1
|
Li C, Lv Z, Li C, Yang S, Liu F, Zhang T, Wang L, Zhang W, Deng R, Xu G, Luo H, Zhao Y, Lv J, Zhang C. Heterogeneity analysis and prognostic model construction of HPV negative oral squamous cell carcinoma T cells using ScRNA-seq and bulk-RNA analysis. Funct Integr Genomics 2025; 25:25. [PMID: 39849233 DOI: 10.1007/s10142-024-01525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND T cells are involved in every stage of tumor development and significantly influence the tumor microenvironment (TME). Our objective was to assess T-cell marker gene expression profiles, develop a predictive risk model for human papilloma virus (HPV)-negative oral squamous cell carcinoma (OSCC) utilizing these genes, and examine the correlation between the risk score and the immunotherapy response. METHODS We acquired scRNA-seq data for HPV-negative OSCC from the GEO datasets. We performed cell‒cell communication, trajectory, and pathway enrichment analyses of T-cell-associated genes. In addition, we constructed and validated a T-cell-associated gene prognostic model for HPV-negative OSCC patients using TCGA and GEO data and assessed the immune infiltration status of HPV-negative OSCC patients .qRT-PCR was used to detect the expression level of prognosis-related genes in different risk groups. RESULTS ScRNA-seq was conducted on 28,000 cells derived from 14 HPV-negative OSCC samples and 6 normal samples. We identified 4,635 T cells from these cells and identified 774 differentially expressed genes(DEGs) associated with T cells across five distinct T-cell subtypes. Through the integration of bulk-RNAseq data, we established a prognostic model based on DEGs related to T cells. By separating patients into high-risk and low-risk groups according to these prognostic related genes, we can accurately predict their survival rates and the immune infiltration status of the TME.qRT-PCR results showed that compared with the patients of low risk group, the expression of PMEPA1, SH2D2A, SMS and PRDX4 were significantly up-regulated in high risk group. CONCLUSION This study provides a resource for understanding the heterogeneity of T cells in HPV-negative OSCC patients and associated prognostic risk models. It provides new insights for predicting survival and level of immune infiltration in patients with HPV-negative OSCC.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Zengbo Lv
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Chongxin Li
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Shixuan Yang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Feineng Liu
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Tengfei Zhang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Lin Wang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Wen Zhang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Ruoyu Deng
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Guoyu Xu
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Huan Luo
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Yinhong Zhao
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Jialing Lv
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China.
| | - Chao Zhang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China.
| |
Collapse
|
2
|
Sun DY, Hu YJ, Li X, Peng J, Dai ZJ, Wang S. Unlocking the full potential of memory T cells in adoptive T cell therapy for hematologic malignancies. Int Immunopharmacol 2025; 144:113392. [PMID: 39608170 DOI: 10.1016/j.intimp.2024.113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
In recent years, immune cell therapy, particularly adoptive cell therapy (ACT), has shown superior therapeutic effects on hematologic malignancies. However, a challenge lies in ensuring that genetically engineered specific T cells maintain lasting anti-tumor effects within the host. The enduring success of ACT therapy hinges on the persistence of memory T (TM) cells, a diverse cell subset crucial for tumor immune response and immune memory upkeep. Notably, TM cell subsets at varying differentiation stages exhibit distinct biological traits and anti-tumor capabilities. Poorly differentiated TM cells are pivotal for favorable clinical outcomes in ACT. The differentiation of TM cells is influenced by multiple factors, including metabolism and cytokines. Consequently, current research focuses on investigating the differentiation patterns of TM cells and enhancing the production of poorly differentiated TM cells with potent anti-tumor properties in vitro, which is a prominent area of interest globally. This review delves into the differentiation features of TM cells, outlining their distribution in patients and their impact on ACT treatment. It comprehensively explores cutting-edge strategies to boost ACT efficacy through TM cell differentiation induction, aiming to unlock the full potential of TM cells in treating hematologic malignancies and offering novel insights for tumor immune cell therapy.
Collapse
Affiliation(s)
- Ding-Ya Sun
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha, China
| | - Yi-Jie Hu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Xin Li
- International Medicine Institute, Changsha Medical University, Changsha, China
| | - Jun Peng
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha, China.
| | - Zhi-Jie Dai
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Shan Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| |
Collapse
|
3
|
King E, Struck R, Piskareva O. The triad in current neuroblastoma challenges: Targeting antigens, enhancing effective cytotoxicity and accurate 3D in vitro modelling. Transl Oncol 2025; 51:102176. [PMID: 39489087 PMCID: PMC11565549 DOI: 10.1016/j.tranon.2024.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Neuroblastoma is an embryonic tumour originating from neural crest cells and accounts for nearly 15 % of all childhood cancer deaths. Despite the implementation of intense multimodal therapy for neuroblastoma, half of the high-risk cohort will relapse with metastatic foci resistant to conventional therapies. There is an urgent need for novel precision medicine approaches to improve patient survival and ensure healthy post-treatment lives for these children. Immunotherapy holds promise for such therapeutics; however, developing effective options has been disappointing despite decades of research. The immunosuppressive tumour-immune microenvironment presents a significant challenge amplified with low mutational burden in neuroblastoma, even with the new discovered tumour antigens. Innovative, practical, and comprehensive approaches are crucial for designing and testing immunotherapies capable of passing clinical trials. Replacing animal models with physiologically relevant in vitro systems will expedite this process and provide new insights into exploitable tumour-immune cell interactions. This review examines this three-pronged approach in neuroblastoma immunotherapy: tumour antigen discovery, immunomodulation, and 3D in vitro tumour models, and discusses current and emerging insights into these strategies to address neuroblastoma immunotherapy challenges.
Collapse
Affiliation(s)
- Ellen King
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ronja Struck
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Olga Piskareva
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Diorio C, Teachey DT, Grupp SA. Allogeneic chimeric antigen receptor cell therapies for cancer: progress made and remaining roadblocks. Nat Rev Clin Oncol 2025; 22:10-27. [PMID: 39548270 DOI: 10.1038/s41571-024-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are revolutionizing cancer therapy, particularly for haematological malignancies, conferring durable and sometimes curative responses in patients with advanced-stage disease. The CAR T cell products currently approved for clinical use are all autologous and are often effective; however, in patients who are lymphopenic and/or heavily pretreated with chemotherapy, autologous T cells can be difficult to harvest in sufficient numbers or have functional impairments that might ultimately render them less efficacious. Moreover, autologous products take several weeks to produce, and each product can be used in only one patient. By contrast, allogeneic CAR T cells can be produced for many patients using T cells from a single healthy donor, can be optimized for safety and efficacy, can be instantly available for 'off-the-shelf' use and, therefore, might also be more cost-effective. Despite these potential advantages, the development of allogeneic CAR T cells has lagged behind that of autologous products, owing to the additional challenges such as avoiding graft-versus-host disease and host-mediated graft rejection. Over the past few years, the development of advanced genome-editing techniques has facilitated the generation of novel allogeneic CAR T cell products. Furthermore, CAR cell products derived from other cell types such as induced pluripotent stem cells and natural killer cells are being investigated for clinical use. In this Review, we discuss the potential of allogeneic CAR cell products to expand life-saving immunotherapy to a much broader population of patients in the coming years, the progress made to date and strategies to overcome remaining hurdles.
Collapse
Affiliation(s)
- Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephan A Grupp
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Tao Z, Chyra Z, Kotulová J, Celichowski P, Mihályová J, Charvátová S, Hájek R. Impact of T cell characteristics on CAR-T cell therapy in hematological malignancies. Blood Cancer J 2024; 14:213. [PMID: 39627220 PMCID: PMC11615218 DOI: 10.1038/s41408-024-01193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment paradigms for hematological malignancies. However, more than half of these patients cannot achieve sustainable tumor control, partially due to the inadequate potency of CAR-T cells in eradicating tumor cells. T cells are crucial components of the anti-tumor immune response, and multiple intrinsic T-cell features significantly influence the outcomes of CAR-T cell therapy. Herein, we review progressing research on T-cell characteristics that impact the effectiveness of CAR-T cells, including T-cell exhaustion, memory subsets, senescence, regulatory T-cells, the CD4+ to CD8+ T-cell ratio, metabolism, and the T-cell receptor repertoire. With comprehensive insight into the biological processes underlying successful CAR-T cell therapy, we will further refine the applications of these novel therapeutic modalities, and enhance their efficacy and safety for patients.
Collapse
Affiliation(s)
- Zhongfei Tao
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Zuzana Chyra
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jana Kotulová
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Piotr Celichowski
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jana Mihályová
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Sandra Charvátová
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Roman Hájek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic.
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
6
|
Cordas Dos Santos DM, Toenges R, Bertamini L, Alberge JB, Ghobrial IM. New horizons in our understanding of precursor multiple myeloma and early interception. Nat Rev Cancer 2024; 24:867-886. [PMID: 39414947 DOI: 10.1038/s41568-024-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/18/2024]
Abstract
Multiple myeloma is an incurable plasma cell malignancy that evolves over decades through the selection and malignant transformation of monoclonal plasma cells. The evolution from precursor states to symptomatic disease is characterized by an increasing complexity of genomic alterations within the plasma cells and a remodelling of the microenvironment towards an immunosuppressive state. Notably, in patients with advanced disease, similar mechanisms of tumour escape and immune dysfunction mediate resistance to modern T cell-based therapies, such as T cell-engaging bispecific antibodies and chimeric antigen receptor (CAR)-T cells. Thus, an increasing number of clinical trials are assessing the efficiency and safety of these therapies in individuals with newly diagnosed multiple myeloma and high-risk smoldering multiple myeloma. In this Review, we summarize the current knowledge about tumour intrinsic and extrinsic processes underlying progression from precursor states to symptomatic myeloma and discuss the rationale for early interception including the use of T cell-redirecting therapies.
Collapse
Affiliation(s)
- David M Cordas Dos Santos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Rosa Toenges
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Luca Bertamini
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Erasmus MC Cancer Institute Rotterdam, Rotterdam, The Netherlands
| | - Jean-Baptiste Alberge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
7
|
Lei T, Wang Y, Zhang Y, Yang Y, Cao J, Huang J, Chen J, Chen H, Zhang J, Wang L, Xu X, Gale RP, Wang L. Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy. Leukemia 2024; 38:2517-2543. [PMID: 39455854 PMCID: PMC11588664 DOI: 10.1038/s41375-024-02444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Chimeric Antigen Receptor (CAR)-T-cell therapy has revolutionized cancer immune therapy. However, challenges remain including increasing efficacy, reducing adverse events and increasing accessibility. Use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology can effectively perform various functions such as precise integration, multi-gene editing, and genome-wide functional regulation. Additionally, CRISPR screening using large-scale guide RNA (gRNA) genetic perturbation provides an unbiased approach to understanding mechanisms underlying anti-cancer efficacy of CAR T-cells. Several emerging CRISPR tools with high specificity, controllability and efficiency are useful to modify CAR T-cells and identify new targets. In this review we summarize potential uses of the CRISPR system to improve results of CAR T-cells therapy including optimizing efficacy and safety and, developing universal CAR T-cells. We discuss challenges facing CRISPR gene editing and propose solutions highlighting future research directions in CAR T-cell therapy.
Collapse
Affiliation(s)
- Tao Lei
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yazhuo Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiaying Cao
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiansong Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiali Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Huajing Chen
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Luzheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK.
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
8
|
Feuchtinger T, Bader P, Subklewe M, Breidenbach M, Willier S, Metzler M, Gökbuget N, Hauer J, Müller F, Schlegel PG, Frühwald M, Schmid C, Troeger A, Baldus C, Meisel R, Künkele A, Topp M, Bourquin JP, Cario G, Von Stackelberg A, Peters C. Approaches for bridging therapy prior to chimeric antigen receptor T cells for relapsed/refractory acute lymphoblastic B-lineage leukemia in children and young adults. Haematologica 2024; 109:3892-3903. [PMID: 38356450 PMCID: PMC11609793 DOI: 10.3324/haematol.2023.283780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
The ongoing development of immunotherapies, including chimeric antigen receptor (CAR) T cells, has revolutionized cancer treatment. In pediatric relapsed/refractory B-lineage acute leukemia antiCD19-CAR induce impressive initial response rates, with event-free survival plateauing at 30-50% according to long-term follow-up data. During the interval between diagnosis of relapse or refractoriness and CAR T-cell infusion, patients require a bridging therapy. To date, this therapy has consisted of highly variable approaches based on local experience. Here, in an European collaborative effort of pediatric and adult hematologists, we summarize current knowledge with the aim of establishing guidance for bridging therapy. We discuss treatment strategies for different subgroups of patients, the advantages and disadvantages of low- and high-intensity regimens, and the potential impact of bridging therapy on outcomes after CAR T-cell infusion. This guidance is a step towards cross-institutional harmonization of bridging therapy, including personalized approaches. This will allow better comparability of clinical data and increase the level of evidence for the treatment of children and young adults with relapsed/ refractory B-lineage acute leukemia until they can receive CAR T-cell infusion.
Collapse
Affiliation(s)
- Tobias Feuchtinger
- Department of Paediatric Haematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany; Bavarian Cancer Research Center (BZKF), R/R ALL Study Group; Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg.
| | - Peter Bader
- Goethe University, University Hospital, Department for Children and Adolescents, Division for Stern Cell Transplantation, Immunology and Intensive Care, Frankfurt
| | - Marion Subklewe
- Bavarian Cancer Research Center (BZKF), R/R ALL Study Group; Department of Medicine III, University Hospital, LMU Munich, Munich
| | - Maike Breidenbach
- Department of Paediatric Haematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany; Bavarian Cancer Research Center (BZKF), R/R ALL Study Group
| | - Semjon Willier
- Department of Paediatric Haematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany; Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Markus Metzler
- Bavarian Cancer Research Center (BZKF), R/R ALL Study Group; Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen
| | - Nicola Gökbuget
- Department of Medicine II, Haematology/Oncology, Goethe University, Frankfurt
| | - Julia Hauer
- Bavarian Cancer Research Center (BZKF), R/R ALL Study Group; Department of Pediatrics and Children's Cancer Research Centre, TUM School of Medicine, Children's Hospital Munich Schwabing, Technical University of Munich, Munich
| | - Fabian Müller
- Bavarian Cancer Research Center (BZKF), R/R ALL Study Group; Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich- Alexander University of Erlangen- Nuremberg (FAU), Erlangen
| | - Paul-Gerhardt Schlegel
- Bavarian Cancer Research Center (BZKF), R/R ALL Study Group; University Children's Hospital Wuerzburg, Wuerzburg
| | - Michael Frühwald
- Bavarian Cancer Research Center (BZKF), R/R ALL Study Group; Pediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg
| | - Christoph Schmid
- Bavarian Cancer Research Center (BZKF), R/R ALL Study Group; Department of Internal Medicine, University Medical Centre Augsburg, Augsburg
| | - Anja Troeger
- Bavarian Cancer Research Center (BZKF), R/R ALL Study Group; Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University of Regensburg, Regensburg
| | - Claudia Baldus
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel
| | - Roland Meisel
- Division of Paediatric Stern Cell Therapy, Department of Paediatric Oncology, Haematology and Clinical Immunology, Medical Faculty, Heinrich-Heine- University, Duesseldorf
| | - Annette Künkele
- Charite-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Paediatric Oncology and Haematology, Berlin
| | - Max Topp
- Bavarian Cancer Research Center (BZKF), R/R ALL Study Group; Department of Medicine II, University Hospital of Wuerzburg, Wuerzburg
| | | | - Gunnar Cario
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Germany, Kiel, Schleswig-Holstein
| | - Arend Von Stackelberg
- Charite-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Paediatric Oncology and Haematology, Berlin
| | - Christina Peters
- St. Anna Children's Hospital, St. Anna Children's Research Institute, Medical University Vienna, Vienna
| |
Collapse
|
9
|
Zhou D, Zhu X, Xiao Y. Advances in CAR-T therapy for central nervous system tumors. Biomark Res 2024; 12:132. [PMID: 39506843 PMCID: PMC11539471 DOI: 10.1186/s40364-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The application of chimeric antigen receptor T-cell therapy in central nervous system tumors has significantly advanced; however, challenges pertaining to the blood-brain barrier, immunosuppressive microenvironment, and antigenic heterogeneity continue to be encountered, unlike its success in hematological malignancies such as acute lymphoblastic leukemia and diffuse large B-cell lymphomas. This review examined the research progress of chimeric antigen receptor T-cell therapy in gliomas, medulloblastomas, and lymphohematopoietic tumors of the central nervous system, focusing on chimeric antigen receptor T-cells targeting antigens such as EGFRvIII, HER2, B7H3, GD2, and CD19 in preclinical and clinical studies. It synthesized current research findings to offer valuable insights for future chimeric antigen receptor T-cell therapeutic strategies for central nervous system tumors and advance the development and application of this therapeutic modality in this domain.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
10
|
Grégoire C, Coutinho de Oliveira B, Caimi PF, Caers J, Melenhorst JJ. Chimeric antigen receptor T-cell therapy for haematological malignancies: Insights from fundamental and translational research to bedside practice. Br J Haematol 2024; 205:1699-1713. [PMID: 39262037 DOI: 10.1111/bjh.19751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Autologous chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of lymphoid malignancies, leading to the approval of CD19-CAR T cells for B-cell lymphomas and acute leukaemia, and more recently, B-cell maturation antigen-CAR T cells for multiple myeloma. The long-term follow-up of patients treated in the early clinical trials demonstrates the possibility for long-term remission, suggesting a cure. This is associated with a low incidence of significant long-term side effects and a rapid improvement in the quality of life for responders. In contrast, other types of immunotherapies require prolonged treatments or carry the risk of long-term side effects impairing the quality of life. Despite impressive results, some patients still experience treatment failure or ultimately relapse, underscoring the imperative to improve CAR T-cell therapies and gain a better understanding of their determinants of efficacy to maximize positive outcomes. While the next-generation of CAR T cells will undoubtingly be more potent, there are already opportunities for optimization when utilizing the currently available CAR T cells. This review article aims to summarize the current evidence from clinical, translational and fundamental research, providing clinicians with insights to enhance their understanding and use of CAR T cells.
Collapse
Affiliation(s)
- Céline Grégoire
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Clinical Hematology and Laboratory of Hematology (GIGA I3), University Hospital Center of Liège and University of Liège, Liège, Belgium
| | - Beatriz Coutinho de Oliveira
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paolo F Caimi
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Jo Caers
- Department of Clinical Hematology and Laboratory of Hematology (GIGA I3), University Hospital Center of Liège and University of Liège, Liège, Belgium
| | - Jan Joseph Melenhorst
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Zhang Q, Dai J, Liu T, Rao W, Li D, Gu Z, Huang L, Wang J, Hou X. Targeting cardiac fibrosis with Chimeric Antigen Receptor-Engineered Cells. Mol Cell Biochem 2024:10.1007/s11010-024-05134-6. [PMID: 39460827 DOI: 10.1007/s11010-024-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Cardiac fibrosis poses a significant challenge in cardiovascular diseases due to its intricate pathogenesis, and there is currently no standardized and effective treatment approach. The fibrotic process entails the involvement of various cell types and molecular mechanisms, such as fibroblast activation and proliferation, increased collagen synthesis, and extracellular matrix rearrangement. Traditional therapies often fall short in efficacy or carry substantial side effects. However, recent studies have shown that Chimeric Antigen Receptor T (CAR-T) cells can selectively target and eliminate activated cardiac fibroblasts (CFs) in mice, leading to reduced cardiac fibrosis and improved myocardial tissue compliance. This breakthrough presents a new and promising avenue for treating cardiac fibrosis. Currently, CAR-T cell-based therapy for cardiac fibrosis is undergoing animal experimentation, indicating ample scope for enhancement. Future investigations could explore the application of CAR cell therapy in cardiac fibrosis treatment, including the potential of CAR-natural killer (CAR-NK) cells and CAR macrophages (CAR-M), offering novel insights and strategies for combating cardiac fibrosis.
Collapse
Affiliation(s)
- Qinghang Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xumin Hou
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
12
|
Canciani G, Fabozzi F, Pinacchio C, Ceccarelli M, Del Bufalo F. Developing CAR T-Cell Therapies for Pediatric Solid Tumors. Paediatr Drugs 2024:10.1007/s40272-024-00653-7. [PMID: 39382819 DOI: 10.1007/s40272-024-00653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/10/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of hematological malignancies, inducing notable and durable clinical responses. However, for solid tumors, including but not limited to pediatric tumors, several peculiar biological features posed substantial challenges for achieving comparable results. Despite sound pre-clinical evidence of the ability of CAR T cells to eradicate solid malignancies, their activity remains suboptimal when facing the in vivo complexity of solid tumors, characterized by antigen heterogeneity, scarce T-cell infiltration, and an immunosuppressive microenvironment. Neuroblastoma was amongst the first tumors to be evaluated as a potential candidate for GD2-targeting CAR T cells, which recently documented promising results in high-risk, heavily pre-treated patients. Moreover, innovative engineering strategies for generating more potent and persistent CAR T cells suggest the possibility to reproduce, and potentially improve, these promising results on a larger scale. In the next years, harnessing the full therapeutic potential of CAR T cells and other immunotherapeutic strategies may open new possibilities for effectively treating the most aggressive forms of pediatric tumors.
Collapse
Affiliation(s)
- Gabriele Canciani
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Residency School of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Claudia Pinacchio
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Manuela Ceccarelli
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Hematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
13
|
Ward MB, Jones AB, Krenciute G. Therapeutic advantage of combinatorial CAR T cell and chemo-therapies. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001070. [PMID: 39375047 DOI: 10.1124/pharmrev.124.001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have transformed outcomes for many patients with hematological malignancies. However, some patients do not respond to CAR T cell treatment, and adapting CAR T cells for solid and brain tumors has been met with many challenges including a hostile tumor microenvironment and poor CAR T cell persistence. Thus, it is unlikely that CAR T cell therapy alone will be sufficient for consistent, complete tumor clearance across cancer patients. Combinatorial therapies of CAR T cells and chemotherapeutics are a promising approach for overcoming this as chemotherapeutics could augment CAR T cells for improved anti-tumor activity or work in tandem with CAR T cells to clear tumors. Herein, we review efforts towards achieving successful CAR T cell and chemical drug combination therapies. We focus on combination therapies with approved chemotherapeutics as these will be more easily translated to the clinic, but also review non-approved chemotherapeutics and drug screens designed to reveal promising new CAR T cell and chemical drug combinations. Together, this review highlights the promise of CAR T cell and chemotherapy combinations with specific focus on how combinatorial therapy overcomes challenges faced by either monotherapy and supports the potential of this therapeutic strategy to improve outcomes for cancer patients. Significance Statement Improving currently available CAR T cell products via combinatorial therapy with chemotherapeutics has the potential to drastically expand the types of cancers and number of patients that could benefit from these therapies when neither alone has been sufficient to achieve tumor clearance. Herein, we provide a thorough review of the current efforts towards studying CAR T and chemotherapy combinatorial therapies and provide perspectives on optimal ways to identify new and effective combinations moving forward.
Collapse
Affiliation(s)
- Meghan B Ward
- St. Jude Children's Research Hospital, United States
| | - Amber B Jones
- St. Jude Children's Research Hospital, United States
| | | |
Collapse
|
14
|
Zhao L, Li C, Zuo S, Han Y, Deng B, Ling Z, Zhang Y, Peng S, Xu J, Duan J, Wang Z, Yu X, Zheng Q, Xu X, Yuan Y, Tian Z, Tang K, Zhang Y, Niu Q, Zhang J, Chang AH, Luo Y, Feng X, Pan J. Autologous CD7 CAR-T cells generated without T cell pre-selection in pediatric patients with relapsed/refractory T-ALL: A phase I trial. Mol Ther 2024:S1525-0016(24)00594-X. [PMID: 39244642 DOI: 10.1016/j.ymthe.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy showed preliminary activity in patients with refractory or relapsed T cell acute lymphoblastic leukemia (r/r T-ALL). However, many obstacles remain, including manufacturing difficulties and risk of infections. This phase I study (NCT04840875) evaluated autologous CD7 CAR-T cells manufactured without pre-selection of healthy T cells in r/r T-ALL. Thirty patients (29 children and one adult) with a median of two lines of prior therapy but without detectable peripheral leukemia were enrolled. Excluding three cases of manufacturing failures, a total of 27 (90%) patients received infusions after products were confirmed free of leukemia contamination, including 16 (59%) meeting planned target doses. Common adverse events within 30 days included grade 3-4 cytopenias (100%), grade 1-2 (70%) and 3-4 (7%, including one dose-limiting toxicity) cytokine release syndrome, grade 1 neurotoxicity (7%), grade 2 infection (4%), and grade 2 graft-versus-host disease (4%). Two patients developed grade 2 infections after day 30. At day 30, 96% responded and 85% achieved complete remission (CR) or CR with incomplete hematologic recovery (CRi). Seventy-four percent underwent transplantation. Twelve-month progression-free survival with and without censoring transplantation was 22% (95% confidence interval 4%-100%) and 57% (41%-81%), respectively. These results support that autologous CD7 CAR-T therapy without T cell pre-selection is feasible in patients with r/r T-ALL.
Collapse
Affiliation(s)
- Liping Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Department of Hematology, Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - Chuo Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shiyu Zuo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yajing Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Biping Deng
- Cytology Laboratory, Beijing GoBroad Boren Hospital, Beijing 100070, China
| | - Zhuojun Ling
- Department of Hematology, Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - Yanlei Zhang
- Shanghai YaKe Biotechnology Ltd., Shanghai 200438, China
| | - Shuixiu Peng
- Shanghai YaKe Biotechnology Ltd., Shanghai 200438, China
| | - Jinlong Xu
- Department of Hematology, Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - Jiajia Duan
- Department of Hematology, Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - Zelin Wang
- Department of Hematology, Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - Xinjian Yu
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing 100070, China
| | - Qinlong Zheng
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing 100070, China
| | - Xiuwen Xu
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing 100070, China
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Austin, TX 77030, USA
| | - Zhenglong Tian
- Gobroad Research Center, GoBroad Medical Group, Beijing 100070, China
| | - Kaiting Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yibing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jiecheng Zhang
- Department of Hospital Management, GoBroad Medical Group, Beijing 100070, China
| | - Alex H Chang
- Shanghai YaKe Biotechnology Ltd., Shanghai 200438, China; Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China
| | - Yuechen Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Central laboratory, Fujian Medical Union Hospital, Fuzhou 350001, China; CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Tianjin 300020, China.
| | - Jing Pan
- Department of Hematology, Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Beijing Gobroad Boren Hospital, Beijing 100070, China.
| |
Collapse
|
15
|
Pecher AC, Hensen L, Lengerke C, Henes J. The Future of CAR T Therapeutics to Treat Autoimmune Disorders. Mol Diagn Ther 2024; 28:593-600. [PMID: 39078456 PMCID: PMC11349844 DOI: 10.1007/s40291-024-00730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
The concept of chimeric antigen receptor (CAR) T cell therapy emerged from cancer immunotherapy and has been rapidly adapted and developed for the treatment of autoimmune, especially B-cell-driven, diseases since the first publication of an article featuring a patient with systemic lupus erythematosus in 2021. Phase II studies are about to start, but up to now, only case reports and small series have been published. In contrast to hemato-oncological diseases, where an aggressive response to malignant cells and long-lasting persistence of CAR T cells has been aimed at and observed in many patients, this is not the case with autoimmune diseases but might not be necessary to control disease. Future studies will focus on the optimal target but also on the optimal level of immunogenicity. The latter can be influenced by numerous modulations that affect not only cytokine release but also regulation. In addition, there are potential applications in regulatory cells such as CAR regulatory T cells (Treg). The question of toxicity reduction must also be addressed, as long-term complications such as the potential development of malignant diseases, infections, or cytopenia must be considered even more critically in the area of autoimmune diseases than is the case for patients with oncologic diseases. Alternative antibody-based therapies using the same target (e.g., CD3/CD19 bispecific targeting antibodies) have not been used in these patients and might also be considered in the future. In conclusion, CAR T cell therapy represents a promising therapeutic approach for autoimmune diseases, offering a targeted strategy to modulate immune responses and restore immune tolerance.
Collapse
Affiliation(s)
- Ann-Christin Pecher
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Otfried-Mueller-Strasse 10, 72076, Tübingen, Germany.
| | - Luca Hensen
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Otfried-Mueller-Strasse 10, 72076, Tübingen, Germany
| | - Claudia Lengerke
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Otfried-Mueller-Strasse 10, 72076, Tübingen, Germany
| | - Jörg Henes
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Otfried-Mueller-Strasse 10, 72076, Tübingen, Germany
| |
Collapse
|
16
|
Li J, Zhou W, Wang W. Artificial antigen-presenting cells: the booster for the obtaining of functional adoptive cells. Cell Mol Life Sci 2024; 81:378. [PMID: 39215816 PMCID: PMC11365909 DOI: 10.1007/s00018-024-05412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Adoptive cell therapy (ACT) achieves substantial efficacy in the treatment of hematological malignancies and solid tumours, while enormous endeavors have been made to reduce relapse and extend the remission duration after ACT. For the genetically engineered T cells, their functionality and long-term anti-tumour potential depend on the specificity of the T cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, the therapeutic benefit is directly to sufficient activation and proliferation of engineered T cells. Artificial antigen-presenting cells (aAPCs), as powerful boosters for ACT, have been applied to provide sustained stimulation of the cognate antigen and facilitate the expansion of sufficient T cells for infusion. In this review, we summarize the aAPCs used to generate effector cells for ACT and underline the mechanism by which aAPCs enhance the functionality of the effector cells. The manuscript includes investigations ranging from basic research to clinical trials, which we hope will highlight the importance of aAPCs and provide guidance for novel strategies to improve the effectiveness of ACT.
Collapse
Affiliation(s)
- Jing Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
17
|
Molina JC, Carraway HE. Treatment of Relapsed Acute Lymphocytic Leukemia in Adult Patients. Curr Treat Options Oncol 2024; 25:993-1010. [PMID: 38916714 PMCID: PMC11329612 DOI: 10.1007/s11864-024-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/26/2024]
Abstract
OPINION STATEMENT For adult patients diagnosed with relapsed B cell-ALL (B-ALL), there have been significant improvements in available treatment options following the FDA approval of novel cellular and immunotherapy approaches - blinatumomab, chimeric antigen receptor (CAR) T therapy, and inotuzumab. For the last several years, research has focused on gaining a better understanding of the effects of specific disease and patient characteristics on long-term outcomes with each of the FDA-approved agents. In combination with the better prevention and management of unique, treatment-specific toxicities, providers can now select the best available treatment option for each individual patient diagnosed with relapsed, adult B-ALL needing therapy. This has allowed more patients to proceed to consolidative hematopoietic stem cell transplant (HSCT), and long-term data has even brought into question the need for HSCT for long-term durable remission for all patients. However, with the adoption of blinatumomab, CAR T therapy, and inotuzumab in front-line treatment regimens, it remains unclear what effects this will have on patients with relapsed B-ALL following exposure to these novel cellular and immunotherapy therapies. Unlike B-ALL, similar advances have unfortunately not yet been realized in T cell-ALL (T-ALL). Currently, new therapeutic approaches are underway to utilize similar targeting strategies that have been successful in B-ALL - monoclonal antibodies, bispecific T-cell engagers (BiTE), and CAR T therapy. Like B-ALL, the only existing approved therapy for relapsed T-ALL, nelarabine, is now used in the upfront treatment setting potentially limiting its utility in relapsed disease. Over the next several years, the hope is for patients diagnosed with T-ALL to experience the drastic improvement in outcomes as has been seen for patients diagnosed with B-ALL over the last decade.
Collapse
Affiliation(s)
- John C Molina
- Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Hetty E Carraway
- Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| |
Collapse
|
18
|
Dreyzin A, Rankin AW, Luciani K, Gavrilova T, Shah NN. Overcoming the challenges of primary resistance and relapse after CAR-T cell therapy. Expert Rev Clin Immunol 2024; 20:745-763. [PMID: 38739466 PMCID: PMC11180598 DOI: 10.1080/1744666x.2024.2349738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION While CAR T-cell therapy has led to remarkable responses in relapsed B-cell hematologic malignancies, only 50% of patients ultimately have a complete, sustained response. Understanding the mechanisms of resistance and relapse after CAR T-cell therapy is crucial to future development and improving outcomes. AREAS COVERED We review reasons for both primary resistance and relapse after CAR T-cell therapies. Reasons for primary failure include CAR T-cell manufacturing problems, suboptimal fitness of autologous T-cells themselves, and intrinsic features of the underlying cancer and tumor microenvironment. Relapse after initial response to CAR T-cell therapy may be antigen-positive, due to CAR T-cell exhaustion or limited persistence, or antigen-negative, due to antigen-modulation on the target cells. Finally, we discuss ongoing efforts to overcome resistance to CAR T-cell therapy with enhanced CAR constructs, manufacturing methods, alternate cell types, combinatorial strategies, and optimization of both pre-infusion conditioning regimens and post-infusion consolidative strategies. EXPERT OPINION There is a continued need for novel approaches to CAR T-cell therapy for both hematologic and solid malignancies to obtain sustained remissions. Opportunities for improvement include development of new targets, optimally combining existing CAR T-cell therapies, and defining the role for adjunctive immune modulators and stem cell transplant in enhancing long-term survival.
Collapse
Affiliation(s)
- Alexandra Dreyzin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Oncology, Children's National Hospital, Washington DC, USA
| | - Alexander W Rankin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katia Luciani
- School of Medicine, University of Limerick, Limerick, Ireland
| | | | - Nirali N Shah
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Gitto SB, Ihewulezi CJN, Powell DJ. Adoptive T cell therapy for ovarian cancer. Gynecol Oncol 2024; 186:77-84. [PMID: 38603955 PMCID: PMC11216867 DOI: 10.1016/j.ygyno.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Although ovarian cancer patients typically respond to standard of care therapies, including chemotherapy and DNA repair inhibitors, the majority of tumors recur highlighting the need for alternative therapies. Ovarian cancer is an immunogenic cancer in which the accumulation of tumor infiltrating lymphocytes (TILs), particularly T cells, is associated with better patient outcome. Thus, harnessing the immune system through passive administration of T cells, a process called adoptive cell therapy (ACT), is a promising therapeutic option for the treatment of ovarian cancer. There are multiple routes by which tumor-specific T cell products can be generated. Dendritic cell cancer vaccines can be administered to the patients to induce or bolster T cell responses against tumor antigens or be utilized ex vivo to prime T cells against tumor antigens; these T cells can then be prepared for infusion. ACT protocols can also utilize naturally-occurring tumor-reactive T cells isolated from a patient tumor, known as TILs, as these cells often are heterogeneous in composition and antigen specificity with patient-specific cancer recognition. Alternatively, T cells may be sourced from the peripheral blood, including those that are genetically modified to express a tumor antigen-specific T cell receptor (TCR) or chimeric antigen receptor (CAR) to redirect their specificity and promote their activity against tumor cells expressing the target tumor antigen. Here, we review current ACT strategies for ovarian cancer and provide insights into advancing ACT therapy strategies for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sarah B Gitto
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chibuike J N Ihewulezi
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Mosna F. The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View. Cancers (Basel) 2024; 16:2359. [PMID: 39001421 PMCID: PMC11240611 DOI: 10.3390/cancers16132359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The potential of the immune system to eradicate leukemic cells has been consistently demonstrated by the Graft vs. Leukemia effect occurring after allo-HSCT and in the context of donor leukocyte infusions. Various immunotherapeutic approaches, ranging from the use of antibodies, antibody-drug conjugates, bispecific T-cell engagers, chimeric antigen receptor (CAR) T-cells, and therapeutic infusions of NK cells, are thus currently being tested with promising, yet conflicting, results. This review will concentrate on various types of immunotherapies in preclinical and clinical development, from the point of view of a clinical hematologist. The most promising therapies for clinical translation are the use of bispecific T-cell engagers and CAR-T cells aimed at lineage-restricted antigens, where overall responses (ORR) ranging from 20 to 40% can be achieved in a small series of heavily pretreated patients affected by refractory or relapsing leukemia. Toxicity consists mainly in the occurrence of cytokine-release syndrome, which is mostly manageable with step-up dosing, the early use of cytokine-blocking agents and corticosteroids, and myelosuppression. Various cytokine-enhanced natural killer products are also being tested, mainly as allogeneic off-the-shelf therapies, with a good tolerability profile and promising results (ORR: 20-37.5% in small trials). The in vivo activation of T lymphocytes and NK cells via the inhibition of their immune checkpoints also yielded interesting, yet limited, results (ORR: 33-59%) but with an increased risk of severe Graft vs. Host disease in transplanted patients. Therefore, there are still several hurdles to overcome before the widespread clinical use of these novel compounds.
Collapse
Affiliation(s)
- Federico Mosna
- Hematology and Bone Marrow Transplantation Unit (BMTU), Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of Paracelsus Medical University (PMU), 39100 Bolzano, Italy
| |
Collapse
|
21
|
Tiselius E, Sundberg E, Andersson H, Höbinger A, Jahnmatz P, Harila A, Palle J, Nilsson A, Saghafian-Hedengren S. Bone Marrow-Suppressive Treatment in Children Is Associated with Diminished IFN-γ Response from T Cells upon Polyclonal and Varicella Zoster Virus Peptide Stimulation. Int J Mol Sci 2024; 25:6960. [PMID: 39000070 PMCID: PMC11241059 DOI: 10.3390/ijms25136960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Severe haematological diseases and lymphoid malignancies require bone marrow (BM)-suppressive treatments. Knowledge regarding the impact of BM-suppressive treatments on children's memory T cells is very limited. Memory T cells play a crucial role in defending against herpesviruses, which is particularly relevant in paediatric cancer care. We studied 53 children in total; 34 with cancer and 2 with severe haematological disorders, with some receiving BM-suppressive treatment with or without allogeneic-haematopoietic stem cell transplantation (allo-HSCT), alongside 17 healthy controls. We focused on peripheral blood proportions of memory T-cell subsets using flow cytometry and analysed cytokine-secreting T cells with a four-parameter FluoroSpot assay in response to T-cell mitogen and varicella zoster virus (VZV) peptides. Patients on BM-suppressive treatment showed increased clusters of differentiation (CD)4+ and CD8+ effector memory (TEM)/terminally differentiated effector (TEFF) T cells compared to the healthy controls. They also exhibited, amongst other things, when compared to the healthy controls, a reduced total number of cytokine-secreting cells, by means of interferon (IFN)-γ, interleukin (IL)-17A, IL-10, and IL-22, following mitogen activation. A diminished IFN-γ response among the children with BM-suppressive treatment was observed upon VZV-peptide stimulation, compared to the healthy children. Collectively, the findings herein indicate that the children who are undergoing or have finished BM-suppressive treatment display qualitative differences in their T-cell memory compartment, potentially increasing their susceptibility to severe viral infections and impacting their immunotherapy, which relies on the functional ability of autologous T cells.
Collapse
Affiliation(s)
- Eva Tiselius
- Department of Women’s and Children’s Health, Division of Pediatric Oncology and Pediatric Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.T.); (S.S.-H.)
| | - Emil Sundberg
- Department of Women’s and Children’s Health, Uppsala University, 751 05 Uppsala, Sweden; (E.S.); (A.H.); (J.P.)
| | - Hanna Andersson
- Department of Women’s and Children’s Health, Division of Pediatric Oncology and Pediatric Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.T.); (S.S.-H.)
| | - Anna Höbinger
- Department of Women’s and Children’s Health, Division of Pediatric Oncology and Pediatric Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.T.); (S.S.-H.)
| | | | - Arja Harila
- Department of Women’s and Children’s Health, Uppsala University, 751 05 Uppsala, Sweden; (E.S.); (A.H.); (J.P.)
- Department of Children’s Oncology and Hematology, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Josefine Palle
- Department of Women’s and Children’s Health, Uppsala University, 751 05 Uppsala, Sweden; (E.S.); (A.H.); (J.P.)
- Department of Children’s Oncology and Hematology, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Anna Nilsson
- Department of Women’s and Children’s Health, Division of Pediatric Oncology and Pediatric Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.T.); (S.S.-H.)
| | - Shanie Saghafian-Hedengren
- Department of Women’s and Children’s Health, Division of Pediatric Oncology and Pediatric Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.T.); (S.S.-H.)
| |
Collapse
|
22
|
Wojciechowicz K, Kuncewicz K, Rutkowski J, Jassem J, Rodziewicz-Motowidło S, Wardowska A, Spodzieja M. Targeting BTLA with the peptide inhibitor HVEM(14-39) - A new way to restore the activity of T cells in melanoma. Biomed Pharmacother 2024; 175:116675. [PMID: 38733770 DOI: 10.1016/j.biopha.2024.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The complex of B- and T-lymphocyte attenuator (BTLA) and herpes virus entry mediator (HVEM) plays a critical role in immune regulation and has emerged as a promising therapeutic target for cancer treatment. In this study, we investigated the potential of the peptide inhibitor HVEM(14-39) to restore peripheral T cell activity in patients with advanced melanoma. In these patients, CD8+ T cells downregulated BTLA expression and increased HVEM expression upon activation. The addition of HVEM(14-39) reduced the percentage of BTLA+ CD8+ T cells and increased the subpopulation of HVEM+ CD8+ T cells. Additionally, HVEM(14-39) enhanced T cell activation, proliferation, and the shift toward effector memory T cell subpopulations. Finally, this peptide affected the proliferation rate and late apoptosis of melanoma cell line in co-culture with T cells. These findings suggest that HVEM(14-39) can overcome T cell exhaustion and improve antitumor responses. Peptide-based immunotherapy targeting the BTLA-HVEM complex offers a promising alternative to monoclonal antibody-based therapies, with the potential for fewer side effects and higher treatment efficacy.
Collapse
Affiliation(s)
- Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Katarzyna Kuncewicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland
| | - Jacek Rutkowski
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, Poland
| | | | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland.
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland.
| |
Collapse
|
23
|
Hegde M, Navai S, DeRenzo C, Joseph SK, Sanber K, Wu M, Gad AZ, Janeway KA, Campbell M, Mullikin D, Nawas Z, Robertson C, Mathew PR, Zhang H, Mehta B, Bhat RR, Major A, Shree A, Gerken C, Kalra M, Chakraborty R, Thakkar SG, Dakhova O, Salsman VS, Grilley B, Lapteva N, Gee A, Dotti G, Bao R, Salem AH, Wang T, Brenner MK, Heslop HE, Wels WS, Hicks MJ, Gottschalk S, Ahmed N. Autologous HER2-specific CAR T cells after lymphodepletion for advanced sarcoma: a phase 1 trial. NATURE CANCER 2024; 5:880-894. [PMID: 38658775 PMCID: PMC11588040 DOI: 10.1038/s43018-024-00749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/23/2024] [Indexed: 04/26/2024]
Abstract
In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 108 T cells per m2 after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 108 CAR+ T cells per m2 after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome. Thirteen individuals were treated in 14 enrollments, and seven received multiple infusions. HER2 CAR T cells expanded after 19 of 21 infusions. Nine of 12 individuals in cohorts A and B developed grade 1-2 cytokine release syndrome. Two individuals in cohort C experienced dose-limiting toxicity with grade 3-4 cytokine release syndrome. Antitumor activity was observed with clinical benefit in 50% of individuals treated. The tumor samples analyzed showed spatial heterogeneity of immune cells and clustering by sarcoma type and by treatment response. Our results affirm HER2 as a CAR T cell target and demonstrate the safety of this therapeutic approach in sarcoma. ClinicalTrials.gov registration: NCT00902044 .
Collapse
Affiliation(s)
- Meenakshi Hegde
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Shoba Navai
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Christopher DeRenzo
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sujith K Joseph
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Khaled Sanber
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mengfen Wu
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Z Gad
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Katherine A Janeway
- Department of Pediatrics, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Campbell
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Dolores Mullikin
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zeid Nawas
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Robertson
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Pretty R Mathew
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Huimin Zhang
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Birju Mehta
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Raksha R Bhat
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Angela Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ankita Shree
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Gerken
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mamta Kalra
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Rikhia Chakraborty
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sachin G Thakkar
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Vita S Salsman
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bambi Grilley
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Adrian Gee
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Riyue Bao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Tao Wang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Helen E Heslop
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - M John Hicks
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Gottschalk
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nabil Ahmed
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Naik S, Velasquez MP, Gottschalk S. Chimeric antigen receptor T-cell therapy in childhood acute myeloid leukemia: how far are we from a clinical application? Haematologica 2024; 109:1656-1667. [PMID: 38832421 PMCID: PMC11141645 DOI: 10.3324/haematol.2023.283817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
Recurrent and/or refractory (R/R) pediatric acute myeloid leukemia (AML) remains a recalcitrant disease with poor outcomes. Cell therapy with genetically modified immune effector cells holds the promise to improve outcomes for R/R AML since it relies on cytotoxic mechanisms that are distinct from chemotherapeutic agents. While T cells expressing chimeric antigen receptors (CAR T cells) showed significant anti-AML activity in preclinical models, early phase clinical studies have demonstrated limited activity, irrespective of the targeted AML antigen. Lack of efficacy is most likely multifactorial, including: (i) a limited array of AML-specific targets and target antigen heterogeneity; (ii) the aggressive nature of R/R AML and heavy pretreatment of patients; (iii) T-cell product manufacturing, and (iv) limited expansion and persistence of the CAR T cells, which is in part driven by the immunosuppressive AML microenvironment. Here we review the results of early phase clinical studies with AML-specific CAR T cells, and avenues investigators are exploring to improve their effector function.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Receptors, Chimeric Antigen/immunology
- Immunotherapy, Adoptive/methods
- Child
- Clinical Trials as Topic
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Tumor Microenvironment/immunology
- Animals
Collapse
Affiliation(s)
| | | | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
25
|
Martín-Antonio B, Blanco B, González-Murillo Á, Hidalgo L, Minguillón J, Pérez-Chacón G. Newer generations of multi-target CAR and STAb-T immunotherapeutics: NEXT CART Consortium as a cooperative effort to overcome current limitations. Front Immunol 2024; 15:1386856. [PMID: 38779672 PMCID: PMC11109416 DOI: 10.3389/fimmu.2024.1386856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Adoptive T cellular immunotherapies have emerged as relevant approaches for treating cancer patients who have relapsed or become refractory (R/R) to traditional cancer treatments. Chimeric antigen receptor (CAR) T-cell therapy has improved survival in various hematological malignancies. However, significant limitations still impede the widespread adoption of these therapies in most cancers. To advance in this field, six research groups have created the "NEXT Generation CART MAD Consortium" (NEXT CART) in Madrid's Community, which aims to develop novel cell-based immunotherapies for R/R and poor prognosis cancers. At NEXT CART, various basic and translational research groups and hospitals in Madrid concur to share and synergize their basic expertise in immunotherapy, gene therapy, and immunological synapse, and clinical expertise in pediatric and adult oncology. NEXT CART goal is to develop new cell engineering approaches and treatments for R/R adult and pediatric neoplasms to evaluate in multicenter clinical trials. Here, we discuss the current limitations of T cell-based therapies and introduce our perspective on future developments. Advancement opportunities include developing allogeneic products, optimizing CAR signaling domains, combining cellular immunotherapies, multi-targeting strategies, and improving tumor-infiltrating lymphocytes (TILs)/T cell receptor (TCR) therapy. Furthermore, basic studies aim to identify novel tumor targets, tumor molecules in the tumor microenvironment that impact CAR efficacy, and strategies to enhance the efficiency of the immunological synapse between immune and tumor cells. Our perspective of current cellular immunotherapy underscores the potential of these treatments while acknowledging the existing hurdles that demand innovative solutions to develop their potential for cancer treatment fully.
Collapse
Affiliation(s)
- Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz (IIS-FJD), Madrid, Spain
| | - Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - África González-Murillo
- Department of Pediatric Hematology and Oncology, Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Laura Hidalgo
- Cellular Biotechnology Unit, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Minguillón
- La Paz Hospital Institute for Health Research (IdiPAZ), Hospital Universitario La Paz. Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Gema Pérez-Chacón
- Immunity, Immunopathology and Emergent Therapies Group. Instituto de Investigaciones Biomedicas Sols-Morreale. CSIC-UAM, Madrid, Spain
| |
Collapse
|
26
|
Ginefra P, Hope HC, Chiang YH, Nutten S, Blum S, Coukos G, Vannini N. Urolithin-A Promotes CD8+ T Cell-mediated Cancer Immunosurveillance via FOXO1 Activation. CANCER RESEARCH COMMUNICATIONS 2024; 4:1189-1198. [PMID: 38626334 PMCID: PMC11067828 DOI: 10.1158/2767-9764.crc-24-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Naïve T cells are key players in cancer immunosurveillance, even though their function declines during tumor progression. Thus, interventions capable of sustaining the quality and function of naïve T cells are needed to improve cancer immunoprevention.In this context, we studied the capacity of Urolithin-A (UroA), a potent mitophagy inducer, to enhance T cell-mediated cancer immunosurveillance.We discovered that UroA improved the cancer immune response by activating the transcription factor FOXO1 in CD8+ T cell. Sustained FOXO1 activation promoted the expression of the adhesion molecule L-selectin (CD62L) resulting in the expansion of the naïve T cells population. We found that UroA reduces FOXO1 phosphorylation favoring its nuclear localization and transcriptional activity. Overall, our findings determine FOXO1 as a novel molecular target of UroA in CD8+ T cells and indicate UroA as promising immunomodulator to improve cancer immunosurveillance. SIGNIFICANCE Urolithin-A, a potent mitophagy inducer, emerges as a promising tool to enhance cancer immunosurveillance by activating the FOXO1 transcription factor in CD8+ T cells. This activation promotes the expansion of naïve T cells, offering a novel avenue for improving cancer immune response and highlighting UroA as a potential immunomodulator for bolstering our body's defenses against cancer.
Collapse
Affiliation(s)
- Pierpaolo Ginefra
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Helen Carrasco Hope
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Yi-Hsuan Chiang
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | | | | | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Nicola Vannini
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Ruggeri Barbaro N, Drashansky T, Tess K, Djedaini M, Hariri R, He S, van der Touw W, Karasiewicz K. Placental circulating T cells: a novel, allogeneic CAR-T cell platform with preserved T-cell stemness, more favorable cytokine profile, and durable efficacy compared to adult PBMC-derived CAR-T. J Immunother Cancer 2024; 12:e008656. [PMID: 38684370 PMCID: PMC11107807 DOI: 10.1136/jitc-2023-008656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell quality and stemness are associated with responsiveness, durability, and memory formation, which benefit clinical responses. Autologous T cell starting material across patients with cancer is variable and CAR-T expansion or potency can fail during manufacture. Thus, strategies to develop allogeneic CAR-T platforms including the identification and expansion of T cell subpopulations that correspond with CAR-T potency are an active area of investigation. Here, we compared CAR-T cells generated from healthy adult peripheral blood T cells versus placental circulating T (P-T) cells. METHODS CAR-T cells from healthy adult peripheral blood mononuclear cells (PBMCs) and P-T cells were generated using the same protocol. CAR-T cells were characterized in detail by a combination of multiparameter flow cytometry, functional assays, and RNA sequencing. In vivo antitumor efficacy and persistence of CAR-T cells were evaluated in a Daudi lymphoma xenograft model. RESULTS P-T cells possess stemness advantages compared with T cells from adult PBMCs. P-T cells are uniformly naïve prior to culture initiation, maintain longer telomeres, resist immune checkpoint upregulation, and resist further differentiation compared with PBMC T cells during CD19 CAR-T manufacture. P-T CD19 CAR-T cells are equally cytotoxic as PBMC-CD19 CAR-T cells but produce less interferon gamma in response to lymphoma. Transcriptome analysis shows P-T CD19 CAR-T cells retain a stem-like gene signature, strongly associate with naïve T cells, an early memory phenotype, and a unique CD4 T cell signature compared with PBMC-CD19 CAR-T cells, which enrich for exhaustion and stimulated memory T cell signatures. Consistent with functional data, P-T CD19 CAR-T cells exhibit attenuated inflammatory cytokine and chemokine gene signatures. In a murine in vivo model, P-T CD19 CAR-T cells eliminate lymphoma beyond 90 days. PBMC-CD19 CAR-T cells provide a non-durable benefit, which only delays disease onset. CONCLUSION We identified characteristics of T cell stemness enriched in P-T CD19 CAR-T which are deficient in PBMC-derived products and translate into response durability in vivo. Our findings demonstrate that placental circulating T cells are a valuable cell source for allogeneic CAR-T products. Stemness advantages inherent to P-T cells translate to in vivo persistence advantages and long-term durable activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuyang He
- Celularity Inc, Florham Park, New Jersey, USA
| | | | | |
Collapse
|
28
|
Afrough A, Hashmi H, Hansen DK, Sidana S, Ahn C, Peres LC, Dima D, Freeman CL, Puglianini OC, Kocoglu MH, Atrash S, Voorhees PM, Shune L, McGuirk JP, Simmons G, Sborov DW, Davis JA, Kaur G, Sannareddy A, Ferreri CJ, Gaballa MR, Goldsmith S, Nadeem O, Midha S, Wagner CB, Locke FL, Patel KK, Khouri J, Anderson LD, Lin Y. Real-world impact of bridging therapy on outcomes of ide-cel for myeloma in the U.S. Myeloma Immunotherapy Consortium. Blood Cancer J 2024; 14:63. [PMID: 38609386 PMCID: PMC11015040 DOI: 10.1038/s41408-024-00993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 04/14/2024] Open
Affiliation(s)
- Aimaz Afrough
- Myeloma, Waldenstrom's, and Amyloidosis Program, Hematologic Malignancies and Cellular Therapy Program, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Hamza Hashmi
- Medical University of South Carolina, Charleston, SC, USA
| | - Doris K Hansen
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Surbhi Sidana
- Stanford University School of Medicine, Stanford, CA, USA
| | - Chul Ahn
- Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lauren C Peres
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Danai Dima
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH, USA
| | - Ciara L Freeman
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Mehmet H Kocoglu
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | | | - Leyla Shune
- The University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Gary Simmons
- Virginia Commonwealth University Massey Cancer Center, Richmond, VA, USA
| | - Douglas W Sborov
- The University of Utah Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - James A Davis
- Medical University of South Carolina, Charleston, SC, USA
| | - Gurbakhash Kaur
- Myeloma, Waldenstrom's, and Amyloidosis Program, Hematologic Malignancies and Cellular Therapy Program, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Aishwarya Sannareddy
- Myeloma, Waldenstrom's, and Amyloidosis Program, Hematologic Malignancies and Cellular Therapy Program, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | - Omar Nadeem
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Charlotte B Wagner
- The University of Utah Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | - Krina K Patel
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack Khouri
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH, USA
| | - Larry D Anderson
- Myeloma, Waldenstrom's, and Amyloidosis Program, Hematologic Malignancies and Cellular Therapy Program, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Yi Lin
- Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
Pu L, Wang H, Wu F, An F, Xiao H, Wang Y, Liang X, Zhai Z. Predictive model for CAR-T cell therapy success in patients with relapsed/refractory B-cell acute lymphoblastic leukaemia. Scand J Immunol 2024; 99:e13352. [PMID: 39008028 DOI: 10.1111/sji.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 07/16/2024]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated remarkable efficacy in treating relapsed/refractory acute B-cell lymphoblastic leukaemia (R/R B-ALL). However, a subset of patients does not benefit from CAR-T therapy. Our study aims to identify predictive indicators and establish a model to evaluate the feasibility of CAR-T therapy. Fifty-five R/R B-ALL patients and 22 healthy donors were enrolled. Peripheral blood lymphocyte subsets were analysed using flow cytometry. Sensitivity, specificity, accuracy, positive and negative predictive values and receiver operating characteristic (ROC) areas under the curve (AUC) were determined to evaluate the predictive values of the indicators. We identified B lymphocyte, regulatory T cell (Treg) and peripheral blood minimal residual leukaemia cells (B-MRD) as indicators for predicting the success of CAR-T cell preparation with AUC 0.936, 0.857 and 0.914. Furthermore, a model based on CD3+ T count, CD4+ T/CD8+ T ratio, Treg and extramedullary diseases (EMD) was used to predict the response to CAR-T therapy with AUC of 0.938. Notably, a model based on CD4+ T/CD8+ T ratio, B, Treg and EMD were used in predicting the success of CAR-T therapy with AUC 0.966 [0.908-1.000], with specificity (92.59%) and sensitivity (91.67%). In the validated group, the predictive model predicted the success of CAR-T therapy with specificity (90.91%) and sensitivity (100%). We have identified several predictive indicators for CAR-T cell therapy success and a model has demonstrated robust predictive capacity for the success of CAR-T therapy. These results show great potential for guiding informed clinical decisions in the field of CAR-T cell therapy.
Collapse
Affiliation(s)
- Lianfang Pu
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, Anhui, China
| | - Huiping Wang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, Anhui, China
| | - Fan Wu
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, Anhui, China
| | - Furun An
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, Anhui, China
| | - Hao Xiao
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, Anhui, China
| | - Yangyang Wang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, Anhui, China
| | - Xue Liang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
30
|
Hill LC, Rouce RH, Wu MJ, Wang T, Ma R, Zhang H, Mehta B, Lapteva N, Mei Z, Smith TS, Yang L, Srinivasan M, Burkhardt PM, Ramos CA, Lulla P, Arredondo M, Grilley B, Heslop HE, Brenner MK, Mamonkin M. Antitumor efficacy and safety of unedited autologous CD5.CAR T cells in relapsed/refractory mature T-cell lymphomas. Blood 2024; 143:1231-1241. [PMID: 38145560 PMCID: PMC10997912 DOI: 10.1182/blood.2023022204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
ABSTRACT Despite newer targeted therapies, patients with primary refractory or relapsed (r/r) T-cell lymphoma have a poor prognosis. The development of chimeric antigen receptor (CAR) T-cell platforms to treat T-cell malignancies often requires additional gene modifications to overcome fratricide because of shared T-cell antigens on normal and malignant T cells. We developed a CD5-directed CAR that produces minimal fratricide by downmodulating CD5 protein levels in transduced T cells while retaining strong cytotoxicity against CD5+ malignant cells. In our first-in-human phase 1 study (NCT0308190), second-generation autologous CD5.CAR T cells were manufactured from patients with r/r T-cell malignancies. Here, we report safety and efficacy data from a cohort of patients with mature T-cell lymphoma (TCL). Among the 17 patients with TCL enrolled, CD5 CAR T cells were successfully manufactured for 13 out of 14 attempted lines (93%) and administered to 9 (69%) patients. The overall response rate (complete remission or partial response) was 44%, with complete responses observed in 2 patients. The most common grade 3 or higher adverse events were cytopenias. No grade 3 or higher cytokine release syndrome or neurologic events occurred. Two patients died during the immediate toxicity evaluation period due to rapidly progressive disease. These results demonstrated that CD5.CAR T cells are safe and can induce clinical responses in patients with r/r CD5-expressing TCLs without eliminating endogenous T cells or increasing infectious complications. More patients and longer follow-up are needed for validation. This trial was registered at www.clinicaltrials.gov as #NCT0308190.
Collapse
Affiliation(s)
- LaQuisa C. Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Rayne H. Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Mengfen J. Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
- Biostatistics Shared Resource, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Tao Wang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
- Biostatistics Shared Resource, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Royce Ma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
| | - Huimin Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Birju Mehta
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Natalia Lapteva
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Zhuyong Mei
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Tyler S. Smith
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
| | - Lina Yang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
| | - Madhuwanti Srinivasan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
| | - Phillip M. Burkhardt
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
| | - Carlos A. Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Martha Arredondo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
| | - Bambi Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
| | - Helen E. Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Malcolm K. Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
31
|
Angelos MG, Patel RP, Ruella M, Barta SK. Progress and Pitfalls of Chimeric Antigen Receptor T Cell Immunotherapy against T Cell Malignancies. Transplant Cell Ther 2024; 30:171-186. [PMID: 37866783 PMCID: PMC10873040 DOI: 10.1016/j.jtct.2023.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) immunotherapy has revolutionized the treatment of relapsed and refractory B cell-derived hematologic malignancies. Currently, there are 6 Food and Drug Administration-approved commercial CAR-T products that target antigens exclusively expressed on malignant B cells or plasma cells. However, concurrent advancement for patients with rarer and more aggressive T cell-derived hematologic malignancies have not yet been achieved. CAR-T immunotherapies are uniquely limited by challenges related to CAR-T product manufacturing and intrinsic tumor biology. In this review tailored for practicing clinician-scientists, we discuss the major barriers of CAR-T implementation against T cell-derived neoplasms and highlight specific scientific advancements poised to circumvent these obstacles. We summarize salient early-stage clinical trials implementing novel CAR-T immunotherapies specifically for patients with relapsed and/or refractory T cell neoplasms. Finally, we highlight novel manufacturing and treatment strategies that are poised to have a meaningful future clinical impact.
Collapse
Affiliation(s)
- Mathew G Angelos
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruchi P Patel
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marco Ruella
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefan K Barta
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
32
|
Baguet C, Larghero J, Mebarki M. Early predictive factors of failure in autologous CAR T-cell manufacturing and/or efficacy in hematologic malignancies. Blood Adv 2024; 8:337-342. [PMID: 38052048 PMCID: PMC10788849 DOI: 10.1182/bloodadvances.2023011992] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR) T-cell therapies have shown significant benefits in the treatment of hematologic malignancies, such as B-cell acute lymphoblastic leukemia (B-ALL) and B-cell lymphoma. Despite the therapeutic advances offered by these innovative treatments, failures are still observed in 15% to 40% of patients with B-ALL and >50% of patients with B-cell lymphoma. Several hypotheses have emerged including CD19-negative or -positive relapses, low CAR T-cell activation and/or expansion in vivo, or T-cell exhaustion. To date, in the European Union, CAR T cells granted with marketing authorization are autologous and thus associated with a strong heterogeneity between products. Indeed, the manufacturing of a single batch requires cellular starting material collection by apheresis for each patient, with variable cellular composition, and then challenging pharmaceutical companies to standardize as much as possible the production process. In addition, these cost and time-consuming therapies are associated with a risk of manufacturing failure reaching 25%. Thus, there is a growing need to identify early risk factors of unsuccessful production and/or therapeutic escape. Quality of the apheresis product, pathology progression, as well as previous treatments have been reported as predictive factors of the variability in clinical response. The aim of this review is to report and discuss predictive factors that could help to anticipate the manufacturing success and clinical response.
Collapse
Affiliation(s)
- Clémentine Baguet
- Université Paris Cité, Assistance Publique – Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
| | - Jérôme Larghero
- Université Paris Cité, Assistance Publique – Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
- Université Paris Cité, Assistance Publique – Hôpitaux de Paris, Hôpital Saint-Louis, Centre MEARY de Thérapie Cellulaire et Génique, Paris, France
- INSERM, Centre d’investigation Clinique de Biothérapies CBT501, Paris, France
| | - Miryam Mebarki
- Université Paris Cité, Assistance Publique – Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
- INSERM, Centre d’investigation Clinique de Biothérapies CBT501, Paris, France
- Faculté de pharmacie, Université Paris Cité, Paris, France
| |
Collapse
|
33
|
Lim WC, Marques Da Costa ME, Godefroy K, Jacquet E, Gragert L, Rondof W, Marchais A, Nhiri N, Dalfovo D, Viard M, Labaied N, Khan AM, Dessen P, Romanel A, Pasqualini C, Schleiermacher G, Carrington M, Zitvogel L, Scoazec JY, Geoerger B, Salmon J. Divergent HLA variations and heterogeneous expression but recurrent HLA loss-of- heterozygosity and common HLA-B and TAP transcriptional silencing across advanced pediatric solid cancers. Front Immunol 2024; 14:1265469. [PMID: 38318504 PMCID: PMC10839790 DOI: 10.3389/fimmu.2023.1265469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/06/2023] [Indexed: 02/07/2024] Open
Abstract
The human leukocyte antigen (HLA) system is a major factor controlling cancer immunosurveillance and response to immunotherapy, yet its status in pediatric cancers remains fragmentary. We determined high-confidence HLA genotypes in 576 children, adolescents and young adults with recurrent/refractory solid tumors from the MOSCATO-01 and MAPPYACTS trials, using normal and tumor whole exome and RNA sequencing data and benchmarked algorithms. There was no evidence for narrowed HLA allelic diversity but discordant homozygosity and allele frequencies across tumor types and subtypes, such as in embryonal and alveolar rhabdomyosarcoma, neuroblastoma MYCN and 11q subtypes, and high-grade glioma, and several alleles may represent protective or susceptibility factors to specific pediatric solid cancers. There was a paucity of somatic mutations in HLA and antigen processing and presentation (APP) genes in most tumors, except in cases with mismatch repair deficiency or genetic instability. The prevalence of loss-of-heterozygosity (LOH) ranged from 5.9 to 7.7% in HLA class I and 8.0 to 16.7% in HLA class II genes, but was widely increased in osteosarcoma and glioblastoma (~15-25%), and for DRB1-DQA1-DQB1 in Ewing sarcoma (~23-28%) and low-grade glioma (~33-50%). HLA class I and HLA-DR antigen expression was assessed in 194 tumors and 44 patient-derived xenografts (PDXs) by immunochemistry, and class I and APP transcript levels quantified in PDXs by RT-qPCR. We confirmed that HLA class I antigen expression is heterogeneous in advanced pediatric solid tumors, with class I loss commonly associated with the transcriptional downregulation of HLA-B and transporter associated with antigen processing (TAP) genes, whereas class II antigen expression is scarce on tumor cells and occurs on immune infiltrating cells. Patients with tumors expressing sufficient HLA class I and TAP levels such as some glioma, osteosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft-tissue sarcoma cases may more likely benefit from T cell-based approaches, whereas strategies to upregulate HLA expression, to expand the immunopeptidome, and to target TAP-independent epitopes or possibly LOH might provide novel therapeutic opportunities in others. The consequences of HLA class II expression by immune cells remain to be established. Immunogenetic profiling should be implemented in routine to inform immunotherapy trials for precision medicine of pediatric cancers.
Collapse
Affiliation(s)
- Wan Ching Lim
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
| | | | - Karine Godefroy
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Loren Gragert
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Windy Rondof
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mathias Viard
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Nizar Labaied
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Asif M. Khan
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
| | - Philippe Dessen
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Claudia Pasqualini
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gudrun Schleiermacher
- INSERM U830, Recherche Translationnelle en Oncologie Pédiatrique (RTOP), and SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), PSL Research University, Institut Curie, Paris, France
| | - Mary Carrington
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, United States
| | - Laurence Zitvogel
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Jean-Yves Scoazec
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Birgit Geoerger
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Jerome Salmon
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
34
|
Kaczanowska S, Murty T, Alimadadi A, Contreras CF, Duault C, Subrahmanyam PB, Reynolds W, Gutierrez NA, Baskar R, Wu CJ, Michor F, Altreuter J, Liu Y, Jhaveri A, Duong V, Anbunathan H, Ong C, Zhang H, Moravec R, Yu J, Biswas R, Van Nostrand S, Lindsay J, Pichavant M, Sotillo E, Bernstein D, Carbonell A, Derdak J, Klicka-Skeels J, Segal JE, Dombi E, Harmon SA, Turkbey B, Sahaf B, Bendall S, Maecker H, Highfill SL, Stroncek D, Glod J, Merchant M, Hedrick CC, Mackall CL, Ramakrishna S, Kaplan RN. Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy. Cancer Cell 2024; 42:35-51.e8. [PMID: 38134936 PMCID: PMC10947809 DOI: 10.1016/j.ccell.2023.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/18/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Chimeric antigen receptor T cells (CAR-Ts) have remarkable efficacy in liquid tumors, but limited responses in solid tumors. We conducted a Phase I trial (NCT02107963) of GD2 CAR-Ts (GD2-CAR.OX40.28.z.iC9), demonstrating feasibility and safety of administration in children and young adults with osteosarcoma and neuroblastoma. Since CAR-T efficacy requires adequate CAR-T expansion, patients were grouped into good or poor expanders across dose levels. Patient samples were evaluated by multi-dimensional proteomic, transcriptomic, and epigenetic analyses. T cell assessments identified naive T cells in pre-treatment apheresis associated with good expansion, and exhausted T cells in CAR-T products with poor expansion. Myeloid cell assessment identified CXCR3+ monocytes in pre-treatment apheresis associated with good expansion. Longitudinal analysis of post-treatment samples identified increased CXCR3- classical monocytes in all groups as CAR-T numbers waned. Together, our data uncover mediators of CAR-T biology and correlates of expansion that could be utilized to advance immunotherapies for solid tumor patients.
Collapse
Affiliation(s)
- Sabina Kaczanowska
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tara Murty
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ahmad Alimadadi
- La Jolla Institute for Immunology, La Jolla, CA, USA; Immunology Center of Georgia, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Cristina F Contreras
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Oncology, University of Oxford, Oxford, UK
| | - Caroline Duault
- Stanford Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Priyanka B Subrahmanyam
- Stanford Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Warren Reynolds
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Reema Baskar
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Catherine J Wu
- Broad Institute, Cambridge, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Yang Liu
- Broad Institute, Cambridge, MA, USA
| | | | - Vandon Duong
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hima Anbunathan
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Ong
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hua Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Radim Moravec
- Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joyce Yu
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Mina Pichavant
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Donna Bernstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amanda Carbonell
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joanne Derdak
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacquelyn Klicka-Skeels
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julia E Segal
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie A Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baris Turkbey
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean Bendall
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Holden Maecker
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Steven L Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - David Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melinda Merchant
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Catherine C Hedrick
- La Jolla Institute for Immunology, La Jolla, CA, USA; Immunology Center of Georgia, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sneha Ramakrishna
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Ding H, Wu Y. CAR-T Therapy in Relapsed Refractory Multiple Myeloma. Curr Med Chem 2024; 31:4362-4382. [PMID: 37779413 PMCID: PMC11340289 DOI: 10.2174/0109298673268932230920063933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023]
Abstract
Multiple myeloma is a plasma cell neoplasm. The emergence of proteasome inhibitors, immunomodulatory drugs, and anti-CD38 monoclonal antibodies has improved the prognosis of multiple myeloma patients. However, some patients are still insensitive to conventional therapy or frequently relapse after remission. Chemotherapy based on proteasome inhibitors or immunomodulatory drugs is ineffective in controlling the progression of relapsed refractory multiple myeloma. No consensus has been reached on treating relapsed refractory multiple myeloma to date. Recently chimeric antigen receptor T cells therapy has shown promising results that could achieve rapid remissions of patients and improve their prognoses. Additionally, most patients in chimeric antigen receptor T cell clinical trials were triple-refractory multiple myeloma patients, indicating that chimeric antigen receptor T cell immunotherapy could overcome drug resistance to new drugs. Since single immunotherapies are prone to acquired resistance, combination immunotherapies based on emerging immunotherapies may solve this issue. Achieving complete remission and minimal residual disease negative status as soon as possible is beneficial to patients. This paper reviewed the main chimeric antigen receptor T cell products in relapsed refractory multiple myeloma, and it explained the drug resistance mechanism and improvement methods of chimeric antigen receptor T cells therapy. This review summarized the best beneficiaries of chimeric antigen receptor T cell therapy and the salvage treatment of disease recurrence after chimeric antigen receptor T cell therapy, providing some ideas for the clinical application of chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Hong Ding
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, China
| |
Collapse
|
36
|
Zhang C, Lin Q, Li C, Qiu Y, Chen J, Zhu X. Comprehensive analysis of the prognostic implication and immune infiltration of CISD2 in diffuse large B-cell lymphoma. Front Immunol 2023; 14:1277695. [PMID: 38155967 PMCID: PMC10754510 DOI: 10.3389/fimmu.2023.1277695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell lymphoma in adults. CDGSH iron sulfur domain 2 (CISD2) is an iron-sulfur protein and plays a critical role of cell proliferation. The aberrant expression of CISD2 is associated with the progression of multiple cancers. However, its role in DLBCL remains unclear. Methods The differential expression of CISD2 was identified via public databases, and quantitative real-time PCR (qRT-PCR) and western blot were used to identifed the expression of CISD2. We estimated the impact of CISD2 on clinical prognosis using the Kaplan-Meier plotter. Meanwhile, the drug sensitivity of CISD2 was assessed using CellMiner database. The 100 CISD2-related genes from STRING obtained and analyzed using the LASSO Cox regression. A CISD2 related signature for risk model (CISD2Risk) was established. The PPI network of CISD2Risk was performed, and functional enrichment was conducted through the DAVID database. The impacts of CISD2Risk on clinical features were analyzed. ESTIMATE, CIBERSORT, and MCP-counter algorithm were used to identify CISD2Risk associated with immune infiltration. Subsequently, Univariate and multivariate Cox regression analysis were applied, and a prognostic nomogram, accompanied by a calibration curve, was constructed to predict 1-, 3-, and 5-years survival probabilities. Results CISD2 was upregulated in DLBCL patients comparing with normal controls via public datasets, similarly, CISD2 was highly expressed in DLBCL cell lines. Overexpression of CISD2 was associated with poor prognosis in DLBCL patients based on the GSE31312, the GSE32918, and GSE93984 datasets (P<0.05). Nine drugs was considered as a potential therapeutic agents for CISD2. By using the LASSO cox regression, twenty seven genes were identified to construct CISD2Risk, and biological functions of these genes might be involved in apoptosis and P53 signaling pathway. The high CISD2Risk value had a worse prognosis and therapeutic effect (P<0.05). The higher stromal score, immune score, and ESTIMATE score were associated with lowe CISD2Risk value, CISD2Risk was negatively correlated with several immune infiltrating cells (macrophages M0 and M1, CD8 T cells, CD4 naïve T cells, NK cell, etc) that might be correlated with better prognosis. Additionally, The high CISD2Risk was identified as an independent prognostic factor for DLBCL patients using both univariate and multivariate Cox regression. The nomogram produced accurate predictions and the calibration curves were in good agreement. Conclusion Our study demonstrates that high expression of CISD2 in DLBCL patients is associated with poor prognosis. We have successfully constructed and validated a good prognostic prediction and efficacy monitoring for CISD2Risk that included 27 genes. Meanwhile, CISD2Risk may be a promising evaluator for immune infiltration and serve as a reference for clinical decision-making in DLBCL patients.
Collapse
Affiliation(s)
- ChaoFeng Zhang
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, China
- The School of Basic Medicine, Putian University, Putian, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, China
| | - ChunTuan Li
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yang Qiu
- The School of Basic Medicine, Putian University, Putian, China
| | - JingYu Chen
- The School of Basic Medicine, Putian University, Putian, China
| | - XiongPeng Zhu
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
37
|
Nowicki TS, Peters CW, Quiros C, Kidd CK, Kawakami M, Klomhaus AM, Baselga-Carretero I, Kaplan-Lefko P, Macabali MH, Perez Garcilazo I, Berent-Maoz B, Comin-Anduix B, Ribas A. Infusion Product TNFα, Th2, and STAT3 Activities Are Associated with Clinical Responses to Transgenic T-cell Receptor Cell Therapy. Cancer Immunol Res 2023; 11:1589-1597. [PMID: 37871333 PMCID: PMC10702871 DOI: 10.1158/2326-6066.cir-23-0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Transgenic T-cell receptor (TCR) T cell-based adoptive cell therapies for solid tumors are associated with dramatic initial response rates, but there remain many instances of treatment failure and disease relapse. The association of infusion product cytokine profiles with clinical response has not been explored in the context of TCR T-cell therapy products. Single-cell antigen-dependent secretomic and proteomic analysis of preinfusion clinical TCR T-cell therapy products revealed that TNFα cytokine functionality of CD8+ T cells and phospho-STAT3 signaling in these cells were both associated with superior clinical responsiveness to therapy. By contrast, CD4+ T-helper 2 cell cytokine profiles were associated with inferior clinical responses. In parallel, preinfusion levels of IL15, Flt3-L, and CX3CL1 were all found to be associated with clinical response to therapy. These results have implications for the development of therapeutic biomarkers and identify potential targets for enrichment in the design of transgenic TCR T-cell therapies for solid tumors.
Collapse
Affiliation(s)
- Theodore S. Nowicki
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California
| | - Cole W. Peters
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California
| | - Crystal Quiros
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California
| | - Conner K. Kidd
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California
| | - Moe Kawakami
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California
| | - Alexandra M. Klomhaus
- Department of General Internal Medicine and Health Services Research, University of California, Los Angeles, California
| | - Ignacio Baselga-Carretero
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Paula Kaplan-Lefko
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Mignonette H. Macabali
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Ivan Perez Garcilazo
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Beata Berent-Maoz
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Begoña Comin-Anduix
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, Los Angeles, California
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, Los Angeles, California
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
38
|
Leone G, Baldini V, Bramanti S, Crocchiolo R, Gattillo S, Ermini S, Giudice V, Ferrero I, Moscato T, Milani R, Gozzer M, Piccirillo N, Tassi C, Tassi V, Coluccia P. Managing leukapheresis in adult and pediatric patients eligible for chimeric antigen receptor T-cell therapy: suggestions from an Italian Expert Panel. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2023; 21:514-525. [PMID: 37146295 PMCID: PMC10645345 DOI: 10.2450/bloodtransfus.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/18/2023] [Indexed: 05/07/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy relies on T cells engineered to target specific tumor antigens such as CD-19 in B-cell malignancies. In this setting, the commercially available products have offered a potential long-term cure for both pediatric and adult patients. Yet manufacturing CAR T cells is a cumbersome, multistep process, the success of which strictly depends on the characteristics of the starting material, i.e., lymphocyte collection yield and composition. These, in turn, might be affected by patient factors such as age, performance status, comorbidities, and previous therapies. Ideally, CAR T-cell therapies are a one-off treatment; therefore, optimization and the possible standardization of the leukapheresis procedure is critical, also in view of the novel CAR T cells currently under investigation for hematological malignancies and solid tumors. The most recent Best Practice recommendations for the management of children and adults undergoing CAR T-cell therapy provide a comprehensive guide to their use. However, their application in local practice is not straightforward and some grey areas remain. An Italian Expert Panel of apheresis specialists and hematologists from the centers authorized to administer CAR T-cell therapy took part in a detailed discussion on the following: 1) pre-apheresis patient evaluation; 2) management of the leukapheresis procedure, also in special situations represented by low lymphocyte count, peripheral blastosis, pediatric population <25 kg, and the COVID-19 outbreak; and 3) release and cryopreservation of the apheresis unit. This article presents some of the important challenges that must be faced to optimize the leukapheresis procedure and offers suggestions as to how to improve it, some of which are specific to the Italian setting.
Collapse
Affiliation(s)
- Giovanna Leone
- Unit of Immuno-Hematology and Transfusion Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Stefania Bramanti
- Cancer Center, Humanitas Cancer Center, IRCCS, Rozzano, Milan, Italy
| | | | - Salvatore Gattillo
- Immuno-Hematology and Transfusion Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Stefano Ermini
- Transfusion Service, University Hospital Meyer, Children’s Hospital, Florence, Italy
| | - Valeria Giudice
- Immuno-Hematology and Transfusion Medicine Unit, University Hospital Sant’ Orsola-Malpighi, Bologna, Italy
| | - Ivana Ferrero
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Hematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, Turin, Italy
| | - Tiziana Moscato
- Stem Cell Transplant and Cellular Therapies Unit, Hemato-Oncology and Radiotherapy Department, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Raffaella Milani
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Gozzer
- Hematology, Department of Translational and Precision Medicine, Sapienza University Policlinico Umberto I, Rome, Italy
| | - Nicola Piccirillo
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Complex Operational Unit of Blood Transfusion, Gemelli University Hospital IRCCS, Rome, Italy
| | - Cristina Tassi
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Hematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, Turin, Italy
| | - Valter Tassi
- Blood Bank and Immunohematology, City of Health and Science of Turin, Turin, Italy
| | - Paola Coluccia
- Immunohematology and Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
39
|
Mehra V, Chhetri JB, Ali S, Roddie C. The Emerging Role of Induced Pluripotent Stem Cells as Adoptive Cellular Immunotherapeutics. BIOLOGY 2023; 12:1419. [PMID: 37998018 PMCID: PMC10669440 DOI: 10.3390/biology12111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
Adoptive cell therapy (ACT) has transformed the treatment landscape for cancer and infectious disease through the investigational use of chimeric antigen receptor T-cells (CAR-Ts), tumour-infiltrating lymphocytes (TILs) and viral-specific T-cells (VSTs). Whilst these represent breakthrough treatments, there are subsets of patients who fail to respond to autologous ACT products. This is frequently due to impaired patient T-cell function or "fitness" as a consequence of prior treatments and age, and can be exacerbated by complex manufacturing protocols. Further, the manufacture of autologous, patient-specific products is time-consuming, expensive and non-standardised. Induced pluripotent stem cells (iPSCs) as an allogeneic alternative to patient-specific products can potentially overcome the issues outlined above. iPSC technology provides an unlimited source of rejuvenated iPSC-derived T-cells (T-iPSCs) or natural killer (NK) cells (NK-iPSCs), and in the context of the growing field of allogeneic ACT, iPSCs have enormous potential as a platform for generating off-the-shelf, standardised, "fit" therapeutics for patients. In this review, we evaluate current and future applications of iPSC technology in the CAR-T/NK, TIL and VST space. We discuss current and next-generation iPSC manufacturing protocols, and report on current iPSC-based adoptive therapy clinical trials to elucidate the potential of this technology as the future of ACT.
Collapse
Affiliation(s)
| | | | | | - Claire Roddie
- Research Department of Haematology, Cancer Institute, University College London, Paul O’Gorman Building, London WCIE 6DD, UK
| |
Collapse
|
40
|
Callahan C, Haas L, Smith L. CAR-T cells for pediatric malignancies: Past, present, future and nursing implications. Asia Pac J Oncol Nurs 2023; 10:100281. [PMID: 38023730 PMCID: PMC10661550 DOI: 10.1016/j.apjon.2023.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/30/2023] [Indexed: 12/01/2023] Open
Abstract
The treatment landscape for pediatric cancers over the last 11 years has undergone a dramatic change, especially with relapsed and refractory B-cell acute lymphoblastic leukemia (ALL), due to the introduction of chimeric antigen receptor-T (CAR-T) cell therapy. Because of the success of CAR-T cell therapy in patients with relapsed and refractory B-cell ALL, this promising therapy is undergoing trials in multiple other pediatric malignancies. This article will focus on the introduction of CAR-T cell therapy in pediatric B-cell ALL and discuss past and current trials. We will also discuss trials for CAR-T cell therapy in other pediatric malignancies. This information was gathered through a comprehensive literature review along with using first hand institutional experience. Due to the potential severe toxicities related to CAR-T cell therapy, safe practices and monitoring are key. These authors demonstrate that nurses have a profound responsibility in preparing and caring for patients and families, monitoring and managing side effects in these patients, ensuring that study guidelines are followed, and providing continuity for patients, families, and referring providers. Education of nurses is crucial for improved patient outcomes.
Collapse
Affiliation(s)
- Colleen Callahan
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Lauren Haas
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Laura Smith
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
41
|
Sanber K, Rosner S, Forde PM, Marrone KA. Neoadjuvant Immunotherapy for Non-Small Cell Lung Cancer. BioDrugs 2023; 37:775-791. [PMID: 37603233 DOI: 10.1007/s40259-023-00614-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Immune checkpoint blockade (ICB) has improved outcomes for patients with advanced non-small cell lung carcinoma (NSCLC). Building off of this, it has been hypothesized that the utilization of ICB early during the disease course may be advantageous, particularly in the neoadjuvant setting prior to definitive surgical resection. Preclinical studies have suggested that a more potent immune response may be induced by neoadjuvant ICB in the presence of a higher antigen burden and intact tumor draining lymph nodes. Recent clinical trials evaluating neoadjuvant ICB with or without chemotherapy combinations in patients with resectable NSCLC led to improved pathological responses and longer event-free survival when neoadjuvant ICB was added to chemotherapy. Surgical outcomes were also supportive of this approach, with encouraging rates of pathological downstaging. Additionally, the availability of pre-treatment biopsy samples and post-treatment surgical resection tissues facilitates the conducting of correlative studies that continue to improve our understanding of the mechanisms of response and resistance to ICB. As long-term survival outcomes from ongoing clinical trials are awaited, several important questions require further investigation, including the optimal duration of neoadjuvant therapy, the clinical endpoints most predictive of long-term outcomes, and translational studies that should be investigated in future trial designs. Additionally, the optimal clinical management of patients with residual disease at the time of surgical resection and those who experience recurrence remains to be determined. In this review, we will (1) discuss the rationale behind neoadjuvant ICB-based therapy in NSCLC, (2) summarize the clinical data available thus far, and (3) highlight unanswered questions that need to be addressed in future studies to maximize the clinical benefits of this approach.
Collapse
Affiliation(s)
- Khaled Sanber
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 301 Mason Lord Drive, Suite 4500, Baltimore, MD, 21224, USA
| | - Samuel Rosner
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 301 Mason Lord Drive, Suite 4500, Baltimore, MD, 21224, USA
| | - Patrick M Forde
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 301 Mason Lord Drive, Suite 4500, Baltimore, MD, 21224, USA
| | - Kristen A Marrone
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 301 Mason Lord Drive, Suite 4500, Baltimore, MD, 21224, USA.
| |
Collapse
|
42
|
Galli E, Bellesi S, Pansini I, Di Cesare G, Iacovelli C, Malafronte R, Maiolo E, Chiusolo P, Sica S, Sorà F, Hohaus S. The CD4/CD8 ratio of infused CD19-CAR-T is a prognostic factor for efficacy and toxicity. Br J Haematol 2023; 203:564-570. [PMID: 37789569 DOI: 10.1111/bjh.19117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
CD4+ and CD8+ chimeric antigen receptor T cells (CAR-T) play different roles in the in vivo anti-tumour response, but the role of the CD4+ /CD8+ ratio among infused CAR-T has not been clearly defined yet. We analysed leftovers from infused anti-CD19 CAR-T bags of 31 patients with aggressive B-cell lymphomas. The median ratio was 1.44, lower for brexu-cel compared to tisa-cel and axi-cel. The CAR+CD4+ /CD8+ ratio was influenced by lactate dehydrogenase levels at apheresis, not by age, previous treatments or the CD4+ /CD8+ ratio in peripheral blood. Patients with a response at 3 months after CAR-T (M3) had a lower CAR+CD4+ /CD8+ ratio in the infused products compared to non-responders (ratio 0.74 vs. 2.47, p = 0.011). A CAR+CD4+ /CD8+ ratio higher than the cut point of 1.12 was associated with an increased risk of treatment failure at M3 (OR 23.3, p = 0.012) and M6 (OR 10, p = 0.028). The median 6-month PFS was 76% for patients with a ratio lower than 1.12% vs. 31% for the others. The prognostic role of the CAR+CD4+ /CD8+ ratio was independent of the costimulatory domain (CD28 vs. 4-1BB) of the product (OR 16.41, p = 0.041). Our data indicate a crucial role for CD8+ CAR-T and the CAR+CD4+ /CD8+ ratio in predicting CAR-T efficacy.
Collapse
Affiliation(s)
- Eugenio Galli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ilaria Pansini
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Di Cesare
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Camilla Iacovelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rosalia Malafronte
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elena Maiolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Sorà
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefan Hohaus
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
43
|
Almaeen AH, Abouelkheir M. CAR T-Cells in Acute Lymphoblastic Leukemia: Current Status and Future Prospects. Biomedicines 2023; 11:2693. [PMID: 37893067 PMCID: PMC10604728 DOI: 10.3390/biomedicines11102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The currently available treatment for acute lymphoblastic leukemia (ALL) is mainly dependent on the combination of chemotherapy, steroids, and allogeneic stem cell transplantation. However, refractoriness and relapse (R/R) after initial complete remission may reach up to 20% in pediatrics. This percentage may even reach 60% in adults. To overcome R/R, a new therapeutic approach was developed using what is called chimeric antigen receptor-modified (CAR) T-cell therapy. The Food and Drug Administration (FDA) in the United States has so far approved four CAR T-cells for the treatment of ALL. Using this new therapeutic strategy has shown a remarkable success in treating R/R ALL. However, the use of CAR T-cells is expensive, has many imitations, and is associated with some adverse effects. Cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are two common examples of these adverse effects. Moreover, R/R to CAR T-cell therapy can take place during treatment. Continuous development of this therapeutic strategy is ongoing to overcome these limitations and adverse effects. The present article overviews the use of CAR T-cell in the treatment of ALL, summarizing the results of relevant clinical trials and discussing future prospects intended to improve the efficacy of this therapeutic strategy and overcome its limitations.
Collapse
Affiliation(s)
- Abdulrahman H. Almaeen
- Department of Pathology, Pathology Division, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
44
|
Cho S, Miller A, Mosha M, McNerney KO, Metts J. Clinical Trials on Cellular Therapy for Children and Adolescents With Cancer: A 15-Year Trend in the United States. Cureus 2023; 15:e47885. [PMID: 38021600 PMCID: PMC10681796 DOI: 10.7759/cureus.47885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Cellular therapies are frequently studied in clinical trials for pediatric patients with malignant disease. Characteristics of ongoing and completed cellular therapy clinical trials in the U.S. involving children and adolescents have not previously been reported. METHODS We searched ClinicalTrials.gov for clinical trials involving cellular therapies enrolling patients under 18 years of age in the U.S. Trials were initially stratified into child-only (maximum age of eligibility <18 years), child/adolescent and young adult (AYA) (maximum age of eligibility ≤21 years), and child/adult (maximum age of eligibility >21 years). Descriptive characteristics and trends over time were analyzed. RESULTS We included 202 trials posted 2007-2022. Of the 202 trials, only three trials were child-only; thus, our subsequent analysis focused on comparing child/AYA (≤21 years) and child/adult trials (>21 years). One hundred sixty-nine (84%) enrolled both child and adult populations. The vast majority of trials were early phase (phase 1, 1/2, and 2, 198/202, 98%). Chimeric antigen receptor T cell therapies were most commonly studied (88/202, 44%), while natural-killer cell therapies were most common in child/AYA trials (42% vs. 16%). Most trials were single institution-only (130/202, 64%) and did not receive industry funding (163/202, 81%). Studies with industry funding were more likely to be multicenter (64% vs. 29%) and international (31% vs. 0.6%). Notably, no central nervous system tumor-specific trials had industry funding. There was no difference in therapy type based on funding source. Yearly new trial activations increased over the time period studied (p=0.01). CONCLUSION The frequency of cellular therapy trial activations enrolling child/AYA patients with cancer in the U.S. has increased over time. Most studies were phase 1 or 2, single institution-only, and not industry-supported. Future opportunities for cell therapy for pediatric cancer should include multi-institutional approaches.
Collapse
Affiliation(s)
- Sukjoo Cho
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, USA
| | - Alexandra Miller
- Data Coordinating Center for Pediatric Multicenter Studies, Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, USA
| | - Maua Mosha
- Data Coordinating Center for Pediatric Multicenter Studies, Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, USA
| | - Kevin O McNerney
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, USA
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
45
|
Mody H, Ogasawara K, Zhu X, Miles D, Shastri PN, Gokemeijer J, Liao MZ, Kasichayanula S, Yang TY, Chemuturi N, Gupta S, Jawa V, Upreti VV. Best Practices and Considerations for Clinical Pharmacology and Pharmacometric Aspects for Optimal Development of CAR-T and TCR-T Cell Therapies: An Industry Perspective. Clin Pharmacol Ther 2023; 114:530-557. [PMID: 37393588 DOI: 10.1002/cpt.2986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
With the promise of a potentially "single dose curative" paradigm, CAR-T cell therapies have brought a paradigm shift in the treatment and management of hematological malignancies. Both CAR-T and TCR-T cell therapies have also made great progress toward the successful treatment of solid tumor indications. The field is rapidly evolving with recent advancements including the clinical development of "off-the-shelf" allogeneic CAR-T therapies that can overcome the long and difficult "vein-to-vein" wait time seen with autologous CAR-T therapies. There are unique clinical pharmacology, pharmacometric, bioanalytical, and immunogenicity considerations and challenges in the development of these CAR-T and TCR-T cell therapies. Hence, to help accelerate the development of these life-saving therapies for the patients with cancer, experts in this field came together under the umbrella of International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) to form a joint working group between the Clinical Pharmacology Leadership Group (CPLG) and the Translational and ADME Sciences Leadership Group (TALG). In this white paper, we present the IQ consortium perspective on the best practices and considerations for clinical pharmacology and pharmacometric aspects toward the optimal development of CAR-T and TCR-T cell therapies.
Collapse
Affiliation(s)
- Hardik Mody
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | - Ken Ogasawara
- Clinical Pharmacology, Pharmacometrics, Disposition and Bioanalysis, Bristol Myers Squibb, Lawrence Township, New Jersey, USA
| | - Xu Zhu
- Quantitative Clinical Pharmacology, AstraZeneca, Boston, Massachusetts, USA
| | - Dale Miles
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | | | - Jochem Gokemeijer
- Discovery Biotherapeutics, Bristol Myers Squibb, Cambridge, Massachusetts, USA
| | - Michael Z Liao
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | | | - Tong-Yuan Yang
- Bioanalytical Discovery and Development Sciences, Janssen R&D, LLC, Spring House, Pennsylvania, USA
| | - Nagendra Chemuturi
- Clinical Pharmacology, DMPK, Pharmacometrics, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Swati Gupta
- Development Biological Sciences, Immunology, AbbVie, Irvine, California, USA
| | - Vibha Jawa
- Clinical Pharmacology, Pharmacometrics, Disposition and Bioanalysis, Bristol Myers Squibb, Lawrence Township, New Jersey, USA
| | - Vijay V Upreti
- Clinical Pharmacology, Modeling & Simulation, Amgen, South San Francisco, California, USA
| |
Collapse
|
46
|
Yang ZZ, Kim HJ, Wu H, Tang X, Yu Y, Krull J, Larson DP, Moore RM, Maurer MJ, Pavelko KD, Jalali S, Pritchett JC, Mudappathi R, Wang J, Villasboas JC, Mondello P, Novak AJ, Ansell SM. T-cell phenotype including CD57 + T follicular helper cells in the tumor microenvironment correlate with a poor outcome in follicular lymphoma. Blood Cancer J 2023; 13:124. [PMID: 37591873 PMCID: PMC10435479 DOI: 10.1038/s41408-023-00899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
T-lymphocytes are prevalent in the tumor microenvironment of follicular lymphoma (FL). However, the phenotype of T-cells may vary, and the prevalence of certain T-cell subsets may influence tumor biology and patient survival. We therefore analyzed a cohort of 82 FL patients using CyTOF to determine whether specific T-cell phenotypes were associated with distinct tumor microenvironments and patient outcome. We identified four immune subgroups with differing T-cell phenotypes and the prevalence of certain T-cell subsets was associated with patient survival. Patients with increased T cells with early differentiation stage tended to have a significantly better survival than patients with increased T-cells of late differentiation stage. Specifically, CD57+ TFH cells, with a late-stage differentiation phenotype, were significantly more abundant in FL patients who had early disease progression and therefore correlated with an inferior survival. Single cell analysis (CITE-seq) revealed that CD57+ TFH cells exhibited a substantially different transcriptome from CD57- TFH cells with upregulation of inflammatory pathways, evidence of immune exhaustion and susceptibility to apoptosis. Taken together, our results show that different tumor microenvironments among FL patients are associated with variable T-cell phenotypes and an increased prevalence of CD57+ TFH cells is associated with poor patient survival.
Collapse
Affiliation(s)
- Zhi-Zhang Yang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Hyo Jin Kim
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hongyan Wu
- Department of Immunology, Medical College, China Three Gorges University, Yichang, Hubei, China
| | - Xinyi Tang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yue Yu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jordan Krull
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Raymond M Moore
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Maurer
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Shahrzad Jalali
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joshua C Pritchett
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rekha Mudappathi
- Department of Quantitative Health Sciences and center for Individual Medicine, Mayo Clinic, Scottsdale, AZ, USA
- College of Health Solutions, Arizona State University, Scottsdale, AZ, USA
| | - Junwen Wang
- Department of Quantitative Health Sciences and center for Individual Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Jose C Villasboas
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Patrizia Mondello
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen M Ansell
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
47
|
Hassan R, Butler M, O'Cearbhaill RE, Oh DY, Johnson M, Zikaras K, Smalley M, Ross M, Tanyi JL, Ghafoor A, Shah NN, Saboury B, Cao L, Quintás-Cardama A, Hong D. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: phase 1/2 trial interim results. Nat Med 2023; 29:2099-2109. [PMID: 37501016 PMCID: PMC10427427 DOI: 10.1038/s41591-023-02452-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023]
Abstract
The T cell receptor fusion construct (TRuC) gavocabtagene autoleucel (gavo-cel) consists of single-domain anti-mesothelin antibody that integrates into the endogenous T cell receptor (TCR) and engages the signaling capacity of the entire TCR upon mesothelin binding. Here we describe phase 1 results from an ongoing phase1/2 trial of gavo-cel in patients with treatment-refractory mesothelin-expressing solid tumors. The primary objectives were to evaluate safety and determine the recommended phase 2 dose (RP2D). Secondary objectives included efficacy. Thirty-two patients received gavo-cel at increasing doses either as a single agent (n = 3) or after lymphodepletion (LD, n = 29). Dose-limiting toxicities of grade 3 pneumonitis and grade 5 bronchioalveolar hemorrhage were noted. The RP2D was determined as 1 × 108 cells per m2 after LD. Grade 3 or higher pneumonitis was seen in 16% of all patients and in none at the RP2D; grade 3 or higher cytokine release syndrome occurred in 25% of all patients and in 15% at the RP2D. In 30 evaluable patients, the overall response rate and disease control rate were 20% (13% confirmed) and 77%, respectively, and the 6-month overall survival rate was 70%. Gavo-cel warrants further study in patients with mesothelin-expressing cancers given its encouraging anti-tumor activity, but it may have a narrow therapeutic window. ClinicalTrials.gov identifier: NCT03907852 .
Collapse
Affiliation(s)
- Raffit Hassan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Marcus Butler
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Roisin E O'Cearbhaill
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Janos L Tanyi
- Hospital of the University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA, USA
| | - Azam Ghafoor
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Liang Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - David Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
48
|
Worel N, Holbro A, Vrielink H, Ootjers C, Le Poole K, Beer-Wekking I, Rintala T, Lozano M, Bonig H. A guide to the collection of T-cells by apheresis for ATMP manufacturing-recommendations of the GoCART coalition apheresis working group. Bone Marrow Transplant 2023; 58:742-748. [PMID: 37024570 DOI: 10.1038/s41409-023-01957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
Autologous chimeric antigen receptor-modified T-cells (CAR-T) provide meaningful benefit for otherwise refractory malignancies. As clinical indications for CAR-T cells are expanding, hospitals hitherto not active in the field of immune effector cell therapy will need to build capacity and expertise. The GoCART Coalition seeks to disseminate knowledge and skills to facilitate the introduction of CAR-T cells and to standardize management and documentation of CAR-T cell recipients, in order to optimize outcomes and to be able to benchmark clinical results against other centers. Apheresis generates the starting material for CAR-T cell manufacturing. This guide provides some initial suggestions for patient's apheresis readiness and performance to collect starting material and should thus facilitate the implementation of a CAR-T-starting material apheresis facility. It cannot replace, of course, the extensive training needed to perform qualitative apheresis collections in compliance with national and international regulations and assess their cellular composition and biological safety.
Collapse
Affiliation(s)
- Nina Worel
- Department for Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria.
| | - Andreas Holbro
- Regional Blood Transfusion Service, Swiss Red Cross, Basel, Switzerland
- Division of Hematology, University Hospital Basel and University Basel, Basel, Switzerland
- Innovation Focus Cell Therapies, University Hospital Basel, Basel, Switzerland
| | - Hans Vrielink
- Department for Transfusion Medicine, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Claudia Ootjers
- Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kaatje Le Poole
- Department for Transfusion Medicine, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Ingrid Beer-Wekking
- Department of Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Miquel Lozano
- Apheresis and Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, University Clinic Hospital, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt a.M., Germany
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| |
Collapse
|
49
|
Mulgaonkar A, Udayakumar D, Yang Y, Harris S, Öz OK, Ramakrishnan Geethakumari P, Sun X. Current and potential roles of immuno-PET/-SPECT in CAR T-cell therapy. Front Med (Lausanne) 2023; 10:1199146. [PMID: 37441689 PMCID: PMC10333708 DOI: 10.3389/fmed.2023.1199146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Durga Udayakumar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yaxing Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan Geethakumari
- Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
50
|
Dabaja B, Spiotto M. Radiation for hematologic malignancies: from cell killing to immune cell priming. Front Oncol 2023; 13:1205836. [PMID: 37384297 PMCID: PMC10299853 DOI: 10.3389/fonc.2023.1205836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Over the past half-century, the role of radiotherapy has been revolutionized, in part, by a shift from intent to directly kill cancer cells to the goal of priming anti-tumor immune responses that attack both irradiated and non-irradiated tumors. Stimulation of anti-tumor immunity depends on the interplay between radiation, the tumor microenvironment, and the host immune system, which is a burgeoning concept in cancer immunology. While the interplay of radiotherapy and the immune system has been primarily studied in solid tumors, we are beginning to understand this interplay in hematological malignancies. The intent of this review is to lead readers through some of the important recent advances in immunotherapy and adoptive cell therapy, highlighting the best available evidence in support of incorporating radiation therapy and immunotherapy into the treatment of hematological malignancies. Evidence is presented regarding how radiation therapy 'converses' with the immune system to stimulate and enhance anti-tumor immune responses. This pro-immunogenic role of radiotherapy can be combined with monoclonal antibodies, cytokines and/or other immunostimulatory agents to enhance the regression of hematological malignancies. Furthermore, we will discuss how radiotherapy facilitates the effectiveness of cellular immunotherapies by acting as a "bridge" that facilitated CAR T cell engraftment and activity. These initial studies suggest radiotherapy may help catalyze a shift from using chemotherapy-intensive treatment to treatment that is "chemo-free" by combining with immunotherapy to target both the radiated and non-irradiated disease sites. This "journey" has opened the door for novel uses of radiotherapy in hematological malignancies due to its ability to prime anti-tumor immune responses which can augment immunotherapy and adoptive cell-based therapy.
Collapse
|