1
|
Li M, Zheng A, Song M, Jin F, Pang M, Zhang Y, Wu Y, Li X, Zhao M, Li Z. From text to insight: A natural language processing-based analysis of burst and research trends in HER2-low breast cancer patients. Ageing Res Rev 2025; 106:102692. [PMID: 39993452 DOI: 10.1016/j.arr.2025.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 01/01/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
With the intensification of population aging, the proportion of elderly breast cancer patients is continuously increasing, among which those with low HER2 expression account for approximately 45 %-55 % of all cases within traditional HER2-negative breast cancer. Concurrently, the significant therapeutic effect of T-DXd on patients with HER2-low tumors has brought this group into the public spotlight. Since the clinical approval of T-DXd in 2019, there has been a significant vertical surge in the volume of publications within this domain. We analyzed 512 articles on HER2-low breast cancer from the Web of Science Core Collection using bibliometrics, topic modeling, and knowledge graph techniques to summarize the current state and trends of research in this domain. Research efforts are particularly concentrated in the United States and China. Our analysis revealed six main research directions: HER2 detection, omics and clinical biomarkers, basic and translational research, neoadjuvant therapy and prognosis, progress of ADC drugs and clinical trials. To enhance the therapeutic efficacy and safety of antibodydrug conjugates (ADCs), researchers are actively exploring potential drug candidates other than T-DXd, with numerous ADC drugs emerging in clinical practice and trials. By incorporating emerging treatment strategies such as immunotherapy and employing circulating tumor cell (CTC) detection techniques, progress has been made toward improving the prognosis of patients with low HER2 expression. We believe that these research efforts hold promise as compelling evidence that HER2-low breast cancer may constitute a distinct and independent subtype.
Collapse
Affiliation(s)
- Muyao Li
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Ang Zheng
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Mingjie Song
- Department of General Medicine, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Feng Jin
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Mengyang Pang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Yuchong Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Ying Wu
- Department of General Medicine, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Phase I Clinical Trails Center, The First Hospital of China Medical University, Shenyang, Liaoning 110101, China.
| | - Xin Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Mingfang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Zhi Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China; National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Research Unit of Medical Laboratory, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
2
|
Gustafson D, Nieuwland R, Lucien F. MIBLood-EV: An Online Reporting Tool to Facilitate the Standardized Reporting of Preanalytical Variables and Quality Control of Plasma and Serum to Enhance Rigor and Reproducibility in Liquid Biopsy Research. Biopreserv Biobank 2025; 23:62-64. [PMID: 39247973 DOI: 10.1089/bio.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Pre-analytical variability significantly impacts the reproducibility of liquid biopsy research, which is critical for precision medicine and biomedical research. This report highlights the challenges and variability in the pre-analytical processes of liquid biopsies, especially regarding extracellular vesicles (EVs), which are crucial for diagnostics in oncology. The MIBlood-EV initiative aims to standardize the reporting of pre-analytical variables and the quality control of plasma and serum samples to enhance reproducibility in EV research. By providing a comprehensive and flexible reporting framework, MIBlood-EV seeks to improve the reliability of EV studies and facilitate the development of evidence-based protocols, ultimately advancing the field of liquid biopsy research.
Collapse
Affiliation(s)
- Dakota Gustafson
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Toronto, Canada
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, and Amsterdam Vesicle Center, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Cani AK, Hayes DF. Breast Cancer Circulating Tumor Cells: Current Clinical Applications and Future Prospects. Clin Chem 2024; 70:68-80. [PMID: 38175590 DOI: 10.1093/clinchem/hvad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Identification and characterization of circulating tumor markers, designated as "liquid biopsies," have greatly impacted the care of cancer patients. Although more recently referring to circulating tumor DNA (ctDNA), the term liquid biopsy initially was coined to refer to any blood-borne biomarker related to malignancy, including circulating tumor cells (CTCs) in blood. In this manuscript, we review the specific state of the art of CTCs in breast cancer. CONTENT Liquid biopsies might play a clinical role across the entire spectrum of breast cancer, from risk assessment, prevention, screening, and treatment. CTC counts have been shown to carry clear, independent prognostic information in the latter situation. However, the clinical utility of CTCs in breast cancer remains to be determined. Nonetheless, in addition to CTC enumeration, analyses of CTCs provide tumor molecular information representing the entire, often-heterogeneous disease, relatively noninvasively and longitudinally. Technological advances have allowed the interrogation of CTC-derived information, providing renewed hope for a clinical role in disease monitoring and precision oncology. SUMMARY This narrative review examines CTCs, their clinical validity, and current prospects of clinical utility in breast cancer with the goal of improving patient outcomes.
Collapse
Affiliation(s)
- Andi K Cani
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Daniel F Hayes
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Cimmino W, Migliorelli D, Singh S, Miglione A, Generelli S, Cinti S. Design of a printed electrochemical strip towards miRNA-21 detection in urine samples: optimization of the experimental procedures for real sample application. Anal Bioanal Chem 2023:10.1007/s00216-023-04659-x. [PMID: 37000212 PMCID: PMC10328899 DOI: 10.1007/s00216-023-04659-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
MicroRNAs (miRNAs) are clinical biomarkers for various human diseases, including cancer. They have been found in liquid biopsy samples, including various bodily fluids. They often play an important role in the early diagnosis and prognosis of cancer, and the development of simple and effective analytical methods would be of pivotal importance for the entire community. The determination of these targets may be affected by the different physicochemical parameters of the specimen of interest. In this work, an electrochemical detection platform for miRNA based on a screen-printed gold electrode was developed. In the present study, miRNA-21 was selected as a model sequence, due to its role in prostate, breast, colon, pancreatic, and liver cancers. A DNA sequence modified with methylene blue (MB) was covalently bound to the electrochemical strip and used to detect the selected target miRNA-21. After optimization of selected parameters in standard solutions, including the study of the effect of pH, the presence of interferent species, and NaCl salt concentration in the background, the application of square-wave voltammetry (SWV) technique allowed the detection of miRNA-21 down to a limit in the order of 2 nM. The developed device was then applied to several urine samples. In this case too, the device showed high selectivity in the presence of the complex matrix, satisfactory repeatability, and a limit of detection in the order of magnitude of nM, similarly as what observed in standard solutions.
Collapse
Affiliation(s)
- Wanda Cimmino
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Davide Migliorelli
- CSEM SA Centre Suisse d'Electronique Et de Microtechnique, Bahnhofstrasse 1, 7302, Landquart, Switzerland
| | - Sima Singh
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Antonella Miglione
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Silvia Generelli
- CSEM SA Centre Suisse d'Electronique Et de Microtechnique, Bahnhofstrasse 1, 7302, Landquart, Switzerland
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
- BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055, Naples, Italy.
| |
Collapse
|
5
|
Descamps L, Le Roy D, Deman AL. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci 2022; 23:ijms23041981. [PMID: 35216097 PMCID: PMC8875744 DOI: 10.3390/ijms23041981] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The selection of circulating tumor cells (CTCs) directly from blood as a real-time liquid biopsy has received increasing attention over the past ten years, and further analysis of these cells may greatly aid in both research and clinical applications. CTC analysis could advance understandings of metastatic cascade, tumor evolution, and patient heterogeneity, as well as drug resistance. Until now, the rarity and heterogeneity of CTCs have been technical challenges to their wider use in clinical studies, but microfluidic-based isolation technologies have emerged as promising tools to address these limitations. This review provides a detailed overview of latest and leading microfluidic devices implemented for CTC isolation. In particular, this study details must-have device performances and highlights the tradeoff between recovery and purity. Finally, the review gives a report of CTC potential clinical applications that can be conducted after CTC isolation. Widespread microfluidic devices, which aim to support liquid-biopsy-based applications, will represent a paradigm shift for cancer clinical care in the near future.
Collapse
Affiliation(s)
- Lucie Descamps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
| | - Damien Le Roy
- Institut Lumière Matière ILM-UMR 5306, CNRS, Université Lyon 1, 69622 Villeurbanne, France;
| | - Anne-Laure Deman
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
- Correspondence:
| |
Collapse
|
6
|
Hou M, Yin X, Jiang J, He J. DNAzyme-Triggered Sol-Gel-Sol Transition of a Hydrogel Allows Target Cell Enrichment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15031-15039. [PMID: 33764744 DOI: 10.1021/acsami.1c02262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enrichment of rare cancer cells from various cell mixtures for subsequent analysis or culture is essential for understanding cancer formation and progression. In particular, maintaining the viability of captured cancer cells and gently releasing them for relevant applications remain challenging for many reported methods. Here, a physically cross-linked deoxyribozyme (DNAzyme)-based hydrogel strategy was developed for the specific envelopment and release of targeted cancer cells, allowing the aptamer-guided capture, 3D envelopment, and Zn2+-dependent release of viable cancer cells. The DNAzyme hydrogel is constructed through the intertwinement and hybridization of two complementary DNAzyme strands located on two rolling circle amplification-synthesized ultralong DNA chains. The enveloping and separation of target cells were achieved during the formation of the DNAzyme hydrogel (sol-gel transition). Triggered by Zn2+, the encapsulated cells can be gently released from the dissociated DNAzyme hydrogel with high viability (gel-sol transition). Successful isolations of target cells from cancer cell mixtures and peripheral blood mononuclear cells (PBMC) were demonstrated. This method offers an attractive approach for the separation of target cancer cells for various downstream applications that require viable cells.
Collapse
Affiliation(s)
- Min Hou
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiang Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianjun He
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Williams PS, Moore LR, Joshi P, Goodin M, Zborowski M, Fleischman A. Microfluidic chip for graduated magnetic separation of circulating tumor cells by their epithelial cell adhesion molecule expression and magnetic nanoparticle binding. J Chromatogr A 2021; 1637:461823. [PMID: 33385746 PMCID: PMC7827554 DOI: 10.1016/j.chroma.2020.461823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
The enumeration of circulating tumor cells (CTCs) in the peripheral bloodstream of metastatic cancer patients has contributed to improvements in prognosis and therapeutics. There have been numerous approaches to capture and counting of CTCs. However, CTCs have potential information beyond simple enumeration and hold promise as a liquid biopsy for cancer and a pathway for personalized cancer therapy by detecting the subset of CTCs having the highest metastatic potential. There is evidence that epithelial cell adhesion molecule (EpCAM) expression level distinguishes these highly metastatic CTCs. The few previous approaches to selective CTC capture according to EpCAM expression level are reviewed. A new two-stage microfluidic device for separation, enrichment and release of CTCs into subpopulations sorted by EpCAM expression level is presented here. It relies upon immunospecific magnetic nanoparticle labeling of CTCs followed by their field- and flow-based separation in the first stage and capture as discrete subpopulations in the second stage. To fine tune the separation, the magnetic field profile across the first stage microfluidic channel may be modified by bonding small Vanadium Permendur strips to its outer walls. Mathematical modeling of magnetic fields and fluid flows supports the soundness of the design.
Collapse
Affiliation(s)
- P Stephen Williams
- Cambrian Technologies Inc., 1772 Saratoga Avenue, Cleveland, OH 44109, USA.
| | - Lee R Moore
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | - Mark Goodin
- SimuTech Group, 1742 Georgetown Rd., Suite B, Hudson, OH 44236, USA
| | - Maciej Zborowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Aaron Fleischman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Zhang Y, Wang Y, Meng L, Huang Q, Zhu Y, Cui W, Cheng Y, Liu R. Targeted micelles with chemotherapeutics and gene drugs to inhibit the G1/S and G2/M mitotic cycle of prostate cancer. J Nanobiotechnology 2021; 19:17. [PMID: 33422073 PMCID: PMC7796562 DOI: 10.1186/s12951-020-00756-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chemotherapy and gene therapy are used in clinical practice for the treatment of castration-resistant prostate cancer. However, the poor efficiency of drug delivery and serious systemic side effects remain an obstacle to wider application of these drugs. Herein, we report newly designed PEO-PCL micelles that were self-assembled and modified by spermine ligand, DCL ligand and TAT peptide to carry docetaxel and anti-nucleostemin siRNA. RESULTS The particle size of the micelles was 42 nm, the zeta potential increased from - 12.8 to 15 mV after grafting with spermine, and the optimal N/P ratio was 25:1. Cellular MTT experiments suggested that introduction of the DCL ligand resulted in high toxicity toward PSMA-positive cells and that the TAT peptide enhanced the effect. The expression of nucleostemin was significantly suppressed in vitro and in vivo, and the tumour-inhibition experiment showed that the dual-drug delivery system suppressed CRPC tumour proliferation. CONCLUSIONS This targeted drug delivery system inhibited the G1/S and G2/M mitotic cycle via synergistic interaction of chemotherapeutics and gene drugs.
Collapse
Affiliation(s)
- Yiran Zhang
- Tianjin Institute of Urology & Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China.,Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, People's Republic of China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Yanming Wang
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Li Meng
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Qingqing Huang
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Yueqi Zhu
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, People's Republic of China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Ranlu Liu
- Tianjin Institute of Urology & Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
9
|
Lee H, Lee SH. Single to three nucleotide polymorphisms assay of miRNA-21 using DNA capped gold nanoparticle-electrostatic force microscopy system. MICRO AND NANO SYSTEMS LETTERS 2019. [DOI: 10.1186/s40486-019-0100-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Aberrant expression of microRNA (miRNA) in biological cells is crucial evidence for early diagnosis of cancer. Improvements in molecular detection techniques enabled miRNA to be detected in human blood obtained from liquid biopsies (e.g., Polymerase chain reaction, microcantilever sensor, and surface-enhanced Raman spectroscopy). Despite the advances in molecular detection technology, a simultaneous detection of single or multiple mutations of miRNAs is still a challenge. Here, we show electrostatic force microscopy (EFM) imaging of DNA-capped gold nanoparticles (DCNP) that enables discrimination between single and three-nucleotide polymorphism (SNP, TNP): 1 and 3-point mismatched nucleotides in miRNA-21 (M1_RNA, M3_RNA). Detection of the miRNA-21 and their mutant sequence is owing to sterically well-adjusted DNA–RNA interactions that take place within the confined spaces of DCNP. The average absolute EFM amplitudes of DCNP interacting with M1_RNA, and M3_RNA (− 81.0 ± 11.5, and − 65.7 ± 8.2 mV) were found to be lower than the DCNP reacting with normal (non-mutant) miRNA-21 (− 100.2 ± 13.6 mV).
Collapse
|
10
|
Sindeeva OA, Verkhovskii RA, Sarimollaoglu M, Afanaseva GA, Fedonnikov AS, Osintsev EY, Kurochkina EN, Gorin DA, Deyev SM, Zharov VP, Galanzha EI. New Frontiers in Diagnosis and Therapy of Circulating Tumor Markers in Cerebrospinal Fluid In Vitro and In Vivo. Cells 2019; 8:E1195. [PMID: 31581745 PMCID: PMC6830088 DOI: 10.3390/cells8101195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
One of the greatest challenges in neuro-oncology is diagnosis and therapy (theranostics) of leptomeningeal metastasis (LM), brain metastasis (BM) and brain tumors (BT), which are associated with poor prognosis in patients. Retrospective analyses suggest that cerebrospinal fluid (CSF) is one of the promising diagnostic targets because CSF passes through central nervous system, harvests tumor-related markers from brain tissue and, then, delivers them into peripheral parts of the human body where CSF can be sampled using minimally invasive and routine clinical procedure. However, limited sensitivity of the established clinical diagnostic cytology in vitro and MRI in vivo together with minimal therapeutic options do not provide patient care at early, potentially treatable, stages of LM, BM and BT. Novel technologies are in demand. This review outlines the advantages, limitations and clinical utility of emerging liquid biopsy in vitro and photoacoustic flow cytometry (PAFC) in vivo for assessment of CSF markers including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA), proteins, exosomes and emboli. The integration of in vitro and in vivo methods, PAFC-guided theranostics of single CTCs and targeted drug delivery are discussed as future perspectives.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center & Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Galina A. Afanaseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Alexander S. Fedonnikov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Evgeny Yu. Osintsev
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Elena N. Kurochkina
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Dmitry A. Gorin
- Laboratory of Biophotonics, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia;
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| | - Vladimir P. Zharov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Arkansas Nanomedicine Center & Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Ekaterina I. Galanzha
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Laboratory of Lymphatic Research, Diagnosis and Therapy (LDT), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
11
|
Culig Z. The way towards understanding possible multiple functions of AR V7 in prostate cancer. BJU Int 2018; 122:169. [PMID: 30134059 DOI: 10.1111/bju.14406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Wang H, Stoecklein NH, Lin PP, Gires O. Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget 2018; 8:1884-1912. [PMID: 27683128 PMCID: PMC5352105 DOI: 10.18632/oncotarget.12242] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Enumeration of circulating tumor cells (CTCs) in peripheral blood with the gold standard CellSearchTM has proven prognostic value for tumor recurrence and progression of metastatic disease. Therefore, the further molecular characterization of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic decision-making and to monitor disease progression. The direct analysis of systemic cancer appears particularly important in view of the known disparity in expression of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based heterogeneity between primary and systemic tumor cells, which all substantially complicate monitoring and therapeutic targeting at present. Since CTCs are the potential precursor cells of metastasis, their in-depth molecular profiling should also provide a useful resource for target discovery. The present review will discuss the use of systemically spread cancer cells as liquid biopsy and focus on potential target antigens.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz, Germany
| |
Collapse
|
13
|
Zhang YH, Huang T, Chen L, Xu Y, Hu Y, Hu LD, Cai Y, Kong X. Identifying and analyzing different cancer subtypes using RNA-seq data of blood platelets. Oncotarget 2017; 8:87494-87511. [PMID: 29152097 PMCID: PMC5675649 DOI: 10.18632/oncotarget.20903] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
Detection and diagnosis of cancer are especially important for early prevention and effective treatments. Traditional methods of cancer detection are usually time-consuming and expensive. Liquid biopsy, a newly proposed noninvasive detection approach, can promote the accuracy and decrease the cost of detection according to a personalized expression profile. However, few studies have been performed to analyze this type of data, which can promote more effective methods for detection of different cancer subtypes. In this study, we applied some reliable machine learning algorithms to analyze data retrieved from patients who had one of six cancer subtypes (breast cancer, colorectal cancer, glioblastoma, hepatobiliary cancer, lung cancer and pancreatic cancer) as well as healthy persons. Quantitative gene expression profiles were used to encode each sample. Then, they were analyzed by the maximum relevance minimum redundancy method. Two feature lists were obtained in which genes were ranked rigorously. The incremental feature selection method was applied to the mRMR feature list to extract the optimal feature subset, which can be used in the support vector machine algorithm to determine the best performance for the detection of cancer subtypes and healthy controls. The ten-fold cross-validation for the constructed optimal classification model yielded an overall accuracy of 0.751. On the other hand, we extracted the top eighteen features (genes), including TTN, RHOH, RPS20, TRBC2, in another feature list, the MaxRel feature list, and performed a detailed analysis of them. The results indicated that these genes could be important biomarkers for discriminating different cancer subtypes and healthy controls.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China
| | - YaoChen Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yu Hu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Lan-Dian Hu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| |
Collapse
|
14
|
Wang H, Wu X. Detection and Enumeration of Circulating Tumor Cells with Invasive Phenotype. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:133-141. [PMID: 28560672 DOI: 10.1007/978-3-319-55947-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells (CTCs) disseminate from solid primary cancers into the peripheral blood and lymphatic vessels and can lead to metastatic tumor development; thus, CTC assays are an important clinical tool for monitoring progression and evaluating prognosis in cancer. However, CTCs are limited in number and heterogeneous in their biological and physical properties, making their detection, isolation, and enumeration a major challenge. To overcome these difficulties, novel techniques have been developed to detect and enumerate CTCs with an invasive phenotype. In this chapter, we will summarize these recently developed methods and detail two novel methods for capturing and enriching CTCs on the basis of their viability and their invasive properties.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Xiangwei Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
15
|
León-Mateos L, Vieito M, Anido U, López López R, Muinelo Romay L. Clinical Application of Circulating Tumour Cells in Prostate Cancer: From Bench to Bedside and Back. Int J Mol Sci 2016; 17:E1580. [PMID: 27657044 PMCID: PMC5037845 DOI: 10.3390/ijms17091580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 01/19/2023] Open
Abstract
Prostate cancer is the most common cancer in men worldwide. To improve future drug development and patient management, surrogate biomarkers associated with relevant outcomes are required. Circulating tumour cells (CTCs) are tumour cells that can enter the circulatory system, and are principally responsible for the development of metastasis at distant sites. In recent years, interest in detecting CTCs as a surrogate biomarker has ghiiukjrown. Clinical studies have revealed that high levels of CTCs in the blood correlate with disease progression in patients with prostate cancer; however, their predictive value for monitoring therapeutic response is less clear. Despite the important progress in CTC clinical development, there are critical requirements for the implementation of their analysis as a routine oncology tool. The goal of the present review is to provide an update on the advances in the clinical validation of CTCs as a surrogate biomarker and to discuss the principal obstacles and main challenges to their inclusion in clinical practice.
Collapse
Affiliation(s)
- Luis León-Mateos
- Axencia Galega de Coñecemento en Saúde (ACIS), SERGAS, Avda, Fernando de Casa Novoa, Santiago de Compostela 15707, Spain.
| | - María Vieito
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6, Canada.
| | - Urbano Anido
- Translational Medical Oncology/Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Trav. Choupana s/n, Santiago de Compostela 15706, Spain.
| | - Rafael López López
- Translational Medical Oncology/Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Trav. Choupana s/n, Santiago de Compostela 15706, Spain.
| | - Laura Muinelo Romay
- Translational Medical Oncology/Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Trav. Choupana s/n, Santiago de Compostela 15706, Spain.
| |
Collapse
|
16
|
Dahl E, Kloten V. [Liquid biopsy analysis using cell-free DNA (cfDNA): Opportunities and limitations]. DER PATHOLOGE 2016; 36:572-8. [PMID: 26395890 DOI: 10.1007/s00292-015-0078-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular biological analysis of nucleic acids in blood or other bodily fluids (i.e. liquid biopsy analyses) may supplement the pathologists' diagnostic armamentarium in a reasonable way-particularly in cancer precision medicine. Within the field of oncology, liquid biopsy can potentially be used to monitor tumor burden in the blood and to early detect emerging resistance in the course of targeted cancer therapies. An already approved application of liquid biopsy is the detection of epidermal growth factor receptor (EGFR) driver mutations in blood samples of lung cancer patients in those cases where no tissue biopsy is available. However, there is still currently considerable insecurity associated with blood-based DNA analytic methods that must be solved before liquid biopsy can be implemented for broader routine application in the diagnosis of cancer. In this article, the current state of development of liquid biopsy in molecular diagnostics from a pathology point of view is presented.
Collapse
Affiliation(s)
- E Dahl
- Arbeitsgruppe Molekulare Onkologie, Institut für Pathologie, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland. .,Molekularpathologische Diagnostik, Institut für Pathologie, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland. .,RWTH zentralisierte Biomaterialbank (RWTH cBMB), Institut für Pathologie, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| | - V Kloten
- Arbeitsgruppe Molekulare Onkologie, Institut für Pathologie, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
17
|
Vu BT, Tan Le D, Van Pham P. Liquid biopsies: tumour diagnosis and treatment monitoring. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0035-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Satelli A, Batth IS, Brownlee Z, Rojas C, Meng QH, Kopetz S, Li S. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients. Sci Rep 2016; 6:28910. [PMID: 27363678 PMCID: PMC4929464 DOI: 10.1038/srep28910] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/13/2016] [Indexed: 12/29/2022] Open
Abstract
Although circulating tumor cells (CTCs) have potential as diagnostic biomarkers for cancer, determining their prognostic role in cancer patients undergoing treatment is a challenge. We evaluated the prognostic value of programmed death-ligand 1 (PD-L1) expression in CTCs in colorectal and prostate cancer patients undergoing treatment. Peripheral blood samples were collected from 62 metastatic colorectal cancer patients and 30 metastatic prostate cancer patients. CTCs were isolated from the samples using magnetic separation with the cell-surface vimentin(CSV)-specific 84-1 monoclonal antibody that detects epithelial-mesenchymal transitioned (EMT) CTCs. CTCs were enumerated and analyzed for PD-L1 expression using confocal microscopy. PD-L1 expression was detectable in CTCs and was localized in the membrane and/or cytoplasm and nucleus. CTC detection alone was not associated with poor progression-free or overall survival in colorectal cancer or prostate cancer patients, but nuclear PD-L1 (nPD-L1) expression in these patients was significantly associated with short survival durations. These results demonstrated that nPD-L1 has potential as a clinically relevant prognostic biomarker for colorectal and prostate cancer. Our data thus suggested that use of CTC-based models of cancer for risk assessment can improve the standard cancer staging criteria and supported the incorporation of nPD-L1 expression detection in CTCs detection in such models.
Collapse
Affiliation(s)
- Arun Satelli
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Izhar Singh Batth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zachary Brownlee
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christina Rojas
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing H. Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Departments of Surgical Oncology and Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
19
|
Jin J, Niu X, Zou L, Li L, Li S, Han J, Zhang P, Song J, Xiao F. AFP mRNA level in enriched circulating tumor cells from hepatocellular carcinoma patient blood samples is a pivotal predictive marker for metastasis. Cancer Lett 2016; 378:33-7. [PMID: 27160647 DOI: 10.1016/j.canlet.2016.04.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/28/2023]
Abstract
Circulating tumor cells (CTCs) quantification may be helpful for evaluating cancer dissemination, predicting prognosis and assessing therapeutic effectiveness and safety. In the present study, CTCs from blood samples of 72 patients with hepatocellular carcinoma (HCC) were enriched with anti-EpCAM nanoparticles. AFP mRNA level was detected by nested polymerase chain reaction (PCR) after enrichment of CTCs from HCC blood samples at 0, 3, 6, 9 and 12 months after hepatectomy, respectively. AFP mRNA expression in CTCs was positive in 43 patients (59.7%) and negative in 29 patients (40.3%) before hepatectomy. Among 43 patients with positive AFP mRNA expression in CTCs before hepatectomy, 10 and 11 were diagnosed as intrahepatic/extrahepatic metastasis before and after hepatectomy, respectively. In addition, these 21 patients with metastasis had persisting positive AFP mRNA of CTCs during the whole tested year. Specifically, 3 patients with AFP mRNA negative in CTCs before hepatectomy changed to be positive at 6 and 9 months, and 2 of them were diagnosed as metastasis 12 months after hepatectomy. We conclude that the positive AFP mRNA of CTCs can be a pivotal predictor for HCC metastasis before and after hepatectomy. The release of AFP expression from hepatocellular carcinoma cells into circulation must be a major source of HCC metastasis.
Collapse
Affiliation(s)
- Junhua Jin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing, China
| | - Xiaojuan Niu
- Department of Surgery, Beijing Hospital, Beijing, China
| | - Lihui Zou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing, China
| | - Lin Li
- Department of Oncology, Beijing Hospital, Beijing, China
| | - Shugang Li
- Xuzhou Central Hospital, Affiliated Hospital of Medical College of Southeast University, Nanjing, China
| | - Jingli Han
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing, China
| | - Peiying Zhang
- Xuzhou Central Hospital, Affiliated Hospital of Medical College of Southeast University, Nanjing, China
| | - Jinghai Song
- Department of Surgery, Beijing Hospital, Beijing, China.
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing, China.
| |
Collapse
|
20
|
Todenhöfer T, Hennenlotter J, Dorner N, Kühs U, Aufderklamm S, Rausch S, Bier S, Mischinger J, Schellbach D, Hauch S, Feniuk N, Bedke J, Gakis G, Stenzl A, Schwentner C. Transcripts of circulating tumor cells detected by a breast cancer-specific platform correlate with clinical stage in bladder cancer patients. J Cancer Res Clin Oncol 2016; 142:1013-20. [PMID: 26910601 DOI: 10.1007/s00432-016-2129-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE There is increasing interest in circulating tumor cells (CTCs) as a biomarker in bladder cancer (BC). In the present pilot study, we used a platform originally developed for detection of breast cancer CTCs to assess breast cancer-associated transcripts in CTCs of patients with different stages of BC. Moreover, transcripts specific for cancer stem cells and epithelial mesenchymal transition (EMT) were assessed. METHODS We prospectively enrolled 83 BC patients and 29 controls. The AdnaTest® system was used to enrich epithelial cells in peripheral blood and to detect breast cancer-associated, stem cell-specific or EMT-specific transcripts. Test results were correlated with clinical and pathological stage. RESULTS A positive AdnaTest® BreastCancerDetect was present in 6.9 % of controls (group A), 6.7, 15.0 and 18.7 % of patients with non-muscle-invasive BC (B), cM0 muscle-invasive BC (C) and metastatic BC (D) (p = 0.13). Stem cell-specific transcripts in group A, B, C and D were detected in 10.3, 10.0, 22.5 and 31.3 % (p = 0.03). EMT-associated transcripts were present in 3.5, 3.3, 15.0 and 18.7 % (p = 0.03). In group C, epithelial and stem-like transcripts correlated with tumor stage (p = 0.01 and 0.04). CONCLUSIONS CTCs with expression of breast cancer-associated transcripts are present in a considerable proportion of patients with BC. EMT and stem cell-specific transcripts of CTCs correlate with clinical stage and can be detected in patients negative for epithelial transcripts. The prognostic relevance of AdnaTest® results in BC patients and potential implications for therapy decisions remain to be determined in prospective studies.
Collapse
Affiliation(s)
- Tilman Todenhöfer
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Nathalie Dorner
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Ursula Kühs
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Stefan Aufderklamm
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Steffen Rausch
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Simone Bier
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Johannes Mischinger
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | | | | | | | - Jens Bedke
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Georgios Gakis
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Christian Schwentner
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| |
Collapse
|
21
|
Dey S, Vaidyanathan R, Carrascosa LG, Shiddiky MJA, Trau M. Electric Field Induced Isolation, Release, and Recapture of Tumor Cells. ACS Sens 2016. [DOI: 10.1021/acssensors.5b00157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shuvashis Dey
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75) and ‡School of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ramanathan Vaidyanathan
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75) and ‡School of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Laura G. Carrascosa
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75) and ‡School of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Muhammad J. A. Shiddiky
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75) and ‡School of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matt Trau
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75) and ‡School of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
22
|
Owusu BY, Vaid M, Kaler P, Klampfer L. Prognostic and Predictive Significance of Stromal Fibroblasts and Macrophages in Colon Cancer. BIOMARKERS IN CANCER 2015; 7:29-37. [PMID: 26568685 PMCID: PMC4631158 DOI: 10.4137/bic.s25247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022]
Abstract
Colon cancer development and malignant progression are driven by genetic and epigenetic alterations in tumor cells and by factors from the tumor microenvironment. Cancer cells become reliant on the activity of specific oncogenes and on prosurvival and proliferative signals they receive from the abnormal environment they create and reside in. Accordingly, the response to anticancer therapy is determined by genetic and epigenetic changes that are intrinsic to tumor cells and by the factors present in the tumor microenvironment. Recent advances in the understanding of the involvement of the tumor microenvironment in tumor progression and therapeutic response are optimizing the application of prognostic and predictive factors in colon cancer. Moreover, new targets in the tumor microenvironment that are amenable to therapeutic intervention have been identified. Because stromal cells are with rare exceptions genetically stable, the tumor microenvironment has emerged as a preferred target for therapeutic drugs. In this review, we discuss the role of stromal fibroblasts and macrophages in colon cancer progression and in the response of colon cancer patients to therapy.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| | - Mudit Vaid
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| | - Pawan Kaler
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| | - Lidija Klampfer
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| |
Collapse
|
23
|
Vlaeminck-Guillem V. When Prostate Cancer Circulates in the Bloodstream. Diagnostics (Basel) 2015; 5:428-74. [PMID: 26854164 PMCID: PMC4728468 DOI: 10.3390/diagnostics5040428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022] Open
Abstract
Management of patients with prostate cancer is currently based on imperfect clinical, biological, radiological and pathological evaluation. Prostate cancer aggressiveness, including metastatic potential, remains difficult to accurately estimate. In an attempt to better adapt therapeutics to an individual (personalized medicine), reliable evaluation of the intrinsic molecular biology of the tumor is warranted, and particularly for all tumor sites (primary tumors and secondary sites) at any time of the disease progression. As a consequence of their natural tendency to grow (passive invasion) or as a consequence of an active blood vessel invasion by metastase-initiating cells, tumors shed various materials into the bloodstream. Major efforts have been recently made to develop powerful and accurate methods able to detect, quantify and/or analyze all these circulating tumor materials: circulating tumors cells, disseminating tumor cells, extracellular vesicles (including exosomes), nucleic acids, etc. The aim of this review is to summarize current knowledge about these circulating tumor materials and their applications in translational research.
Collapse
Affiliation(s)
- Virginie Vlaeminck-Guillem
- Cancer Research Centre of Lyon, U1052 INSERM, CNRS 5286, Léon Bérard Centre, Lyon I University, 28 rue Laennec, Lyon 69008, France.
- Medical Unit of Molecular Oncology and Transfer, Department of Biochemistry and Molecular Biology, University Hospital of Lyon-Sud, Hospices Civils of Lyon, Lyon 69008, France.
| |
Collapse
|
24
|
Thalgott M, Heck MM, Eiber M, Souvatzoglou M, Hatzichristodoulou G, Kehl V, Krause BJ, Rack B, Retz M, Gschwend JE, Andergassen U, Nawroth R. Circulating tumor cells versus objective response assessment predicting survival in metastatic castration-resistant prostate cancer patients treated with docetaxel chemotherapy. J Cancer Res Clin Oncol 2015; 141:1457-64. [PMID: 25708944 DOI: 10.1007/s00432-015-1936-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/09/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE Circulating tumor cell (CTC) counts might display a superior prognostic value for overall survival (OS) compared to objective response criteria (OR) in metastatic castration-resistant prostate cancer (mCRPC) patients. METHODS CTCs were detected using the CellSearch™ System out of 122 samples during docetaxel chemotherapy (75 mg/m(2)) at baseline (q0) and after 1 (q1), 4 (q4) and 10 (q10) cycles, in mCRPC patients (n = 33). OR was evaluated by morphologic RECIST and clinical criteria after 4 (q4) and 10 (q10) cycles. RESULTS For OS, analyses revealed a significant prognostic value for categorical (<5 vs. ≥5) CTC counts (q0, p = 0.005; q1, p = 0.001; q4, p < 0.001; q10, p = 0.002), RECIST (q4, p < 0.001; q10, p = 0.02) and clinical criteria (q4, p < 0.001; q10, p = 0.02). Concordance of CTC counts with OR revealed a sensitivity of 83.3-87.5 % and a specificity of 68.0-76.5 % with complementary discriminatory power for OS. Comparing CTC counts with concomitant OR at q4 in multivariate analyses, an independent prognostic value for OS was found for CTC counts (HR 3.3; p = 0.02) similar to clinical (HR 4.9; p = 0.02) and radiologic response (HR 3.4; p = 0.051). Comparing the predictive value for death, early post-treatment CTC counts at q1 demonstrated significant accuracy with an area under the curve of 79.5 % (p = 0.004) similar to CTC counts at q4 (76.7 %; p = 0.009). Radiologic and clinical response at q4 displayed accuracy similar to early CTC counts at q1 (72.2 %; p = 0.03 and 75.0 %; p = 0.02) despite low sensitivities. CONCLUSIONS CTC counts appear to be an earlier and more sensitive predictor for survival and treatment response than current OR approaches and may provide complementary information toward individualized treatment strategies.
Collapse
Affiliation(s)
- M Thalgott
- Department of Urology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thalgott M, Rack B, Eiber M, Souvatzoglou M, Heck MM, Kronester C, Andergassen U, Kehl V, Krause BJ, Gschwend JE, Retz M, Nawroth R. Categorical versus continuous circulating tumor cell enumeration as early surrogate marker for therapy response and prognosis during docetaxel therapy in metastatic prostate cancer patients. BMC Cancer 2015; 15:458. [PMID: 26051431 PMCID: PMC4459665 DOI: 10.1186/s12885-015-1478-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 06/01/2015] [Indexed: 01/13/2023] Open
Abstract
Background Circulating tumor cell (CTCs) counts might serve as early surrogate marker for treatment efficacy in metastatic castration-resistant prostate cancer (mCRPC) patients. We prospectively assessed categorical and continuous CTC-counts for their utility in early prediction of radiographic response, progression-free (PFS) and overall survival (OS) in mCRPC patients treated with docetaxel. Methods CTC-counts were assessed in 122 serial samples, as continuous or categorical (<5 vs. ≥5 CTCs) variables, at baseline (q0) and after 1 (q1), 4 (q4) and 10 (q10) cycles of docetaxel (3-weekly, 75 mg/m2) in 33 mCRPC patients. Treatment response (TR) was defined as non-progressive (non-PD) and progressive disease (PD), by morphologic RECIST or clinical criteria at q4 and q10. Binary logistic and Cox proportional hazards regression analyses were used as statistical methods. Results Categorical CTC-count status predicted PD at q4 already after one cycle (q1) and after 4 cycles (q4) of chemotherapy with an odds ratio (OR) of 14.9 (p = 0.02) and 18.0 (p = 0.01). Continuous CTC-values predicted PD only at q4 (OR 1.04, p = 0.048). Regarding PFS, categorical CTC-counts at q1 were independent prognostic markers with a hazard ratio (HR) of 3.85 (95 % CI 1.1-13.8, p = 0.04) whereas early continuous CTC-values at q1 failed significance (HR 1.02, 95 % CI 0.99-1.05, p = 0.14). For OS early categorical and continuous CTC-counts were independent prognostic markers at q1 with a HR of 3.0 (95 % CI 1.6-15.7, p = 0.007) and 1.02 (95 % CI 1.0-1.040, p = 0.04). Conclusions Categorical CTC-count status is an early independent predictor for TR, PFS and OS only 3 weeks following treatment initiation with docetaxel whereas continuous CTC-counts were an inconsistent surrogate marker in mCRPC patients. For clinical practice, categorical CTC-counts may provide complementary information towards individualized treatment strategies with early prediction of treatment efficacy and optimized sequential treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1478-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark Thalgott
- Department of Urology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675, Munich, Germany.
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, Klinikum der Ludwig-Maximilians-Universität, Klinikum Innenstadt, Maistrasse 11, 80337, Munich, Germany.
| | | | | | - Matthias M Heck
- Department of Urology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675, Munich, Germany.
| | - Caroline Kronester
- Department of Urology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675, Munich, Germany.
| | - Ulrich Andergassen
- Department of Gynecology and Obstetrics, Klinikum der Ludwig-Maximilians-Universität, Klinikum Innenstadt, Maistrasse 11, 80337, Munich, Germany.
| | - Victoria Kehl
- Institute of Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Bernd J Krause
- Department of Nuclear Medicine, Universitätsklinikum Rostock, Schillingallee 35, 18057, Rostock, Germany.
| | - Jurgen E Gschwend
- Department of Urology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675, Munich, Germany.
| | - Margitta Retz
- Department of Urology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675, Munich, Germany.
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675, Munich, Germany.
| |
Collapse
|
26
|
Zhang C, Wang L, Guan Y, Sun Y, Liu X, Zhu D, Guo Q. Progress of Circulating Tumor Cells in Cancer Management. Technol Cancer Res Treat 2015; 15:509-16. [PMID: 25948322 DOI: 10.1177/1533034615583762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/30/2015] [Indexed: 12/28/2022] Open
Abstract
Circulating tumor cells are low-frequency cells that are shed into the peripheral bloodstream from a primary solid tumor and/or metastasis. Although these cells were recognized initially in 1869, it is only in the past 2 decades that they have been isolated for use as a surrogate biomarker to monitor response to therapy, evaluate prognosis, detect tumor mutations, assist in selecting personalized medicine, and enable earlier cancer diagnosis.
Collapse
Affiliation(s)
- Chufeng Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong, Academy of Medical Sciences, Jinan, China Academy of Medical Sciences, Shandong Cancer Hospital, Jinan, Shandong, China
| | - Lijie Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong, Academy of Medical Sciences, Jinan, China Academy of Medical Sciences, Shandong Cancer Hospital, Jinan, Shandong, China
| | - Yan Guan
- Academy of Medical Sciences, Shandong Cancer Hospital, Jinan, Shandong, China
| | - Yulan Sun
- Academy of Medical Sciences, Shandong Cancer Hospital, Jinan, Shandong, China
| | - Xiuju Liu
- Academy of Medical Sciences, Shandong Cancer Hospital, Jinan, Shandong, China
| | - Dongyuan Zhu
- Academy of Medical Sciences, Shandong Cancer Hospital, Jinan, Shandong, China
| | - Qisen Guo
- Academy of Medical Sciences, Shandong Cancer Hospital, Jinan, Shandong, China
| |
Collapse
|
27
|
Lu YJ, Xu L, Shamash J. Circulating Tumor Cells: A Window to Understand Cancer Metastasis, Monitor and Fight Against Cancers. ACTA ACUST UNITED AC 2015. [DOI: 10.6000/1929-2279.2015.04.01.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
28
|
Tseng JY, Yang CY, Liang SC, Liu RS, Jiang JK, Lin CH. Dynamic changes in numbers and properties of circulating tumor cells and their potential applications. Cancers (Basel) 2014; 6:2369-86. [PMID: 25521853 PMCID: PMC4276972 DOI: 10.3390/cancers6042369] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/25/2014] [Accepted: 12/08/2014] [Indexed: 12/18/2022] Open
Abstract
Circulating tumor cells (CTCs) can be detected in the blood of different types of early or advanced cancer using immunology-based assays or nucleic acid methods. The detection and quantification of CTCs has significant clinical utility in the prognosis of metastatic breast, prostate, and colorectal cancers. CTCs are a heterogeneous population of cells and often different from those of their respective primary tumor. Understanding the biology of CTCs may provide useful predictive information for the selection of the most appropriate treatment. Therefore, CTC detection and characterization could become a valuable tool to refine prognosis and serve as a "real-time biopsy" and has the potential to guide precision cancer therapies, monitor cancer treatment, and investigate the process of metastasis.
Collapse
Affiliation(s)
- Ju-Yu Tseng
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chih-Yung Yang
- Department of Education and Research, Taipei City Hospital, Taipei 10629, Taiwan.
| | - Shu-Ching Liang
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ren-Shyan Liu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, Taipei 11529, Taiwan.
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
29
|
Abstract
During the past ten years, circulating tumour cells (CTCs) have received enormous attention as new biomarkers and the subject of basic research. Although CTCs are already used in numerous clinical trials, their clinical utility is still under investigation. Many issues regarding the detection and characterization of CTCs remain unknown. In this Opinion article, we propose a conceptual framework of CTC assays and point out current challenges of CTC research, which might structure this dynamic field of translational cancer research.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- 1] University Medical Centre, Saint-Eloi Hospital, Institute of Medicine Regenerative &Biotherapy, Department of Cellular and Tissular Biopathology of Tumors, Laboratory of Rare Human Circulating Cells, 80 Avenue Augustin Fliche 34295 Montpellier Cedex 5, Montpellier, France. [2] University Institute of Clinical Research UM1 - EA2415 - Epidemiology, Biostatistics &Public Health, 641, Avenue du Doyen Gaston GIRAUD 34093 Montpellier Cedex 5, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center, Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
30
|
Shao C, Liao CP, Hu P, Chu CY, Zhang L, Bui MHT, Ng CS, Josephson DY, Knudsen B, Tighiouart M, Kim HL, Zhau HE, Chung LWK, Wang R, Posadas EM. Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer. PLoS One 2014; 9:e88967. [PMID: 24551200 PMCID: PMC3925210 DOI: 10.1371/journal.pone.0088967] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/14/2014] [Indexed: 02/05/2023] Open
Abstract
Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs). A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR) heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs) from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR(+)) CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total) were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population.
Collapse
Affiliation(s)
- Chen Shao
- Uro-Oncolgy Research Laboratories, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Department of Urology Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chun-Peng Liao
- Uro-Oncolgy Research Laboratories, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America
| | - Peizhen Hu
- Uro-Oncolgy Research Laboratories, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America
| | - Chia-Yi Chu
- Uro-Oncolgy Research Laboratories, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America
| | - Lei Zhang
- Department of Epidemiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Matthew H T Bui
- Divsion of Urology- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Christopher S Ng
- Divsion of Urology- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - David Y Josephson
- Divsion of Urology- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Beatrice Knudsen
- Uro-Oncolgy Research Laboratories, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Translational Pathology and Biobank, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Mourad Tighiouart
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Hyung L Kim
- Uro-Oncolgy Research Laboratories, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Divsion of Urology- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Haiyen E Zhau
- Uro-Oncolgy Research Laboratories, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America
| | - Leland W K Chung
- Uro-Oncolgy Research Laboratories, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Division of Hematology Oncology-Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ruoxiang Wang
- Uro-Oncolgy Research Laboratories, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Division of Hematology Oncology-Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Edwin M Posadas
- Uro-Oncolgy Research Laboratories, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angles, California, United States of America ; Division of Hematology Oncology-Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|