1
|
Chatterjee G, He R, Patkar N, Viswanatha D, Langerak AW. Molecular techniques in haematopathology: what and how? Histopathology 2025; 86:38-57. [PMID: 39403025 DOI: 10.1111/his.15332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Here we review the 'what and how' of molecular techniques used in the context of haematopathological diagnostics of both lymphoid and myeloid neoplasms. Keeping in mind that the required resources for molecular testing are not universally available, we will not only discuss novel and emerging techniques that allow more high-throughput and sophisticated analyses of lymphoid and myeloid neoplasms, but also the more classical, low-cost alternatives and even some workarounds for molecular testing approaches. In this review we also address other key aspects around molecular techniques for haematopatholgy diagnostics, including preanalytics, data interpretation, and data management, bioinformatics, and interlaboratory precision and performance evaluation.
Collapse
Affiliation(s)
- Gaurav Chatterjee
- Hematopathology Department, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Rong He
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Nikhil Patkar
- Hematopathology Department, ACTREC, Tata Memorial Centre, Mumbai, India
| | | | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Gao Q, Shen K, Xiao M. TET2 mutation in acute myeloid leukemia: biology, clinical significance, and therapeutic insights. Clin Epigenetics 2024; 16:155. [PMID: 39521964 PMCID: PMC11550532 DOI: 10.1186/s13148-024-01771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
TET2 is a critical gene that regulates DNA methylation, encoding a dioxygenase protein that plays a vital role in the regulation of genomic methylation and other epigenetic modifications, as well as in hematopoiesis. Mutations in TET2 are present in 7%-28% of adult acute myeloid leukemia (AML) patients. Despite this, the precise mechanisms by which TET2 mutations contribute to malignant transformation and how these insights can be leveraged to enhance treatment strategies for AML patients with TET2 mutations remain unclear. In this review, we provide an overview of the functions of TET2, the effects of its mutations, its role in clonal hematopoiesis, and the possible mechanisms of leukemogenesis. Additionally, we explore the mutational landscape across different AML subtypes and present recent promising preclinical research findings.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Kefeng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Pendse S, Loeffler D. Decoding Clonal Hematopoiesis: Emerging Themes and Novel Mechanistic Insights. Cancers (Basel) 2024; 16:2634. [PMID: 39123361 PMCID: PMC11311828 DOI: 10.3390/cancers16152634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Clonal hematopoiesis (CH), the relative expansion of mutant clones, is derived from hematopoietic stem cells (HSCs) with acquired somatic or cytogenetic alterations that improve cellular fitness. Individuals with CH have a higher risk for hematological and non-hematological diseases, such as cardiovascular disease, and have an overall higher mortality rate. Originally thought to be restricted to a small fraction of elderly people, recent advances in single-cell sequencing and bioinformatics have revealed that CH with multiple expanded mutant clones is universal in the elderly population. Just a few years ago, phylogenetic reconstruction across the human lifespan and novel sensitive sequencing techniques showed that CH can start earlier in life, decades before it was thought possible. These studies also suggest that environmental factors acting through aberrant inflammation might be a common theme promoting clonal expansion and disease progression. However, numerous aspects of this phenomenon remain to be elucidated and the precise mechanisms, context-specific drivers, and pathways of clonal expansion remain to be established. Here, we review our current understanding of the cellular mechanisms driving CH and specifically focus on how pro-inflammatory factors affect normal and mutant HSC fates to promote clonal selection.
Collapse
Affiliation(s)
- Shalmali Pendse
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| | - Dirk Loeffler
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| |
Collapse
|
4
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2024:10.1007/s12015-024-10761-z. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
5
|
Pasupuleti SK, Kapur R. The impact of obesity-induced inflammation on clonal hematopoiesis. Curr Opin Hematol 2024; 31:193-198. [PMID: 38640133 PMCID: PMC11197996 DOI: 10.1097/moh.0000000000000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW This review meticulously delves into existing literature and recent findings to elucidate the intricate link between obesity and clonal hematopoiesis of indeterminate potential (CHIP) associated clonal hematopoiesis. It aims to enhance our comprehension of this multifaceted association, offering insights into potential avenues for future research and therapeutic interventions. RECENT FINDINGS Recent insights reveal that mutations in CHIP-associated genes are not limited to symptomatic patients but are also present in asymptomatic individuals. This section focuses on the impact of obesity-induced inflammation and fatty bone marrow (FBM) on the development of CHIP-associated diseases. Common comorbidities such as obesity, diabetes, and infection, fostering pro-inflammatory environments, play a pivotal role in the acceleration of these pathologies. Our research underscores a notable association between CHIP and an increased waist-to-hip ratio (WHR), emphasizing the link between obesity and myeloid leukemia. Recent studies highlight a strong correlation between obesity and myeloid leukemias in both children and adults, with increased risks and poorer survival outcomes in overweight individuals. SUMMARY We discuss recent insights into how CHIP-associated pathologies respond to obesity-induced inflammation, offering implications for future studies in the intricate field of clonal hematopoiesis.
Collapse
Affiliation(s)
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, Indiana, USA
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Orsmark-Pietras C, Lyander A, Ladenvall C, Hallström B, Staffas A, Awier H, Krstic A, Baliakas P, Barbany G, Håkansson CB, Gellerbring A, Hagström A, Hellström-Lindberg E, Juliusson G, Lazarevic V, Munters A, Pandzic T, Wadelius M, Ås J, Fogelstrand L, Wirta V, Rosenquist R, Cavelier L, Fioretos T. Precision Diagnostics in Myeloid Malignancies: Development and Validation of a National Capture-Based Gene Panel. Genes Chromosomes Cancer 2024; 63:e23257. [PMID: 39031442 DOI: 10.1002/gcc.23257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/23/2024] [Indexed: 07/22/2024] Open
Abstract
Gene panel sequencing has become a common diagnostic tool for detecting somatically acquired mutations in myeloid neoplasms. However, many panels have restricted content, provide insufficient sensitivity levels, or lack clinically validated workflows. We here describe the development and validation of the Genomic Medicine Sweden myeloid gene panel (GMS-MGP), a capture-based 191 gene panel including mandatory genes in contemporary guidelines as well as emerging candidates. The GMS-MGP displayed uniform coverage across all targets, including recognized difficult GC-rich areas. The validation of 117 previously described somatic variants showed a 100% concordance with a limit-of-detection of a 0.5% variant allele frequency (VAF), achieved by utilizing error correction and filtering against a panel-of-normals. A national interlaboratory comparison investigating 56 somatic variants demonstrated highly concordant results in both detection rate and reported VAFs. In addition, prospective analysis of 323 patients analyzed with the GMS-MGP as part of standard-of-care identified clinically significant genes as well as recurrent mutations in less well-studied genes. In conclusion, the GMS-MGP workflow supports sensitive detection of all clinically relevant genes, facilitates novel findings, and is, based on the capture-based design, easy to update once new guidelines become available. The GMS-MGP provides an important step toward nationally harmonized precision diagnostics of myeloid malignancies.
Collapse
Affiliation(s)
- Christina Orsmark-Pietras
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Anna Lyander
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Clinical Genomics Stockholm, Science Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Claes Ladenvall
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Björn Hallström
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Anna Staffas
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Hero Awier
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Krstic
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Gisela Barbany
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Brunhoff Håkansson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Anna Gellerbring
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Anna Hagström
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Eva Hellström-Lindberg
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gunnar Juliusson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Arielle Munters
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacogenomics, Uppsala University, Uppsala, Sweden
| | - Joel Ås
- Department of Medical Sciences, Clinical Pharmacogenomics, Uppsala University, Uppsala, Sweden
| | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valtteri Wirta
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Clinical Genomics Stockholm, Science Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science Life Laboratory, Karolinska Institutet, Solna, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Werneth CM, Patel ZS, Thompson MS, Blattnig SR, Huff JL. Considering clonal hematopoiesis of indeterminate potential in space radiation risk analysis for hematologic cancers and cardiovascular disease. COMMUNICATIONS MEDICINE 2024; 4:105. [PMID: 38862635 PMCID: PMC11166645 DOI: 10.1038/s43856-023-00408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/16/2023] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Expanding human presence in space through long-duration exploration missions and commercial space operations warrants improvements in approaches for quantifying crew space radiation health risks. Currently, risk assessment models for radiogenic cancer and cardiovascular disease consider age, sex, and tobacco use, but do not incorporate other modifiable (e.g., body weight, physical activity, diet, environment) and non-modifiable individual risk factors (e.g., genetics, medical history, race/ethnicity, family history) that may greatly influence crew health both in-mission and long-term. For example, clonal hematopoiesis of indeterminate potential (CHIP) is a relatively common age-related condition that is an emerging risk factor for a variety of diseases including cardiovascular disease and cancer. CHIP carrier status may therefore exacerbate health risks associated with space radiation exposure. METHODS In the present study, published CHIP hazard ratios were used to modify background hazard rates for coronary heart disease, stroke, and hematologic cancers in the National Aeronautics and Space Administration space radiation risk assessment model. The risk of radiation exposure-induced death for these endpoints was projected for a future Mars exploration mission scenario. RESULTS Here we show appreciable increases in the lifetime risk of exposure-induced death for hematologic malignancies, coronary heart disease, and stroke, which are observed as a function of age after radiation exposure for male and female crew members that are directly attributable to the elevated health risks for CHIP carriers. CONCLUSIONS We discuss the importance of evaluating individual risk factors such as CHIP as part of a comprehensive space radiation risk assessment strategy aimed at effective risk communication and disease surveillance for astronauts embarking on future exploration missions.
Collapse
Affiliation(s)
| | - Zarana S Patel
- Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
8
|
Ward A, Farengo-Clark D, McKenna DB, Safonov A, Good M, Le A, Kessler L, Shah PD, Bradbury AR, Domchek SM, Nathanson KL, Powers J, Maxwell KN. Clinical management of TP53 mosaic variants found on germline genetic testing. Cancer Genet 2024; 284-285:43-47. [PMID: 38677009 PMCID: PMC11168919 DOI: 10.1016/j.cancergen.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Germline heterozygous TP53 pathogenic variants (PVs) cause Li Fraumeni Syndrome (LFS, OMIM#151623). TP53 PVs at lower-than-expected variant allele frequencies (VAF) may reflect postzygotic mosaicism (PZM) or clonal hematopoiesis (CH); however, no guidelines exist for workup and clinical management. PATIENTS AND METHODS Retrospective analysis of probands who presented to an academic cancer genetics program with a TP53 PV result on germline genetic testing. RESULTS Twenty-one of 125 unrelated probands (17 %) were found to harbor a TP53 PV with VAF<30 % or a designation of "mosaic". A diagnosis of PZM was made in nine (43 %) due to a clinical phenotype consistent with LFS with (n = 8) or without (n = 1) positive ancillary tissue testing. Twelve patients (57 %) were diagnosed with presumed CH (pCH) due to a diagnosis of a myeloproliferative neoplasm, negative ancillary tissue testing, clinical phenotype not meeting LFS criteria, no cancer, and/or no first cancer age<50. Of the 19 patients with biological offspring, nine had either partial or complete offspring testing, all negative. CONCLUSIONS Determining the etiology of low VAF TP53 PVs requires ancillary tissue testing and incorporation of clinical phenotype. Discerning PZM versus CH is important to provide optimal care and follow-up.
Collapse
Affiliation(s)
- Abigail Ward
- Master of Science in Genetic Counseling Program, Perelman School of Medicine, University of Pennsylvania, USA
| | - Dana Farengo-Clark
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, USA
| | - Danielle B McKenna
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, USA
| | - Anton Safonov
- Division of Translational Medicine and Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Madeline Good
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, USA
| | - Anh Le
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, USA
| | - Lisa Kessler
- Master of Science in Genetic Counseling Program, Perelman School of Medicine, University of Pennsylvania, USA
| | - Payal D Shah
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, USA
| | - Angela R Bradbury
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, USA
| | - Susan M Domchek
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacquelyn Powers
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, USA
| | - Kara N Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Duffy MJ, Crown J. Circulating tumor DNA (ctDNA): can it be used as a pan-cancer early detection test? Crit Rev Clin Lab Sci 2024; 61:241-253. [PMID: 37936529 DOI: 10.1080/10408363.2023.2275150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023]
Abstract
Circulating tumor DNA (ctDNA, DNA shed by cancer cells) is emerging as one of the most transformative cancer biomarkers discovered to-date. Although potentially useful at all the phases of cancer detection and patient management, one of its most exciting possibilities is as a relatively noninvasive pan-cancer screening test. Preliminary findings with ctDNA tests such as Galleri or CancerSEEK suggest that they have high specificity (> 99.0%) for malignancy. Their sensitivity varies depending on the type of cancer and stage of disease but it is generally low in patients with stage I disease. A major advantage of ctDNA over existing screening strategies is the potential ability to detect multiple cancer types in a single test. A limitation of most studies published to-date is that they are predominantly case-control investigations that were carried out in patients with a previous diagnosis of malignancy and that used apparently healthy subjects as controls. Consequently, the reported sensitivities, specificities and positive predictive values might be lower if the tests are used for screening in asymptomatic populations, that is, in the population where these tests are likely be employed. To demonstrate clinical utility in an asymptomatic population, these tests must be shown to reduce cancer mortality without causing excessive overdiagnosis in a large randomized prospective randomized trial. Such trials are currently ongoing for Galleri and CancerSEEK.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
10
|
Murciano-Goroff YR, Uppal M, Chen M, Harada G, Schram AM. Basket Trials: Past, Present, and Future. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:59-80. [PMID: 38938274 PMCID: PMC11210107 DOI: 10.1146/annurev-cancerbio-061421-012927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Large-scale tumor molecular profiling has revealed that diverse cancer histologies are driven by common pathways with unifying biomarkers that can be exploited therapeutically. Disease-agnostic basket trials have been increasingly utilized to test biomarker-driven therapies across cancer types. These trials have led to drug approvals and improved the lives of patients while simultaneously advancing our understanding of cancer biology. This review focuses on the practicalities of implementing basket trials, with an emphasis on molecularly targeted trials. We examine the biologic subtleties of genomic biomarker and patient selection, discuss previous successes in drug development facilitated by basket trials, describe certain novel targets and drugs, and emphasize practical considerations for participant recruitment and study design. This review also highlights strategies for aiding patient access to basket trials. As basket trials become more common, steps to ensure equitable implementation of these studies will be critical for molecularly targeted drug development.
Collapse
Affiliation(s)
| | - Manik Uppal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Monica Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guilherme Harada
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alison M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
11
|
Mian SA, Ariza‐McNaughton L, Anjos‐Afonso F, Guring R, Jackson S, Kizilors A, Gribben J, Bonnet D. Influence of donor-recipient sex on engraftment of normal and leukemia stem cells in xenotransplantation. Hemasphere 2024; 8:e80. [PMID: 38774656 PMCID: PMC11107397 DOI: 10.1002/hem3.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
Immunodeficient mouse models are widely used for the assessment of human normal and leukemic stem cells. Despite the advancements over the years, reproducibility, as well as the differences in the engraftment of human cells in recipient mice remains to be fully resolved. Here, we used various immunodeficient mouse models to characterize the effect of donor-recipient sex on the engraftment of the human leukemic and healthy cells. Donor human cells and recipient immunodeficient mice demonstrate sex-specific engraftment levels with significant differences observed in the lineage output of normal CD34+ hematopoietic stem and progenitor cells upon xenotransplantation. Intriguingly, human female donor cells display heightened sensitivity to the recipient mice's gender, influencing their proliferation and resulting in significantly increased engraftment in female recipient mice. Our study underscores the intricate interplay taking place between donor and recipient characteristics, shedding light on important considerations for future studies, particularly in the context of pre-clinical research.
Collapse
Affiliation(s)
- Syed A. Mian
- Haematopoietic Stem Cell LabThe Francis Crick InstituteLondonUK
| | | | | | - Remisha Guring
- Haematopoietic Stem Cell LabThe Francis Crick InstituteLondonUK
| | - Sophie Jackson
- Laboratory for Molecular Haemato‐OncologyKing's College Hospital LondonLondonUK
| | - Aytug Kizilors
- Laboratory for Molecular Haemato‐OncologyKing's College Hospital LondonLondonUK
| | - John Gribben
- Department of Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | | |
Collapse
|
12
|
Winter S, Götze KS, Hecker JS, Metzeler KH, Guezguez B, Woods K, Medyouf H, Schäffer A, Schmitz M, Wehner R, Glauche I, Roeder I, Rauner M, Hofbauer LC, Platzbecker U. Clonal hematopoiesis and its impact on the aging osteo-hematopoietic niche. Leukemia 2024; 38:936-946. [PMID: 38514772 PMCID: PMC11073997 DOI: 10.1038/s41375-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Clonal hematopoiesis (CH) defines a premalignant state predominantly found in older persons that increases the risk of developing hematologic malignancies and age-related inflammatory diseases. However, the risk for malignant transformation or non-malignant disorders is variable and difficult to predict, and defining the clinical relevance of specific candidate driver mutations in individual carriers has proved to be challenging. In addition to the cell-intrinsic mechanisms, mutant cells rely on and alter cell-extrinsic factors from the bone marrow (BM) niche, which complicates the prediction of a mutant cell's fate in a shifting pre-malignant microenvironment. Therefore, identifying the insidious and potentially broad impact of driver mutations on supportive niches and immune function in CH aims to understand the subtle differences that enable driver mutations to yield different clinical outcomes. Here, we review the changes in the aging BM niche and the emerging evidence supporting the concept that CH can progressively alter components of the local BM microenvironment. These alterations may have profound implications for the functionality of the osteo-hematopoietic niche and overall bone health, consequently fostering a conducive environment for the continued development and progression of CH. We also provide an overview of the latest technology developments to study the spatiotemporal dependencies in the CH BM niche, ideally in the context of longitudinal studies following CH over time. Finally, we discuss aspects of CH carrier management in clinical practice, based on work from our group and others.
Collapse
Affiliation(s)
- Susann Winter
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katharina S Götze
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine and Health, Munich, Germany
- German MDS Study Group (D-MDS), Leipzig, Germany
| | - Judith S Hecker
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine and Health, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich (TUM), Munich, Germany
| | - Klaus H Metzeler
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany
| | - Borhane Guezguez
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
| | - Kevin Woods
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Alexander Schäffer
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Marc Schmitz
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Rebekka Wehner
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ingo Roeder
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, TU Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, TU Dresden, Dresden, Germany.
| | - Uwe Platzbecker
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German MDS Study Group (D-MDS), Leipzig, Germany.
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
13
|
Li JF, Cheng WY, Lin XJ, Wen LJ, Wang K, Zhu YM, Zhu HM, Chen XJ, Zhang YL, Yin W, Zhang JN, Yi X, Zhang F, Weng XQ, Wang SY, Jiang L, Wu HY, Ren JQ, Lin XJ, Qiao N, Dai YT, Fang H, Tan Y, Sun XJ, Lv G, Yan XY, Chen SN, Chen Z, Jin J, Wu DP, Ren RB, Chen SJ, Shen Y. Aging and comprehensive molecular profiling in acute myeloid leukemia. Proc Natl Acad Sci U S A 2024; 121:e2319366121. [PMID: 38422020 PMCID: PMC10927507 DOI: 10.1073/pnas.2319366121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.
Collapse
Affiliation(s)
- Jian-Feng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Wen-Yan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiang-Jie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang310003, China
| | - Li-Jun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou215006, China
| | - Kai Wang
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
| | - Yong-Mei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hong-Ming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xin-Jie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yu-Liang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Wei Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jia-Nan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao Yi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Fan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Sheng-Yue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hui-Yi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jia-Qi Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao-Jing Lin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Niu Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Gang Lv
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao-Yu Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Su-Ning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou215006, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang310003, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang310003, China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou215006, China
| | - Rui-Bao Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| |
Collapse
|
14
|
Pagliuca S, Ferraro F. Immune-driven clonal cell selection at the intersection among cancer, infections, autoimmunity and senescence. Semin Hematol 2024; 61:22-34. [PMID: 38341340 DOI: 10.1053/j.seminhematol.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
Immune surveillance mechanisms play a crucial role in maintaining lifelong immune homeostasis in response to pathologic stimuli and aberrant cell states. However, their persistence, especially in the context of chronic antigenic exposure, can create a fertile ground for immune evasion. These escaping cell phenotypes, harboring a variety of genomic and transcriptomic aberrances, chiefly in human leukocyte antigen (HLA) and antigen presentation machinery genes, may survive and proliferate, featuring a scenario of clonal cell expansion with immune failure characteristics. While well characterized in solid and, to some extent, hematological malignancies, little is known about their occurrence and significance in other disease contexts. Historical literature highlights the role for escaping HLA-mediated recognition as a strategy adopted by virus to evade from the immune system, hinting at the potential for immune aberrant cell expansion in the context of chronic infections. Additionally, unmasked in idiopathic aplastic anemia as a mechanism able to rescue failing hematopoiesis, HLA clonal escape may operate in autoimmune disorders, particularly in tissues targeted by aberrant immune responses. Furthermore, senescent cell status emerging as immunogenic phenotypes stimulating T cell responses, may act as a bottleneck for the selection of such immune escaping clones, blurring the boundaries between neoplastic transformation, aging and inflammation. Here we provide a fresh overview and perspective on this immune-driven clonal cell expansion, linking pathophysiological features of neoplastic, autoimmune, infectious and senescence processes exposed to immune surveillance.
Collapse
Affiliation(s)
- Simona Pagliuca
- Hematology Department, Nancy University Hospital and UMR7365, IMoPA, University of Lorraine, Vandoeuvre-lès-Nancy, France.
| | - Francesca Ferraro
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
15
|
Landberg N, Köhnke T, Feng Y, Nakauchi Y, Fan AC, Linde MH, Karigane D, Lim K, Sinha R, Malcovati L, Thomas D, Majeti R. IDH1-mutant preleukemic hematopoietic stem cells can be eliminated by inhibition of oxidative phosphorylation. Blood Cancer Discov 2023; 5:731701. [PMID: 38091010 PMCID: PMC10905513 DOI: 10.1158/2643-3230.bcd-23-0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024] Open
Abstract
Rare preleukemic hematopoietic stem cells (pHSCs) harboring only the initiating mutations can be detected at the time of AML diagnosis. pHSCs are the origin of leukemia and a potential reservoir for relapse. Using primary human samples and gene-editing to model isocitrate dehydrogenase 1 (IDH1) mutant pHSCs, we show epigenetic, transcriptional, and metabolic differences between pHSCs and healthy hematopoietic stem cells (HSCs). We confirm that IDH1 driven clonal hematopoiesis is associated with cytopenia, suggesting an inherent defect to fully reconstitute hematopoiesis. Despite giving rise to multilineage engraftment, IDH1-mutant pHSCs exhibited reduced proliferation, blocked differentiation, downregulation of MHC Class II genes, and reprogramming of oxidative phosphorylation metabolism. Critically, inhibition of oxidative phosphorylation resulted in complete eradication of IDH1-mutant pHSCs but not IDH2-mutant pHSCs or wildtype HSCs. Our results indicate that IDH1-mutant preleukemic clones can be targeted with complex I inhibitors, offering a potential strategy to prevent development and relapse of leukemia.
Collapse
Affiliation(s)
- Niklas Landberg
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Yang Feng
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Amy C. Fan
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Immunology Graduate Program, Stanford University, Stanford, California
| | - Miles H. Linde
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Immunology Graduate Program, Stanford University, Stanford, California
| | - Daiki Karigane
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Kelly Lim
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, The University of Adelaide, Adelaide, Australia
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniel Thomas
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, The University of Adelaide, Adelaide, Australia
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| |
Collapse
|
16
|
Feng Y, Yuan Q, Newsome RC, Robinson T, Bowman RL, Zuniga AN, Hall KN, Bernsten CM, Shabashvili DE, Krajcik KI, Gunaratne C, Zaroogian ZJ, Venugopal K, Casellas Roman HL, Levine RL, Chatila WK, Yaeger R, Riva A, Jobin C, Kopinke D, Avram D, Guryanova OA. Hematopoietic-specific heterozygous loss of Dnmt3a exacerbates colitis-associated colon cancer. J Exp Med 2023; 220:e20230011. [PMID: 37615936 PMCID: PMC10450614 DOI: 10.1084/jem.20230011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/12/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Clonal hematopoiesis (CH) is defined as clonal expansion of mutant hematopoietic stem cells absent diagnosis of a hematologic malignancy. Presence of CH in solid tumor patients, including colon cancer, correlates with shorter survival. We hypothesized that bone marrow-derived cells with heterozygous loss-of-function mutations of DNMT3A, the most common genetic alteration in CH, contribute to the pathogenesis of colon cancer. In a mouse model that combines colitis-associated colon cancer (CAC) with experimental CH driven by Dnmt3a+/Δ, we found higher tumor penetrance and increased tumor burden compared with controls. Histopathological analysis revealed accentuated colonic epithelium injury, dysplasia, and adenocarcinoma formation. Transcriptome profiling of colon tumors identified enrichment of gene signatures associated with carcinogenesis, including angiogenesis. Treatment with the angiogenesis inhibitor axitinib eliminated the colon tumor-promoting effect of experimental CH driven by Dnmt3a haploinsufficiency and rebalanced hematopoiesis. This study provides conceptually novel insights into non-tumor-cell-autonomous effects of hematopoietic alterations on colon carcinogenesis and identifies potential therapeutic strategies.
Collapse
Affiliation(s)
- Yang Feng
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Qingchen Yuan
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Rachel C. Newsome
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Troy Robinson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley N. Zuniga
- Department of Anatomy and Cell Biology, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kendra N. Hall
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Cassandra M. Bernsten
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Daniil E. Shabashvili
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kathryn I. Krajcik
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Chamara Gunaratne
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Zachary J. Zaroogian
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kartika Venugopal
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Heidi L. Casellas Roman
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Walid K. Chatila
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| | - Christian Jobin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
- Immunology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| |
Collapse
|
17
|
Pasupuleti SK, Ramdas B, Burns SS, Palam LR, Kanumuri R, Kumar R, Pandhiri TR, Dave UP, Yellapu NK, Zhou X, Zhang C, Sandusky GE, Yu Z, Honigberg MC, Bick AG, Griffin GK, Niroula A, Ebert BL, Paczesny S, Natarajan P, Kapur R. Obesity-induced inflammation exacerbates clonal hematopoiesis. J Clin Invest 2023; 133:e163968. [PMID: 37071471 PMCID: PMC10231999 DOI: 10.1172/jci163968] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Characterized by the accumulation of somatic mutations in blood cell lineages, clonal hematopoiesis of indeterminate potential (CHIP) is frequent in aging and involves the expansion of mutated hematopoietic stem and progenitor cells (HSC/Ps) that leads to an increased risk of hematologic malignancy. However, the risk factors that contribute to CHIP-associated clonal hematopoiesis (CH) are poorly understood. Obesity induces a proinflammatory state and fatty bone marrow (FBM), which may influence CHIP-associated pathologies. We analyzed exome sequencing and clinical data for 47,466 individuals with validated CHIP in the UK Biobank. CHIP was present in 5.8% of the study population and was associated with a significant increase in the waist-to-hip ratio (WHR). Mouse models of obesity and CHIP driven by heterozygosity of Tet2, Dnmt3a, Asxl1, and Jak2 resulted in exacerbated expansion of mutant HSC/Ps due in part to excessive inflammation. Our results show that obesity is highly associated with CHIP and that a proinflammatory state could potentiate the progression of CHIP to more significant hematologic neoplasia. The calcium channel blockers nifedipine and SKF-96365, either alone or in combination with metformin, MCC950, or anakinra (IL-1 receptor antagonist), suppressed the growth of mutant CHIP cells and partially restored normal hematopoiesis. Targeting CHIP-mutant cells with these drugs could be a potential therapeutic approach to treat CH and its associated abnormalities in individuals with obesity.
Collapse
Affiliation(s)
| | - Baskar Ramdas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | - Sarah S. Burns
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | | | - Rahul Kanumuri
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | - Ramesh Kumar
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | | | - Utpal P. Dave
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nanda Kumar Yellapu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xinyu Zhou
- Department of Medical and Molecular Genetics and
| | - Chi Zhang
- Department of Medical and Molecular Genetics and
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhi Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Michael C. Honigberg
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabriel K. Griffin
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Epigenomics Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Abhishek Niroula
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Benjamin L. Ebert
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charlestown, South Carolina, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Semenkovich NP, Szymanski JJ, Earland N, Chauhan PS, Pellini B, Chaudhuri AA. Genomic approaches to cancer and minimal residual disease detection using circulating tumor DNA. J Immunother Cancer 2023; 11:e006284. [PMID: 37349125 PMCID: PMC10314661 DOI: 10.1136/jitc-2022-006284] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Liquid biopsies using cell-free circulating tumor DNA (ctDNA) are being used frequently in both research and clinical settings. ctDNA can be used to identify actionable mutations to personalize systemic therapy, detect post-treatment minimal residual disease (MRD), and predict responses to immunotherapy. ctDNA can also be isolated from a range of different biofluids, with the possibility of detecting locoregional MRD with increased sensitivity if sampling more proximally than blood plasma. However, ctDNA detection remains challenging in early-stage and post-treatment MRD settings where ctDNA levels are minuscule giving a high risk for false negative results, which is balanced with the risk of false positive results from clonal hematopoiesis. To address these challenges, researchers have developed ever-more elegant approaches to lower the limit of detection (LOD) of ctDNA assays toward the part-per-million range and boost assay sensitivity and specificity by reducing sources of low-level technical and biological noise, and by harnessing specific genomic and epigenomic features of ctDNA. In this review, we highlight a range of modern assays for ctDNA analysis, including advancements made to improve the signal-to-noise ratio. We further highlight the challenge of detecting ultra-rare tumor-associated variants, overcoming which will improve the sensitivity of post-treatment MRD detection and open a new frontier of personalized adjuvant treatment decision-making.
Collapse
Affiliation(s)
- Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey J Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep S Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruna Pellini
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Aadel A Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Goldman EA, Spellman PT, Agarwal A. Defining clonal hematopoiesis of indeterminate potential: evolutionary dynamics and detection under aging and inflammation. Cold Spring Harb Mol Case Stud 2023; 9:a006251. [PMID: 36889927 PMCID: PMC10240836 DOI: 10.1101/mcs.a006251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
Clonal hematopoiesis (CH), in which hematopoietic stem and progenitor cell (HSPC) clones and their progeny expand in the circulating blood cell population, occurs following the acquisition of somatic driver mutations. Individuals diagnosed with clonal hematopoiesis of indeterminate potential (CHIP) carry somatic mutations in hematological malignancy-associated driver genes, historically at or above a variant allele frequency of 2%, but do not exhibit abnormal blood cell counts or any other symptoms of hematologic disease. However, CHIP is associated with moderately increased risk of hematological cancer and a greater likelihood of cardiovascular and pulmonary disease. Recent advances in the resolution of high-throughput sequencing experiments suggest CHIP is much more prevalent in the population than once thought, particularly among those aged 60 and over. Although CHIP does elevate the risk of eventual hematological malignancy, only one in 10 individuals with CHIP will receive such a diagnosis; the problem lies in the continued difficulty in accurately separating the 10% of CHIP patients who are most likely to be in a premalignant state from those who are not, given the heterogeneity of this condition and the etiology of the associated hematological cancers. Concerns over the risk of eventual malignancies must be balanced with growing recognition of CH as a common age-dependent occurrence, and efforts to better characterize and differentiate oncogenic clonal expansion from that which is much more benign. In this review, we discuss evolutionary dynamics of CH and CHIP, the relationship of CH to aging and inflammation, and the role of the epigenome in promoting potentially pathogenic or benign cellular trajectories. We outline molecular mechanisms that may contribute to heterogeneity in the etiology of CHIP and the incidence of malignant disease among individuals. Finally, we discuss epigenetic markers and modifications for CHIP detection and monitoring with the potential for translational applications and clinical utility in the near future.
Collapse
Affiliation(s)
- Elisabeth A Goldman
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA;
| | - Paul T Spellman
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Anupriya Agarwal
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
20
|
Aldea M, Tagliamento M, Bayle A, Vasseur D, Vergé V, Marinello A, Danlos FX, Blanc-Durand F, Bernard E, Cerbone L, Mosele MF, Renneville A, Hadoux J, Loriot Y, Sakkal M, Vozy A, Sarkozy C, Smolenschi C, Nicotra C, Martin-Romano P, Boccon-Gibod C, Habza W, Lazarovici J, Ponce S, Hollebecque A, Marzac C, Lacroix L, Barlesi F, André F, Besse B, Rouleau E, Italiano A, Micol JB. Liquid Biopsies for Circulating Tumor DNA Detection May Reveal Occult Hematologic Malignancies in Patients With Solid Tumors. JCO Precis Oncol 2023; 7:e2200583. [PMID: 36862966 DOI: 10.1200/po.22.00583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
PURPOSE High-risk clonal hematopoiesis (CH) is frequently incidentally found in patients with solid tumors undergoing plasma cell-free DNA sequencing. Here, we aimed to determine if the incidental detection of high-risk CH by liquid biopsy may reveal occult hematologic malignancies in patients with solid tumors. MATERIALS AND METHODS Adult patients with advanced solid cancers enrolled in the Gustave Roussy Cancer Profiling study (ClinicalTrials.gov identifier: NCT04932525) underwent at least one liquid biopsy (FoundationOne Liquid CDx). Molecular reports were discussed within the Gustave Roussy Molecular Tumor Board (MTB). Potential CH alterations were observed, and patients referred to hematology consultation in the case of pathogenic mutations in JAK2, MPL, or MYD88, irrespective of the variant allele frequency (VAF), or in DNMT3A, TET2, ASXL1, IDH1, IDH2, SF3B1, or U2AF1 with VAF ≥ 10%, while also considering patient cancer-related prognosis. TP53 mutations were discussed case-by-case. RESULTS Between March and October 2021, 1,416 patients were included. One hundred ten patients (7.7%) carried at least one high-risk CH mutation: DNMT3A (n = 32), JAK2 (n = 28), TET2 (n = 19), ASXL1 (n = 18), SF3B1 (n = 5), IDH1 (n = 4), IDH2 (n = 3), MPL (n = 3), and U2AF1 (n = 2). The MTB advised for hematologic consultation in 45 patients. Overall, 9 patients of 18 actually addressed had confirmed hematologic malignancies that were occult in six patients: two patients had myelodysplastic syndrome, two essential thrombocythemia, one a marginal lymphoma, and one a Waldenström macroglobulinemia. The other three patients were already followed up in hematology. CONCLUSION The incidental findings of high-risk CH through liquid biopsy may trigger diagnostic hematologic tests and reveal an occult hematologic malignancy. Patients should have a multidisciplinary case-by-case evaluation.
Collapse
Affiliation(s)
- Mihaela Aldea
- Department of Medicine, Gustave Roussy, Villejuif, France.,University of Paris Saclay, Paris, France
| | - Marco Tagliamento
- Department of Medicine, Gustave Roussy, Villejuif, France.,Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genova, Italy
| | - Arnaud Bayle
- University of Paris Saclay, Paris, France.,Drug Development Department, Gustave Roussy, Villejuif, France
| | - Damien Vasseur
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Véronique Vergé
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | | | - François-Xavier Danlos
- University of Paris Saclay, Paris, France.,Drug Development Department, Gustave Roussy, Villejuif, France
| | | | - Elsa Bernard
- Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| | - Luigi Cerbone
- Department of Medicine, Gustave Roussy, Villejuif, France
| | | | - Aline Renneville
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Julien Hadoux
- Department of Medicine, Gustave Roussy, Villejuif, France
| | - Yohann Loriot
- Department of Medicine, Gustave Roussy, Villejuif, France.,Drug Development Department, Gustave Roussy, Villejuif, France
| | - Madona Sakkal
- Department of Medicine, Gustave Roussy, Villejuif, France.,Drug Development Department, Gustave Roussy, Villejuif, France
| | - Aurore Vozy
- Department of Medicine, Gustave Roussy, Villejuif, France
| | - Clementine Sarkozy
- Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| | - Cristina Smolenschi
- Department of Medicine, Gustave Roussy, Villejuif, France.,Drug Development Department, Gustave Roussy, Villejuif, France
| | - Claudio Nicotra
- Drug Development Department, Gustave Roussy, Villejuif, France
| | | | - Clementine Boccon-Gibod
- Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| | - Wafikaamira Habza
- Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| | - Julien Lazarovici
- Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| | - Santiago Ponce
- Drug Development Department, Gustave Roussy, Villejuif, France
| | | | - Christophe Marzac
- Drug Development Department, Gustave Roussy, Villejuif, France.,Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Fabrice Barlesi
- Department of Medicine, Gustave Roussy, Villejuif, France.,Aix Marseille University, CNRS, INSERM, CRCM, Marseille, France
| | - Fabrice André
- Department of Medicine, Gustave Roussy, Villejuif, France.,University of Paris Saclay, Paris, France
| | - Benjamin Besse
- Department of Medicine, Gustave Roussy, Villejuif, France.,University of Paris Saclay, Paris, France
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Antoine Italiano
- Department of Medicine, Gustave Roussy, Villejuif, France.,Aix Marseille University, CNRS, INSERM, CRCM, Marseille, France
| | - Jean-Baptiste Micol
- University of Paris Saclay, Paris, France.,Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| |
Collapse
|
21
|
Sebert M, Gachet S, Leblanc T, Rousseau A, Bluteau O, Kim R, Ben Abdelali R, Sicre de Fontbrune F, Maillard L, Fedronie C, Murigneux V, Bellenger L, Naouar N, Quentin S, Hernandez L, Vasquez N, Da Costa M, Prata PH, Larcher L, de Tersant M, Duchmann M, Raimbault A, Trimoreau F, Fenneteau O, Cuccuini W, Gachard N, Auger N, Tueur G, Blanluet M, Gazin C, Souyri M, Langa Vives F, Mendez-Bermudez A, Lapillonne H, Lengline E, Raffoux E, Fenaux P, Adès L, Forcade E, Jubert C, Domenech C, Strullu M, Bruno B, Buchbinder N, Thomas C, Petit A, Leverger G, Michel G, Cavazzana M, Gluckman E, Bertrand Y, Boissel N, Baruchel A, Dalle JH, Clappier E, Gilson E, Deriano L, Chevret S, Sigaux F, Socié G, Stoppa-Lyonnet D, de Thé H, Antoniewski C, Bluteau D, Peffault de Latour R, Soulier J. Clonal hematopoiesis driven by chromosome 1q/MDM4 trisomy defines a canonical route toward leukemia in Fanconi anemia. Cell Stem Cell 2023; 30:153-170.e9. [PMID: 36736290 DOI: 10.1016/j.stem.2023.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Fanconi anemia (FA) patients experience chromosome instability, yielding hematopoietic stem/progenitor cell (HSPC) exhaustion and predisposition to poor-prognosis myeloid leukemia. Based on a longitudinal cohort of 335 patients, we performed clinical, genomic, and functional studies in 62 patients with clonal evolution. We found a unique pattern of somatic structural variants and mutations that shares features of BRCA-related cancers, the FA-hallmark being unbalanced, microhomology-mediated translocations driving copy-number alterations. Half the patients developed chromosome 1q gain, driving clonal hematopoiesis through MDM4 trisomy downmodulating p53 signaling later followed by secondary acute myeloid lukemia genomic alterations. Functionally, MDM4 triplication conferred greater fitness to murine and human primary FA HSPCs, rescued inflammation-mediated bone marrow failure, and drove clonal dominance in FA mouse models, while targeting MDM4 impaired leukemia cells in vitro and in vivo. Our results identify a linear route toward secondary leukemogenesis whereby early MDM4-driven downregulation of basal p53 activation plays a pivotal role, opening monitoring and therapeutic prospects.
Collapse
Affiliation(s)
- Marie Sebert
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Stéphanie Gachet
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Thierry Leblanc
- Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Alix Rousseau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France
| | - Olivier Bluteau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Rathana Kim
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Raouf Ben Abdelali
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Flore Sicre de Fontbrune
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Loïc Maillard
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Carèle Fedronie
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Valentine Murigneux
- Genome Integrity, Immunity and Cancer Unit, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Institut Pasteur, Paris, France
| | - Léa Bellenger
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Naira Naouar
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Samuel Quentin
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Lucie Hernandez
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Nadia Vasquez
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Mélanie Da Costa
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Pedro H Prata
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Lise Larcher
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Marie de Tersant
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Matthieu Duchmann
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Anna Raimbault
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Franck Trimoreau
- Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Hematology Laboratory, CHU Limoges, Limoges, France
| | | | - Wendy Cuccuini
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Nathalie Gachard
- Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Hematology Laboratory, CHU Limoges, Limoges, France
| | - Nathalie Auger
- Département de Biologie et Pathologie Médicales, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Giulia Tueur
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Maud Blanluet
- Department of Genetics, Institut Curie, Université de Paris, INSERM U830, Paris, France
| | - Claude Gazin
- INSERM U944/CNRS UMR7212, Paris, France; Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Michèle Souyri
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM UMR S1131, Hôpital Saint Louis, Paris, France
| | | | - Aaron Mendez-Bermudez
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), France; Department of Medical Genetics, CHU, Nice, France
| | | | - Etienne Lengline
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Emmanuel Raffoux
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Pierre Fenaux
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Lionel Adès
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Edouard Forcade
- CHU Bordeaux, Service d'Hématologie et Thérapie Cellulaire et Unité d'Hématologie Oncologie Pédiatrique, 33000 Bordeaux, France
| | - Charlotte Jubert
- CHU Bordeaux, Service d'Hématologie et Thérapie Cellulaire et Unité d'Hématologie Oncologie Pédiatrique, 33000 Bordeaux, France
| | - Carine Domenech
- Institut of Hematology and Pediatric Oncology (IHOP), Hospices Civils de Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Lyon 1, Lyon, France
| | - Marion Strullu
- Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France
| | | | - Nimrod Buchbinder
- Centre Pédiatrique de Transplantation de Cellules Souches Hématopoïétiques, CHU de Rouen, Rouen, France
| | - Caroline Thomas
- Service d'Oncologie-Hématologie et Immunologie Pédiatrique, CHU de Nantes, Nantes, France
| | - Arnaud Petit
- Pediatric Hematology-Oncology, Trousseau Hospital and HUEP, Paris, France
| | - Guy Leverger
- Pediatric Hematology-Oncology, Trousseau Hospital and HUEP, Paris, France
| | - Gérard Michel
- Timone Enfants Hospital, Department of Pediatric Hematology and Oncology, Aix-Marseille University, EA 3279, Marseille, France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, APHP Centre, Biotherapy Clinical Investigation Center, Inserm U1416, University of Paris, Imagine Institute, Paris, France
| | - Eliane Gluckman
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Eurocord, Department of Hematology, Saint-Louis Hospital, Paris, France
| | - Yves Bertrand
- Institut of Hematology and Pediatric Oncology (IHOP), Hospices Civils de Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Lyon 1, Lyon, France
| | - Nicolas Boissel
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France
| | - André Baruchel
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Jean-Hugues Dalle
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), France; Department of Medical Genetics, CHU, Nice, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Institut Pasteur, Paris, France
| | - Sylvie Chevret
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Division of Biostatistics, Saint-Louis Hospital, APHP, Paris, France
| | - François Sigaux
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Gérard Socié
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM UMR-976, Saint-Louis Hospital, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | | | - Hugues de Thé
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Collège de France, Paris, France
| | - Christophe Antoniewski
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Dominique Bluteau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; EPHE, PSL University, Paris, France.
| | - Régis Peffault de Latour
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Jean Soulier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France.
| |
Collapse
|
22
|
Ediriwickrema A, Gentles AJ, Majeti R. Single-cell genomics in AML: extending the frontiers of AML research. Blood 2023; 141:345-355. [PMID: 35926108 PMCID: PMC10082362 DOI: 10.1182/blood.2021014670] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
The era of genomic medicine has allowed acute myeloid leukemia (AML) researchers to improve disease characterization, optimize risk-stratification systems, and develop new treatments. Although there has been significant progress, AML remains a lethal cancer because of its remarkably complex and plastic cellular architecture. This degree of heterogeneity continues to pose a major challenge, because it limits the ability to identify and therefore eradicate the cells responsible for leukemogenesis and treatment failure. In recent years, the field of single-cell genomics has led to unprecedented strides in the ability to characterize cellular heterogeneity, and it holds promise for the study of AML. In this review, we highlight advancements in single-cell technologies, outline important shortcomings in our understanding of AML biology and clinical management, and discuss how single-cell genomics can address these shortcomings as well as provide unique opportunities in basic and translational AML research.
Collapse
Affiliation(s)
- Asiri Ediriwickrema
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Andrew J. Gentles
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
23
|
Lackraj T, Ben Barouch S, Medeiros JJF, Pedersen S, Danesh A, Bakhtiari M, Hong M, Tong K, Joynt J, Arruda A, Minden MD, Kuruvilla J, Bhella S, Kukreti V, Crump M, Prica A, Chen C, Deng Y, Xu W, Pugh TJ, Keating A, Dick JE, Abelson S, Kridel R. Clinical significance of clonal hematopoiesis in the setting of autologous stem cell transplantation for lymphoma. Am J Hematol 2022; 97:1538-1547. [PMID: 36087071 DOI: 10.1002/ajh.26726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023]
Abstract
Autologous stem cell transplantation (ASCT) remains a key therapeutic strategy for treating patients with relapsed or refractory non-Hodgkin and Hodgkin lymphoma. Clonal hematopoiesis (CH) has been proposed as a major contributor not only to the development of therapy-related myeloid neoplasms but also to inferior overall survival (OS) in patients who had undergone ASCT. Herein, we aimed to investigate the prognostic implications of CH after ASCT in a cohort of 420 lymphoma patients using ultra-deep, highly sensitive error-correction sequencing. CH was identified in the stem cell product samples of 181 patients (43.1%) and was most common in those with T-cell lymphoma (72.2%). The presence of CH was associated with a longer time to neutrophil and platelet recovery. Moreover, patients with evidence of CH had inferior 5-year OS from the time of first relapse (39.4% vs. 45.8%, p = .043) and from the time of ASCT (51.8% vs. 59.3%, p = .018). The adverse prognostic impact of CH was not due to therapy-related myeloid neoplasms, the incidence of which was low in our cohort (10-year cumulative incidence of 3.3% vs. 3.0% in those with and without CH, p = .445). In terms of specific-gene mutations, adverse OS was mostly associated with PPM1D mutations (hazard ratio (HR) 1.74, 95% confidence interval (CI) 1.13-2.67, p = .011). In summary, we found that CH is associated with an increased risk of non-lymphoma-related death after ASCT, which suggests that lymphoma survivors with CH may need intensified surveillance strategies to prevent and treat late complications.
Collapse
Affiliation(s)
- Tracy Lackraj
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sharon Ben Barouch
- Institute of Hematology, Assuta Ashdod Medical Center, Ashdod, Israel.,Faculty of Medicine, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Jessie J F Medeiros
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Pedersen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mehran Bakhtiari
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Hong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kit Tong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jesse Joynt
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sita Bhella
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vishal Kukreti
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Crump
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anca Prica
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christine Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yangqing Deng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Armand Keating
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sagi Abelson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
24
|
New genetic loci associated with the risk of clonal hematopoiesis. Nat Genet 2022; 54:1072-1073. [PMID: 35851190 DOI: 10.1038/s41588-022-01125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Deniau B, Asakage A, Mebazaa A. Clonal hematopoiesis mutations in cardiogenic shock: a beginning of a new era? Eur J Heart Fail 2022; 24:1583-1585. [DOI: 10.1002/ejhf.2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Benjamin Deniau
- Université de Paris Cité Paris
- INSERM UMR‐S 942, Cardiovascular Markers in Stress Condition (MASCOT) Université de Paris Cité Paris France
- Department of Anesthesiology, Critical Care and Burn Unit University Hospital Saint‐Louis—Lariboisière, AP‐HP Paris France
- FHU PROMICE
| | - Ayu Asakage
- INSERM UMR‐S 942, Cardiovascular Markers in Stress Condition (MASCOT) Université de Paris Cité Paris France
| | - Alexandre Mebazaa
- Université de Paris Cité Paris
- INSERM UMR‐S 942, Cardiovascular Markers in Stress Condition (MASCOT) Université de Paris Cité Paris France
- Department of Anesthesiology, Critical Care and Burn Unit University Hospital Saint‐Louis—Lariboisière, AP‐HP Paris France
- FHU PROMICE
| |
Collapse
|
26
|
Game of clones: Diverse implications for clonal hematopoiesis in lymphoma and multiple myeloma. Blood Rev 2022; 56:100986. [PMID: 35753868 DOI: 10.1016/j.blre.2022.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022]
Abstract
Clonal hematopoiesis (CH) refers to the disproportionate expansion of hematopoietic stem cell clones and their corresponding progeny following the acquisition of somatic mutations. CH is common at the time of diagnosis in patients with blood cancers, including multiple myeloma (MM) and lymphoma. The presence of CH mutations correlates with IL-6 mediated inflammation and may result in lymphoma or MM modulation through microenvironment effects or by manifestations of the mutations themselves within the founding tumor clone. As might be expected with a variety of mutations and multiple potential mechanisms, CH exerts context-dependent effects, being protective in some settings and harmful in others. Though CH is very common in patients with hematologic malignancies, how it intersects with therapy and the natural disease course of these cancers are active areas of investigation. In lymphomas and MM specifically, patients have high rates of CH at diagnosis and are subsequently exposed to therapies, such as cytotoxic chemotherapy, that can cause CH progression to overt hematologic malignancy. The expanding diversity of treatment modalities for these cancers also increases the opportunities for CH to impact clinical outcome and modulate clinical responses. Here we review the basic biology and known health effects of CH, and we focus on the clinical relevance of CH in lymphoma and MM.
Collapse
|
27
|
Trumpp A, Haas S. Cancer stem cells: The adventurous journey from hematopoietic to leukemic stem cells. Cell 2022; 185:1266-1270. [PMID: 35385684 DOI: 10.1016/j.cell.2022.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 10/25/2022]
Abstract
This year's Gairdner Foundation Award for Biomedical Research is awarded to John Dick for the discovery of leukemic stem cells and the hierarchical organization of acute myeloid leukemias. His work laid the foundation for the cancer stem cell model with numerous clinical implications for hematopoietic malignancies and solid tumors.
Collapse
Affiliation(s)
- Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany; Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany
| |
Collapse
|
28
|
Affiliation(s)
- Nancy A Speck
- From the Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
29
|
Yamashita M, Iwama A. Aging and Clonal Behavior of Hematopoietic Stem Cells. Int J Mol Sci 2022; 23:1948. [PMID: 35216063 PMCID: PMC8878540 DOI: 10.3390/ijms23041948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are the only cell population that possesses both a self-renewing capacity and multipotency, and can give rise to all lineages of blood cells throughout an organism's life. However, the self-renewal capacity of HSCs is not infinite, and cumulative evidence suggests that HSCs alter their function and become less active during organismal aging, leading ultimately to the disruption of hematopoietic homeostasis, such as anemia, perturbed immunity and increased propensity to hematological malignancies. Thus, understanding how HSCs alter their function during aging is a matter of critical importance to prevent or overcome these age-related changes in the blood system. Recent advances in clonal analysis have revealed the functional heterogeneity of murine HSC pools that is established upon development and skewed toward the clonal expansion of functionally poised HSCs during aging. In humans, next-generation sequencing has revealed age-related clonal hematopoiesis that originates from HSC subsets with acquired somatic mutations, and has highlighted it as a significant risk factor for hematological malignancies and cardiovascular diseases. In this review, we summarize the current fate-mapping strategies that are used to track and visualize HSC clonal behavior during development or after stress. We then review the age-related changes in HSCs that can be inherited by daughter cells and act as a cellular memory to form functionally distinct clones. Altogether, we link aging of the hematopoietic system to HSC clonal evolution and discuss how HSC clones with myeloid skewing and low regenerative potential can be expanded during aging.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai Minato-ku, Tokyo 108-8639, Japan;
| | | |
Collapse
|
30
|
Camacho V, Kuznetsova V, Welner RS. Inflammatory Cytokines Shape an Altered Immune Response During Myeloid Malignancies. Front Immunol 2021; 12:772408. [PMID: 34804065 PMCID: PMC8595317 DOI: 10.3389/fimmu.2021.772408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
The immune microenvironment is a critical driver and regulator of leukemic progression and hematological disease. Recent investigations have demonstrated that multiple immune components play a central role in regulating hematopoiesis, and dysfunction at the immune cell level significantly contributes to neoplastic disease. Immune cells are acutely sensitive to remodeling by leukemic inflammatory cytokine exposure. Importantly, immune cells are the principal cytokine producers in the hematopoietic system, representing an untapped frontier for clinical interventions. Due to a proinflammatory cytokine environment, dysregulation of immune cell states is a hallmark of hematological disease and neoplasia. Malignant immune adaptations have profound effects on leukemic blast proliferation, disease propagation, and drug-resistance. Conversely, targeting the immune landscape to restore hematopoietic function and limit leukemic expansion may have significant therapeutic value. Despite the fundamental role of the immune microenvironment during the initiation, progression, and treatment response of hematological disease, a detailed examination of how leukemic cytokines alter immune cells to permit, promote, or inhibit leukemia growth is lacking. Here we outline an immune-based model of leukemic transformation and highlight how the profound effect of immune alterations on the trajectory of malignancy. The focus of this review is to summarize current knowledge about the impacts of pro- and anti-inflammatory cytokines on immune cells subsets, their modes of action, and immunotherapeutic approaches with the potential to improve clinical outcomes for patients suffering from hematological myeloid malignancies.
Collapse
Affiliation(s)
- Virginia Camacho
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| | - Valeriya Kuznetsova
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Masselli E, Pozzi G, Carubbi C, Vitale M. The Genetic Makeup of Myeloproliferative Neoplasms: Role of Germline Variants in Defining Disease Risk, Phenotypic Diversity and Outcome. Cells 2021; 10:cells10102597. [PMID: 34685575 PMCID: PMC8534117 DOI: 10.3390/cells10102597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Myeloproliferative neoplasms are hematologic malignancies typified by a substantial heritable component. Germline variants may affect the risk of developing a MPN, as documented by GWAS studies on large patient cohorts. In addition, once the MPN occurred, inherited host genetic factors can be responsible for tuning the disease phenotypic presentation, outcome, and response to therapy. This review covered the polymorphisms that have been variably associated to MPNs, discussing them in the functional perspective of the biological pathways involved. Finally, we reviewed host genetic determinants of clonal hematopoiesis, a pre-malignant state that may anticipate overt hematologic neoplasms including MPNs.
Collapse
Affiliation(s)
- Elena Masselli
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Giulia Pozzi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
| | - Cecilia Carubbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
- Correspondence: (C.C.); (M.V.)
| | - Marco Vitale
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
- Correspondence: (C.C.); (M.V.)
| |
Collapse
|