate, large-scale changes in chromatin state that may be tissue type-specific, and changes in chromatin accessibility during subclonal expansion. These results provide insight into the regional effects of DNA damage and repair processes, and may help us localize genomic and epigenomic changes that occur during cancer development.
Collapse
Affiliation(s)
- Caitlin Timmons
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, New York, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Quaid Morris
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, New York, United States of America
- Vector Institute for Artificial Intelligence, Toronto, Canada
| | - Caitlin F. Harrigan
- Vector Institute for Artificial Intelligence, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Su K, Hao W, Lv Z, Wu M, Li J, Hu Y, Zhang Z, Gao J, Feng X. Electroacupuncture of Baihui and Shenting ameliorates cognitive deficits via Pten/Akt pathway in a rat cerebral ischemia injury model. Front Neurol 2022; 13:855362. [PMID: 36062010 PMCID: PMC9437581 DOI: 10.3389/fneur.2022.855362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cerebral ischemic stroke is a huge threat to the health and life of many people. Electroacupuncture (EA) at Baihui (GV20) and Shenting (GV24) acupoints can notably alleviate cerebral ischemia/reperfusion injury (CIRI). However, the molecular basis underlying the effectiveness of EA at the GV20 and GV24 acupoints for CIRI remains largely unknown. Our present study demonstrated that EA treatment at the GV20 and GV24 acupoints markedly alleviated middle cerebral artery occlusion/reperfusion (MCAO/R)-induced cognitive deficits and cerebral infarction in rats. Proteomics analysis revealed that 195 and 218 proteins were dysregulated in rat hippocampal tissues in the MCAO/R vs. sham group and thhhe EA vs. MCAO/R group, respectively. Moreover, 62 proteins with converse alteration trends in MCAO/R vs. sham and EA vs. MCAO/R groups were identified. These proteins might be implicated in the EA-mediated protective effect against MCAO/R-induced cerebral injury. GO enrichment analysis showed that 39 dysregulated proteins in the MCAO/R vs. sham group and 40 dysregulated proteins in the EA vs. MCAO/R group were related to brain and nerve development. Protein–protein interaction analysis of the abovementioned dysregulated proteins associated with brain and nerve development suggested that Pten/Akt pathway-related proteins might play major roles in regulating EA-mediated protective effects against MCAO/R-induced brain and nerve injury. Western blot assays demonstrated that Pak4, Akt3, and Efnb2 were expressed at low levels in the MCAO/R group vs. the sham group but at high levels in the EA group vs. the MCAO/R group. In conclusion, multiple proteins related to the protective effect of EA at the GV20 and GV24 acupoints against CIRI were identified in our study.
Collapse
Affiliation(s)
- Kaiqi Su
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxue Hao
- Department of Rehabilitation, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuan Lv
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingli Wu
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jieying Li
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanchao Hu
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenhua Zhang
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Jing Gao
| | - Xiaodong Feng
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Xiaodong Feng
| |
Collapse
|
9
|
Neuropilin-2 promotes lineage plasticity and progression to neuroendocrine prostate cancer. Oncogene 2022; 41:4307-4317. [PMID: 35986103 PMCID: PMC9464715 DOI: 10.1038/s41388-022-02437-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
Neuroendocrine prostate cancer (NEPC), a lethal subset of prostate cancer, is characterized by loss of AR signaling and resulting resistance to AR-targeted therapy during neuroendocrine transdifferentiation, for which the molecular mechanisms remain unclear. Here, we report that neuropilin 2 (NRP2) is upregulated in both de novo and therapy-induced NEPC, which induces neuroendocrine markers, neuroendocrine cell morphology, and NEPC cell aggressive behavior. NRP2 silencing restricted NEPC tumor xenograft growth. Mechanistically, NRP2 engages in reciprocal crosstalk with AR, where NRP2 is transcriptionally inhibited by AR, and in turn suppresses AR signaling by downregulating the AR transcriptional program and confers resistance to enzalutamide. Moreover, NRP2 physically interacts with VEGFR2 through the intracellular SEA domain to activate STAT3 phosphorylation and subsequently SOX2, thus driving NEPC differentiation and growth. Collectively, these results characterize NRP2 as a driver of NEPC and suggest NRP2 as a potential therapeutic target in NEPC.
Collapse
|
10
|
Islam R, Mishra J, Bodas S, Bhattacharya S, Batra SK, Dutta S, Datta K. Role of Neuropilin-2-mediated signaling axis in cancer progression and therapy resistance. Cancer Metastasis Rev 2022; 41:771-787. [PMID: 35776228 PMCID: PMC9247951 DOI: 10.1007/s10555-022-10048-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/16/2022] [Indexed: 12/12/2022]
Abstract
Neuropilins (NRPs) are transmembrane proteins involved in vascular and nervous system development by regulating angiogenesis and axon guidance cues. Several published reports have established their role in tumorigenesis. NRPs are detectable in tumor cells of several cancer types and participate in cancer progression. NRP2 is also expressed in endothelial and immune cells in the tumor microenvironment and promotes functions such as lymphangiogenesis and immune suppression important for cancer progression. In this review, we have taken a comprehensive approach to discussing various aspects of NRP2-signaling in cancer, including its regulation, functional significance in cancer progression, and how we could utilize our current knowledge to advance the studies and target NRP2 to develop effective cancer therapies.
Collapse
Affiliation(s)
- Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Molecular Genetics and Cell Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Tan Q, Cai J, Peng J, Hu C, Wu C, Liu H. VEGF-B targeting by aryl hydrocarbon receptor mediates the migration and invasion of choriocarcinoma stem-like cells. Cancer Cell Int 2022; 22:221. [PMID: 35773697 PMCID: PMC9245252 DOI: 10.1186/s12935-022-02641-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
Unlike other members of the VEGF family, the function of VEGF-B in tumor progression remains to be elucidated. Thus, the present study aimed to determine the function of VEGF-B in human choriocarcinoma cells by investigating its detailed effects and molecular mechanisms. VEGF-B and aryl hydrocarbon receptor (AhR) expression were evaluated by reverse transcription-quantitative PCR analysis and western blot analysis in JEG-3 cells and choriocarcinoma stem-like cells (CSLCs) and their proliferation, migration, and invasion after the transfection of short hairpin RNA VEGF-B, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; AhR agonist) treatment or StemRegenin 1 (SR1; AhR antagonist) treatment were examined by cell proliferation assay, wound healing assay and Transwell assay. In addition, luciferase reporter analysis and bioinformatics data mining were used to investigate the association between VEGF-B and AhR. Upregulation of VEGF-B and AhR expression was observed in CSLCs. Following VEGF-B knockdown or SR1 treatment, the proliferative, migratory, and invasive abilities of CSLCs were significantly decreased, contrary to the findings after TCDD treatment. It was also found that AhR enhanced VEGF-B transcriptional activity by binding to the relative promoter region. These observations indicated that VEGF-B may be an oncogene that promotes choriocarcinoma cell migration and invasion targeted by AhR. Therefore, targeting VEGF-B may provide a novel therapeutic opportunity for choriocarcinoma.
Collapse
Affiliation(s)
- Qianxia Tan
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Kaifu, Changsha, Hunan, 410000, People's Republic of China
| | - Jingting Cai
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Kaifu, Changsha, Hunan, 410000, People's Republic of China
| | - Jingping Peng
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Kaifu, Changsha, Hunan, 410000, People's Republic of China
| | - Cui Hu
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Kaifu, Changsha, Hunan, 410000, People's Republic of China
| | - ChenChun Wu
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Kaifu, Changsha, Hunan, 410000, People's Republic of China
| | - Huining Liu
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Kaifu, Changsha, Hunan, 410000, People's Republic of China.
| |
Collapse
|
12
|
Poghosyan S, Frenkel N, Lentzas A, Laoukili J, Rinkes IB, Kranenburg O, Hagendoorn J. Loss of Neuropilin-2 in Murine Mesenchymal-like Colon Cancer Organoids Causes Mesenchymal-to-Epithelial Transition and an Acquired Dependency on Insulin-Receptor Signaling and Autophagy. Cancers (Basel) 2022; 14:cancers14030671. [PMID: 35158941 PMCID: PMC8833430 DOI: 10.3390/cancers14030671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Many cancer types are reported to have high lymphangiogenic receptor Neuropilin-2 (Nrp2) expression, including colorectal cancer (CRC). Nrp2 is shown to be associated with tumor progression in vivo and poor prognosis in CRC patients. Although the role of Nrp2 is well established in lymphangiogenesis, the tumor cell-intrinsic role of Nrp2 remains elusive. Here, we employed murine CRC tumor-derived mesenchymal-like organoids to induce Nrp2 depletion. We demonstrate that Nrp2 deletion in CRC organoids results in a drastically altered phenotype that is characterized by mesenchymal-to-epithelial transition (MET), and an acquired dependency on IR signaling and autophagy. This phenotype is preserved in subcutaneous tumors generated by CRC organoids. We conclude that there is a complex interaction between Nrp2 and alternative pro-survival mechanisms in aggressive CRC, which could be therapeutically exploited. Abstract Neuropilin-2 (Nrp2), an important regulator of lymphangiogenesis and lymphatic metastasis, has been associated with progression in colorectal cancer (CRC). However, the tumor cell-intrinsic role of Nrp2 in cancer progression is incompletely understood. To address this question, we employed CRISPR-Cas9 technology to generate Nrp2-knockout organoids derived from murine CRC tumors with a mesenchymal phenotype. Transcriptome profiling and tumor tissue analysis showed that Nrp2 loss resulted in mesenchymal-to-epithelial transition (MET), which was accompanied with restored polarity and tight junction stabilization. Signaling pathway analysis revealed that Nrp2-knockout organoids acquire de novo dependency on insulin receptor (IR) signaling and autophagy as alternative survival mechanisms. Combined inhibition of IR signaling and autophagy prevented the stabilization of cell-cell junctions, reduced metabolic activity, and caused profound cell death in Nrp2-knockout organoids. Collectively, the data demonstrate a key role for Nrp2 in maintaining the aggressive phenotype and survival of tumor-derived CRC organoids. The identified connection between Nrp2, insulin receptor signaling and autophagy may guide the development of novel combination-treatment strategies for aggressive CRC.
Collapse
|
13
|
Kang Y, Zhang Y, Zhang Y, Sun Y. NRP2, a potential biomarker for oral squamous cell carcinoma. Am J Transl Res 2021; 13:8938-8951. [PMID: 34540006 PMCID: PMC8430140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neuropilin-2 (NRP2) is a single chain transmembrane glycoprotein that acts as a co-receptor of VEGF and is related to the pathogenesis of various tumors closely. However, the clinical significance of NRP2 in oral squamous cell carcinoma (OSCC) is unclear. PURPOSE The objective of this study was to investigate the role of NRP2 in the pathogenesis of OSCC and explore the associated mechanisms. MATERIALS AND METHODS GEPIA (gene expression profiling interactive analysis) was used to analyze the expression of NRP2 in OSCC. Immunohistochemistry and RT-qPCR were used to detect NRP2 expression in 80 OSCC samples. The clinical correlations and prognostic significance of NRP2 expression were evaluated. In addition, the biological functions of OSCC cells transfected with shNRP2 were evaluated. The expression levels of β-catenin, C-myc, cyclin D1, and MMP-2 in Wnt/β-catenin signaling pathway were assessed by RT-qPCR after inhibiting the expression of NRP2 in SCC-25 cell line. RESULTS Analysis of cases using GEPIA revealed that NRP2 was substantially upregulated in OSCC. NRP2 expression was also significantly higher in our OSCC samples than in the controls. Elevated expression of NRP2 was correlated with lymph node metastasis (P<0.01) and distant metastasis (P<0.05) in OSCC patients, and high NRP2 levels, lymph node metastasis, and distant metastasis were associated with poor prognosis (Kaplan-Meier analysis; P<0.05). Univariate and multivariate Cox analysis showed that lymph node metastasis, distant metastasis, and NRP2 expression were independent risk factors for overall survival (OS) and disease-free survival (DFS) in OSCC patients (P<0.05). Furthermore, the proliferation, migration, and invasion of OSCC cells were inhibited by shNRP2. Following inhibiting of NRP2 expression in the SCC-25 cell line, the expression levels of β-catenin, C-myc, cyclin D1, and MMP-2 were reduced (P<0.05). CONCLUSION This study shows that NRP2 functions as a tumor promoter gene in OSCC by affecting the proliferation, migration, and invasion of OSCC cells and downregulating the Wnt/β-catenin pathway. These results highlight the potential role for NRP2 as a clinical diagnostic marker.
Collapse
Affiliation(s)
- Yuanyuan Kang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang 110002, China
| | - Yuanyuan Zhang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang 110002, China
| | - Ying Zhang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang 110002, China
| | - Yan Sun
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang 110002, China
| |
Collapse
|
14
|
Pancancer Analysis of Neurovascular-Related NRP Family Genes as Potential Prognostic Biomarkers of Bladder Urothelial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5546612. [PMID: 33937395 PMCID: PMC8062179 DOI: 10.1155/2021/5546612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
Background Neurovascular-related genes have been implicated in the development of cancer. Studies have shown that a high expression of neuropilins (NRPs) promotes tumourigenesis and tumour malignancy. Method A multidimensional bioinformatics analysis was performed to examine the relationship between NRP genes and prognostic and pathological features, tumour mutational burden (TMB), microsatellite instability (MSI), and immunological features based on public databases and find the potential prognostic value of NRPs in pancancer. Results Survival analysis revealed that a low NRP1 expression in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), low-grade glioma (LGG), and stomach adenocarcinoma (STAD) was associated with poor prognosis. A high NRP2 expression in bladder urothelial carcinoma (BLCA), kidney renal papillary cell carcinoma (KIRP), and mesothelioma (MESO) was associated with poor prognosis. Moreover, NRP1 and NRP2 were associated with TMB and MSI. Subsequent analyses showed that NRP1 and NRP2 were correlated with immune infiltration and immune checkpoints. Genome-wide association analysis revealed that the NRP1 expression was strongly associated with kidney renal clear cell carcinoma (KIRC), whereas the NRP2 expression was closely associated with BLCA. Ultimately, NRP2 was found to be involved in the development of BLCA. Conclusions Neurovascular-related NRP family genes are significantly correlated with cancer prognosis, TME, and immune infiltration, particularly in BLCA.
Collapse
|
15
|
Ye T, Li S, Zhang Y. Genomic pan-cancer classification using image-based deep learning. Comput Struct Biotechnol J 2021; 19:835-846. [PMID: 33598099 PMCID: PMC7848437 DOI: 10.1016/j.csbj.2021.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Accurate cancer type classification based on genetic mutation can significantly facilitate cancer-related diagnosis. However, existing methods usually use feature selection combined with simple classifiers to quantify key mutated genes, resulting in poor classification performance. To circumvent this problem, a novel image-based deep learning strategy is employed to distinguish different types of cancer. Unlike conventional methods, we first convert gene mutation data containing single nucleotide polymorphisms, insertions and deletions into a genetic mutation map, and then apply the deep learning networks to classify different cancer types based on the mutation map. We outline these methods and present results obtained in training VGG-16, Inception-v3, ResNet-50 and Inception-ResNet-v2 neural networks to classify 36 types of cancer from 9047 patient samples. Our approach achieves overall higher accuracy (over 95%) compared with other widely adopted classification methods. Furthermore, we demonstrate the application of a Guided Grad-CAM visualization to generate heatmaps and identify the top-ranked tumor-type-specific genes and pathways. Experimental results on prostate and breast cancer demonstrate our method can be applied to various types of cancer. Powered by the deep learning, this approach can potentially provide a new solution for pan-cancer classification and cancer driver gene discovery. The source code and datasets supporting the study is available at https://github.com/yetaoyu/Genomic-pan-cancer-classification.
Collapse
Affiliation(s)
- Taoyu Ye
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Sen Li
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Yang Zhang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
16
|
Zhao L, Chen H, Lu L, Wang L, Zhang X, Guo X. New insights into the role of co-receptor neuropilins in tumour angiogenesis and lymphangiogenesis and targeted therapy strategies. J Drug Target 2020; 29:155-167. [PMID: 32838575 DOI: 10.1080/1061186x.2020.1815210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Local tumour sites lead to pathological angiogenesis and lymphangiogenesis due to malignant conditions such as hypoxia. Although VEGF and VEGFR are considered to be the main anti-tumour treatment targets, the problems of limited efficacy and observable side effects of some drugs relevant to this target still remain to be solved. Therefore, it is necessary to identify new therapeutic targets for angiogenesis or lymphangiogenesis. The neuropilin family is a class of single transmembrane glycoprotein receptors, including neuropilin1 (NRP1) and neuropilin2 (NRP2), which could act as co-receptors of VEGFA-165 and VEGFC and play a key role in promoting tumour proliferation, invasion and metastasis. In this review, we introduced the schematic diagram to visually reveal the function of NRP1 and NRP2 in enhancing the binding affinity of VEGFR2 to VEGFA-165 and VEGFR3 to VEGFC, respectively. We also discussed the signalling pathways that depend on the co-receptors NRP1 and NRP2 and some existing targeted therapeutic strategies, such as monoclonal antibodies, targeted peptides, microRNAs and small molecule inhibitors. It will contribute a vital foundation for the future research and development of new drugs targeting NRPs. HIGHLIGHTS NRP1 acts as a co-receptor with VEGFR2 and the pro-angiogenic factor VEGFA-165 to up-regulate tumour angiogenesis by promoting endothelial cells proliferation, survival, migration, invasion and by preventing of apoptosis. NRP2 acts as a co-receptor with VEGFR3 and the pro-lymphogenic factor VEGFC to facilitate tumour metastasis by promoting lymphangiogenesis. Although NRP1 and NRP2 do not have enzymatic signalling activity, the affinity of VEGFR2 for VEGFA-165 and VEGFR3 for VEGFC can increase in a co-receptor manner, as detailed in the schematic. The exclusive roles of NRP1 and NRP2 in signalling pathways are specifically described to emphasise the molecular regulatory mechanisms involved in co-receptors. Various studies have shown that the co-receptors NRP1 and NRP2 can be directly or indirectly targeted by different methods to prevent tumour angiogenesis and lymphangiogenesis. Therapeutic strategies targeting NRPs look promising soon as evidenced by preclinical and clinical studies.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hongyuan Chen
- Department of General Surgery, Shandong University Affiliated Shandong Provincial Hospital, Jinan, China
| | - Lu Lu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Lei Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiuli Guo
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
17
|
Hong H, Chen X, Li K, Wang N, Li M, Yang B, Yu X, Wei X. Dental follicle stem cells rescue the regenerative capacity of inflamed rat dental pulp through a paracrine pathway. Stem Cell Res Ther 2020; 11:333. [PMID: 32746910 PMCID: PMC7397608 DOI: 10.1186/s13287-020-01841-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/27/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Pulpitis is a common dental disease characterized by sustained inflammation and impaired pulp self-repair. Mesenchymal stem cell-based minimally invasive vital pulp therapy (MSC-miVPT) is a potential treatment method, but its application is limited by the difficulty in acquiring MSCs. We recently revealed the immunomodulatory effects of rat dental follicle stem cells (rDFSCs) on acute lung injury. The present study focused on the paracrine effects of rDFSCs on the inflammation and regeneration of rat injured dental pulp to detect whether DFSCs are a potential candidate for MSC-miVPT. Methods Conditioned medium from rDFSCs (rDFSC-CM) was applied to lipopolysaccharide (LPS)-induced inflammatory rat dental pulp cells (rDPCs). The inflammation and regeneration of rDPCs were detected by RT-qPCR, Western blotting, immunofluorescence staining, Cell Counting Kit-8 (CCK-8) assay, flow cytometry, wound-healing assay, and Masson’s staining. The effects of rDFSC-CM on inflamed rat dental pulp were further evaluated by hematoxylin-eosin and immunohistochemical staining. Results rDFSC-CM downregulated the ERK1/2 and NF-κB signaling pathways, which resulted in suppression of the expression of IL-1β, IL-6, and TNF-α and promotion of the expression of IL-4 and TGF-β, and these findings lead to the attenuation of rDPC inflammation. rDFSC-CM enhanced the in vitro proliferation, migration, and odontogenic differentiation of inflammatory rDPCs and their in vivo ectopic dentinogenesis. Furthermore, rDFSC-CM inhibited inflammatory cell infiltration in rat pulpitis and triggered Runx2 expression in some of the odontoblast-like cells surrounding the injured site, and these effects were conducive to the repair of inflamed dental pulp. Conclusions rDFSC-CM exhibits therapeutic potential by rescuing the regeneration of the inflamed rat dental pulp through an immunomodulatory mechanism, indicating the application prospects of DFSCs in biological regenerative endodontics.
Collapse
Affiliation(s)
- Hong Hong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
| | - Xiaochuan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China.,Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Nan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Mengjie Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
18
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
19
|
Dziobek K, Opławski M, Grabarek BO, Zmarzły N, Tomala B, Halski T, Leśniak E, Januszyk K, Brus R, Kiełbasiński R, Boroń D. Changes in the Expression Profile of VEGF-A, VEGF-B, VEGFR-1, VEGFR-2 in Different Grades of Endometrial Cancer. Curr Pharm Biotechnol 2019; 20:955-963. [PMID: 31322068 PMCID: PMC7403754 DOI: 10.2174/1389201020666190717092448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023]
Abstract
Background VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 are important proteins involved in the induction and development of a new blood vessel network through which the tumor is properly nourished and oxygenated. Objectives The aim of the study was to evaluate changes in VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 expression in endometrial cancer depending on its grade and to determine the VEGFR-1 to VEGFR-2 concentration ratio. Methods The study group consisted of 45 patients diagnosed with endometrial cancer (G1, 17; G2, 15; G3, 13). The control group included 15 patients. VEGF-A, VEGF-B, VEGF-R1, VEGFR-2 expression was assessed using the immunohistochemical method. Statistical analysis was carried out using the Statistica 12 PL program (StatSoft, Cracow, Poland). It included the one-way ANOVA and Tukey's post-hoc test (p<0.05). Results Statistically significant differences in the level of VEGF-A, VEGF-B, VEGF-R1, VEGFR-2 were observed between the majority of analyzed groups (except for VEGF-B; G3 vs. G1, p=0.997700). The expression pattern of VEGF-A, VEGF-R1, VEGFR-2 was as follows: G3>G2>G1>C; VEGF-B: G2> G3> G1>C. A lower concentration of VEGFR-1 than VEGFR-2 was found regardless of the cancer grade. Conclusion VEGF-A, VEGF-B, VEGF-R1, VEGFR-2 are key proteins involved in tumor angiogenesis. The analysis of the entire panel of proteins participating in a given process is an important element of modern diagnostics. The concentration ratio of VEGFR-1 to VEGFR-2 appears to be a determining factor in the patients' survival prognosis.
Collapse
Affiliation(s)
- Konrad Dziobek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Beniamin Oskar Grabarek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Barbara Tomala
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Poland
| | - Tomasz Halski
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Poland
| | - Ewa Leśniak
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Poland
| | - Krzysztof Januszyk
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Poland
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| | - Robert Kiełbasiński
- Department of Obstetrics & Gynaecology ward, Health Center in Mikolow, Mikolow, Poland
| | - Dariusz Boroń
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Poland.,Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland.,Faculty of Health Science, Public Higher Medical Professional School in Opole, Poland.,Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland
| |
Collapse
|
20
|
Borkowetz A, Froehner M, Rauner M, Conrad S, Erdmann K, Mayr T, Datta K, Hofbauer LC, Baretton GB, Wirth M, Fuessel S, Toma M, Muders MH. Neuropilin‐2 is an independent prognostic factor for shorter cancer‐specific survival in patients with acinar adenocarcinoma of the prostate. Int J Cancer 2019; 146:2619-2627. [DOI: 10.1002/ijc.32679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Martina Rauner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III Technische Universität Dresden Germany
| | - Stefanie Conrad
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III Technische Universität Dresden Germany
| | - Kati Erdmann
- Department of Urology Technische Universität Dresden Germany
| | - Thomas Mayr
- Institute of Pathology, Technische Universität Dresden Germany
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center Omaha NE
| | - Lorenz C. Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III Technische Universität Dresden Germany
| | - Gustavo B. Baretton
- Institute of Pathology, Technische Universität Dresden Germany
- Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universität Dresden Dresden Germany
| | - Manfred Wirth
- Department of Urology Technische Universität Dresden Germany
| | - Susanne Fuessel
- Department of Urology Technische Universität Dresden Germany
| | - Marietta Toma
- Institute of Pathology, Technische Universität Dresden Germany
| | | |
Collapse
|
21
|
Li B, Chen Y, Wang F, Guo J, Fu W, Li M, Zheng Q, Liu Y, Fan L, Li L, Xu C. Bmi1 drives hepatocarcinogenesis by repressing the TGFβ2/SMAD signalling axis. Oncogene 2019; 39:1063-1079. [DOI: 10.1038/s41388-019-1043-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 01/24/2023]
|
22
|
Elaimy AL, Wang M, Sheel A, Brown CW, Walker MR, Amante JJ, Xue W, Chan A, Baer CE, Goel HL, Mercurio AM. Real-time imaging of integrin β4 dynamics using a reporter cell line generated by Crispr/Cas9 genome editing. J Cell Sci 2019; 132:jcs.231241. [PMID: 31262785 DOI: 10.1242/jcs.231241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/22/2019] [Indexed: 12/27/2022] Open
Abstract
The ability to monitor changes in the expression and localization of integrins is essential for understanding their contribution to development, tissue homeostasis and disease. Here, we pioneered the use of Crispr/Cas9 genome editing to tag an allele of the β4 subunit of the α6β4 integrin. A tdTomato tag was inserted with a linker at the C-terminus of integrin β4 in mouse mammary epithelial cells. Cells harboring this tagged allele were similar to wild-type cells with respect to integrin β4 surface expression, association with the α6 subunit, adhesion to laminin and consequent signaling. These integrin β4 reporter cells were transformed with YAP (also known as YAP1), which enabled us to obtain novel insight into integrin β4 dynamics in response to a migratory stimulus (scratch wound) by live-cell video microscopy. An increase in integrin β4 expression in cells proximal to the wound edge was evident, and a population of integrin β4-expressing cells that exhibited unusually rapid migration was identified. These findings could shed insight into integrin β4 dynamics during invasion and metastasis. Moreover, these integrin β4 reporter cells should facilitate studies on the contribution of this integrin to mammary gland biology and cancer.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA.,Medical Scientist Training Program, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Mengdie Wang
- Medical Scientist Training Program, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Ankur Sheel
- Medical Scientist Training Program, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA.,RNA Therapeutics Institute, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Caitlin W Brown
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Melanie R Walker
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - John J Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Amanda Chan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA.,Sanderson Center for Optical Examination, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
23
|
Oplawski M, Dziobek K, Grabarek B, Zmarzły N, Dąbruś D, Januszyk P, Brus R, Tomala B, Boroń D. Expression of NRP-1 and NRP-2 in Endometrial Cancer. Curr Pharm Biotechnol 2019; 20:254-260. [PMID: 30806307 PMCID: PMC6635647 DOI: 10.2174/1389201020666190219121602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/25/2018] [Accepted: 02/10/2019] [Indexed: 01/23/2023]
Abstract
Background: Neuropilins (NRPs) participate in many processes related to cancer development such as angiogenesis, lymphangiogenesis and metastasis. Although endometrial cancer is one of the most common gynecological cancers, it has not been studied in terms of NRPs expression. Objective: The aim of this study was to investigate the potential utility of NRPs as important factors in the diagnosis and treatment of endometrial cancer. Methods: Our study consisted of 45 women diagnosed with endometrial cancer at the following degrees of histological differentiation: G1, 17; G2, 15; G3, 13 cases. The control group included 15 women without neoplastic changes. The immunohistochemical reactions were evaluated using light microscopy. Results: We did not detect the expression of NRP-1 and NRP-2 in the control group. NRP-1 expression was found exclusively in cancer cells. It was higher in G2 and G3 and reached about 190% of G1. NRP-2 expression was observed in the endothelium and was similar across all three cancer grades. In cancer cells, NRP-2 expression increased with the degree of histological differentiation. Conclusion: NRP1 and NRP2 are candidates for complementary diagnostic molecular markers and promising new targets for molecular, personalized anticancer therapies.
Collapse
Affiliation(s)
- Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Konrad Dziobek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Beniamin Grabarek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Dariusz Dąbruś
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Piotr Januszyk
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| | - Barbara Tomala
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Dariusz Boroń
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland.,Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland.,Katowice School of Technology, The University of Science and Art, Katowice, Poland
| |
Collapse
|
24
|
Bugler J, Kinstrie R, Scott MT, Vetrie D. Epigenetic Reprogramming and Emerging Epigenetic Therapies in CML. Front Cell Dev Biol 2019; 7:136. [PMID: 31380371 PMCID: PMC6652210 DOI: 10.3389/fcell.2019.00136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder characterized by BCR-ABL1, an oncogenic fusion gene arising from the Philadelphia chromosome. The development of tyrosine kinase inhibitors (TKIs) to overcome the constitutive tyrosine kinase activity of the BCR-ABL protein has dramatically improved disease management and patient outcomes over the past 20 years. However, the majority of patients are not cured and developing novel therapeutic strategies that target epigenetic processes are a promising avenue to improve cure rates. A number of epigenetic mechanisms are altered or reprogrammed during the development and progression of CML, resulting in alterations in histone modifications, DNA methylation and dysregulation of the transcriptional machinery. In this review these epigenetic alterations are examined and the potential of epigenetic therapies are discussed as a means of eradicating residual disease and offering a potential cure for CML in combination with current therapies.
Collapse
Affiliation(s)
| | | | | | - David Vetrie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
25
|
Li Y, Zheng D, Pan L, Dai Y, Cai S, Zhao L, Zhu H. Knockdown of TUG1 by shRNA inhibited renal cell carcinoma formation by miR-299-3p/VEGF axis in vitro and in vivo. Eur J Pharmacol 2019; 860:172536. [PMID: 31310753 DOI: 10.1016/j.ejphar.2019.172536] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 01/19/2023]
Abstract
Renal cell carcinoma (RCC) is one of the top ten deadly malignancies in the world. The long non-coding RNA taurine up-regulated gene 1 (TUG1) is a transcript that is up-regulated by taurine. There is ample evidence that TUG1 plays a crucial role in the progression of various cancers. This study aimed to investigate the role of TUG1 in RCC and its underlying molecular mechanisms. In the current study, knockdown of TUG1 by shRNA (sh-TUG1) significantly inhibited proliferation, invasion, migration and EMT processes of ACHN cells and OS-RC-2 cells, and induced apoptosis. Besides, bioinformatics analysis revealed that miR-299-3p is a target of TUG1. TUG1 overexpression (LV-TUG1) significantly inhibited the expression of miR-299-3p, whereas sh-TUG1 showed the opposite effect. Dual luciferase reporter assay further confirmed the targeting relationship between TUG1 and miR-299-3p. In addition, vascular endothelial growth factor (VEGFA) is a target of miR-299-3p. Knockdown of VEGFA (si-VEGFA) significantly inhibited the proliferation and motility of ACHN cells, and induced apoptosis. RT-qPCR results showed that sh-TUG1 similarly inhibited VEGFA expression. Further functional analysis indicated that sh-TUG1 inhibited tumorigenesis by down-regulating VEGFA levels. However, LV-TUG1 showed the opposite effects. Furthermore, animal experiments have shown that sh-TUG1 inhibited tumor growth and metastasis and induces apoptosis in vivo. These results indicate that sh-TUG1 inhibited renal cell carcinoma formation by miR-299-3p/VEGF axis in vitro and in vivo. Taken together, all of these results reveal a novel mechanism of TUG1 in RCC tumorigenesis, suggesting that targeted drugs for TUG1 provides a new direction for the treatment of RCC.
Collapse
Affiliation(s)
- Yunsheng Li
- Department of Nephrology, The First People's Hospital of Wenling &The Affiliated Wenling Hospital of Wenzhou Medical University. Wenling, 317500, Zhejiang, PR China
| | - Dan Zheng
- Department of Nephrology, The First People's Hospital of Wenling &The Affiliated Wenling Hospital of Wenzhou Medical University. Wenling, 317500, Zhejiang, PR China
| | - Liutong Pan
- Department of Nephrology, The First People's Hospital of Wenling &The Affiliated Wenling Hospital of Wenzhou Medical University. Wenling, 317500, Zhejiang, PR China
| | - Yuanting Dai
- Department of Nephrology, The First People's Hospital of Wenling &The Affiliated Wenling Hospital of Wenzhou Medical University. Wenling, 317500, Zhejiang, PR China
| | - Shasha Cai
- Department of Nephrology, The First People's Hospital of Wenling &The Affiliated Wenling Hospital of Wenzhou Medical University. Wenling, 317500, Zhejiang, PR China
| | - Lijin Zhao
- Department of Nephrology, The First People's Hospital of Wenling &The Affiliated Wenling Hospital of Wenzhou Medical University. Wenling, 317500, Zhejiang, PR China
| | - HuiPing Zhu
- Department of Nephrology, The First People's Hospital of Wenling &The Affiliated Wenling Hospital of Wenzhou Medical University. Wenling, 317500, Zhejiang, PR China.
| |
Collapse
|
26
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
27
|
VEGF/Neuropilin Signaling in Cancer Stem Cells. Int J Mol Sci 2019; 20:ijms20030490. [PMID: 30678134 PMCID: PMC6387347 DOI: 10.3390/ijms20030490] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
The function of vascular endothelial growth factor (VEGF) in cancer extends beyond angiogenesis and vascular permeability. Specifically, VEGF-mediated signaling occurs in tumor cells and this signaling contributes to key aspects of tumorigenesis including the self-renewal and survival of cancer stem cells (CSCs). In addition to VEGF receptor tyrosine kinases, the neuropilins (NRPs) are critical for mediating the effects of VEGF on CSCs, primarily because of their ability to impact the function of growth factor receptors and integrins. VEGF/NRP signaling can regulate the expression and function of key molecules that have been implicated in CSC function including Rho family guanosine triphosphatases (GTPases) and transcription factors. The VEGF/NRP signaling axis is a prime target for therapy because it can confer resistance to standard chemotherapy, which is ineffective against most CSCs. Indeed, several studies have shown that targeting either NRP1 or NRP2 can inhibit tumor initiation and decrease resistance to other therapies.
Collapse
|
28
|
Boudria A, Abou Faycal C, Jia T, Gout S, Keramidas M, Didier C, Lemaître N, Manet S, Coll JL, Toffart AC, Moro-Sibilot D, Albiges-Rizo C, Josserand V, Faurobert E, Brambilla C, Brambilla E, Gazzeri S, Eymin B. VEGF 165b, a splice variant of VEGF-A, promotes lung tumor progression and escape from anti-angiogenic therapies through a β1 integrin/VEGFR autocrine loop. Oncogene 2018; 38:1050-1066. [PMID: 30194450 DOI: 10.1038/s41388-018-0486-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/25/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022]
Abstract
Vascular endothelial growth factor-A (VEGF-A) is highly subjected to alternative pre-mRNA splicing that generates several splice variants. The VEGFxxx and VEGFxxxb families encode splice variants of VEGF-A that differ only at the level of six amino acids in their C-terminal part. The expression level of VEGFxxx splice variants and their function as pro-angiogenic factors during tumor neo-angiogenesis have been well-described. The role of VEGFxxxb isoforms is less well known, but they have been shown to inhibit VEGFxxx-mediated angiogenesis, while being partial or weak activators of VEGFR receptors in endothelial cells. On the opposite, their role on tumor cells expressing VEGFRs at their surface remains largely unknown. In this study, we find elevated levels of VEGF165b, the main VEGFxxxb isoform, in 36% of non-small cell lung carcinoma (NSCLC), mainly lung adenocarcinoma (46%), and show that a high VEGF165b/VEGF165 ratio correlates with the presence of lymph node metastases. At the molecular level, we demonstrate that VEGF165b stimulates proliferation and invasiveness of two lung tumor cell lines through a VEGFR/β1 integrin loop. We further provide evidence that the isoform-specific knockdown of VEGF165b reduces tumor growth, demonstrating a tumor-promoting autocrine role for VEGF165b in lung cancer cells. Importantly, we show that bevacizumab, an anti-angiogenic compound used for the treatment of lung adenocarcinoma patients, increases the expression of VEGF165b and activates the invasive VEGFR/β1 integrin loop. Overall, these data highlight an unexpected role of the VEGF165b splice variant in the progression of lung tumors and their response to anti-angiogenic therapies.
Collapse
Affiliation(s)
- Asma Boudria
- INSERM U1209, UMR CNRS 5309, Team RNA splicing, Cell Signaling and Response to Therapies, Grenoble, 38042, France.,Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France
| | - Cherine Abou Faycal
- INSERM U1209, UMR CNRS 5309, Team RNA splicing, Cell Signaling and Response to Therapies, Grenoble, 38042, France.,Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France
| | - Tao Jia
- INSERM U1209, UMR CNRS 5309, Team RNA splicing, Cell Signaling and Response to Therapies, Grenoble, 38042, France.,Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France
| | - Stephanie Gout
- INSERM U1209, UMR CNRS 5309, Team RNA splicing, Cell Signaling and Response to Therapies, Grenoble, 38042, France.,Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France
| | - Michelle Keramidas
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM, U1209, UMR CNRS 5309, Team Cancer Targets and Experimental Therapeutics, Grenoble, 38042, France
| | - Chloé Didier
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM, U1209, UMR CNRS 5309, Team Cancer Targets and Experimental Therapeutics, Grenoble, 38042, France
| | - Nicolas Lemaître
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM U1209, UMR CNRS 5309, Team Tumor Molecular Pathology and Biomarkers, Grenoble, 38042, France
| | - Sandra Manet
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM U1209, UMR CNRS 5309, Team Cell Adhesion Dynamics and Differentiation, Grenoble, 38042, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM, U1209, UMR CNRS 5309, Team Cancer Targets and Experimental Therapeutics, Grenoble, 38042, France
| | - Anne-Claire Toffart
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM U1209, UMR CNRS 5309, Team Tumor Molecular Pathology and Biomarkers, Grenoble, 38042, France
| | - Denis Moro-Sibilot
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM U1209, UMR CNRS 5309, Team Tumor Molecular Pathology and Biomarkers, Grenoble, 38042, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM U1209, UMR CNRS 5309, Team Cell Adhesion Dynamics and Differentiation, Grenoble, 38042, France
| | - Véronique Josserand
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM, U1209, UMR CNRS 5309, Team Cancer Targets and Experimental Therapeutics, Grenoble, 38042, France
| | - Eva Faurobert
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM U1209, UMR CNRS 5309, Team Cell Adhesion Dynamics and Differentiation, Grenoble, 38042, France
| | - Christian Brambilla
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM U1209, UMR CNRS 5309, Team Tumor Molecular Pathology and Biomarkers, Grenoble, 38042, France
| | - Elisabeth Brambilla
- Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.,INSERM U1209, UMR CNRS 5309, Team Tumor Molecular Pathology and Biomarkers, Grenoble, 38042, France
| | - Sylvie Gazzeri
- INSERM U1209, UMR CNRS 5309, Team RNA splicing, Cell Signaling and Response to Therapies, Grenoble, 38042, France.,Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France
| | - Beatrice Eymin
- INSERM U1209, UMR CNRS 5309, Team RNA splicing, Cell Signaling and Response to Therapies, Grenoble, 38042, France. .,Université Grenoble Alpes, Institut Pour l'Avancée des Biosciences, Grenoble, 38041, France.
| |
Collapse
|
29
|
Nikitakis NG, Gkouveris I, Aseervatham J, Barahona K, Ogbureke KUE. DSPP-MMP20 gene silencing downregulates cancer stem cell markers in human oral cancer cells. Cell Mol Biol Lett 2018; 23:30. [PMID: 30002682 PMCID: PMC6040065 DOI: 10.1186/s11658-018-0096-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recent findings indicate that dentin sialophosphoprotein (DSPP) and matrix metalloproteinase (MMP) 20 interact in oral squamous cell carcinoma (OSCC). The objective of this study was to determine the effects of DSPP/MMP20 gene silencing on oral cancer stem cell (OCSC) markers. METHODS The expression of well-established OCSC markers: ABCG2; ALDH1; CD133; CD44; BMI1; LGR4, and Podoplanin in DSPP/MMP20-silenced OSCC cell line, OSC2, and controls were assayed by western blot (WB), and flow cytometry techniques. The sensitivity of OSC2 cells to cisplatin following DSPP/MMP20 silencing was also determined. RESULTS DSPP/MMP20 silencing resulted in downregulation of OCSC markers, more profoundly ABCG2 (84%) and CD44 (81%), following double silencing. Furthermore, while treatment of parent (pre-silenced) OSC2 cells with cisplatin resulted in upregulation of OCSC markers, DSPP/MMP20-silenced OSC2 cells similarly treated resulted in profound downregulation of OCSC markers (72 to 94% at 50 μM of cisplatin), and a marked reduction in the proportion of ABCG2 and ALDH1 positive cells (~ 1%). CONCLUSIONS We conclude that the downregulation of OCSC markers may signal a reduction in OCSC population following MMP20/DSPP silencing in OSCC cells, while also increasing their sensitivity to cisplatin. Thus, our findings suggest a potential role for DSPP and MMP20 in sustaining OCSC population in OSCCs, possibly, through mechanism(s) that alter OCSC sensitivity to treatment with chemotherapeutic agents such as cisplatin.
Collapse
Affiliation(s)
- Nikolaos G. Nikitakis
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
- Department of Oral Pathology and Medicine, School of Dentistry, University of Athens, Athens, Greece
| | - Ioannis Gkouveris
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| | - Jaya Aseervatham
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| | - Kelvin Barahona
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| | - Kalu U. E. Ogbureke
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| |
Collapse
|
30
|
Elaimy AL, Guru S, Chang C, Ou J, Amante JJ, Zhu LJ, Goel HL, Mercurio AM. VEGF-neuropilin-2 signaling promotes stem-like traits in breast cancer cells by TAZ-mediated repression of the Rac GAP β2-chimaerin. Sci Signal 2018; 11:11/528/eaao6897. [PMID: 29717062 DOI: 10.1126/scisignal.aao6897] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The role of vascular endothelial growth factor (VEGF) signaling in cancer is not only well known in the context of angiogenesis but also important in the functional regulation of tumor cells. Autocrine VEGF signaling mediated by its co-receptors called neuropilins (NRPs) appears to be essential for sustaining the proliferation and survival of cancer stem cells (CSCs), which are implicated in mediating tumor growth, progression, and drug resistance. Therefore, understanding the mechanisms involved in VEGF-mediated support of CSCs is critical to successfully treating cancer patients. The expression of the Hippo effector TAZ is associated with breast CSCs and confers stem cell-like properties. We found that VEGF-NRP2 signaling contributed to the activation of TAZ in various breast cancer cells, which mediated a positive feedback loop that promoted mammosphere formation. VEGF-NRP2 signaling activated the GTPase Rac1, which inhibited the Hippo kinase LATS, thus leading to TAZ activity. In a complex with the transcription factor TEAD, TAZ then bound and repressed the promoter of the gene encoding the Rac GTPase-activating protein (Rac GAP) β2-chimaerin. By activating GTP hydrolysis, Rac GAPs effectively turn off Rac signaling; hence, the TAZ-mediated repression of β2-chimaerin resulted in sustained Rac1 activity in CSCs. Depletion of β2-chimaerin in non-CSCs increased Rac1 activity, TAZ abundance, and mammosphere formation. Analysis of a breast cancer patient database revealed an inverse correlation between β2-chimaerin and TAZ expression in tumors. Our findings highlight an unexpected role for β2-chimaerin in a feed-forward loop of TAZ activation and the acquisition of CSC properties.
Collapse
Affiliation(s)
- Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.,Medical Scientist Training Program, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Santosh Guru
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Cheng Chang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - John J Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
31
|
Sorrentino C, Ciummo SL, Cipollone G, Caputo S, Bellone M, Di Carlo E. Interleukin-30/IL27p28 Shapes Prostate Cancer Stem-like Cell Behavior and Is Critical for Tumor Onset and Metastasization. Cancer Res 2018; 78:2654-2668. [PMID: 29487200 DOI: 10.1158/0008-5472.can-17-3117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/01/2017] [Accepted: 02/22/2018] [Indexed: 11/16/2022]
Abstract
Prostate cancer stem-like cells (PCSLC) are believed to be responsible for prostate cancer onset and metastasis. Autocrine and microenvironmental signals dictate PCSLC behavior and patient outcome. In prostate cancer patients, IL30/IL27p28 has been linked with tumor progression, but the mechanisms underlying this link remain mostly elusive. Here, we asked whether IL30 may favor prostate cancer progression by conditioning PCSLCs and assessed the value of blocking IL30 to suppress tumor growth. IL30 was produced by PCSLCs in human and murine prostatic intraepithelial neoplasia and displayed significant autocrine and paracrine effects. PCSLC-derived IL30 supported PCSLC viability, self-renewal and tumorigenicity, expression of inflammatory mediators and growth factors, tumor immune evasion, and regulated chemokine and chemokine receptor genes, primarily via STAT1/STAT3 signaling. IL30 overproduction by PCSLCs promoted tumor onset and development associated with increased proliferation, vascularization, and myeloid cell recruitment. Furthermore, it promoted PCSLC dissemination to lymph nodes and bone marrow by upregulating the CXCR5/CXCL13 axis, and drove metastasis to lungs through the CXCR4/CXCL12 axis. These mechanisms were drastically hindered by IL30 knockdown or knockout in PCSLCs. Collectively, these results mark IL30 as a key driver of PCSLC behavior. Targeting IL30 signaling may be a potential therapeutic strategy against prostate cancer progression and recurrence.Significance: IL30 plays an important role in regulating prostate cancer stem-like cell behavior and metastatic potential, therefore targeting this cytokine could hamper prostate cancer progression or recurrence. Cancer Res; 78(10); 2654-68. ©2018 AACR.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Division of Anatomic Pathology, "SS Annunziata" Hospital, Chieti, Italy.,Ce.S.I.-Me.T, Aging Research Center, Anatomic Pathology and Immuno-Oncology Unit, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Sciences of Aging, Division of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania L Ciummo
- Division of Anatomic Pathology, "SS Annunziata" Hospital, Chieti, Italy.,Ce.S.I.-Me.T, Aging Research Center, Anatomic Pathology and Immuno-Oncology Unit, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Sciences of Aging, Division of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Cipollone
- General and Thoracic Surgery, "SS Annunziata" Hospital, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Caputo
- Cellular Immunology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Emma Di Carlo
- Division of Anatomic Pathology, "SS Annunziata" Hospital, Chieti, Italy. .,Ce.S.I.-Me.T, Aging Research Center, Anatomic Pathology and Immuno-Oncology Unit, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Sciences of Aging, Division of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
32
|
NRPa-308, a new neuropilin-1 antagonist, exerts in vitro anti-angiogenic and anti-proliferative effects and in vivo anti-cancer effects in a mouse xenograft model. Cancer Lett 2018; 414:88-98. [DOI: 10.1016/j.canlet.2017.10.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
|
33
|
Wang J, Huang Y, Zhang J, Xing B, Xuan W, Wang H, Huang H, Yang J, Tang J. NRP-2 in tumor lymphangiogenesis and lymphatic metastasis. Cancer Lett 2018; 418:176-184. [PMID: 29339213 DOI: 10.1016/j.canlet.2018.01.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Neuropilin-2 (NRP-2) not only functions as a receptor for semaphorins, a family of neural axon guidance factors, but also interacts with VEGFs, a family of vascular endothelial growth factors. As an independent receptor or a co-receptor, NRP-2 binds to ligands VEGF-C/D, activates the VEGF-C/D-NRP-2 signaling axis, and further regulates lymphangiogenesis-associated factors in both lymphatic endothelial cells (LECs) and some tumor cells during tumor progression. Via VEGF-C/D-NRP-2 axis, NRP-2 induces LEC proliferation, reconstruction and lymphangiogenesis and subsequently promotes tumor cell migration, invasion and lymphatic metastasis. There are similarities and differences among NRP-1, NRP-2 and VEGFR-3 in chemical structure, ligand specificity, chromosomal location, soluble protein forms, cellular functions and expression profiles. High expression of NRP-2 in LECs and tumor cells has been observed in different anatomic sites, histological patterns and progression stages of various tumors, especially during tumor lymphangiogenesis and lymphatic metastasis, and therefore the NRP-2 and VEGF-C/D-NRP-2 axis are closely related to tumor development, progression, invasion, and metastasis. In addition, it is important for prognosis of tumor. The studies on NRP-2 targeted therapy have recently achieved some successes, utilizing NRP-2 blocking antibodies, NRP-2 inhibitory peptides, soluble NRP-2 antagonists, small molecule inhibitors and various NRP-2 gene therapeutic strategies.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China; Institute of Medical Technology, Ningbo College of Health Science, No.51, XueFu Road, Ningbo Zhejiang 315100, China
| | - Yuhong Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Boyi Xing
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Wei Xuan
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Honghai Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - He Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jiayu Yang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China.
| |
Collapse
|
34
|
Rizzolio S, Battistini C, Cagnoni G, Apicella M, Vella V, Giordano S, Tamagnone L. Downregulating Neuropilin-2 Triggers a Novel Mechanism Enabling EGFR-Dependent Resistance to Oncogene-Targeted Therapies. Cancer Res 2017; 78:1058-1068. [PMID: 29229599 DOI: 10.1158/0008-5472.can-17-2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/10/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
Abstract
Neuropilins are a class of cell surface proteins implicated in cell migration and angiogenesis, with aberrant expression in human tumors. Here, we show that the expression of Neuropilin-2 (NRP2) controls EGFR protein levels, thereby impinging on intracellular signaling, viability, and response to targeted therapies of oncogene-addicted cells. Notably, increased NRP2 expression in EGFR-addicted tumor cells led to downregulation of EGFR protein and tumor cell growth inhibition. NRP2 also blunted upregulation of an EGFR "rescue" pathway induced by targeted therapy in Met-addicted carcinoma cells. Cancer cells acquiring resistance to MET oncogene-targeted drugs invariably underwent NRP2 loss, a step required for EGFR upregulation. Mechanistic investigations revealed that NRP2 loss activated NFkB and upregulated the EGFR-associated protein KIAA1199/CEMIP, which is known to oppose the degradation of activated EGFR kinase. Notably, KIAA1199 silencing in oncogene-addicted tumor cells improved therapeutic responses and counteracted acquired drug resistance. Our findings define NRP2 as the pivotal switch of a novel broad-acting and actionable pathway controlling EGFR signaling, and driving resistance to therapies targeting oncogene-addiction.Significance: These important findings identify the cell surface molecule Nrp2 as the pivotal switch of a novel, actionable pathway driving EGFR upregulation and resistance to oncogene- targeted therapies. Cancer Res; 78(4); 1058-68. ©2017 AACR.
Collapse
Affiliation(s)
- Sabrina Rizzolio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Italy
| | - Chiara Battistini
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Italy
| | - Gabriella Cagnoni
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Italy
| | - Maria Apicella
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Italy
| | - Viviana Vella
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Italy
| | - Silvia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Italy
| | - Luca Tamagnone
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy. .,Department of Oncology, University of Torino, Italy
| |
Collapse
|
35
|
Tao X, Xu L, Yin L, Han X, Qi Y, Xu Y, Song S, Zhao Y, Peng J. Dioscin induces prostate cancer cell apoptosis through activation of estrogen receptor-β. Cell Death Dis 2017; 8:e2989. [PMID: 28796245 PMCID: PMC5596577 DOI: 10.1038/cddis.2017.391] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
Abstract
Recent researches have shown that estrogen receptor-β (ERβ) activator may be a potent anticancer agent for prostate cancer (PCa), and our previous study also indicated that dioscin can upregulate the expression of ERβ in MC3T3-E1 cell. In the present work, the activity and mechanism of dioscin, a natural product, against PCa were investigated. The results showed that dioscin markedly inhibited cell viability, colony formation, motility and induced apoptosis in PC3 cells. Moreover, dioscin disrupted the formation of PC3 cell-derived mammospheres and reduced aldehyde dehydrogenase (ALDH) level and the CD133+/CD44+ cells, indicating that dioscin had a potent inhibitory activity on prostate cancer stem cells (PCSCs). In vivo results also showed that dioscin significantly suppressed the tumor growth of PC3 cell xenografts in nude mice. Furthermore, mechanism investigation showed that dioscin markedly upregulated ERβ expression level, subsequently increased prolyl hydroxylase 2 level, decreased the levels of hypoxia-inducible factor-1α, vascular endothelial growth factor A and BMI-1, and thus induced cell apoptosis by regulating the expression levels of caspase-3 and Bcl-2 family proteins. In addition, transfection experiment of ERβ-siRNA further indicated that diosicn showed excellent activity against PCa in vitro and in vivo by increasing ERβ expression level. The co-immunoprecipitation (Co-IP) results further suggested that dioscin promoted the interaction of c-ABL and ERβ, but did not change c-ABL expression. Moreover, the molecular docking assay showed that dioscin processed powerful affinity toward to ERβ mainly through the strong hydrogen bonding and hydrophobic effects, and the actions of dioscin on ERβ activation and tumor cells inhibition were significantly weakened in the mutational (Phe-336, Phe-468) PC3 cells. Collectively, these findings proved that dioscin exerted efficient anti-PCa activity via activation of ERβ, which should be developed as an efficient candidate in clinical for treating this cancer in the future.
Collapse
Affiliation(s)
- Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Shasha Song
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yanyan Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| |
Collapse
|
36
|
Dong X, Guo W, Zhang S, Wu T, Sun Z, Yan S, Zheng S. Elevated expression of neuropilin-2 associated with unfavorable prognosis in hepatocellular carcinoma. Onco Targets Ther 2017; 10:3827-3833. [PMID: 28814881 PMCID: PMC5546826 DOI: 10.2147/ott.s139044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neuropilin-2 (NRP2) is a single-pass transmembrane glycoprotein and has recently been detected in several human cancer cells. However, its clinical relevance in hepatocellular carcinoma (HCC) remains unclear. This study aimed at evaluating NRP2 expression and clinicopathological significance in HCC patients. Tissue microarray of 190 HCC patients from the First Affiliated Hospital of Zhejiang University was established, and immunohistochemical staining was performed for NRP2. The Kaplan-Meier analysis and Cox proportional hazard model were used to analyze the survival rate. We found that NRP2 expression in HCC was significantly associated with tumor histological degree (P=0.023) and cirrhosis (P=0.040). Furthermore, NRP2-positive HCC patients demonstrated shorter disease-free survival (DFS) and overall survival (OS) than those of NRP2-negative patients. Then, the multivariate Cox analysis showed that hazard ratios of NRP2-positive patients with DFS and OS were 2.167 (95% CI: 1.626, 2.889) and 2.317 (95% CI: 1.548, 3.469), respectively. Our results suggested that NRP2 expression was considered as an independent factor for the prediction of unfavorable prognosis in HCC patients, and we believe that NRP2 could serve as a biomarker of poor prognosis and a novel target in treating HCC tumors.
Collapse
Affiliation(s)
- Xiaogang Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Department of Hepatobiliary and Pancreatic Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health.,Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province
| | - Wenjia Guo
- Department of Cancer Research Institute, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region
| | - Shizhen Zhang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Tianchun Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health.,Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province
| | - Zhongquan Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health.,Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province
| | - Sheng Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health.,Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health.,Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province
| |
Collapse
|
37
|
MicroRNA-299-3p suppresses proliferation and invasion by targeting VEGFA in human colon carcinoma. Biomed Pharmacother 2017; 93:1047-1054. [PMID: 28738498 DOI: 10.1016/j.biopha.2017.07.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidences have shown that microRNAs (miRNAs) are vital regulators and possess huge capabilities in post-transcriptional control. Although a large number of miRNAs have been identified to be dysregulated in human cancers especially in colon cancer, our understandings of the function of most miRNAs are still largely limited. In this study, we have demonstrated that miR-299-3p plays a critical role in suppressing colon carcinoma progression by targeting Vascular Endothelial Growth Factor A (VEGFA). We observed that miR-299-3p was down-regulated in colon carcinoma tissues and colon cancer cell lines. The level of miR-299-3p was significantly negatively correlated with that of VEGFA mRNA level in colon carcinoma. More importantly, the low level of miR-299-3p predicted poor prognosis of colon cancer patients. Functionally, overexpression of miR-299-3p inhibited the proliferation and invasion of colon carcinoma cells and suppressed the growth of colon cancer xenografts in nude mice. Luciferase reporter assays showed that miR-299-3p could target VEGFA 3' UTR. In addition, up-regulation of miR-299-3p decreased VEGFA expression both in vitro and in vivo, showing that miR-299-3p plays a suppressive effect on VEGFA via post-transcriptional control. However, ectopical expression of VEGFA could abrogate this effect and also abolish miR-299-3p-induced inhibition of cell proliferation and invasion. Taken together, our study provides evidences showing that miR-299-3p functions as a suppressor in colon cancer by targeting VEGFA, suggesting that miR-299-3p might serve as a novel target for colon cancer therapy.
Collapse
|
38
|
Ong HS, Gokavarapu S, Xu Q, Tian Z, Li J, Ji T, Zhang CP. Cytoplasmic neuropilin 2 is associated with metastasis and a poor prognosis in early tongue cancer patients. Int J Oral Maxillofac Surg 2017; 46:1205-1219. [PMID: 28602571 DOI: 10.1016/j.ijom.2017.03.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022]
Abstract
Neuropilin 2 (Nrp2) plays an important role in regulating lymphangiogenesis. Nrp2 expression in early tongue cancer was investigated to predict lymph node metastasis and the long-term prognosis. The relationships between clinicopathological variables of cT1-T2N0 tongue squamous cell carcinoma (SCC) and overexpression of Nrp2, vascular endothelial growth factor C (VEGFC), vascular endothelial growth factor receptor 3 (VEGFR3), and semaphorin 3F (Sema3F) were analyzed. Expression levels were compared using oral SCC cell lines. The Nrp2 gene was silenced to determine the impact of Nrp2. Cytoplasmic Nrp2 overexpression predicted regional metastasis with sensitivity and specificity of 90.3% and 42.1%, respectively. Cytoplasmic Nrp2 overexpression (P<0.001) and VEGFC overexpression (P=0.006) were significantly related to regional metastasis (Student t-test). However, only cytoplasmic Nrp2 overexpression was an independent prognostic factor for both disease-free survival (DFS; P=0.008) and overall survival (OS; P=0.016) (Cox regression); the risk of recurrence was 12-times higher (P=0.015) and risk of mortality was 8-times higher (P=0.016). Co-localization of Nrp2 and VEGFC was greater within the cytoplasm of aggressive cell lines (HN12 and RCa-T). Nrp2 plays a role in tumourigenesis; VEGFC supplementation cannot rescue the biological function of Nrp2 in Nrp2-depleted cell lines. Cytoplasmic Nrp2 overexpression is associated with decreased OS and DFS. Cytoplasmic Nrp2 overexpression may be a reliable diagnostic and prognostic marker for early tongue SCC.
Collapse
Affiliation(s)
- H S Ong
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Gokavarapu
- Head and Neck Oncology Reconstructive Surgery, Department of Surgical Oncology, Krishna Institute of Medical Science, Hyderabad, Telangana, India
| | - Q Xu
- Shanghai Key Laboratory of Oral and Maxillofacial-Head and Neck Oncology and Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - T Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C P Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Roubaud G, Liaw BC, Oh WK, Mulholland DJ. Strategies to avoid treatment-induced lineage crisis in advanced prostate cancer. Nat Rev Clin Oncol 2017; 14:269-283. [PMID: 27874061 PMCID: PMC5567685 DOI: 10.1038/nrclinonc.2016.181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increasing potency of therapies that target the androgen receptor (AR) signalling axis has correlated with a rise in the proportion of patients with prostate cancer harbouring an adaptive phenotype, termed treatment-induced lineage crisis. This phenotype is characterized by features that include soft-tissue metastasis and/or resistance to standard anticancer therapies. Potent anticancer treatments might force cancer cells to evolve and develop alternative cell lineages that are resistant to primary therapies, a mechanism similar to the generation of multidrug- resistant microorganisms after continued antibiotic use. Herein, we assess the hypothesis that treatment-adapted phenotypes harbour reduced AR expression and/or activity, and acquire compensatory strategies for cell survival. We highlight the striking similarities between castration-resistant prostate cancer and triple-negative breast cancer, another poorly differentiated endocrine malignancy. Alternative treatment paradigms are needed to avoid therapy-induced resistance. Herein, we present a new clinical trial strategy designed to evaluate the potential of rapid drug cycling as an approach to delay the onset of resistance and treatment-induced lineage crisis in patients with metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, 229 Cours de l'Argonne, Bordeaux 33076, France
| | - Bobby C Liaw
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, New York 10029, USA
| | - William K Oh
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, New York 10029, USA
| | - David J Mulholland
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 1470 Madison Avenue, New York, New York 10029, USA
| |
Collapse
|
40
|
Potter EA, Dolgova EV, Proskurina AS, Efremov YR, Minkevich AM, Rozanov AS, Peltek SE, Nikolin VP, Popova NA, Seledtsov IA, Molodtsov VV, Zavyalov EL, Taranov OS, Baiborodin SI, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Gene expression profiling of tumor-initiating stem cells from mouse Krebs-2 carcinoma using a novel marker of poorly differentiated cells. Oncotarget 2017; 8:9425-9441. [PMID: 28031533 PMCID: PMC5354742 DOI: 10.18632/oncotarget.14116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
Using the ability of poorly differentiated cells to natively internalize fragments of extracellular double-stranded DNA as a marker, we isolated a tumorigenic subpopulation present in Krebs-2 ascites that demonstrated the features of tumor-inducing cancer stem cells. Having combined TAMRA-labeled DNA probe and the power of RNA-seq technology, we identified a set of 168 genes specifically expressed in TAMRA-positive cells (tumor-initiating stem cells), these genes remaining silent in TAMRA-negative cancer cells. TAMRA+ cells displayed gene expression signatures characteristic of both stem cells and cancer cells. The observed expression differences between TAMRA+ and TAMRA- cells were validated by Real Time PCR. The results obtained corroborated the biological data that TAMRA+ murine Krebs-2 tumor cells are tumor-initiating stem cells. The approach developed can be applied to profile any poorly differentiated cell types that are capable of immanent internalization of double-stranded DNA.
Collapse
Affiliation(s)
- Ekaterina A. Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evgenia V. Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yaroslav R. Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra M. Minkevich
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Aleksey S. Rozanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergey E. Peltek
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Valeriy P. Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nelly A. Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | | | - Vladimir V. Molodtsov
- Novosibirsk State University, Novosibirsk 630090, Russia
- Softberry Inc., New York 10549, USA
| | - Evgeniy L Zavyalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Oleg S. Taranov
- The State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk 630559, Russia
| | - Sergey I. Baiborodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander A. Ostanin
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk 630099, Russia
| | - Elena R. Chernykh
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk 630099, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
41
|
Zhao H, Hou C, Hou A, Zhu D. Concurrent Expression of VEGF-C and Neuropilin-2 Is Correlated with Poor Prognosis in Glioblastoma. TOHOKU J EXP MED 2016; 238:85-91. [PMID: 26753562 DOI: 10.1620/tjem.238.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vascular endothelial growth factor-C (VEGF-C) is a secreted growth factor involved in many oncogenic processes, and neuropilin-2 (NRP2) is essential for neuronal guidance as a well-acknowledged co-receptor of VEGF receptors. The overexpression of NRP2 has been reported in many types of cancers, but the significance of NRP2 in glioblastoma is not elucidated. To investigate the clinical significance of VEGF-C and NRP2 in glioblastoma, we detected their expression in 86 cases of glioblastoma with immunohistochemistry and categorized our cohort into high- and low-expression groups according to the immunohistochemistry score, which was the product of the score of staining intensity multiplied by the score reflecting the percentage of positive cells. The proportion of glioblastoma with high VEGF-C expression was 34.9% (30/86), and that with high NRP2 expression was 37.2% (32/86). The proportion of glioblastoma with high expression of both VEGF-C and NRP2 was 15.1% (13/86). Moreover, the proportion of cases with high VEGF-C and low NRP2 was 19.7% (17/86), while the proportion of cases with low VEGF-C and high NRP2 was 22.1% (19/86). The high expression of both VEGF-C and NRP2 was associated with poorer survival rate (P = 0.023), and can be identified as an independent prognostic factor in glioblastoma (P = 0.030). Moreover, cases with low NRP2 expression are easier for complete tumor resection (P = 0.038). In conclusion, the concurrent high expression of VEGF-C and NRP2 is predictive of the unfavorable prognosis in glioblastoma, indicating that the VEGF-C-NRP2 signaling pathway is a potential and promising drug target in glioblastoma therapy.
Collapse
Affiliation(s)
- Haiqing Zhao
- Department of Neurology, Yidu Central Hospital of Weifang City
| | | | | | | |
Collapse
|
42
|
Barton R, Driscoll A, Flores S, Mudbhari D, Collins T, Iovine MK, Berger BW. Cysteines in the neuropilin-2 MAM domain modulate receptor homooligomerization and signal transduction. Biopolymers 2016; 104:371-8. [PMID: 25656526 DOI: 10.1002/bip.22619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/14/2015] [Accepted: 01/24/2015] [Indexed: 01/01/2023]
Abstract
Neuropilins (NRPs) are transmembrane receptors involved in angiogenesis, lymphangiogenesis, and neuronal development as well as in cancer metastasis. Previous studies suggest that NRPs exist in heteromeric complexes with vascular endothelial growth factors (VEGFs) and VEGF receptors as well as plexins and semaphorins. We determined via site-directed mutagenesis and bioluminescent resonance energy transfer assays that a conserved cysteine (C711) in the Danio rerio NRP2a MAM (meprin, A-5 protein, and protein tyrosine phosphatase μ) domain modulates NRP2a homomeric interactions. Mutation of this residue also disrupts semaphorin-3F binding in NRP2a-transfected COS-7 cells and prevents the NRP2a overexpression effects in a zebrafish vascular model. Collectively, our results indicate the MAM domain plays an important role in defining the NRP2 homodimer structure, which is important for semaphorin-dependent signal transduction via NRP2.
Collapse
Affiliation(s)
- Rachael Barton
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Alyssa Driscoll
- Program in Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | - Samuel Flores
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Durlav Mudbhari
- Department of Mechanical Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Theresa Collins
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - M Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Bryan W Berger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania.,Program in Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
43
|
Fung TM, Ng KY, Tong M, Chen JN, Chai S, Chan KT, Law S, Lee NP, Choi MY, Li B, Cheung AL, Tsao SW, Qin YR, Guan XY, Chan KW, Ma S. Neuropilin-2 promotes tumourigenicity and metastasis in oesophageal squamous cell carcinoma through ERK-MAPK-ETV4-MMP-E-cadherin deregulation. J Pathol 2016; 239:309-19. [PMID: 27063000 DOI: 10.1002/path.4728] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/03/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
Oesophageal squamous cell carcinoma (ESCC) is the most common histological subtype of oesophageal cancer. The disease is particularly prevalent in southern China. The incidence of the disease is on the rise and its overall survival rate remains dismal. Identification and characterization of better molecular markers for early detection and therapeutic targeting are urgently needed. Here, we report levels of transmembrane and soluble neuropilin-2 (NRP2) to be significantly up-regulated in ESCC, and to correlate positively with advanced tumour stage, lymph node metastasis, less favourable R category and worse overall patient survival. NRP2 up-regulation in ESCC was in part a result of gene amplification at chromosome 2q. NRP2 overexpression promoted clonogenicity, angiogenesis and metastasis in ESCC in vitro, while NRP2 silencing by lentiviral knockdown or neutralizing antibody resulted in a contrary effect. This observation was extended in vivo in animal models of subcutaneous tumourigenicity and tail vein metastasis. Mechanistically, overexpression of NRP2 induced expression of ERK MAP kinase and the transcription factor ETV4, leading to enhanced MMP-2 and MMP-9 activity and, as a consequence, suppression of E-cadherin. In summary, NRP2 promotes tumourigenesis and metastasis in ESCC through deregulation of ERK-MAPK-ETV4-MMP-E-cadherin signalling. NRP2 represents a potential diagnostic or prognostic biomarker and therapeutic target for ESCC. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tsun Ming Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Kai Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Jin-Na Chen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Stella Chai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Kin-Tak Chan
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Simon Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Nikki P Lee
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Mei Yuk Choi
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Bin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Annie L Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Yan-Ru Qin
- Department of Clinical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Kwok Wah Chan
- Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| |
Collapse
|
44
|
Bhattacharya R, Ye XC, Wang R, Ling X, McManus M, Fan F, Boulbes D, Ellis LM. Intracrine VEGF Signaling Mediates the Activity of Prosurvival Pathways in Human Colorectal Cancer Cells. Cancer Res 2016; 76:3014-24. [PMID: 26988990 DOI: 10.1158/0008-5472.can-15-1605] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 03/04/2016] [Indexed: 01/29/2023]
Abstract
The effects of vascular endothelial growth factor-A (VEGF-A/VEGF) and its receptors on endothelial cells function have been studied extensively, but their effects on tumor cells are less well defined. Studies of human colorectal cancer cells where the VEGF gene has been deleted suggest an intracellular role of VEGF as a cell survival factor. In this study, we investigated the role of intracrine VEGF signaling in colorectal cancer cell survival. In human colorectal cancer cells, RNAi-mediated depletion of VEGF decreased cell survival and enhanced sensitivity to chemotherapy. Unbiased reverse phase protein array studies and subsequent validation experiments indicated that impaired cell survival was a consequence of disrupted AKT and ERK1/2 (MAPK3/1) signaling, as evidenced by reduced phosphorylation. Inhibition of paracrine or autocrine VEGF signaling had no effect on phospho-AKT or phospho-ERK1/2 levels, indicating that VEGF mediates cell survival via an intracellular mechanism. Notably, RNAi-mediated depletion of VEGF receptor VEGFR1/FLT1 replicated the effects of VEGF depletion on phospho-AKT and phospho-ERK1/2 levels. Together, these studies show how VEGF functions as an intracrine survival factor in colorectal cancer cells, demonstrating its distinct role in colorectal cancer cell survival. Cancer Res; 76(10); 3014-24. ©2016 AACR.
Collapse
Affiliation(s)
- Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiang-Cang Ye
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rui Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xia Ling
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Madonna McManus
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fan Fan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Delphine Boulbes
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
45
|
Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development. PLoS One 2016; 11:e0151396. [PMID: 26978773 PMCID: PMC4792464 DOI: 10.1371/journal.pone.0151396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. Methods VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Results Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Conclusions Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future cell therapies for intestinal dysfunction or disease.
Collapse
|
46
|
Goel HL, Pursell B, Shultz LD, Greiner DL, Brekken RA, Vander Kooi CW, Mercurio AM. P-Rex1 Promotes Resistance to VEGF/VEGFR-Targeted Therapy in Prostate Cancer. Cell Rep 2016; 14:2193-2208. [PMID: 26923603 DOI: 10.1016/j.celrep.2016.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/28/2015] [Accepted: 01/28/2016] [Indexed: 12/13/2022] Open
Abstract
Autocrine VEGF signaling is critical for sustaining prostate and other cancer stem cells (CSCs), and it is a potential therapeutic target, but we observed that CSCs isolated from prostate tumors are resistant to anti-VEGF (bevacizumab) and anti-VEGFR (sunitinib) therapy. Intriguingly, resistance is mediated by VEGF/neuropilin signaling, which is not inhibited by bevacizumab and sunitinib, and it involves the induction of P-Rex1, a Rac GEF, and consequent Rac1-mediated ERK activation. This induction of P-Rex1 is dependent on Myc. CSCs isolated from the PTEN(pc-/-) transgenic model of prostate cancer exhibit Rac1-dependent resistance to bevacizumab. Rac1 inhibition or P-Rex1 downregulation increases the sensitivity of prostate tumors to bevacizumab. These data reveal that prostate tumors harbor cells with stem cell properties that are resistant to inhibitors of VEGF/VEGFR signaling. Combining the use of available VEGF/VEGFR-targeted therapies with P-Rex1 or Rac1 inhibition should improve the efficacy of these therapies significantly.
Collapse
Affiliation(s)
- Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Bryan Pursell
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Dale L Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Craig W Vander Kooi
- Department of Cellular and Molecular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
47
|
A Novel Aspect of Tumorigenesis-BMI1 Functions in Regulating DNA Damage Response. Biomolecules 2015; 5:3396-415. [PMID: 26633535 PMCID: PMC4693283 DOI: 10.3390/biom5043396] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/23/2015] [Accepted: 11/26/2015] [Indexed: 12/27/2022] Open
Abstract
BMI1 plays critical roles in maintaining the self-renewal of hematopoietic, neural, intestinal stem cells, and cancer stem cells (CSCs) for a variety of cancer types. BMI1 promotes cell proliferative life span and epithelial to mesenchymal transition (EMT). Upregulation of BMI1 occurs in multiple cancer types and is associated with poor prognosis. Mechanistically, BMI1 is a subunit of the Polycomb repressive complex 1 (PRC1), and binds the catalytic RING2/RING1b subunit to form a functional E3 ubiquitin ligase. Through mono-ubiquitination of histone H2A at lysine 119 (H2A-K119Ub), BMI1 represses multiple gene loci; among these, the INK4A/ARF locus has been most thoroughly investigated. The locus encodes the p16INK4A and p14/p19ARF tumor suppressors that function in the pRb and p53 pathways, respectively. Its repression contributes to BMI1-derived tumorigenesis. BMI1 also possesses other oncogenic functions, specifically its regulative role in DNA damage response (DDR). In this process, BMI1 ubiquitinates histone H2A and γH2AX, thereby facilitating the repair of double-stranded DNA breaks (DSBs) through stimulating homologous recombination and non-homologous end joining. Additionally, BMI1 compromises DSB-induced checkpoint activation independent of its-associated E3 ubiquitin ligase activity. We review the emerging role of BMI1 in DDR regulation and discuss its impact on BMI1-derived tumorigenesis.
Collapse
|
48
|
Dutta S, Roy S, Polavaram NS, Stanton MJ, Zhang H, Bhola T, Hönscheid P, Donohue TM, Band H, Batra SK, Muders MH, Datta K. Neuropilin-2 Regulates Endosome Maturation and EGFR Trafficking to Support Cancer Cell Pathobiology. Cancer Res 2015; 76:418-28. [PMID: 26560516 DOI: 10.1158/0008-5472.can-15-1488] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
Neuropilin-2 (NRP2) is a non-tyrosine kinase receptor frequently overexpressed in various malignancies, where it has been implicated in promoting many protumorigenic behaviors, such as imparting therapeutic resistance to metastatic cancer cells. Here, we report a novel function of NRP2 as a regulator of endocytosis, which is enhanced in cancer cells and is often associated with increased metastatic potential and drug resistance. We found that NRP2 depletion in human prostate and pancreatic cancer cells resulted in the accumulation of EEA1/Rab5-positive early endosomes concomitant with a decrease in Rab7-positive late endosomes, suggesting a delay in early-to-late endosome maturation. NRP2 depletion also impaired the endocytic transport of cell surface EGFR, arresting functionally active EGFR in endocytic vesicles that consequently led to aberrant ERK activation and cell death. Mechanistic investigations revealed that WD-repeat- and FYVE-domain-containing protein 1 (WDFY1) functioned downstream of NRP2 to promote endosome maturation, thereby influencing the endosomal trafficking of EGFR and the formation of autolysosomes responsible for the degradation of internalized cargo. Overall, our results indicate that the NRP2/WDFY1 axis is required for maintaining endocytic activity in cancer cells, which supports their oncogenic activities and confers drug resistance. Therefore, therapeutically targeting endocytosis may represent an attractive strategy to selectively target cancer cells in multiple malignancies.
Collapse
Affiliation(s)
- Samikshan Dutta
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sohini Roy
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Navatha S Polavaram
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Marissa J Stanton
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Heyu Zhang
- Department of Urologic Research, Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tanvi Bhola
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pia Hönscheid
- Institute of Pathology, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Terrence M Donohue
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska. Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska. Omaha VA Medical Center, Omaha, Nebraska
| | - Hamid Band
- Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska. Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael H Muders
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska. Institute of Pathology, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Kaustubh Datta
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska. Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
49
|
de Brot S, Ntekim A, Cardenas R, James V, Allegrucci C, Heery DM, Bates DO, Ødum N, Persson JL, Mongan NP. Regulation of vascular endothelial growth factor in prostate cancer. Endocr Relat Cancer 2015; 22:R107-23. [PMID: 25870249 DOI: 10.1530/erc-15-0123] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is the most common malignancy affecting men in the western world. Although radical prostatectomy and radiation therapy can successfully treat PCa in the majority of patients, up to ~30% will experience local recurrence or metastatic disease. Prostate carcinogenesis and progression is typically an androgen-dependent process. For this reason, therapies for recurrent PCa target androgen biosynthesis and androgen receptor function. Such androgen deprivation therapies (ADT) are effective initially, but the duration of response is typically ≤24 months. Although ADT and taxane-based chemotherapy have delivered survival benefits, metastatic PCa remains incurable. Therefore, it is essential to establish the cellular and molecular mechanisms that enable localized PCas to invade and disseminate. It has long been accepted that metastases require angiogenesis. In the present review, we examine the essential role for angiogenesis in PCa metastases, and we focus in particular on the current understanding of the regulation of vascular endothelial growth factor (VEGF) in localized and metastatic PCa. We highlight recent advances in understanding the role of VEGF in regulating the interaction of cancer cells with tumor-associated immune cells during the metastatic process of PCa. We summarize the established mechanisms of transcriptional and post-transcriptional regulation of VEGF in PCa cells and outline the molecular insights obtained from preclinical animal models of PCa. Finally, we summarize the current state of anti-angiogenesis therapies for PCa and consider how existing therapies impact VEGF signaling.
Collapse
Affiliation(s)
- Simone de Brot
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Atara Ntekim
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Ryan Cardenas
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Victoria James
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Cinzia Allegrucci
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - David M Heery
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - David O Bates
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Niels Ødum
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Jenny L Persson
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Nigel P Mongan
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
50
|
Wang L, Liu JL, Yu L, Liu XX, Wu HM, Lei FY, Wu S, Wang X. Downregulated miR-495 [Corrected] Inhibits the G1-S Phase Transition by Targeting Bmi-1 in Breast Cancer. Medicine (Baltimore) 2015; 94:e718. [PMID: 26020378 PMCID: PMC4616407 DOI: 10.1097/md.0000000000000718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bmi-1 (B cell-specific Moloney murine leukemia virus integration site 1) is upregulated in breast cancer and was involved in many malignant progressions of breast cells, including cell proliferation, stem cell pluripotency, and cancer initiation. However, the epigenetic regulatory mechanism of Bmi-1 in breast cancer remains unclear. After analysis of the ArrayExpress dataset GSE45666, we comparatively detected the expression levels of miR-495 in 9 examined breast cancer cell lines, normal breast epithelial cells and 8 pairs of fresh clinical tumor samples. Furthermore, to evaluate the effect of miR-495 on the progression of breast cancer, MCF-7 and MDA-MB-231 were transduced to stably overexpress miR-495. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, colony formation assays, 5-Bromo-2-deoxyUridine labeling and immunofluorescence, anchorage-independent growth ability assay, flow cytometry analysis, and luciferase assays were used to test the effect of miR-495 in MCF-7 and MDA-MB-231 cells in vitro. Xenografted tumor model was also used to evaluate the effect of miR-495 in breast cancer. Herein, we found that miR-495, a predicted regulator of Bmi-1, was frequently downregulated in malignant cells and tissues of breast. Upregulation of miR-495 significantly suppressed breast cancer cell proliferation and tumorigenicity via G1-S arrest. Further analysis revealed that miR-495 targeted Bmi-1 through its 3' untranslated region. Moreover, Bmi-1 could neutralize the suppressive effect of miR-495 on cell proliferation and tumorigenicity of breast cancer in vivo. These data suggested that miR-495 could inhibit the G1-S phase transition that leads to proliferation and tumorigenicity inhibition by targeting and suppressing Bmi-1 in breast cancer.
Collapse
Affiliation(s)
- Lan Wang
- From the Department of Pathogen Biology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University (LW, H-MW); Department of Medical Oncology, Sun Yat-sen University Cancer Center (JLL); Department of Vascular and Breast Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou (LY); Department of Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University (X-XL); State Key Laboratory of Oncology in South China (F-YL, SW); State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China (XW)
| | | | | | | | | | | | | | | |
Collapse
|