1
|
Wyllie MK, Morris CK, Moeller NH, Schares HAM, Moorthy R, Belica CA, Grillo MJ, Demir Ö, Ayoub AM, Carpenter MA, Aihara H, Harris RS, Amaro RE, Harki DA. The Impact of Sugar Conformation on the Single-Stranded DNA Selectivity of APOBEC3A and APOBEC3B Enzymes. ACS Chem Biol 2025; 20:117-127. [PMID: 39680033 DOI: 10.1021/acschembio.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The APOBEC3 family of polynucleotide cytidine deaminases has diverse roles as viral restriction factors and oncogenic mutators. These enzymes convert cytidine to uridine in single-stranded (ss)DNA, inducing genomic mutations that promote drug resistance and tumor heterogeneity. Of the seven human APOBEC3 members, APOBEC3A (A3A) and APOBEC3B (A3B) are most implicated in driving pro-tumorigenic mutations. How these enzymes engage and selectively deaminate ssDNA over RNA is not well understood. We previously conducted molecular dynamics (MD) simulations that support the role of sugar conformation as a key molecular determinant in nucleic acid recognition by A3B. We hypothesize that A3A and A3B selectively deaminate substrates in the 2'-endo (DNA) conformation and show reduced activity for 3'-endo (RNA) conformation substrates. Consequently, we have characterized A3A- and A3B-binding and deaminase activity with chimeric oligonucleotides containing cytidine analogues that promote either the 2'-endo or 3'-endo conformation. Using fluorescence polarization and gel-based deamination assays, we determined that sugar conformation preferentially impacts the ability of these enzymes to deaminate substrates and less so binding to substrates. Using MD simulations, we identify specific active site interactions that promote selectivity based on the 2'-endo conformation. These findings help inform the biological functions of A3A and A3B in providing antiviral innate immunity and pathogenic functions in cancer.
Collapse
Affiliation(s)
- Mackenzie K Wyllie
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| | - Clare K Morris
- Department of Chemistry and Biochemistry, University of California, San Diego 92103, United States
| | - Nicholas H Moeller
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis 55455, United States
| | - Henry A M Schares
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| | - Ramkumar Moorthy
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| | - Christopher A Belica
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis 55455, United States
| | - Michael J Grillo
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California, San Diego 92103, United States
| | - Alex M Ayoub
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78249, United States
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas 78249, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis 55455, United States
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78249, United States
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas 78249, United States
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego 92103, United States
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| |
Collapse
|
2
|
Hase N, Misiak D, Taubert H, Hüttelmaier S, Gekle M, Köhn M. APOBEC3C-mediated NF-κB activation enhances clear cell renal cell carcinoma progression. Mol Oncol 2025; 19:114-132. [PMID: 39183666 PMCID: PMC11705732 DOI: 10.1002/1878-0261.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Renowned as the predominant form of kidney cancer, clear cell renal cell carcinoma (ccRCC) exhibits susceptibility to immunotherapies due to its specific expression profile as well as notable immune cell infiltration. Despite this, effectively treating metastatic ccRCC remains a significant challenge, necessitating a more profound comprehension of the underlying molecular mechanisms governing its progression. Here, we unveil that the enhanced expression of the RNA-binding protein DNA dC → dU-editing enzyme APOBEC-3C (APOBEC3C; also known as A3C) in ccRCC tissue and ccRCC-derived cell lines serves as a catalyst for tumor growth by amplifying nuclear factor-kappa B (NF-κB) activity. By employing RNA-sequencing and cell-based assays in ccRCC-derived cell lines, we determined that A3C is a stress-responsive factor and crucial for cell survival. Furthermore, we identified that A3C binds and potentially stabilizes messenger RNAs (mRNAs) encoding positive regulators of the NF-κB pathway. Upon A3C depletion, essential subunits of the NF-κB family are abnormally restrained in the cytoplasm, leading to deregulation of NF-κB target genes. Our study illuminates the pivotal role of A3C in promoting ccRCC tumor development, positioning it as a prospective target for future therapeutic strategies.
Collapse
Affiliation(s)
- Nora Hase
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| | - Danny Misiak
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Helge Taubert
- Department of Urology and Pediatric UrologyUniversity Hospital Erlangen, Friedrich Alexander University Erlangen/NürnbergGermany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Michael Gekle
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle/WittenbergGermany
| | - Marcel Köhn
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| |
Collapse
|
3
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. EMBO J 2025; 44:1-29. [PMID: 39548236 PMCID: PMC11696371 DOI: 10.1038/s44318-024-00298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell-cycle stage associated with APOBEC-mediated mutagenesis. In contrast, in squamous cell carcinoma we find that, there is expansion of GRHL3expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings suggest that APOBEC3A may play a functional role during keratinocyte differentiation, and offer a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Cell, Gene and RNA Therapies, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Tim R Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
4
|
Wai AP, Timmy R, Wakae K, Okada S, Muramatsu M, Yoshiyama H, Iizasa H. Persistent Epstein-Barr Virus Infection of Epithelial Cells Leads to APOBEC3C Expression and Induces Mitochondrial DNA Mutations. Microbiol Immunol 2024. [PMID: 39704315 DOI: 10.1111/1348-0421.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Upon infection with the virus, cells increase the expression of cytidine deaminase APOBEC3 family genes. This leads to the accumulation of C-to-T mutations in the replicating viral genome and suppresses viral propagation. In contrast, herpesviruses, including Epstein-Barr virus (EBV), express genes that counteract APOBEC3 during lytic infection. However, because viral resistance factors are not expressed during EBV latent infection, it is unknown how APOBEC3 functions during latent infection. We observed that in gastric epithelial cells persistently infected with EBV, the expression of APOBEC3 family genes increased, C-to-T mutations in the D-loop genome of mitochondrial DNA (mtDNA) increased, and mtDNA copy number decreased. By introducing and expressing individual APOBEC3 family genes, APOBEC3C was particularly expressed in the cytoplasm, increasing C-to-T mutations in mtDNA and decreasing mtDNA copy number. Furthermore, we confirmed that APOBEC3C co-localized with mitochondria in EBV-infected cells. Expression of the EBV latent gene LMP2A increased APOBEC3C expression. Conversely, APOBEC3C expression was reduced in LMP2A-deficient EBV-infected cells compared to wild-type EBV-infected cells. These results indicate that persistent infection of EBV in gastric epithelial cells reduces the number of mitochondria through mtDNA mutations induced by APOBEC3C expression.
Collapse
Affiliation(s)
- Aung Phyo Wai
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Richardo Timmy
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Disease, Tokyo, Japan
| | - Shunpei Okada
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Masamichi Muramatsu
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|
5
|
Pfeifer GP, Jin SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet 2024; 25:846-863. [PMID: 38918545 PMCID: PMC11563917 DOI: 10.1038/s41576-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
6
|
Zhou F, Guo H, Xia Y, Le X, Tan DSW, Ramalingam SS, Zhou C. The changing treatment landscape of EGFR-mutant non-small-cell lung cancer. Nat Rev Clin Oncol 2024:10.1038/s41571-024-00971-2. [PMID: 39614090 DOI: 10.1038/s41571-024-00971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
The discovery of the association between EGFR mutations and the efficacy of EGFR tyrosine-kinase inhibitors (TKIs) has revolutionized the treatment paradigm for patients with non-small-cell lung cancer (NSCLC). Currently, third-generation EGFR TKIs, which are often characterized by potent central nervous system penetrance, are the standard-of-care first-line treatment for advanced-stage EGFR-mutant NSCLC. Rational combinations of third-generation EGFR TKIs with anti-angiogenic drugs, chemotherapy, the EGFR-MET bispecific antibody amivantamab or local tumour ablation are being investigated as strategies to delay drug resistance and increase clinical benefit. Furthermore, EGFR TKIs are being evaluated in patients with early stage or locally advanced EGFR-mutant NSCLC, with the ambitious aim of achieving cancer cure. Despite the inevitable challenge of acquired resistance, emerging treatments such as new TKIs, antibody-drug conjugates, new immunotherapeutic approaches and targeted protein degraders have shown considerable promise in patients with progression of EGFR-mutant NSCLC on or after treatment with EGFR TKIs. In this Review, we describe the current first-line treatment options for EGFR-mutant NSCLC, provide an overview of the mechanisms of acquired resistance to third-generation EGFR TKIs and explore novel promising treatment strategies. We also highlight potential avenues for future research that are aimed at improving the survival outcomes of patients with this disease.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Nguyen DD, Hooper WF, Liu W, Chu TR, Geiger H, Shelton JM, Shah M, Goldstein ZR, Winterkorn L, Helland A, Sigouros M, Manohar J, Moyer J, Al Assaad M, Semaan A, Cohen S, Madorsky Rowdo F, Wilkes D, Osman M, Singh RR, Sboner A, Valentine HL, Abbosh P, Tagawa ST, Nanus DM, Nauseef JT, Sternberg CN, Molina AM, Scherr D, Inghirami G, Mosquera JM, Elemento O, Robine N, Faltas BM. The interplay of mutagenesis and ecDNA shapes urothelial cancer evolution. Nature 2024; 635:219-228. [PMID: 39385020 PMCID: PMC11541202 DOI: 10.1038/s41586-024-07955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2024] [Indexed: 10/11/2024]
Abstract
Advanced urothelial cancer is a frequently lethal disease characterized by marked genetic heterogeneity1. In this study, we investigated the evolution of genomic signatures caused by endogenous and external mutagenic processes and their interplay with complex structural variants (SVs). We superimposed mutational signatures and phylogenetic analyses of matched serial tumours from patients with urothelial cancer to define the evolutionary dynamics of these processes. We show that APOBEC3-induced mutations are clonal and early, whereas chemotherapy induces mutational bursts of hundreds of late subclonal mutations. Using a genome graph computational tool2, we observed frequent high copy-number circular amplicons characteristic of extrachromosomal DNA (ecDNA)-forming SVs. We characterized the distinct temporal patterns of APOBEC3-induced and chemotherapy-induced mutations within ecDNA-forming SVs, gaining new insights into the timing of these mutagenic processes relative to ecDNA biogenesis. We discovered that most CCND1 amplifications in urothelial cancer arise within circular ecDNA-forming SVs. ecDNA-forming SVs persisted and increased in complexity, incorporating additional DNA segments and contributing to the evolution of treatment resistance. Oxford Nanopore Technologies long-read whole-genome sequencing followed by de novo assembly mapped out CCND1 ecDNA structure. Experimental modelling of CCND1 ecDNA confirmed its role as a driver of treatment resistance. Our findings define fundamental mechanisms that drive urothelial cancer evolution and have important therapeutic implications.
Collapse
Affiliation(s)
- Duy D Nguyen
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Weisi Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenna Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alissa Semaan
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sandra Cohen
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Florencia Madorsky Rowdo
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - David Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mohamed Osman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rahul R Singh
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Henkel L Valentine
- Nuclear Dynamics and Cancer program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Phillip Abbosh
- Nuclear Dynamics and Cancer program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Urology, Einstein Healthcare Network, Philadelphia, PA, USA
| | - Scott T Tagawa
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Jones T Nauseef
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Cora N Sternberg
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ana M Molina
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Douglas Scherr
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | - Bishoy M Faltas
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Yang Y, Liu N, Gong L. An overview of the functions and mechanisms of APOBEC3A in tumorigenesis. Acta Pharm Sin B 2024; 14:4637-4648. [PMID: 39664421 PMCID: PMC11628810 DOI: 10.1016/j.apsb.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
The APOBEC3 (A3) family plays a pivotal role in the immune system by performing DNA/RNA single-strand deamination. Cancers mostly arise from the accumulation of chronic mutations in somatic cells, and recent research has highlighted the A3 family as a major contributor to tumor-associated mutations, with A3A being a key driver gene leading to cancer-related mutations. A3A helps to defend the host against virus-induced tumors by editing the genome of cancer-associated viruses that invade the host. However, when it is abnormally expressed, it leads to persistent, chronic mutations in the genome, thereby fueling tumorigenesis. Notably, A3A is prominently expressed in innate immune cells, particularly macrophages, thereby affecting the functional state of tumor-infiltrating immune cells and tumor growth. Furthermore, the expression of A3A in tumor cells may directly affect their proliferation and migration. A growing body of research has unveiled that A3A is closely related to various cancers, which signifies the potential significance of A3A in cancer therapy. This paper mainly classifies and summarizes the evidence of the relationship between A3A and tumorigenesis based on the potential mechanisms, aiming to provide valuable references for further research on the functions of A3A and its development in the area of cancer therapy.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Devenport JM, Tran T, Harris BR, Fingerman DF, DeWeerd RA, Elkhidir L, LaVigne D, Fuh K, Sun L, Bednarski JJ, Drapkin R, Mullen M, Green AM. APOBEC3A drives metastasis of high-grade serous ovarian cancer by altering epithelial-to-mesenchymal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620297. [PMID: 39553968 PMCID: PMC11565781 DOI: 10.1101/2024.10.25.620297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most prevalent and aggressive histological subtype of ovarian cancer, and often presents with metastatic disease. The drivers of metastasis in HGSOC remain enigmatic. APOBEC3A (A3A), an enzyme that generates mutations across various cancers, has been proposed as a mediator of tumor heterogeneity and disease progression. However, the role of A3A in HGSOC has not been explored. Through analysis of genome sequencing from primary HGSOC, we observed an association between high levels of APOBEC3 mutagenesis and poor overall survival. We experimentally addressed this correlation by modeling A3A activity in HGSOC cell lines and mouse models which resulted in increased metastatic behavior of HGSOC cells in culture and distant metastatic spread in vivo . A3A activity in both primary and cultured HGSOC cells yielded consistent alterations in expression of epithelial-mesenchymal-transition (EMT) genes resulting in hybrid EMT and mesenchymal signatures, and providing a mechanism for their increased metastatic potential. Our findings define the prevalence of A3A mutagenesis in HGSOC and implicate A3A as a driver of HGSOC metastasis via EMT, underscoring its clinical relevance as a potential prognostic biomarker. Our study lays the groundwork for the development of targeted therapies aimed at mitigating the deleterious impact of A3A-driven EMT in HGSOC.
Collapse
|
10
|
Jayakrishnan R, Kwiatkowski DJ, Rose MG, Nassar AH. Topography of mutational signatures in non-small cell lung cancer: emerging concepts, clinical applications, and limitations. Oncologist 2024; 29:833-841. [PMID: 38907669 PMCID: PMC11449018 DOI: 10.1093/oncolo/oyae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 06/24/2024] Open
Abstract
The genome of a cell is continuously battered by a plethora of exogenous and endogenous processes that can lead to damaged DNA. Repair mechanisms correct this damage most of the time, but failure to do so leaves mutations. Mutations do not occur in random manner, but rather typically follow a more or less specific pattern due to known or imputed mutational processes. Mutational signature analysis is the process by which the predominant mutational process can be inferred for a cancer and can be used in several contexts to study both the genesis of cancer and its response to therapy. Recent pan-cancer genomic efforts such as "The Cancer Genome Atlas" have identified numerous mutational signatures that can be categorized into single base substitutions, doublet base substitutions, or small insertions/deletions. Understanding these mutational signatures as they occur in non-small lung cancer could improve efforts at prevention, predict treatment response to personalized treatments, and guide the development of therapies targeting tumor evolution. For non-small cell lung cancer, several mutational signatures have been identified that correlate with exposures such as tobacco smoking and radon and can also reflect endogenous processes such as aging, APOBEC activity, and loss of mismatch repair. Herein, we provide an overview of the current knowledge of mutational signatures in non-small lung cancer.
Collapse
Affiliation(s)
- Ritujith Jayakrishnan
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - David J Kwiatkowski
- Department of Pulmonary Medicine, Brigham and Women's Hospital, Boston, MA, 02115, United States
| | - Michal G Rose
- Yale University School of Medicine and Cancer Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States
- Department of Medicine, Medical Oncology Division, Yale Cancer Center, New Haven, CT, United States
| | - Amin H Nassar
- Yale University School of Medicine and Cancer Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States
| |
Collapse
|
11
|
Huang G, Zhan X, Shen L, Lou L, Dai Y, Jiang A, Gao Y, Wang Y, Xie X, Zhang J. APOBEC family reshapes the immune microenvironment and therapy sensitivity in clear cell renal cell carcinoma. Clin Exp Med 2024; 24:212. [PMID: 39249558 PMCID: PMC11383847 DOI: 10.1007/s10238-024-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
Emerging evidence suggests that the APOBEC family is implicated in multiple cancers and might be utilized as a new target for cancer detection and treatment. However, the dysregulation and clinical implication of the APOBEC family in clear cell renal cell cancer (ccRCC) remain elusive. TCGA multiomics data facilitated a comprehensive exploration of the APOBEC family across cancers, including ccRCC. Remodeling analysis classified ccRCC patients into two distinct subgroups: APOBEC family pattern cancer subtype 1 (APCS1) and subtype 2 (APCS2). The study investigated differences in clinical parameters, tumor immune microenvironment, therapeutic responsiveness, and genomic mutation landscapes between these subtypes. An APOBEC family-related risk model was developed and validated for predicting ccRCC patient prognosis, demonstrating good sensitivity and specificity. Finally, the overview of APOBEC3B function was investigated in multiple cancers and verified in clinical samples. APCS1 and APCS2 demonstrated considerably distinct clinical features and biological processes in ccRCC. APCS1, an aggressive subtype, has advanced clinical stage and a poor prognosis. APCS1 exhibited an oncogenic and metabolically active phenotype. APCS1 also exhibited a greater tumor mutation load and immunocompromised condition, resulting in immunological dysfunction and immune checkpoint treatment resistance. The genomic copy number variation of APCS1, including arm gain and loss, was much more than that of APCS2, which may help explain the tired immune system. Furthermore, the two subtypes have distinct drug sensitivity patterns in clinical specimens and matching cell lines. Finally, we developed a predictive risk model based on subtype biomarkers that performed well for ccRCC patients and validated the clinical impact of APOBEC3B. Aberrant APOBEC family expression patterns might modify the tumor immune microenvironment by increasing the genome mutation frequency, thus inducing an immune-exhausted phenotype. APOBEC family-based molecular subtypes could strengthen the understanding of ccRCC characterization and guide clinical treatment. Targeting APOBEC3B may be regarded as a new therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Guiying Huang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Clinical Laboratory, Lishui Central Hospital, Lishui, Zhejiang, China
| | - Xianlin Zhan
- Department of Clinical Laboratory, PLA Navy Medical Center, Shanghai, China
| | - Lihong Shen
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Luping Lou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuehong Dai
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Aiming Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Hedger AK, Myint W, Lee JM, Suchenski-Loustaunau D, Balachandran V, Shaqra AM, Kurt-Yilmaz N, Watts JK, Matsuo H, Schiffer CA. Next generation APOBEC3 inhibitors: Optimally designed for potency and nuclease stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611238. [PMID: 39282427 PMCID: PMC11398451 DOI: 10.1101/2024.09.05.611238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
APOBEC3 (or A3) enzymes have emerged as potential therapeutic targets due to their role in introducing heterogeneity in viruses and cancer, often leading to drug resistance. Inhibiting these enzymes has remained elusive as initial phosphodiester (PO) linked DNA based inhibitors lack stability and potency. We have enhanced both potency and nuclease stability, of 2'-deoxy-zebularine (dZ), substrate-based oligonucleotide inhibitors for two critical A3's: A3A and A3G. While replacing the phosphate backbone with phosphorothioate (PS) linkages increased nuclease stability, fully PS-modified inhibitors lost potency (1.4-3.7 fold) due to the structural constraints of the active site. For both enzymes, mixed PO/PS backbones enhanced potency (2.3-9.2 fold), while also vastly improving nuclease resistance. We also strategically introduced 2'-fluoro sugar modifications, creating the first nanomolar inhibitor of A3G-CTD2. With hairpin-structured inhibitors containing optimized PS patterns and LNA sugar modifications, we characterize the first single-digit nanomolar inhibitor targeting A3A. These extremely potent A3A inhibitors, were highly resistant to nuclease degradation in serum stability assays. Overall, our optimally designed A3 oligonucleotide inhibitors show improved potency and stability, compared to previous attempts to inhibit these critical enzymes, opening the door to realize the therapeutic potential of A3 inhibition.
Collapse
Affiliation(s)
- Adam K Hedger
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Wazo Myint
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Diego Suchenski-Loustaunau
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Vanivilasini Balachandran
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Ala M Shaqra
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nese Kurt-Yilmaz
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan K Watts
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Hiroshi Matsuo
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
13
|
Kawale AS, Zou L. Regulation, functional impact, and therapeutic targeting of APOBEC3A in cancer. DNA Repair (Amst) 2024; 141:103734. [PMID: 39047499 PMCID: PMC11330346 DOI: 10.1016/j.dnarep.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Enzymes of the apolipoprotein B mRNA editing catalytic polypeptide like (APOBEC) family are cytosine deaminases that convert cytosine to uracil in DNA and RNA. Among these proteins, APOBEC3 sub-family members, APOBEC3A (A3A) and APOBEC3B (A3B), are prominent sources of mutagenesis in cancer cells. The aberrant expression of A3A and A3B in cancer cells leads to accumulation of mutations with specific single-base substitution (SBS) signatures, characterized by C→T and C→G changes, in a number of tumor types. In addition to fueling mutagenesis, A3A and A3B, particularly A3A, induce DNA replication stress, DNA damage, and chromosomal instability through their catalytic activities, triggering a range of cellular responses. Thus, A3A/B have emerged as key drivers of genome evolution during cancer development, contributing to tumorigenesis, tumor heterogeneity, and therapeutic resistance. Yet, the expression of A3A/B in cancer cells presents a cancer vulnerability that can be exploited therapeutically. In this review, we discuss the recent studies that shed light on the mechanisms regulating A3A expression and the impact of A3A in cancer. We also review recent advances in the development of A3A inhibitors and provide perspectives on the future directions of A3A research.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Tuo Z, Zhang Y, Li D, Wang Y, Wu R, Wang J, Yu Q, Ye L, Shao F, Wusiman D, Yang Y, Yoo KH, Ke M, Okoli UA, Cho WC, Heavey S, Wei W, Feng D. Relationship between clonal evolution and drug resistance in bladder cancer: A genomic research review. Pharmacol Res 2024; 206:107302. [PMID: 39004242 DOI: 10.1016/j.phrs.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Bladder cancer stands as a prevalent global malignancy, exhibiting notable sex-based variations in both incidence and prognosis. Despite substantial strides in therapeutic approaches, the formidable challenge of drug resistance persists. The genomic landscape of bladder cancer, characterized by intricate clonal heterogeneity, emerges as a pivotal determinant in fostering this resistance. Clonal evolution, encapsulating the dynamic transformations within subpopulations of tumor cells over time, is implicated in the emergence of drug-resistant traits. Within this review, we illuminate contemporary insights into the role of clonal evolution in bladder cancer, elucidating its influence as a driver in tumor initiation, disease progression, and the formidable obstacle of therapy resistance.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province 315211, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Chongqing, Wanzhou 404000, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK.
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK.
| |
Collapse
|
15
|
Shiba-Ishii A, Isagawa T, Shiozawa T, Mato N, Nakagawa T, Takada Y, Hirai K, Hong J, Saitoh A, Takeda N, Niki T, Murakami Y, Matsubara D. Novel therapeutic strategies targeting bypass pathways and mitochondrial dysfunction to combat resistance to RET inhibitors in NSCLC. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167249. [PMID: 38768929 DOI: 10.1016/j.bbadis.2024.167249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
RET fusion is an oncogenic driver in 1-2 % of patients with non-small cell lung cancer (NSCLC). Although RET-positive tumors have been treated with multikinase inhibitors such as vandetanib or RET-selective inhibitors, ultimately resistance to them develops. Here we established vandetanib resistance (VR) clones from LC-2/ad cells harboring CCDC6-RET fusion and explored the molecular mechanism of the resistance. Each VR clone had a distinct phenotype, implying they had acquired resistance via different mechanisms. Consistently, whole exome-seq and RNA-seq revealed that the VR clones had unique mutational signatures and expression profiles, and shared only a few common remarkable events. AXL and IGF-1R were activated as bypass pathway in different VR clones, and sensitive to a combination of RET and AXL inhibitors or IGF-1R inhibitors, respectively. SMARCA4 loss was also found in a particular VR clone and 55 % of post-TKI lung tumor tissues, being correlated with higher sensitivity to SMARCA4/SMARCA2 dual inhibition and shorter PFS after subsequent treatments. Finally, we detected an increased number of damaged mitochondria in one VR clone, which conferred sensitivity to mitochondrial electron transfer chain inhibitors. Increased mitochondria were also observed in post-TKI biopsy specimens in 13/20 cases of NSCLC, suggesting a potential strategy targeting mitochondria to treat resistant tumors. Our data propose new promising therapeutic options to combat resistance to RET inhibitors in NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Proto-Oncogene Proteins c-ret/antagonists & inhibitors
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mitochondria/metabolism
- Mitochondria/drug effects
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Cell Line, Tumor
- Quinazolines/pharmacology
- Quinazolines/therapeutic use
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/antagonists & inhibitors
- Signal Transduction/drug effects
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/antagonists & inhibitors
- DNA Helicases/genetics
- DNA Helicases/metabolism
- DNA Helicases/antagonists & inhibitors
- Cytoskeletal Proteins
Collapse
Affiliation(s)
- Aya Shiba-Ishii
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takayuki Isagawa
- Center for Data Science, Jichi Medical University, Tochigi, Japan
| | - Toshihiro Shiozawa
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoko Mato
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Ibaraki, Japan
| | - Tomoki Nakagawa
- Department of Pathology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Yurika Takada
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kanon Hirai
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jeongmin Hong
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Anri Saitoh
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Toshiro Niki
- Department of Pathology, Jichi Medical University, Tochigi, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
16
|
Brosda S, Aoude LG, Bonazzi VF, Patel K, Lonie JM, Belle CJ, Newell F, Koufariotis LT, Addala V, Naeini MM, Pearson JV, Krause L, Waddell N, Barbour AP. Spatial intra-tumour heterogeneity and treatment-induced genomic evolution in oesophageal adenocarcinoma: implications for prognosis and therapy. Genome Med 2024; 16:90. [PMID: 39020404 PMCID: PMC11253399 DOI: 10.1186/s13073-024-01362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Oesophageal adenocarcinoma (OAC) is a highly heterogeneous cancer with poor survival. Standard curative treatment is chemotherapy with or without radiotherapy followed by oesophagectomy. Genomic heterogeneity is a feature of OAC and has been linked to treatment resistance. METHODS Whole-genome sequencing data from 59 treatment-naïve and 18 post-treatment samples from 29 OAC patients was analysed. Twenty-seven of these were enrolled in the DOCTOR trial, sponsored by the Australasian Gastro-Intestinal Trials Group. Two biopsies from each treatment-naïve tumour were assessed to define 'shared' (between both samples) and 'private' (present in one sample) mutations. RESULTS Mutational signatures SBS2/13 (APOBEC) and SBS3 (BRCA) were almost exclusively detected in private mutation populations of treatment-naïve tumours. Patients presenting these signatures had significantly worse disease specific survival. Furthermore, mutational signatures associated with platinum-based chemotherapy treatment as well as high platinum enrichment scores were only detected in post-treatment samples. Additionally, clones with high putative neoantigen binding scores were detected in some treatment-naïve samples suggesting immunoediting of clones. CONCLUSIONS This study demonstrates the high intra-tumour heterogeneity in OAC, as well as indicators for treatment-induced changes during tumour evolution. Intra-tumour heterogeneity remains a problem for successful treatment strategies in OAC.
Collapse
Affiliation(s)
- Sandra Brosda
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Lauren G Aoude
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Vanessa F Bonazzi
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kalpana Patel
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - James M Lonie
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Clemence J Belle
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | | | - Venkateswar Addala
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Marjan M Naeini
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Lutz Krause
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Microba Life Sciences, Brisbane, QLD, 4000, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Andrew P Barbour
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
17
|
Mochizuki A, Shiraishi K, Honda T, Higashiyama RI, Sunami K, Matsuda M, Shimada Y, Miyazaki Y, Yoshida Y, Watanabe SI, Yatabe Y, Hamamoto R, Kohno T. Passive Smoking-Induced Mutagenesis as a Promoter of Lung Carcinogenesis. J Thorac Oncol 2024; 19:984-994. [PMID: 38382595 DOI: 10.1016/j.jtho.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION The International Agency for Research on Cancer has classified passive smoking (PS) or secondhand smoke exposure as a group 1 carcinogen linked to lung cancer. However, in contrast to active smoking, the mutagenic properties of PS remain unclear. METHODS A consecutive cohort of 564 lung adenocarcinoma samples from female never-smokers, who provided detailed information about their exposure to PS during adolescence and in their thirties through a questionnaire, was prepared. Of these, all 291 cases for whom frozen tumor tissues were available were subjected to whole exome sequencing to estimate tumor mutational burden, and the top 84 cases who were exposed daily, or not, to PS during adolescence, in their thirties or in both periods, were further subjected to whole genome sequencing. RESULTS A modest yet statistically significant increase in tumor mutational burden was observed in the group exposed to PS compared with the group not exposed to PS (median values = 1.44 versus 1.29 per megabase, respectively; p = 0.020). Instead of inducing driver oncogene mutations, PS-induced substantial subclonal mutations exhibiting APOBEC-type signatures, including SMAD4 and ADGRG6 hotspot mutations. A polymorphic APOBEC3A/3B allele-specific to the Asian population that leads to up-regulated expression of APOBEC3A accentuated the mutational load in individuals exposed daily to PS during adolescence. CONCLUSIONS This study reveals that PS-induced mutagenesis can promote lung carcinogenesis. The APOBEC3A/3B polymorphism may serve as a biomarker for identifying passive nonsmoking individuals at high risk of developing lung cancer.
Collapse
Affiliation(s)
- Akifumi Mochizuki
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan; Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Kuniko Sunami
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Maiko Matsuda
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoko Shimada
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
18
|
McCool MA, Bryant CJ, Abriola L, Surovtseva YV, Baserga SJ. The cytidine deaminase APOBEC3A regulates nucleolar function to promote cell growth and ribosome biogenesis. PLoS Biol 2024; 22:e3002718. [PMID: 38976757 PMCID: PMC11257408 DOI: 10.1371/journal.pbio.3002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer initiates as a consequence of genomic mutations and its subsequent progression relies in part on increased production of ribosomes to maintain high levels of protein synthesis for unchecked cell growth. Recently, cytidine deaminases have been uncovered as sources of mutagenesis in cancer. In an attempt to form a connection between these 2 cancer driving processes, we interrogated the cytidine deaminase family of proteins for potential roles in human ribosome biogenesis. We identified and validated APOBEC3A and APOBEC4 as novel ribosome biogenesis factors through our laboratory's established screening platform for the discovery of regulators of nucleolar function in MCF10A cells. Through siRNA depletion experiments, we highlight APOBEC3A's requirement in making ribosomes and specific role within the processing and maturation steps that form the large subunit 5.8S and 28S ribosomal (r)RNAs. We demonstrate that a subset of APOBEC3A resides within the nucleolus and associates with critical ribosome biogenesis factors. Mechanistic insight was revealed by transient overexpression of both wild-type and a catalytically dead mutated APOBEC3A, which both increase cell growth and protein synthesis. Through an innovative nuclear RNA sequencing methodology, we identify only modest predicted APOBEC3A C-to-U target sites on the pre-rRNA and pre-mRNAs. Our work reveals a potential direct role for APOBEC3A in ribosome biogenesis likely independent of its editing function. More broadly, we found an additional function of APOBEC3A in cancer pathology through its function in ribosome biogenesis, expanding its relevance as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Mason A. McCool
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Carson J. Bryant
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Yulia V. Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
19
|
Chen C, Ren W, Pei L, Sun J, Bai T. Status and development of research on clear cell carcinoma of the ovary-a visualization-based bibliometric analysis. Transl Cancer Res 2024; 13:2950-2970. [PMID: 38988907 PMCID: PMC11231787 DOI: 10.21037/tcr-23-2351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/24/2024] [Indexed: 07/12/2024]
Abstract
Background Clear cell carcinoma of the ovary (CCCO) is a relatively rare type of epithelial ovarian cancer (EOC) that has unique biological characteristics and clinical features. Researchers have paid less attention to this disease than to other types of EOCs. However, in recent years, research in this area has still progressed. In this paper, a bibliometric analysis is used to integrate and analyse the literature in the field of CCCO in the past 20 years to determine research development, better understand the current status of research, and provide a reference for future study directions in this field. Methods With CCCO as the research subject, relevant publications indexed in the Web of Science (WOS) core dataset from September 2003 to September 2023 were retrieved. After screening the publications, we used EXCEL, VOSviewer, CiteSpace, Charticulator, Gephi, OriginPro and other tools to perform in-depth analyses of and to visualize the data. Results Through a comprehensive analysis of the literature in this field, we found that research on CCCO experienced a relatively rapid increase in 2006 and is now in a period of relatively high fluctuation. The quality of the literature in this field is generally high. In this field, countries in East Asia and North America play core roles, with Japan accounting for the most studies. A stable research group has been formed in this field, and extensive collaboration has occurred among the various research groups. In the past 20 years, basic research and clinical research in the field of CCCO have developed together, and a healthy development model in which basic and clinical research promote each other has formed. Research in this field has been continuously developed from a preliminary understanding of clinical features to in-depth explorations of the pathogenesis and the continuous optimization of treatment methods. The key molecular events in the pathogenesis and development of this disease and the application of novel antitumour drugs for this disease are the current research focuses and the future development direction in this field. Conclusions Research on CCCO has progressed significantly in the past 20 years, but there are still many important issues regarding its pathogenesis and treatment that need to be addressed, and therefore, more research in this area should be conducted in the future. The study of key molecular events and the use of novel antitumour drugs are future development directions in this field.
Collapse
Affiliation(s)
- Chao Chen
- Department of Gynecology and Obstetrics, General Hospital of Northern Theater, Shenyang, China
| | - Wei Ren
- Department of Gynecology and Obstetrics, General Hospital of Northern Theater, Shenyang, China
| | - Lipeng Pei
- Department of Gynecology and Obstetrics, General Hospital of Northern Theater, Shenyang, China
| | - Jingli Sun
- Department of Gynecology and Obstetrics, General Hospital of Northern Theater, Shenyang, China
| | - Tianmei Bai
- Department of Gynecology and Obstetrics, General Hospital of Northern Theater, Shenyang, China
| |
Collapse
|
20
|
Kvach MV, Harjes S, Kurup HM, Jameson GB, Harjes E, Filichev VV. Synthesis of 1,4-azaphosphinine nucleosides and evaluation as inhibitors of human cytidine deaminase and APOBEC3A. Beilstein J Org Chem 2024; 20:1088-1098. [PMID: 38774272 PMCID: PMC11106675 DOI: 10.3762/bjoc.20.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024] Open
Abstract
Nucleoside and polynucleotide cytidine deaminases (CDAs), such as CDA and APOBEC3, share a similar mechanism of cytosine to uracil conversion. In 1984, phosphapyrimidine riboside was characterised as the most potent inhibitor of human CDA, but the quick degradation in water limited the applicability as a potential therapeutic. To improve stability in water, we synthesised derivatives of phosphapyrimidine nucleoside having a CH2 group instead of the N3 atom in the nucleobase. A charge-neutral phosphinamide and a negatively charged phosphinic acid derivative had excellent stability in water at pH 7.4, but only the charge-neutral compound inhibited human CDA, similar to previously described 2'-deoxyzebularine (Ki = 8.0 ± 1.9 and 10.7 ± 0.5 µM, respectively). However, under basic conditions, the charge-neutral phosphinamide was unstable, which prevented the incorporation into DNA using conventional DNA chemistry. In contrast, the negatively charged phosphinic acid derivative was incorporated into DNA instead of the target 2'-deoxycytidine using an automated DNA synthesiser, but no inhibition of APOBEC3A was observed for modified DNAs. Although this shows that the negative charge is poorly accommodated in the active site of CDA and APOBEC3, the synthetic route reported here provides opportunities for the synthesis of other derivatives of phosphapyrimidine riboside for potential development of more potent CDA and APOBEC3 inhibitors.
Collapse
Affiliation(s)
- Maksim V Kvach
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Stefan Harjes
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Harikrishnan M Kurup
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Geoffrey B Jameson
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Vyacheslav V Filichev
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
21
|
Song JH, Dávalos LM, MacCarthy T, Damaghi M. Evolvability of cancer-associated genes under APOBEC3A/B selection. iScience 2024; 27:109433. [PMID: 38550998 PMCID: PMC10972820 DOI: 10.1016/j.isci.2024.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Evolvability is an emergent hallmark of cancer that depends on intra-tumor heterogeneity and genetic variation. Mutations generated by APOBEC3 contribute to genetic variation and tumor evolvability. However, the influence of APOBEC3 on the evolvability of the genome and its differential impact on cancer genes versus non-cancer genes remains unclear. Analyzing over 40,000 human protein-coding transcripts, we identified distinct distribution patterns of APOBEC3A/B TC motifs between cancer and non-cancer genes, suggesting unique associations with cancer. Studying a bat species with numerous APOBEC3 genes, we found distinct motif patterns in orthologs of cancer genes compared to non-cancer genes, as in humans, suggesting APOBEC3 evolution to reduce impacts on the genome rather than the converse. Simulations confirmed that APOBEC3-induced heterogeneity enhances cancer evolution through bimodal patterns of mutations in certain classes of genes. Our results suggest the bimodal distribution of APOBEC-induced mutations can significantly increase cancer heterogeneity.
Collapse
Affiliation(s)
- Joon-Hyun Song
- Stony Brook Cancer Center, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY 11794, USA
| | - Thomas MacCarthy
- Stony Brook Cancer Center, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Mehdi Damaghi
- Stony Brook Cancer Center, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
- Department of Pathology, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
22
|
Bertucci F, Lerebours F, Ceccarelli M, Guille A, Syed N, Finetti P, Adélaïde J, Van Laere S, Goncalves A, Viens P, Birnbaum D, Mamessier E, Callens C, Bedognetti D. Mutational landscape of inflammatory breast cancer. J Transl Med 2024; 22:374. [PMID: 38637846 PMCID: PMC11025259 DOI: 10.1186/s12967-024-05198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is the most pro-metastatic form of BC. Better understanding of its enigmatic pathophysiology is crucial. We report here the largest whole-exome sequencing (WES) study of clinical IBC samples. METHODS We retrospectively applied WES to 54 untreated IBC primary tumor samples and matched normal DNA. The comparator samples were 102 stage-matched non-IBC samples from TCGA. We compared the somatic mutational profiles, spectra and signatures, copy number alterations (CNAs), HRD and heterogeneity scores, and frequencies of actionable genomic alterations (AGAs) between IBCs and non-IBCs. The comparisons were adjusted for the molecular subtypes. RESULTS The number of somatic mutations, TMB, and mutational spectra were not different between IBCs and non-IBCs, and no gene was differentially mutated or showed differential frequency of CNAs. Among the COSMIC signatures, only the age-related signature was more frequent in non-IBCs than in IBCs. We also identified in IBCs two new mutational signatures not associated with any environmental exposure, one of them having been previously related to HIF pathway activation. Overall, the HRD score was not different between both groups, but was higher in TN IBCs than TN non-IBCs. IBCs were less frequently classified as heterogeneous according to heterogeneity H-index than non-IBCs (21% vs 33%), and clonal mutations were more frequent and subclonal mutations less frequent in IBCs. More than 50% of patients with IBC harbored at least one high-level of evidence (LOE) AGA (OncoKB LOE 1-2, ESCAT LOE I-II), similarly to patients with non-IBC. CONCLUSIONS We provide the largest mutational landscape of IBC. Only a few subtle differences were identified with non-IBCs. The most clinically relevant one was the higher HRD score in TN IBCs than in TN non-IBCs, whereas the most intriguing one was the smaller intratumor heterogeneity of IBCs.
Collapse
Affiliation(s)
- François Bertucci
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France.
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France.
| | - Florence Lerebours
- Department of Medical Oncology, Institut Curie Saint-Cloud, Paris, France
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, USA
- Department of Public Health Sciences, University of Miami, Miami, USA
| | - Arnaud Guille
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Najeeb Syed
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Pascal Finetti
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - José Adélaïde
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Anthony Goncalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Patrice Viens
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Daniel Birnbaum
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Emilie Mamessier
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Céline Callens
- Department of Medical Oncology, Institut Curie Saint-Cloud, Paris, France
| | - Davide Bedognetti
- Tumor Biology and Immunology Laboratory, Research Branch, Sidra Medicine, Doha, Qatar
| |
Collapse
|
23
|
Zhang T, Sang J, Hoang PH, Zhao W, Rosenbaum J, Johnson KE, Klimczak LJ, McElderry J, Klein A, Wirth C, Bergstrom EN, Díaz-Gay M, Vangara R, Colon-Matos F, Hutchinson A, Lawrence SM, Cole N, Zhu B, Przytycka TM, Shi J, Caporaso NE, Homer R, Pesatori AC, Consonni D, Imielinski M, Chanock SJ, Wedge DC, Gordenin DA, Alexandrov LB, Harris RS, Landi MT. APOBEC shapes tumor evolution and age at onset of lung cancer in smokers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587805. [PMID: 38617360 PMCID: PMC11014539 DOI: 10.1101/2024.04.02.587805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues1,2. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B)3-6. However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, by combining deep whole-genome sequencing with multi-omics profiling of 309 lung cancers from smokers with detailed tobacco smoking information, we identify two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations, whereas HAS for A3A-like mutagenesis and TP53 mutations. Unlike APOBEC3A, APOBEC3B expression is strongly associated with an upregulation of the base excision repair pathway. Hypermutation by unrepaired A3A and tobacco smoking mutagenesis combined with TP53-induced genomic instability can trigger senescence7, apoptosis8, and cell regeneration9, as indicated by high expression of pulmonary healing signaling pathway, stemness markers and distal cell-of-origin in HAS. The expected association of tobacco smoking variables (e.g., time to first cigarette) with genomic/epigenomic changes are not observed in HAS, a plausible consequence of frequent cell senescence or apoptosis. HAS have more neoantigens, slower clonal expansion, and older age at onset compared to LAS, particularly in heavy smokers, consistent with high proportions of newly generated, unmutated cells and frequent immuno-editing. These findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development, with important clinical implications.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H. Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Wirth
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Frank Colon-Matos
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M. Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Angela C. Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Consonni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C. Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
24
|
Sanchez A, Ortega P, Sakhtemani R, Manjunath L, Oh S, Bournique E, Becker A, Kim K, Durfee C, Temiz NA, Chen XS, Harris RS, Lawrence MS, Buisson R. Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes. Nat Commun 2024; 15:2370. [PMID: 38499542 PMCID: PMC10948877 DOI: 10.1038/s41467-024-45909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024] Open
Abstract
Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets single-stranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have not been fully established, and the specific influence of the DNA sequence on APOBEC3A and APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B also selectively targets DNA stem-loop structures, and they are distinct from those subjected to deamination by APOBEC3A. We develop Oligo-seq, an in vitro sequencing-based method to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A and APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify the structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate distinct mutation landscapes in cancer genomes, driven by their unique substrate selectivity.
Collapse
Affiliation(s)
- Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ramin Sakhtemani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Alexandrea Becker
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
25
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. RESEARCH SQUARE 2024:rs.3.rs-3997426. [PMID: 38496447 PMCID: PMC10942551 DOI: 10.21203/rs.3.rs-3997426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J. Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- School of Biosciences, University of Kent, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, UK
| | | | - John Doorbar
- Department of Pathology, University of Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Gareth J. Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| | - Tim R. Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
26
|
Bottosso M, Mosele F, Michiels S, Cournède PH, Dogan S, Labaki C, André F. Moving toward precision medicine to predict drug sensitivity in patients with metastatic breast cancer. ESMO Open 2024; 9:102247. [PMID: 38401248 PMCID: PMC10982863 DOI: 10.1016/j.esmoop.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/26/2024] Open
Abstract
Tumor heterogeneity represents a major challenge in breast cancer, being associated with disease progression and treatment resistance. Precision medicine has been extensively applied to dissect tumor heterogeneity and, through a deeper molecular understanding of the disease, to personalize therapeutic strategies. In the last years, technological advances have widely improved the understanding of breast cancer biology and several trials have been developed to translate these new insights into clinical practice, with the ultimate aim of improving patients' outcomes. In the era of molecular oncology, genomics analyses and other methodologies are shaping a new treatment algorithm in breast cancer care. In this manuscript, we review the main steps of precision medicine to predict drug sensitivity in breast cancer from a translational point of view. Genomic developments and their clinical implications are discussed, along with technological advancements that could broaden precision medicine applications. Current achievements are put into perspective to provide an overview of the state-of-art of breast cancer precision oncology as well as to identify future research directions.
Collapse
Affiliation(s)
- M Bottosso
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - F Mosele
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif
| | - S Michiels
- Gustave Roussy, Department of Biostatistics and Epidemiology, Villejuif; Oncostat U1018, Inserm, Université Paris-Saclay, Ligue Contre le Cancer, Villejuif
| | - P-H Cournède
- Université Paris-Saclay, Centrale Supélec, Laboratory of Mathematics and Computer Science (MICS), Gif-Sur-Yvette, France
| | - S Dogan
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - C Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, USA
| | - F André
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif; Paris Saclay University, Gif Sur-Yvette, France.
| |
Collapse
|
27
|
Dopeso H, Gazzo AM, Derakhshan F, Brown DN, Selenica P, Jalali S, Da Cruz Paula A, Marra A, da Silva EM, Basili T, Gusain L, Colon-Cartagena L, Bhaloo SI, Green H, Vanderbilt C, Oesterreich S, Grabenstetter A, Kuba MG, Ross D, Giri D, Wen HY, Zhang H, Brogi E, Weigelt B, Pareja F, Reis-Filho JS. Genomic and epigenomic basis of breast invasive lobular carcinomas lacking CDH1 genetic alterations. NPJ Precis Oncol 2024; 8:33. [PMID: 38347189 PMCID: PMC10861500 DOI: 10.1038/s41698-024-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024] Open
Abstract
CDH1 (E-cadherin) bi-allelic inactivation is the hallmark alteration of breast invasive lobular carcinoma (ILC), resulting in its discohesive phenotype. A subset of ILCs, however, lack CDH1 genetic/epigenetic inactivation, and their genetic underpinning is unknown. Through clinical targeted sequencing data reanalysis of 364 primary ILCs, we identified 25 ILCs lacking CDH1 bi-allelic genetic alterations. CDH1 promoter methylation was frequent (63%) in these cases. Targeted sequencing reanalysis revealed 3 ILCs harboring AXIN2 deleterious fusions (n = 2) or loss-of-function mutation (n = 1). Whole-genome sequencing of 3 cases lacking bi-allelic CDH1 genetic/epigenetic inactivation confirmed the AXIN2 mutation and no other cell-cell adhesion genetic alterations but revealed a new CTNND1 (p120) deleterious fusion. AXIN2 knock-out in MCF7 cells resulted in lobular-like features, including increased cellular migration and resistance to anoikis. Taken together, ILCs lacking CDH1 genetic/epigenetic alterations are driven by inactivating alterations in other cell adhesion genes (CTNND1 or AXIN2), endorsing a convergent phenotype in ILC.
Collapse
Affiliation(s)
- Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea M Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - David N Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahar Jalali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thais Basili
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laxmi Gusain
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorraine Colon-Cartagena
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shirin Issa Bhaloo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hunter Green
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chad Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steffi Oesterreich
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Grabenstetter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Gabriela Kuba
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dara Ross
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dilip Giri
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
28
|
Kawale AS, Ran X, Patel PS, Saxena S, Lawrence MS, Zou L. APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability. SCIENCE ADVANCES 2024; 10:eadk2771. [PMID: 38241374 PMCID: PMC10798555 DOI: 10.1126/sciadv.adk2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Mutation signatures associated with apolipoprotein B mRNA editing catalytic polypeptide-like 3A/B (APOBEC3A/B) cytidine deaminases are prevalent across cancers, implying their roles as mutagenic drivers during tumorigenesis and tumor evolution. APOBEC3A (A3A) expression induces DNA replication stress and increases the cellular dependency on the ataxia telangiectasia and Rad3-related (ATR) kinase for survival. Nonetheless, how A3A induces DNA replication stress remains unclear. We show that A3A induces replication stress without slowing replication forks. We find that A3A induces single-stranded DNA (ssDNA) gaps through PrimPol-mediated repriming. A3A-induced ssDNA gaps are repaired by multiple pathways involving ATR, RAD51, and translesion synthesis. Both ATR inhibition and trapping of poly(ADP-ribose) polymerase (PARP) on DNA by PARP inhibitor impair the repair of A3A-induced gaps, preferentially killing A3A-expressing cells. When used in combination, PARP and ATR inhibitors selectively kill A3A-expressing cells synergistically in a manner dependent on PrimPol-generated gaps. Thus, A3A-induced replication stress arises from PrimPol-generated ssDNA gaps, which confer a therapeutic vulnerability to gap-targeted DNA repair inhibitors.
Collapse
Affiliation(s)
- Ajinkya S. Kawale
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Xiaojuan Ran
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Parasvi S. Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Michael S. Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Wei L, Wu X, Wang L, Chen L, Wu X, Song T, Wang Y, Chang W, Guo A, Niu Y, Huang H. Expression and prognostic value of APOBEC2 in gastric adenocarcinoma and its association with tumor-infiltrating immune cells. BMC Cancer 2024; 24:15. [PMID: 38166744 PMCID: PMC10763203 DOI: 10.1186/s12885-023-11769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 2 (APOBEC2) is associated with nucleotide alterations in the transcripts of tumor-related genes which are contributed to carcinogenesis. Expression and prognosis value of APOBEC2 in stomach adenocarcinoma (STAD) remains unclear. METHODS The APOBEC2 gene alteration frequency of STAD and APOBEC2 gene expression in STAD and normal tissues were investigated in cBioportal and GEPIA, respectively. We detected expression of APOBEC2, infiltration of CD66b+ tumor-associated neutrophils and CD163+ tumor-associated macrophages in tissue microarrays by immunohistochemistry. APOBEC2 gene expression was explored by western blot and qRT-PCR. Relationships between APOBEC2 and CD66b, CD163, and other clinicopathological characteristics were investigated. Associations among APOBEC2 expression status and patient survival outcome were further analyzed. RESULTS APOBEC2 gene alteration frequency was 5%, and APOBEC2 gene was downexpressed in STAD compared to normal tissues (P < 0.05). APOBEC2 expression status were associated with the infiltration of CD66b+ TANs, differentiation grade, TNM stage, histological type and gender (all P < 0.05) in STAD. Little or no APOBEC2 expression was detected in STAD and adjacent normal tissues by western blot. We failed to show that APOBEC2 was an independent risk factor for OS (Hazard Ratio 0.816, 95%CI 0.574-1.161, P = 0.259) or DFS (Hazard Ratio 0.821, 95%CI 0.578-1.166, P = 0.270) in STAD by multivariate Cox regression analysis, but APOBEC2 negative subgroup has a worse OS and DFS among patients with adjuvant chemotherapy. CONCLUSIONS APOBEC2 correlates with CD66b, differentiation grade, TNM stages, histological classification, and gender in STAD. APOBEC2 is not an independent prognostic factor for STAD, our results suggest that patients with positive APOBEC2 can benefit from postoperative chemotherapy, and combination of APOBEC2 and CD66b is helpful to further stratify patients into different groups with distinct prognoses.
Collapse
Affiliation(s)
- Lipan Wei
- Department of Pathology, Second affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Xiuqian Wu
- Department of Interventional Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Lan Wang
- Department of Pathology, Second affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Ling Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Xuejun Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Tiantian Song
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yuanyuan Wang
- Department of Pathology, Shantou Central Hospital, Shantou, China
| | - Wenjun Chang
- Department of Environmental Hygiene, Second Military Medical University, Shanghai, China
| | - Aizhen Guo
- Department of General Practice, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, China.
| | - Haihua Huang
- Department of Pathology, Second affiliated Hospital of Medical College of Shantou University, Shantou, China.
| |
Collapse
|
30
|
Caswell DR, Gui P, Mayekar MK, Law EK, Pich O, Bailey C, Boumelha J, Kerr DL, Blakely CM, Manabe T, Martinez-Ruiz C, Bakker B, De Dios Palomino Villcas J, I Vokes N, Dietzen M, Angelova M, Gini B, Tamaki W, Allegakoen P, Wu W, Humpton TJ, Hill W, Tomaschko M, Lu WT, Haderk F, Al Bakir M, Nagano A, Gimeno-Valiente F, de Carné Trécesson S, Vendramin R, Barbè V, Mugabo M, Weeden CE, Rowan A, McCoach CE, Almeida B, Green M, Gomez C, Nanjo S, Barbosa D, Moore C, Przewrocka J, Black JRM, Grönroos E, Suarez-Bonnet A, Priestnall SL, Zverev C, Lighterness S, Cormack J, Olivas V, Cech L, Andrews T, Rule B, Jiao Y, Zhang X, Ashford P, Durfee C, Venkatesan S, Temiz NA, Tan L, Larson LK, Argyris PP, Brown WL, Yu EA, Rotow JK, Guha U, Roper N, Yu J, Vogel RI, Thomas NJ, Marra A, Selenica P, Yu H, Bakhoum SF, Chew SK, Reis-Filho JS, Jamal-Hanjani M, Vousden KH, McGranahan N, Van Allen EM, Kanu N, Harris RS, Downward J, Bivona TG, Swanton C. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance. Nat Genet 2024; 56:60-73. [PMID: 38049664 PMCID: PMC10786726 DOI: 10.1038/s41588-023-01592-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.
Collapse
Affiliation(s)
- Deborah R Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| | - Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Manasi K Mayekar
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tadashi Manabe
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos Martinez-Ruiz
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Bjorn Bakker
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Natalie I Vokes
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle Dietzen
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Beatrice Gini
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Whitney Tamaki
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Allegakoen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Timothy J Humpton
- p53 and Metabolism Laboratory, The Francis Crick Institute, London, UK
- CRUK Beatson Institute, Glasgow, UK
- Glasgow Caledonian University, Glasgow, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mona Tomaschko
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ai Nagano
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Roberto Vendramin
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Vittorio Barbè
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Miriam Mugabo
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Bruna Almeida
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Mary Green
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Carlos Gomez
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Shigeki Nanjo
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dora Barbosa
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chris Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Joanna Przewrocka
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - James R M Black
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Alejandro Suarez-Bonnet
- Experimental Histopathology, The Francis Crick Institute, London, UK
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Simon L Priestnall
- Experimental Histopathology, The Francis Crick Institute, London, UK
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Caroline Zverev
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - Scott Lighterness
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - James Cormack
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - Victor Olivas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Cech
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Trisha Andrews
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | - Paul Ashford
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lisa Tan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lindsay K Larson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- School of Dentistry, University of Minnesota, Minneapolis, MN, USA
- College of Dentistry, Ohio State University, Columbus, OH, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth A Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Sutter Health Palo Alto Medical Foundation, Department of Pulmonary and Critical Care, Mountain View, CA, USA
| | - Julia K Rotow
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, NCI, NIH, Bethesda, MD, USA
- NextCure Inc., Beltsville, MD, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Johnny Yu
- Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel I Vogel
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Thomas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Helena Yu
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell College of Medicine, New York City, NY, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Su Kit Chew
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Karen H Vousden
- p53 and Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Trever G Bivona
- Departments of Medicine and Cellular and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| |
Collapse
|
31
|
Song JH, Dávalos LM, MacCarthy T, Damaghi M. Evolvability of cancer-associated genes under APOBEC3A/B selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.27.554991. [PMID: 38106028 PMCID: PMC10723265 DOI: 10.1101/2023.08.27.554991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Evolvability is an emergent hallmark of cancer that depends on intra-tumor heterogeneity and, ultimately, genetic variation. Mutations generated by APOBEC3 cytidine deaminases can contribute to genetic variation and the consequences of APOBEC activation differ depending on the stage of cancer, with the most significant impact observed during the early stages. However, how APOBEC activity shapes evolutionary patterns of genes in the host genome and differential impacts on cancer-associated and non-cancer genes remain unclear. Analyzing over 40,000 human protein-coding transcripts, we identified distinct distribution patterns of APOBEC3A/B TC motifs between cancer-related genes and controls, suggesting unique associations with cancer. Studying a bat species with many more APOBEC3 genes, we found diverse motif patterns in orthologs of cancer genes compared to controls, similar to humans and suggesting APOBEC evolution to reduce impacts on the genome rather than the converse. Simulations confirmed that APOBEC-induced heterogeneity enhances cancer evolution, shaping clonal dynamics through bimodal introduction of mutations in certain classes of genes. Our results suggest that a major consequence of the bimodal distribution of APOBEC affects greater cancer heterogeneity.
Collapse
Affiliation(s)
- Joon-Hyun Song
- Stony Brook Cancer Center, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Liliana M. Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Thomas MacCarthy
- Stony Brook Cancer Center, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Mehdi Damaghi
- Stony Brook Cancer Center, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
- Department of Pathology, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
32
|
Fulton-Ward T, Middleton G. The impact of genomic context on outcomes of solid cancer patients treated with genotype-matched targeted therapies: a comprehensive review. Ann Oncol 2023; 34:1113-1130. [PMID: 37875224 DOI: 10.1016/j.annonc.2023.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/18/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023] Open
Abstract
INTRODUCTION A critical need in the field of genotype-matched targeted therapy in cancer is to identify patients unlikely to respond to precision medicines. This will manage expectations of individualised therapies and avoid clinical progression to a point where institution of alternative treatments might not be possible. We examined the evidence base of the impact of genomic context on which targeted alterations are inscribed to identify baseline biomarkers distinguishing those obtaining the expected response from those with less benefit from targeted therapies. METHODS A comprehensive narrative review was conducted: scoping searches were undertaken in PubMed, Cochrane Database of Systematic Reviews, and PROSPERO. Outcomes included in meta-analysis were progression-free and overall survival. Data were extracted from Kaplan-Meier and used to calculate hazard ratios. Studies presenting data on two molecular subcohorts (e.g. co-mutation versus no co-mutation) were included in fixed meta-analysis. Other studies were used for descriptive purposes. RESULTS The presence of concomitant driver mutations, higher tumour mutational burden (TMB), greater copy number burden, and APOBEC signatures significantly reduces benefits of targeted therapy in lung cancers in never smokers (LCINS - less than 100 cigarettes per lifetime) and breast cancer, cancers with low TMB. LCINS have significantly poorer outcomes if their cancers harbour p53 co-mutations, an effect also seen in human epidermal growth factor receptor 2-positive (HER2+) breast cancer patients (trastuzumab) and head and neck cancer patients [phosphoinositide 3-kinase (PI3K) inhibition]. PI3K co-alterations have less impact when targeting epidermal growth factor receptor mutations and anaplastic lymphoma kinase fusions, but significantly reduce the impact of targeting HER2 and MET amplifications. SMARCA4 co-mutations predict for poor outcome in patients treated with osimertinib and sotorasib. In BRAF-mutant melanoma, whilst there are no genomic features distinguishing exceptional responders from primary progressors, there are clear transcriptomic features dichotomising these outcomes. CONCLUSION To our knowledge, this is the most comprehensive review to date of the impact of genomic context on outcomes with targeted therapy. It represents a valuable resource informing progress towards contextualised precision medicine.
Collapse
Affiliation(s)
- T Fulton-Ward
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - G Middleton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; University Hospitals Birmingham, Birmingham, UK.
| |
Collapse
|
33
|
Alonso de la Vega A, Temiz NA, Tasakis R, Somogyi K, Salgueiro L, Zimmer E, Ramos M, Diaz-Jimenez A, Chocarro S, Fernández-Vaquero M, Stefanovska B, Reuveni E, Ben-David U, Stenzinger A, Poth T, Heikenwälder M, Papavasiliou N, Harris RS, Sotillo R. Acute expression of human APOBEC3B in mice results in RNA editing and lethality. Genome Biol 2023; 24:267. [PMID: 38001542 PMCID: PMC10668425 DOI: 10.1186/s13059-023-03115-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND RNA editing has been described as promoting genetic heterogeneity, leading to the development of multiple disorders, including cancer. The cytosine deaminase APOBEC3B is implicated in tumor evolution through DNA mutation, but whether it also functions as an RNA editing enzyme has not been studied. RESULTS Here, we engineer a novel doxycycline-inducible mouse model of human APOBEC3B-overexpression to understand the impact of this enzyme in tissue homeostasis and address a potential role in C-to-U RNA editing. Elevated and sustained levels of APOBEC3B lead to rapid alteration of cellular fitness, major organ dysfunction, and ultimately lethality in mice. Importantly, RNA-sequencing of mouse tissues expressing high levels of APOBEC3B identifies frequent UCC-to-UUC RNA editing events that are not evident in the corresponding genomic DNA. CONCLUSIONS This work identifies, for the first time, a new deaminase-dependent function for APOBEC3B in RNA editing and presents a preclinical tool to help understand the emerging role of APOBEC3B as a driver of carcinogenesis.
Collapse
Affiliation(s)
- Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Nuri Alpay Temiz
- Health Informatics Institute, University of Minnesota, Minneapolis, 55455, USA
| | - Rafail Tasakis
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Kalman Somogyi
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Lorena Salgueiro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Eleni Zimmer
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Maria Ramos
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Alberto Diaz-Jimenez
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
| | - Mirian Fernández-Vaquero
- Ruprecht Karl University of Heidelberg, 69120, Heidelberg, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bojana Stefanovska
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Eli Reuveni
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Tanja Poth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
34
|
Castellano G, Giugliano F, Curigliano G, Marra A. Clinical utility of genomic signatures for the management of early and metastatic triple-negative breast cancer. Curr Opin Oncol 2023; 35:479-490. [PMID: 37621170 DOI: 10.1097/cco.0000000000000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW This comprehensive review aims to provide timely and relevant insights into the current therapeutic landscape for triple-negative breast cancer (TNBC) and the molecular features underlying this subtype. It emphasizes the need for more reliable biomarkers to refine prognostication and optimize therapy, considering the aggressive nature of TNBC and its limited targeted treatment options. RECENT FINDINGS The review explores the multidisciplinary management of early TNBC, which typically involves systemic chemotherapy, surgery, and radiotherapy. It highlights the emergence of immune checkpoint inhibitors (ICIs), poly(ADP-ribose) polymerase (PARP) inhibitors, and antibody-drug conjugates (ADCs) as promising therapeutic strategies for TNBC. Recent clinical trials investigating the use of ICIs in combination with chemotherapy and the approval of pembrolizumab and atezolizumab for PD-L1-positive metastatic TNBC are discussed. The efficacy of PARP inhibitors and ADCs in treating TNBC patients with specific genetic alterations is also highlighted. SUMMARY The findings discussed in this review have significant implications for clinical practice and research in TNBC. The identification of distinct molecular subtypes through gene expression profiling has enabled a better understanding of TNBC heterogeneity and its clinical implications. This knowledge has the potential to guide treatment decisions, as different subtypes display varying responses to neoadjuvant chemotherapy. Furthermore, the review emphasizes the importance of developing reliable genomic and transcriptomic signatures as biomarkers to refine patient prognostication and optimize therapy selection in TNBC. Integrating these signatures into clinical practice may lead to more personalized treatment approaches, improving outcomes for TNBC patients.
Collapse
Affiliation(s)
- Grazia Castellano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Giugliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonio Marra
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
| |
Collapse
|
35
|
South AP, Laimer M, Gueye M, Sui JY, Eichenfield LF, Mellerio JE, Nyström A. Type VII Collagen Deficiency in the Oncogenesis of Cutaneous Squamous Cell Carcinoma in Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2023; 143:2108-2119. [PMID: 37327859 DOI: 10.1016/j.jid.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Dystrophic epidermolysis bullosa is a rare genetic skin disorder caused by COL7A1 sequence variations that result in type VII collagen deficits and cutaneous and extracutaneous manifestations. One serious complication of dystrophic epidermolysis bullosa is cutaneous squamous cell carcinoma, a leading driver of morbidity and mortality, especially among patients with recessive dystrophic epidermolysis bullosa. Type VII collagen deficits alter TGFβ signaling and evoke multiple other cutaneous squamous cell carcinoma progression-promoting activities within epidermal microenvironments. This review examines cutaneous squamous cell carcinoma pathophysiology in dystrophic epidermolysis bullosa with a focus on known oncogenesis pathways at play and explores the idea that therapeutic type VII collagen replacement may reduce cutaneous squamous cell carcinoma risk.
Collapse
Affiliation(s)
- Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Jennifer Y Sui
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Jemima E Mellerio
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|
36
|
GAO L, XIE Z, LIN S, LV Z, ZHOU W, CHEN J, ZHU L, ZHANG L, ZENG P, HUANG X, YAN W, CHEN Y, LU D, ZHANG S, GUO W, LI P, ZHANG X. [SWI/SNF Complex Gene Mutations Promote the Liver Metastasis
of Non-small Cell Lung Cancer Cells in NSI Mice]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:753-764. [PMID: 37989338 PMCID: PMC10663775 DOI: 10.3779/j.issn.1009-3419.2023.102.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND The switch/sucrose nonfermentable chromatin-remodeling (SWI/SNF) complex is a pivotal chromatin remodeling complex, and the genomic alterations (GAs) of the SWI/SNF complex are observed in several cancer types, correlating with multiple biological features of tumor cells. However, their role in liver metastasis of non-small cell lung cancer (NSCLC) remains unclear. Our study aims to investigate the role and potential mechanisms underlying NSCLC liver metastasis induced by the GAs of SWI/SNF complex. METHODS The GAs of SWI/SNF complex in NSCLC cell lines (H1299, H23 and H460) were identified by whole-exome sequencing (WES). ARID1A knockout H1299 cell was constructed with the CRISPR/Cas9 technology. The mouse model of liver metastasis from NSCLC was established to simulate lung cancer liver metastasis and observe the metastasis rate under different gene mutation conditions. RNA sequencing and Western blot were conducted for differential gene expression analysis. Immunohistochemistry (IHC) analysis was used to assess protein expression levels of SWI/SNF-regulated target molecules in mouse liver metastases. RESULTS WES analysis revealed intracellular gene mutations. The animal experiments demonstrated a correlation between the GAs of SWI/SNF complex and a higher liver metastasis rate in immunodeficient mice. Transcriptome sequencing and Western blot analysis showed upregulated expression of ALDH1A1 and APOBEC3B in SWI/SNF-mut cells, particularly in ARID1A-deficient H460 and H1299 sgARID1A cells. IHC staining of mouse liver metastases further demonstrated elevated expression of ALDH1A1 in the H460 and H1299 sgARID1A group. CONCLUSIONS This study underscores the critical role of the GAs of SWI/SNF complex, such as ARID1A and SMARCA4, in promoting liver metastasis of lung cancer cells. The GAs of SWI/SNF complex may promote liver-specific metastasis by upregulating ALDH1A1 and APOBEC3B expression, providing novel insights into the molecular mechanisms underlying lung cancer liver metastasis.
Collapse
|
37
|
Secrier M, McGrath L, Ng F, Gulati S, Raymond A, Nuttall BRB, Berthe J, Jones EV, Sidders BS, Galon J, Barrett JC, Angell HK. Immune Cell Abundance and T-cell Receptor Landscapes Suggest New Patient Stratification Strategies in Head and Neck Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2133-2145. [PMID: 37819239 PMCID: PMC10588680 DOI: 10.1158/2767-9764.crc-23-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a molecularly and spatially heterogeneous disease frequently characterized by impairment of immunosurveillance mechanisms. Despite recent success with immunotherapy treatment, disease progression still occurs quickly after treatment in the majority of cases, suggesting the need to improve patient selection strategies. In the quest for biomarkers that may help inform response to checkpoint blockade, we characterized the tumor microenvironment (TME) of 162 HNSCC primary tumors of diverse etiologic and spatial origin, through gene expression and IHC profiling of relevant immune proteins, T-cell receptor (TCR) repertoire analysis, and whole-exome sequencing. We identified five HNSCC TME categories based on immune/stromal composition: (i) cytotoxic, (ii) plasma cell rich, (iii) dendritic cell rich, (iv) macrophage rich, and (v) immune-excluded. Remarkably, the cytotoxic and plasma cell rich subgroups exhibited a phenotype similar to tertiary lymphoid structures (TLS), which have been previously linked to immunotherapy response. We also found an increased richness of the TCR repertoire in these two subgroups and in never smokers. Mutational patterns evidencing APOBEC activity were enriched in the plasma cell high subgroup. Furthermore, specific signal propagation patterns within the Ras/ERK and PI3K/AKT pathways associated with distinct immune phenotypes. While traditionally CD8/CD3 T-cell infiltration and immune checkpoint expression (e.g., PD-L1) have been used in the patient selection process for checkpoint blockade treatment, we suggest that additional biomarkers, such as TCR productive clonality, smoking history, and TLS index, may have the ability to pull out potential responders to benefit from immunotherapeutic agents. SIGNIFICANCE Here we present our findings on the genomic and immune landscape of primary disease in a cohort of 162 patients with HNSCC, benefitting from detailed molecular and clinical characterization. By employing whole-exome sequencing and gene expression analysis of relevant immune markers, TCR profiling, and staining of relevant proteins involved in immune response, we highlight how distinct etiologies, cell intrinsic, and environmental factors combine to shape the landscape of HNSCC primary disease.
Collapse
Affiliation(s)
- Maria Secrier
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Lara McGrath
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Felicia Ng
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sakshi Gulati
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Amelia Raymond
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | | | - Julie Berthe
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Emma V. Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ben S. Sidders
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Sorbonne Université, Université Paris Cité, Centre de Recherche des Cordeliers, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - J. Carl Barrett
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Helen K. Angell
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
38
|
Durfee C, Temiz NA, Levin-Klein R, Argyris PP, Alsøe L, Carracedo S, Alonso de la Vega A, Proehl J, Holzhauer AM, Seeman ZJ, Liu X, Lin YHT, Vogel RI, Sotillo R, Nilsen H, Harris RS. Human APOBEC3B promotes tumor development in vivo including signature mutations and metastases. Cell Rep Med 2023; 4:101211. [PMID: 37797615 PMCID: PMC10591044 DOI: 10.1016/j.xcrm.2023.101211] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many cancers. However, despite years of work, a causal relationship has yet to be established in vivo. Here, we report a murine model that expresses tumor-like levels of human APOBEC3B. Animals expressing full-body APOBEC3B appear to develop normally. However, adult males manifest infertility, and older animals of both sexes show accelerated rates of carcinogenesis, visual and molecular tumor heterogeneity, and metastasis. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Enrichment for APOBEC3B-attributable single base substitution mutations also associates with elevated levels of insertion-deletion mutations and structural variations. APOBEC3B catalytic activity is required for all of these phenotypes. Together, these studies provide a cause-and-effect demonstration that human APOBEC3B is capable of driving both tumor initiation and evolution in vivo.
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Lene Alsøe
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Sergio Carracedo
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Anna M Holzhauer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary J Seeman
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xingyu Liu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yu-Hsiu T Lin
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Hilde Nilsen
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
39
|
Harjes S, Kurup HM, Rieffer AE, Bayarjargal M, Filitcheva J, Su Y, Hale TK, Filichev VV, Harjes E, Harris RS, Jameson GB. Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A. Nat Commun 2023; 14:6382. [PMID: 37821454 PMCID: PMC10567711 DOI: 10.1038/s41467-023-42174-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
The normally antiviral enzyme APOBEC3A is an endogenous mutagen in human cancer. Its single-stranded DNA C-to-U editing activity results in multiple mutagenic outcomes including signature single-base substitution mutations (isolated and clustered), DNA breakage, and larger-scale chromosomal aberrations. APOBEC3A inhibitors may therefore comprise a unique class of anti-cancer agents that work by blocking mutagenesis, slowing tumor evolvability, and preventing detrimental outcomes such as drug resistance and metastasis. Here we reveal the structural basis of competitive inhibition of wildtype APOBEC3A by hairpin DNA bearing 2'-deoxy-5-fluorozebularine in place of the cytidine in the TC substrate motif that is part of a 3-nucleotide loop. In addition, the structural basis of APOBEC3A's preference for YTCD motifs (Y = T, C; D = A, G, T) is explained. The nuclease-resistant phosphorothioated derivatives of these inhibitors have nanomolar potency in vitro and block APOBEC3A activity in human cells. These inhibitors may be useful probes for studying APOBEC3A activity in cellular systems and leading toward, potentially as conjuvants, next-generation, combinatorial anti-mutator and anti-cancer therapies.
Collapse
Affiliation(s)
- Stefan Harjes
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Amanda E Rieffer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Maitsetseg Bayarjargal
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jana Filitcheva
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yongdong Su
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Department of Pediatrics, Emory University School of Medicine, and the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Tracy K Hale
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Vyacheslav V Filichev
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Elena Harjes
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA.
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
| | - Geoffrey B Jameson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
40
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
41
|
Yao Z, Xu N, Shang G, Wang H, Tao H, Wang Y, Qin Z, Tan S, Feng J, Zhu J, Ma F, Tian S, Zhang Q, Qu Y, Hou J, Guo J, Zhao J, Hou Y, Ding C. Proteogenomics of different urothelial bladder cancer stages reveals distinct molecular features for papillary cancer and carcinoma in situ. Nat Commun 2023; 14:5670. [PMID: 37704624 PMCID: PMC10499981 DOI: 10.1038/s41467-023-41139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
The progression of urothelial bladder cancer (UC) is a complicated multi-step process. We perform a comprehensive multi-omics analysis of 448 samples from 190 UC patients, covering the whole spectrum of disease stages and grades. Proteogenomic integration analysis indicates the mutations of HRAS regulated mTOR signaling to form urothelial papilloma rather than papillary urothelial cancer (PUC). DNA damage is a key signaling pathway in the progression of carcinoma in situ (CIS) and related to APOBEC signature. Glucolipid metabolism increase and lower immune cell infiltration are associated with PUC compared to CIS. Proteomic analysis distinguishes the origins of invasive tumors (PUC-derived and CIS-derived), related to distinct clinical prognosis and molecular features. Additionally, loss of RBPMS, associated with CIS-derived tumors, is validated to increase the activity of AP-1 and promote metastasis. This study reveals the characteristics of two distinct branches (PUC and CIS) of UC progression and may eventually benefit clinical practice.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- the National Key Research and Development Program of China (2022YFA1303200 [C.D.], 2022YFA1303201 [C.D.], 2020YFE0201600 [C.D.], 2018YFE0201600 [C.D.], 2018YFE0201603 [C.D.], 2018YFA0507500 [C.D.], 2018YFA0507501 [C.D.], 2017YFA0505100 [C.D.], 2017YFA0505102 [C.D.], 2017YFA0505101 [C.D.], 2017YFC0908404 [C.D.], and 2016YFA0502500 [C.D.]), Program of Shanghai Academic/Technology Research Leader (22XD1420100 [C.D.]), Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (19SG02 [C.D.]),the Major Project of Special Development Funds of Zhangjiang National Independent Innovation Demonstration Zone (ZJ2019‐ZD‐004 [C.D.]), the Science and Technology Commission of Shanghai Municipality (2017SHZDZX01 [C.D.]).
Collapse
Affiliation(s)
- Zhenmei Yao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Guoguo Shang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Haixing Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Hui Tao
- Department of Cardiothoracic Surgery, Second Hospital of Anhui Medical University, and Cardiovascular Research Center, Anhui Medical University, Hefei, 230601, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jiajun Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Fahan Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Jun Hou
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Jianming Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yingyong Hou
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
42
|
Burack WR, Li H, Adlowitz D, Spence JM, Rimsza LM, Shadman M, Spier CM, Kaminski MS, Leonard JP, Leblanc ML, Smith SM, Friedberg JW. Subclonal TP53 mutations are frequent and predict resistance to radioimmunotherapy in follicular lymphoma. Blood Adv 2023; 7:5082-5090. [PMID: 37379264 PMCID: PMC10471938 DOI: 10.1182/bloodadvances.2022009467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Although TP53 is commonly mutated in transformed follicular lymphoma, mutations are reported in <5% of pretreatment follicular lymphoma (FL) specimens. We assayed archival follicular B-cell non-Hodgkin lymphoma specimens from a completed clinical trial, Southwest Oncology Group S0016, a phase 3 randomized intergroup trial of CHOP (cyclophosphamide, hydroxydaunorubicin, oncovin, and prednisone) chemotherapy plus R-CHOP (rituximab-CHOP) compared with CHOP chemotherapy plus 131-iodine tositumomab (radioimmunotherapy [RIT]-CHOP). Subclonal TP53 mutations (median allele frequency 0.02) were found in 25% of diagnostic FL specimens and in 27% of a separate validation cohort. In the R-CHOP arm, pathogenic TP53 mutations were not associated with progression-free survival (PFS) (10-year PFS 43% vs 44%). In contrast, among patients with no detectable pathogenic TP53 mutation, RIT-CHOP was associated with a longer PFS than with R-CHOP (10-year PFS 67% vs 44%; hazard ratio = 0.49; P = .008). No relationship was detected between PFS and the extent of activation-induced cytidine deaminase (AICDA)-mediated heterogeneity. In summary, subclonal TP53 mutations are common in FL and are a distinct phenomenon from AICDA-mediated genetic heterogeneity. The absence of a detectable subclonal mutation in TP53 defined a population that particularly benefited from RIT.
Collapse
Affiliation(s)
- W. Richard Burack
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Hongli Li
- Clinical Research Division, Fred Hutchison Cancer Research Center, Seattle, WA
| | - Diana Adlowitz
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Janice M. Spence
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Lisa M. Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Arizona, Phoenix, AZ
| | - Mazyar Shadman
- Clinical Research Division, Fred Hutchison Cancer Research Center, Seattle, WA
| | | | - Mark S. Kaminski
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - John P. Leonard
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Michael L. Leblanc
- Clinical Research Division, Fred Hutchison Cancer Research Center, Seattle, WA
| | - Sonali M. Smith
- Department of Medicine, University of Chicago School of Medicine, Chicago, IL
| | | |
Collapse
|
43
|
Kim K, Shi AB, Kelley K, Chen XS. Unraveling the Enzyme-Substrate Properties for APOBEC3A-Mediated RNA Editing. J Mol Biol 2023; 435:168198. [PMID: 37442413 PMCID: PMC10528890 DOI: 10.1016/j.jmb.2023.168198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
The APOBEC3 family of human cytidine deaminases is involved in various cellular processes, including the innate and acquired immune system, mostly through inducing C-to-U in single-stranded DNA and/or RNA mutations. Although recent studies have examined RNA editing by APOBEC3A (A3A), its intracellular target specificity are not fully characterized. To address this gap, we performed in-depth analysis of cellular RNA editing using our recently developed sensitive cell-based fluorescence assay. Our findings demonstrate that A3A and an A3A-loop1-containing APOBEC3B (A3B) chimera are capable of RNA editing. We observed that A3A prefers to edit specific RNA substrates which are not efficiently deaminated by other APOBEC members. The editing efficiency of A3A is influenced by the RNA sequence contexts and distinct stem-loop secondary structures. Based on the identified RNA specificity features, we predicted potential A3A-editing targets in the encoding region of cellular mRNAs and discovered novel RNA transcripts that are extensively edited by A3A. Furthermore, we found a trend of increased synonymous mutations at the sites for more efficient A3A-editing, indicating evolutionary adaptation to the higher editing rate by A3A. Our results shed light on the intracellular RNA editing properties of A3A and provide insights into new RNA targets and potential impact of A3A-mediated RNA editing.
Collapse
Affiliation(s)
- Kyumin Kim
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA. https://twitter.com/KYUMINK1324
| | - Alan B Shi
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kori Kelley
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
44
|
Li X, Wang Y, Deng S, Zhu G, Wang C, Johnson NA, Zhang Z, Tirado CR, Xu Y, Metang LA, Gonzalez J, Mukherji A, Ye J, Yang Y, Peng W, Tang Y, Hofstad M, Xie Z, Yoon H, Chen L, Liu X, Chen S, Zhu H, Strand D, Liang H, Raj G, He HH, Mendell JT, Li B, Wang T, Mu P. Loss of SYNCRIP unleashes APOBEC-driven mutagenesis, tumor heterogeneity, and AR-targeted therapy resistance in prostate cancer. Cancer Cell 2023; 41:1427-1449.e12. [PMID: 37478850 PMCID: PMC10530398 DOI: 10.1016/j.ccell.2023.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
Tumor mutational burden and heterogeneity has been suggested to fuel resistance to many targeted therapies. The cytosine deaminase APOBEC proteins have been implicated in the mutational signatures of more than 70% of human cancers. However, the mechanism underlying how cancer cells hijack the APOBEC mediated mutagenesis machinery to promote tumor heterogeneity, and thereby foster therapy resistance remains unclear. We identify SYNCRIP as an endogenous molecular brake which suppresses APOBEC-driven mutagenesis in prostate cancer (PCa). Overactivated APOBEC3B, in SYNCRIP-deficient PCa cells, is a key mutator, representing the molecular source of driver mutations in some frequently mutated genes in PCa, including FOXA1, EP300. Functional screening identifies eight crucial drivers for androgen receptor (AR)-targeted therapy resistance in PCa that are mutated by APOBEC3B: BRD7, CBX8, EP300, FOXA1, HDAC5, HSF4, STAT3, and AR. These results uncover a cell-intrinsic mechanism that unleashes APOBEC-driven mutagenesis, which plays a significant role in conferring AR-targeted therapy resistance in PCa.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghui Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Choushi Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nickolas A Johnson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yaru Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lauren A Metang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julisa Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Atreyi Mukherji
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuqiu Yang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei Peng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yitao Tang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mia Hofstad
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhiqun Xie
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Heewon Yoon
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Liping Chen
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xihui Liu
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sujun Chen
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Hong Zhu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Douglas Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Joshua T Mendell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
45
|
Barroso-Sousa R, Pacífico JP, Sammons S, Tolaney SM. Tumor Mutational Burden in Breast Cancer: Current Evidence, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3997. [PMID: 37568813 PMCID: PMC10417019 DOI: 10.3390/cancers15153997] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Tumor mutational burden (TMB) correlates with tumor neoantigen burden, T cell infiltration, and response to immune checkpoint inhibitors in many solid tumor types. Based on data from the phase II KEYNOTE-158 study, the anti-PD-1 antibody pembrolizumab was granted approval for treating patients with advanced solid tumors and TMB ≥ 10 mutations per megabase. However, this trial did not include any patients with metastatic breast cancer; thus, several questions remain unanswered about the true role of TMB as a predictive biomarker of benefit to immune checkpoint inhibitor therapy in breast cancer. In this review, we will discuss the challenges and opportunities in establishing TMB as a predictive biomarker of benefit to immunotherapy in metastatic breast cancer.
Collapse
Affiliation(s)
- Romualdo Barroso-Sousa
- Dasa Institute for Education and Research (IEPD), Brasilia 71635-580, DF, Brazil
- Dasa Oncology, Hospital Brasilia, Brasilia 71635-580, DF, Brazil
| | - Jana Priscila Pacífico
- Dasa Institute for Education and Research (IEPD), Brasilia 71635-580, DF, Brazil
- Dasa Oncology, Hospital Brasilia, Brasilia 71635-580, DF, Brazil
| | - Sarah Sammons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Sanchez A, Ortega P, Sakhtemani R, Manjunath L, Oh S, Bournique E, Becker A, Kim K, Durfee C, Temiz NA, Chen XS, Harris RS, Lawrence MS, Buisson R. Mesoscale DNA Features Impact APOBEC3A and APOBEC3B Deaminase Activity and Shape Tumor Mutational Landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551499. [PMID: 37577509 PMCID: PMC10418229 DOI: 10.1101/2023.08.02.551499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets singlestranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have been fully established, and the specific influence of the DNA sequence on APOBEC3A APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B selectively targets DNA stem-loop structures, and they are distinct from those subjected deamination by APOBEC3A. We develop Oligo-seq, a novel in vitro sequencing-based to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A an APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate mutation landscapes in cancer genomes, driven by their unique substrate selectivity.
Collapse
|
47
|
Yin L, Shi K, Aihara H. Structural basis of sequence-specific cytosine deamination by double-stranded DNA deaminase toxin DddA. Nat Struct Mol Biol 2023; 30:1153-1159. [PMID: 37460895 PMCID: PMC10442228 DOI: 10.1038/s41594-023-01034-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/12/2023] [Indexed: 07/21/2023]
Abstract
The interbacterial deaminase toxin DddA catalyzes cytosine-to-uracil conversion in double-stranded (ds) DNA and enables CRISPR-free mitochondrial base editing, but the molecular mechanisms underlying its unique substrate selectivity have remained elusive. Here, we report crystal structures of DddA bound to a dsDNA substrate containing the 5'-TC target motif. These structures show that DddA binds to the minor groove of a sharply bent dsDNA and engages the target cytosine extruded from the double helix. DddA Phe1375 intercalates in dsDNA and displaces the 5' (-1) thymine, which in turn replaces the target (0) cytosine and forms a noncanonical T-G base pair with the juxtaposed guanine. This tandem displacement mechanism allows DddA to locate a target cytosine without flipping it into the active site. Biochemical experiments demonstrate that DNA base mismatches enhance the DddA deaminase activity and relax its sequence selectivity. On the basis of the structural information, we further identified DddA mutants that exhibit attenuated activity or altered substrate preference. Our studies may help design new tools useful in genome editing or other applications.
Collapse
Affiliation(s)
- Lulu Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
48
|
Niyazi M, Han L, Husaiyin S, Aishanjiang A, Guo M, Muhaimati G, Rozi H, Sun H, Lu J, Ma C, Rouzi N, Liu X, Zhu K. Analysis of somatic mutations and key driving factors of cervical cancer progression. Open Med (Wars) 2023; 18:20230759. [PMID: 37533736 PMCID: PMC10390753 DOI: 10.1515/med-2023-0759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
We investigated the somatic mutations and key driving factors of cervical cancer by whole exome sequencing . We found 22,183 somatic single nucleotide variations (SNVs) in 52 paired samples. Somatic SNVs in cervical cancer were significantly higher than those in high-grade intraepithelial lesion and low-grade squamous intraepithelial lesion groups (P < 0.05). C → T/G accounted for 44.12% of base substitution. Copy number variation (false discovery rate < 0.05) was found in 57 chromosome regions. The three regions with significant differences between cervical cancer and non-cervical cancer groups were 1q21.1, 3q26.33, and 13q33.1, covering genes related to tumor proliferation, differentiation, and apoptosis. The frequency of human papillomavirus (HPV) insertion/integration and the number of "tCw" mutations in the cervical cancer group were significantly higher than those in the non-cervical cancer group (P < 0.05). The total number of mutations was positively correlated with the number of "tCw" mutations (R 2 = 0.7967). HPV insertion/integration (OR = 2.302, CI = 1.523-3.589, P = 0.0005), APOBEC enrichment (OR = 17.875, CI = 2.117-150.937, P = 0.001), and HLA-B*39 in HLA-I (OR = 6.435, CI = 0.823-48.919, P = 0.0042) were risk factors for cervical cancer, while HLA-DQB1*05 in HLA-II was a protective factor (OR = 0.426, CI = 0.197-0.910, P = 0.032). Conclusively, HPV insertion/integration, APOBEC mutagenesis, and HLA polymorphisms are high-risk factors for cervical cancer and may be causes of genome instability and somatic mutations. This study provides experimental data for revealing the molecular mechanism of cervical cancer.
Collapse
Affiliation(s)
- Mayinuer Niyazi
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Lili Han
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Sulaiya Husaiyin
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Ayimila Aishanjiang
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Min Guo
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Gulibanu Muhaimati
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Hankez Rozi
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Haiyan Sun
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Jing Lu
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Chunhua Ma
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Nuermangul Rouzi
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Xiaowan Liu
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830001, China
| | - Kaichun Zhu
- Department of Obstetrics and Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi830001, China
| |
Collapse
|
49
|
Burk RD, Mirabello L, DeSalle R. Distinguishing Genetic Drift from Selection in Papillomavirus Evolution. Viruses 2023; 15:1631. [PMID: 37631973 PMCID: PMC10458755 DOI: 10.3390/v15081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Pervasive purifying selection on non-synonymous substitutions is a hallmark of papillomavirus genome history, but the role of selection on and the drift of non-coding DNA motifs on HPV diversification is poorly understood. In this study, more than a thousand complete genomes representing Alphapapillomavirus types, lineages, and SNP variants were examined phylogenetically and interrogated for the number and position of non-coding DNA sequence motifs using Principal Components Analyses, Ancestral State Reconstructions, and Phylogenetic Independent Contrasts. For anciently diverged Alphapapillomavirus types, composition of the four nucleotides (A, C, G, T), codon usage, trimer usage, and 13 established non-coding DNA sequence motifs revealed phylogenetic clusters consistent with genetic drift. Ancestral state reconstruction and Phylogenetic Independent Contrasts revealed ancient genome alterations, particularly for the CpG and APOBEC3 motifs. Each evolutionary analytical method we performed supports the unanticipated conclusion that genetic drift and different evolutionary drivers have structured Alphapapillomavirus genomes in distinct ways during successive epochs, even extending to differences in more recently formed variant lineages.
Collapse
Affiliation(s)
- Robert D. Burk
- Departments of Pediatrics, Microbiology & Immunology, Epidemiology & Population Health, Obstetrics, Gynecology and Woman’s Health, and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Robert DeSalle
- Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
50
|
Ingles Garces AH, Porta N, Graham TA, Banerji U. Clinical trial designs for evaluating and exploiting cancer evolution. Cancer Treat Rev 2023; 118:102583. [PMID: 37331179 DOI: 10.1016/j.ctrv.2023.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
The evolution of drug-resistant cell subpopulations causes cancer treatment failure. Current preclinical evidence shows that it is possible to model herding of clonal evolution and collateral sensitivity where an initial treatment could favourably influence the response to a subsequent one. Novel therapy strategies exploiting this understanding are being considered, and clinical trial designs for steering cancer evolution are needed. Furthermore, preclinical evidence suggests that different subsets of drug-sensitive and resistant clones could compete between themselves for nutrients/blood supply, and clones that populate a tumour do so at the expense of other clones. Treatment paradigms based on this clinical application of exploiting cell-cell competition include intermittent dosing regimens or cycling different treatments before progression. This will require clinical trial designs different from the conventional practice of evaluating responses to individual therapy regimens. Next-generation sequencing to assess clonal dynamics longitudinally will improve current radiological assessment of clinical response/resistance and be incorporated into trials exploiting evolution. Furthermore, if understood, clonal evolution can be used to therapeutic advantage, improving patient outcomes based on a new generation of clinical trials.
Collapse
Affiliation(s)
- Alvaro H Ingles Garces
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| | - Nuria Porta
- Clinical Trials and Statistical Unit, The Institute of Cancer Research, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, UK
| | - Udai Banerji
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK.
| |
Collapse
|