1
|
Shia J, Sanchez-Vega F, Cho S, Chen JF, Chen CT, Bhanot U, Urganci N, Firat C, Ntiamoah P, Isidro RA, Srivastava A, Weiser MR, Mandelker D, Vakiani E, Boland CR, Garcia-Aguilar J, Stadler ZK. MSH6-proficient crypt foci in MSH6 constitutional mismatch repair deficiency: reversion of a frameshifted coding microsatellite to its wild-type sequence. Fam Cancer 2024; 23:569-577. [PMID: 39387980 DOI: 10.1007/s10689-024-00423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
The discovery of "mismatch repair deficient (MMRd)-crypt foci" in non-neoplastic intestinal mucosa in Lynch syndrome (LS) has significantly enhanced our understanding of how tumors and tumor immunity form and evolve in LS. In this study, we report the frequent presence of "mismatch repair proficient (MMRp)-crypt foci" in both non-neoplastic and neoplastic intestinal mucosa in a patient with constitutional MMR deficiency (CMMRD), who carried a germline MSH6 pathogenic variant (c.3261dupC) in trans with an MSH6 likely pathogenic variant (c.3724_3726del) and whose tissues were otherwise deficient in MMR globally. The MMRp-crypts occurred at a rate of 1.1/100 crypts in non-neoplastic intestinal mucosa and were readily discernible in adenomas > 1 cm. Sequencing analysis revealed normalization of the MSH6c.3261dupC variant in MMRp-adenoma crypts, indicating reverse frameshifting of the exon 5 C8 microsatellite. Interestingly but not surprisingly, the MMRp-adenoma crypts remained microsatellite-instability-high (MSI-H), and shared oncogenic APC mutations with the background MMRd-adenoma. Contrasting with MSH6-CMMRD, no PMS2-CMMRD individuals (0/5) harbored MMRp-crypts. In conclusion, our study documents distinct MMRp-crypts in MSH6-CMMRD, a phenomenon in keeping with MSH6 being a frequent target of MSI-H due to its coding microsatellite and suggesting that MSH6-CMMRD can potentially serve as a unique model system to further our understanding of MSH6's role in MSI-H tumor formation and evolution. Our findings also bear diagnostic implications; when using MMR immunohistochemistry as an ancillary tool in detecting CMMRD, awareness of these MMRp crypts can help avoid diagnostic pitfalls.
Collapse
Affiliation(s)
- Jinru Shia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Colorectal Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Francisco Sanchez-Vega
- Colorectal Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stanley Cho
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jie-Fu Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chin-Tung Chen
- Colorectal Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umesh Bhanot
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nil Urganci
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Colorectal Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Canan Firat
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Colorectal Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter Ntiamoah
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raymond A Isidro
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amitabh Srivastava
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin R Weiser
- Colorectal Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Efsevia Vakiani
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Colorectal Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Julio Garcia-Aguilar
- Colorectal Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia K Stadler
- Colorectal Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Jensen JL, Bobek O, Chan I, Miller BC, Hillman D, Heller G, Druley T, Armstrong A, Morris MJ, Milowsky MI, Beltran H, Bolton KL, Coombs CC. Clonal Hematopoiesis and Clinical Outcomes in Metastatic Castration-Resistant Prostate Cancer Patients Given Androgen Receptor Pathway Inhibitors (Alliance A031201). Clin Cancer Res 2024; 30:4910-4919. [PMID: 39287426 PMCID: PMC11539927 DOI: 10.1158/1078-0432.ccr-24-0803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/21/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Mutations in hematopoietic progenitor cells accumulate with age leading to clonal expansion, termed clonal hematopoiesis (CH). CH in the general population is associated with hematopoietic neoplasms and reduced overall survival (OS), predominantly through cardiovascular adverse events (CVAE). Because androgen receptor pathway inhibitors (ARPI) used in metastatic castration-resistant prostate cancer (mCRPC) are also associated with CVAEs and because CH negatively impacted survival in an advanced solid tumor cohort, we hypothesized that CH in mCRPC may be associated with increased CVAEs and inferior survival. EXPERIMENTAL DESIGN A targeted DNA sequencing panel captured common CH mutations in pretreatment blood samples from 957 patients enrolled in Alliance A031201: a randomized trial of enzalutamide ± abiraterone/prednisone in the first-line mCRPC setting. The primary outcome was the impact of CH on OS; the secondary outcomes were progression-free survival (PFS) and CVAEs. RESULTS Baseline comorbidities were similar by CH status. No differences in OS/progression-free survival were detected regardless of treatment arm or the variant allele frequency threshold used to define CH [primary: 2% (normal-CH, N-CH); exploratory: 0.5% (low-CH) and 10% (high-CH, H-CH)]. Patients with H-CH (7.2%) and TET2-mutated N-CH (6.0%) had greater odds of any CVAE (14.5% vs. 4.0%; P = 0.0004 and 12.3% vs. 4.2%; P = 0.010, respectively). More major CVAEs were observed in patients with H-CH (5.8% vs. 1.9%; P = 0.042) and N-CH (3.4% vs. 1.8%; P = 0.147). CONCLUSIONS CH did not affect survival in patients with mCRPC treated with ARPIs in A031201. H-CH and TET2-mutated CH were associated with more CVAEs. These findings inform the risk/benefit discussion about ARPIs in mCRPC.
Collapse
Affiliation(s)
| | - Olivia Bobek
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | - Irenaeus Chan
- Washington University School of Medicine, St. Louis, MO
| | | | - David Hillman
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | - Glenn Heller
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Todd Druley
- Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | |
Collapse
|
3
|
Tang C, Castillon VJ, Waters M, Fong C, Park T, Boscenco S, Kim S, Pekala K, Carrot-Zhang J, Hakimi AA, Schultz N, Ostrovnaya I, Gusev A, Jee J, Reznik E. Obesity-dependent selection of driver mutations in cancer. Nat Genet 2024; 56:2318-2321. [PMID: 39468367 DOI: 10.1038/s41588-024-01969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Abstract
Obesity is a risk factor for cancer, but whether obesity is linked to specific genomic subtypes of cancer is unknown. We examined the relationship between obesity and tumor genotype in two clinicogenomic corpora. Obesity was associated with specific driver mutations in lung adenocarcinoma, endometrial carcinoma and cancers of unknown primaries, independent of clinical covariates, demographic factors and genetic ancestry. Obesity is therefore a driver of etiological heterogeneity in some cancers.
Collapse
Affiliation(s)
- Cerise Tang
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venise Jan Castillon
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Waters
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chris Fong
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tricia Park
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonia Boscenco
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susie Kim
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelly Pekala
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jian Carrot-Zhang
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ari Hakimi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irina Ostrovnaya
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham & Women's Hospital, Boston, MA, USA
- The Broad Institute, Cambridge, MA, USA
| | - Justin Jee
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Ed Reznik
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Vasseur D, Bigot L, Beshiri K, Flórez-Arango J, Facchinetti F, Hollebecque A, Tselikas L, Aldea M, Blanc-Durand F, Gazzah A, Planchard D, Lacroix L, Pata-Merci N, Nobre C, Da Silva A, Nicotra C, Ngo-Camus M, Braye F, Nikolaev SI, Michiels S, Jules-Clement G, Olaussen KA, André F, Scoazec JY, Barlesi F, Ponce S, Soria JC, Besse B, Loriot Y, Friboulet L. Deciphering resistance mechanisms in cancer: final report of MATCH-R study with a focus on molecular drivers and PDX development. Mol Cancer 2024; 23:221. [PMID: 39363320 PMCID: PMC11451117 DOI: 10.1186/s12943-024-02134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Understanding the resistance mechanisms of tumor is crucial for advancing cancer therapies. The prospective MATCH-R trial (NCT02517892), led by Gustave Roussy, aimed to characterize resistance mechanisms to cancer treatments through molecular analysis of fresh tumor biopsies. This report presents the genomic data analysis of the MATCH-R study conducted from 2015 to 2022 and focuses on targeted therapies. METHODS The study included resistant metastatic patients (pts) who accepted an image-guided tumor biopsy. After evaluation of tumor content (TC) in frozen tissue biopsies, targeted NGS (10 < TC < 30%) or Whole Exome Sequencing and RNA sequencing (TC > 30%) were performed before and/or after the anticancer therapy. Patient-derived xenografts (PDX) were established by implanting tumor fragments into NOD scid gamma mice and amplified up to five passages. RESULTS A total of 1,120 biopsies were collected from 857 pts with the most frequent tumor types being lung (38.8%), digestive (16.3%) and prostate (14.1%) cancer. Molecular targetable driver were identified in 30.9% (n = 265/857) of the patients, with EGFR (41.5%), FGFR2/3 (15.5%), ALK (11.7%), BRAF (6.8%), and KRAS (5.7%) being the most common altered genes. Furthermore, 66.0% (n = 175/265) had a biopsy at progression on targeted therapy. Among resistant cases, 41.1% (n = 72/175) had no identified molecular mechanism, 32.0% (n = 56/175) showed on-target resistance, and 25.1% (n = 44/175) exhibited a by-pass resistance mechanism. Molecular profiling of the 44 patients with by-pass resistance identified 51 variants, with KRAS (13.7%), PIK3CA (11.8%), PTEN (11.8%), NF2 (7.8%), AKT1 (5.9%), and NF1 (5.9%) being the most altered genes. Treatment was tailored for 45% of the patients with a resistance mechanism identified leading to an 11 months median extension of clinical benefit. A total of 341 biopsies were implanted in mice, successfully establishing 136 PDX models achieving a 39.9% success rate. PDX models are available for EGFR (n = 31), FGFR2/3 (n = 26), KRAS (n = 18), ALK (n = 16), BRAF (n = 6) and NTRK (n = 2) driven cancers. These models closely recapitulate the biology of the original tumors in term of molecular alterations and pharmacological status, and served as valuable models to validate overcoming treatment strategies. CONCLUSION The MATCH-R study highlights the feasibility of on purpose image guided tumor biopsies and PDX establishment to characterize resistance mechanisms and guide personalized therapies to improve outcomes in pre-treated metastatic patients.
Collapse
Affiliation(s)
- Damien Vasseur
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
| | - Ludovic Bigot
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Kristi Beshiri
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | | | | | - Antoine Hollebecque
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Lambros Tselikas
- Department of Interventional Radiology, BIOTHERIS, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mihaela Aldea
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | | | - Anas Gazzah
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - David Planchard
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
| | | | - Catline Nobre
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Alice Da Silva
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Claudio Nicotra
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - Maud Ngo-Camus
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - Floriane Braye
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Sergey I Nikolaev
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Stefan Michiels
- Université Paris-Saclay, CESP, InsermVillejuif, France
- Office of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | - Gérôme Jules-Clement
- Bioinformatics Core Facility, Gustave Roussy, Université Paris-Saclay, CNRS UMS 3655, Inserm US23, Villejuif, France
| | | | - Fabrice André
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Jean-Yves Scoazec
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
| | - Fabrice Barlesi
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Santiago Ponce
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Jean-Charles Soria
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Yohann Loriot
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France.
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France.
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France.
| | - Luc Friboulet
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France.
| |
Collapse
|
5
|
Lin C, Zhou KI, Green MF, Caughey BA, Strickler JH, Datto MB, McKinney MS. Comprehensive Genomic Profiling in Non-Myeloid Hematologic Malignancies Identifies Variants That Can Alter Clinical Practice. Hematol Rep 2024; 16:603-611. [PMID: 39449302 PMCID: PMC11503333 DOI: 10.3390/hematolrep16040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Comprehensive genomic profiling (CGP) is frequently adopted to direct the clinical care of myeloid neoplasms and solid tumors, but its utility in the care of lymphoid and histiocytic cancers is less well defined. METHODS In this study, we aimed to evaluate the frequency at which mutations identified by CGP altered management in non-myeloid hematologic malignancies. We retrospectively examined the CGP results of 105 samples from 101 patients with non-myeloid hematologic malignancies treated at an academic medical center who had CGP testing between 2014 and 2021. RESULTS CGP revealed one or more pathogenic or likely pathogenic variant in 92 (88%) of samples and 73 (72%) of tested patients had one or more mutations with diagnostic, prognostic, or therapeutic significance. The identification of a resistance variant resulted in the suspension of the active treatment or affected subsequent treatment choice in 9 (69%) out of 13 patients. However, the presence of a therapy sensitizing variant only led to consideration of a biomarker-directed therapy in 6 (10%) out of 61 patients. CONCLUSIONS Overall, CGP of non-myeloid hematologic malignancies identified clinically significant variants in 72% of patients and resulted in a change in management in 22% of patients.
Collapse
Affiliation(s)
- Chenyu Lin
- Division of Hematologic Malignancies & Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Katherine I. Zhou
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | | | - Bennett A. Caughey
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John H. Strickler
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Michael B. Datto
- Department of Pathology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Matthew S. McKinney
- Division of Hematologic Malignancies & Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| |
Collapse
|
6
|
Wassenaar ECE, Gorelick AN, Hung WT, Cheek DM, Kucukkose E, Lee IH, Blohmer M, Degner S, Giunta P, Wiezer RMJ, Raicu MG, Ubink I, Klaasen SJ, Lansu N, Watson EV, Corcoran RB, Boland G, Getz G, Kops GJPL, Juric D, Lennerz JK, Boerma D, Kranenburg O, Naxerova K. A unique interplay of access and selection shapes peritoneal metastasis evolution in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614736. [PMID: 39386634 PMCID: PMC11463674 DOI: 10.1101/2024.09.25.614736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Whether metastasis in humans can be accomplished by most primary tumor cells or requires the evolution of a specialized trait remains an open question. To evaluate whether metastases are founded by non-random subsets of primary tumor lineages requires extensive, difficult-to-implement sampling. We have realized an unusually dense multi-region sampling scheme in a cohort of 26 colorectal cancer patients with peritoneal metastases, reconstructing the evolutionary history of on average 28.8 tissue samples per patient with a microsatellite-based fingerprinting assay. To assess metastatic randomness, we evaluate inter- and intra-metastatic heterogeneity relative to the primary tumor and find that peritoneal metastases are more heterogeneous than liver metastases but less diverse than locoregional metastases. Metachronous peritoneal metastases exposed to systemic chemotherapy show significantly higher inter-lesion diversity than synchronous, untreated metastases. Projection of peritoneal metastasis origins onto a spatial map of the primary tumor reveals that they often originate at the deep-invading edge, in contrast to liver and lymph node metastases which exhibit no such preference. Furthermore, peritoneal metastases typically do not share a common subclonal origin with distant metastases in more remote organs. Synthesizing these insights into an evolutionary portrait of peritoneal metastases, we conclude that the peritoneal-metastatic process imposes milder selective pressures onto disseminating cancer cells than the liver-metastatic process. Peritoneal metastases' unique evolutionary features have potential implications for staging and treatment.
Collapse
Affiliation(s)
- Emma CE Wassenaar
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexander N Gorelick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Wei-Ting Hung
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Present address: Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - David M Cheek
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Emre Kucukkose
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - I-Hsiu Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Martin Blohmer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Degner
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Peter Giunta
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Rene MJ Wiezer
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Mihaela G Raicu
- Department of Pathology, St. Antonius Hospital, Nieuwegein, the Netherlands
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Inge Ubink
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Nico Lansu
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Emma V. Watson
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Ryan B. Corcoran
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Genevieve Boland
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Gad Getz
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Geert JPL Kops
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Dejan Juric
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Termeer Center for Targeted Therapies, Massachusetts General Hospital, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Djamila Boerma
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Onno Kranenburg
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Fischer GM, Mahadevan NR, Hornick JL, Fletcher CDM, Russell-Goldman E. A Comparative Genomic Study of Conventional and Undifferentiated Melanoma. Mod Pathol 2024; 37:100626. [PMID: 39332711 DOI: 10.1016/j.modpat.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/05/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
Undifferentiated melanoma, defined as melanoma that has lost all usual phenotypic and immunohistochemical characteristics of conventional melanoma, can pose significant diagnostic challenges. Molecular studies have advanced our understanding of undifferentiated melanoma by demonstrating that a subset of these tumors harbors known melanoma driver alterations in genes such as BRAF, NRAS, and NF1. However, there is a paucity of data describing genetic alterations that may distinguish undifferentiated melanoma from conventional melanoma. In this study, we directly compared the genomic profiles of undifferentiated melanoma to a cohort of conventional melanomas, including 14 undifferentiated melanoma cases (comprised of 2 primary cases, 2 cutaneous recurrences, and 10 metastases) and a cohort of 127 conventional melanomas including primary, recurrent, and metastatic cases. Targeted sequencing of 447 cancer-associated genes was performed, including identification of mutations and copy number alterations. NRAS was the most frequent melanoma driver in undifferentiated melanoma (8/14 cases, 57%), although notably, only 1 undifferentiated melanoma harbored an NRAS Q61R mutation. Compared with the conventional melanoma cohort, undifferentiated melanoma demonstrated statistically significant enrichment of pathogenic activating RAC1 mutations (6/14 total cases, 43%), including P29S (4/6 cases), P29L (1/6 cases), and D11E (1/6 cases). In addition to providing insight into the molecular pathogenesis of undifferentiated melanoma, these findings also suggest that RAS Q61R immunohistochemistry may have limited utility for its diagnosis. The presence of recurrent RAC1 mutations in undifferentiated melanoma is also notable as these alterations may contribute to mitogen-activated protein kinase pathway-targeted therapy resistance. Furthermore, the RAC1 alterations identified in this cohort have been shown to drive a melanocytic to mesenchymal switch in melanocytes, offering a possible explanation for the undifferentiated phenotype of these melanomas.
Collapse
Affiliation(s)
- Grant M Fischer
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Navin R Mahadevan
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eleanor Russell-Goldman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Villacis RAR, Côrtes L, Basso TR, do Canto LM, Souza JS, Aagaard MM, da Cruz Formiga MN, Aguiar S, Achatz MI, Rogatto SR. Germline DNA Damage Repair Gene Alterations in Patients with Metachronous Breast and Colorectal Cancer. Int J Mol Sci 2024; 25:10275. [PMID: 39408606 PMCID: PMC11476855 DOI: 10.3390/ijms251910275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
A hereditary component of breast (BC) and colorectal cancer (CRC) has been described in approximately one-third of these tumor types. BC patients have an increased risk of developing CRC as a second primary tumor and vice versa. Germline genomic variants (NextSeq550, Illumina) were investigated in 24 unrelated BC and/or CRC patients and 7 relatives from 3 index patients. Fifty-six pathogenic or likely pathogenic variants were identified in 19 of 24 patients. We detected single-nucleotide variants (SNVs) in CRC predisposition genes (MLH1 and MUTYH) and other promising candidates (CDK5RAP3, MAD1L1, NOS3, and POLM). Eighteen patients presented SNVs or copy number variants (CNVs) in DNA damage repair genes. We also identified SNVs recently associated with BC or CRC predisposition (PABPC1, TYRO3, MAP3K1, SLC15A4, and LAMA1). The PABPC1c.1255C>T variant was detected in nine unrelated patients. Each patient presented at least one SNV/CNV in a candidate gene, and most had alterations in more than one gene, reinforcing a polygenic model for BC/CRC predisposition. A significant fraction of BC/CRC patients with a family history of these tumors harbored deleterious germline variants in DNA repair genes. Our findings can lead to strategies to improve the diagnosis, genetic counseling, and treatment of patients and their relatives.
Collapse
Affiliation(s)
- Rolando André Rios Villacis
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília-UnB, Brasília 70910-900, DF, Brazil
| | - Luiza Côrtes
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Tocogynecology Graduation Program, Medical School, São Paulo State University UNESP, Botucatu 18618-687, SP, Brazil
| | - Tatiane Ramos Basso
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | - Luisa Matos do Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | | | - Mads Malik Aagaard
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | | | - Samuel Aguiar
- Colorectal Cancer Reference Center, A.C. Camargo Cancer Center, São Paulo 01509-010, SP, Brazil;
| | - Maria Isabel Achatz
- Cancer Genetics Unit, Oncology Branch, Hospital Sirio-Libanês, São Paulo 01308-050, SP, Brazil;
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
- Botucatu Medical School Hospital, São Paulo State University UNESP, Botucatu 18618-687, SP, Brazil
| |
Collapse
|
9
|
Stecko H, Iyer S, Tsilimigras D, Pawlik TM. Demographic Trends, Co-Alterations, and Imatinib Resistance across Genomic Variants in Gastrointestinal Stromal Tumors: An AACR Project GENIE Analysis. Oncology 2024:1-14. [PMID: 39307135 DOI: 10.1159/000541454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasm of the gastrointestinal tract, the treatment of which represents a significant breakthrough in targeted cancer therapy. Given its overall rare nature, genomic differences and clinical implications between demographic groups have not been previously investigated. METHODS Anonymized demographic, clinical, and genomic data from 1,559 GIST patients in the American Association for Cancer Research Project GENIE database were analyzed using cBioPortal and custom Python scripts. Data on patient demographics, genomic alterations, and co-occurrence genetic alerations were collected and classified according to clinical implications using the OncoKB database. χ2 tests for differences in genomic alterations were used across various demographic factors and mutual exclusivity analysis was employed to identify co-mutation patterns. RESULTS Male patients demonstrated higher incidence of PDGFRA mutation (14.56% vs. 8.05%; p < 0.001), while female patients had higher likelihood of NF1 mutations (7.46% vs. 3.23%; p = 0.001). Asian patients had higher alteration rates at KIT (85.59%; p = 0.002). Co-occurrence analysis revealed KIT alterations frequently co-occurred with CDKN2A (q < 0.001), MTAP (q = 0.045), and PTEN (q = 0.056), while there was mutual exclusivity with PDGFRA (q < 0.001), NF1 (q < 0.001), and BRAF (q = 0.015). CDKN2A alterations co-occurred with MTAP (q < 0.001) and PIK3CA (q = 0.015), while being mutually exclusive with TP53 (q = 0.002) and NF1 (q = 0.007). Trends were similar among patients who had received no prior medical treatment. Imatinib-resistant mutations were more common among male patients (25.6% vs. 18.9%; p = 0.0056) and individuals under 55 (27.3% vs. 20.9%; p = 0.0228). Among patients with imatinib-resistant mutations, 77.78% had sunitinib resistance, while 70.25% maintained sensitivity to ripretinib. CONCLUSION Sex and race/ethnic differences in genomic alterations, as well as co-mutations, were prevalent among patients with GIST. Variations in mutational profiles highlight the importance of distinct genetic drivers that may be targeted to treat different patient populations.
Collapse
Affiliation(s)
- Hunter Stecko
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sidharth Iyer
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Diamantis Tsilimigras
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
10
|
Hickman RA, Miller AM, Holle BM, Jee J, Liu SY, Ross D, Yu H, Riely GJ, Ombres C, Gewirtz AN, Reiner AS, Nandakumar S, Price A, Kaley TJ, Graham MS, Vanderbilt C, Rana S, Hill K, Chabot K, Campos C, Nafa K, Shukla N, Karajannis M, Li B, Berger M, Ladanyi M, Pentsova E, Boire A, Brannon AR, Bale T, Mellinghoff IK, Arcila ME. Real-world experience with circulating tumor DNA in cerebrospinal fluid from patients with central nervous system tumors. Acta Neuropathol Commun 2024; 12:151. [PMID: 39289779 PMCID: PMC11406943 DOI: 10.1186/s40478-024-01846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/03/2024] [Indexed: 09/19/2024] Open
Abstract
The characterization of genetic alterations in tumor samples has become standard practice for many human cancers to achieve more precise disease classification and guide the selection of targeted therapies. Cerebrospinal fluid (CSF) can serve as a source of tumor DNA in patients with central nervous system (CNS) cancer. We performed comprehensive profiling of CSF circulating tumor DNA (ctDNA) in 711 patients using an FDA-authorized platform (MSK-IMPACT™) in a hospital laboratory. We identified genetic alterations in 489/922 (53.0%) CSF samples with clinically documented CNS tumors. None of 85 CSF samples from patients without CNS tumors had detectable ctDNA. The distribution of clinically actionable somatic alterations was consistent with tumor-type specific alterations across the AACR GENIE cohort. Repeated CSF ctDNA examinations from the same patients identified clonal evolution and emergence of resistance mechanisms. ctDNA detection was associated with shortened overall survival following CSF collection. Next-generation sequencing of CSF, collected through a minimally invasive lumbar puncture in a routine hospital setting, provides clinically actionable cancer genotype information in a large fraction of patients with CNS tumors.
Collapse
Affiliation(s)
- Richard A Hickman
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Alexandra M Miller
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Neurology, Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Bridget M Holle
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Justin Jee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Si-Yang Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Dara Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Helena Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christina Ombres
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Alexandra N Gewirtz
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Subhiksha Nandakumar
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Adam Price
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Thomas J Kaley
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Maya S Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Satshil Rana
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Katherine Hill
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kiana Chabot
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Carl Campos
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Khedoudja Nafa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Matthias Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Bob Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Elena Pentsova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - A Rose Brannon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Tejus Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA.
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
11
|
Kolekar P, Balagopal V, Dong L, Liu Y, Foy S, Tran Q, Mulder H, Huskey ALW, Plyler E, Liang Z, Ma J, Nakitandwe J, Gu J, Namwanje M, Maciaszek J, Payne-Turner D, Mallampati S, Wang L, Easton J, Klco JM, Ma X. SJPedPanel: A Pan-Cancer Gene Panel for Childhood Malignancies to Enhance Cancer Monitoring and Early Detection. Clin Cancer Res 2024; 30:4100-4114. [PMID: 39047169 PMCID: PMC11393547 DOI: 10.1158/1078-0432.ccr-24-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE The purpose of the study was to design a pan-cancer gene panel for childhood malignancies and validate it using clinically characterized patient samples. EXPERIMENTAL DESIGN In addition to 5,275 coding exons, SJPedPanel also covers 297 introns for fusions/structural variations and 7,590 polymorphic sites for copy-number alterations. Capture uniformity and limit of detection are determined by targeted sequencing of cell lines using dilution experiment. We validate its coverage by in silico analysis of an established real-time clinical genomics (RTCG) cohort of 253 patients. We further validate its performance by targeted resequencing of 113 patient samples from the RTCG cohort. We demonstrate its power in analyzing low tumor burden specimens using morphologic remission and monitoring samples. RESULTS Among the 485 pathogenic variants reported in RTCG cohort, SJPedPanel covered 86% of variants, including 82% of 90 rearrangements responsible for fusion oncoproteins. In our targeted resequencing cohort, 91% of 389 pathogenic variants are detected. The gene panel enabled us to detect ∼95% of variants at allele fraction (AF) 0.5%, whereas the detection rate is ∼80% at AF 0.2%. The panel detected low-frequency driver alterations from morphologic leukemia remission samples and relapse-enriched alterations from monitoring samples, demonstrating its power for cancer monitoring and early detection. CONCLUSIONS SJPedPanel enables the cost-effective detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions by targeted sequencing of ∼0.15% of human genome for childhood malignancies. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.
Collapse
Affiliation(s)
- Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Vidya Balagopal
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Li Dong
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anna L W Huskey
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Emily Plyler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhikai Liang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jingqun Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Joy Nakitandwe
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jiali Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Maria Namwanje
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jamie Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Saradhi Mallampati
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
12
|
Martín R, Gaitán N, Jarlier F, Feuerbach L, de Soyres H, Arbonés M, Gutman T, Puiggròs M, Ferriz A, Gonzalez A, Estelles L, Gut I, Capella-Gutierrez S, Stein LD, Brors B, Royo R, Hupé P, Torrents D. ONCOLINER: A new solution for monitoring, improving, and harmonizing somatic variant calling across genomic oncology centers. CELL GENOMICS 2024; 4:100639. [PMID: 39216474 PMCID: PMC11480849 DOI: 10.1016/j.xgen.2024.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The characterization of somatic genomic variation associated with the biology of tumors is fundamental for cancer research and personalized medicine, as it guides the reliability and impact of cancer studies and genomic-based decisions in clinical oncology. However, the quality and scope of tumor genome analysis across cancer research centers and hospitals are currently highly heterogeneous, limiting the consistency of tumor diagnoses across hospitals and the possibilities of data sharing and data integration across studies. With the aim of providing users with actionable and personalized recommendations for the overall enhancement and harmonization of somatic variant identification across research and clinical environments, we have developed ONCOLINER. Using specifically designed mosaic and tumorized genomes for the analysis of recall and precision across somatic SNVs, insertions or deletions (indels), and structural variants (SVs), we demonstrate that ONCOLINER is capable of improving and harmonizing genome analysis across three state-of-the-art variant discovery pipelines in genomic oncology.
Collapse
Affiliation(s)
- Rodrigo Martín
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Nicolás Gaitán
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Frédéric Jarlier
- Institut Curie, Paris, France; U900, Paris, France; PSL Research University, Paris, France; Mines Paris Tech, Fontainebleau, France
| | - Lars Feuerbach
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henri de Soyres
- Institut Curie, Paris, France; U900, Paris, France; PSL Research University, Paris, France; Mines Paris Tech, Fontainebleau, France
| | - Marc Arbonés
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Tom Gutman
- Institut Curie, Paris, France; U900, Paris, France; PSL Research University, Paris, France; Mines Paris Tech, Fontainebleau, France
| | - Montserrat Puiggròs
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Alvaro Ferriz
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Asier Gonzalez
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Ivo Gut
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | | | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Romina Royo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Philippe Hupé
- Institut Curie, Paris, France; U900, Paris, France; PSL Research University, Paris, France; Mines Paris Tech, Fontainebleau, France; UMR144, CNRS, Paris, France
| | - David Torrents
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
13
|
Hida T, Kato J, Idogawa M, Tokino T, Uhara H. Genomic landscape of cutaneous, acral, mucosal, and uveal melanoma in Japan: analysis of clinical comprehensive genomic profiling data. Int J Clin Oncol 2024:10.1007/s10147-024-02615-y. [PMID: 39249554 DOI: 10.1007/s10147-024-02615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Cutaneous melanoma (CM) is the most common type in Caucasians, while acral melanoma (AM) and mucosal melanoma (MM), which are resistant to immunotherapies and BRAF/MEK-targeted therapies, are more common in East Asians. Genomic profiling is essential for treating melanomas, but such data are lacking in Japan. METHODS Comprehensive genomic profiling data compiled in the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) were analyzed. RESULTS A total of 380 melanomas was analyzed, including 136 CM, 46 AM, 168 MM, and 30 uveal melanoma (UM). MM included conjunctival, sinonasal, oral, esophageal, anorectal, and vulvovaginal melanomas. No significant difference in the median tumor mutational burden (TMB) of CM (3.39 mutations/megabase), AM (2.76), and MM (3.78) was the key finding. Microsatellite instability-high status was found in one case. BRAF V600E/K was found in only 45 patients (12%). Key driver mutations in CM were BRAF (38%), NRAS (21%), NF1 (8%), and KIT (10%), with frequent copy number alterations (CNAs) of CDKN2A, CDKN2B, and MYC. AM was characterized by altered KIT (30%), NRAS (26%), and NF1 (11%) and CDKN2A, CDKN2B, CDK4, MDM2, and CCND1 CNAs. MM was characterized by altered NRAS (24%), KIT (21%), and NF1 (17%) and MYC, KIT, and CDKN2A CNAs, with differences based on anatomical locations. UM bore GNAQ or GNA11 driver mutations (87%) and frequent mutations in SF3B1 or BAP1. CONCLUSION The distinct genomic profiling in Japanese patients, including lower TMB, compared to Caucasians, is associated with poorer treatment outcomes. This result underscores the need for more effective therapeutic agents.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Junji Kato
- Department of Dermatology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, 060-8543, Japan.
| |
Collapse
|
14
|
Hung LJ, Huang CY, Tung KC, Chen JS, Huang WK, Hsu CC, Fang YF, Wang CL, Liu PC, Yeh KY, Chang PH, Chang JWC, Lin YC, Huang SF, Chou WC. Comprehensive genomic profiling in multiple cancer types: A comparative analysis of the National Biobank Consortium of Taiwan and clinical practice cohorts. J Formos Med Assoc 2024:S0929-6646(24)00405-4. [PMID: 39244401 DOI: 10.1016/j.jfma.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND This retrospective study analyzed tumor tissue profiling data to assess the potential of comprehensive genomic profiling (CGP) for patient care across diverse solid tumors. MATERIAL AND METHODS Patients with newly diagnosed or recurrent stage IIIB or IV lung adenocarcinoma with a null immunophenotype and esophageal, gastric, pancreatic, or bile duct cancer between January 2020 and July 2023 at two medical centers in Taiwan were included. One cohort was a part of the National Biobank Consortium of Taiwan project, whereas the other consisted of patients undergoing routine clinical practice. Tumor samples were subjected to CGP using FoundationOne®CDx, with therapeutic implications determined using OncoKB classification. RESULTS FoundationOne®CDx testing of 574 patients was successful in 456 (79.4%) patients. Clinically actionable genomic alterations were detected in 21.1% (96/456) of the patients, including 17.5%, 2.9%, and 0.7% of patients with evidence levels 1, 2, and 3, respectively. Lung adenocarcinoma accounted for the largest proportion of samples with at least one actionable gene alteration (63.2%), followed by bile duct (26.9%), gastric (17.6%), esophageal (4.0%), and pancreatic (3.1%) cancers. Based on CGP results, 43 patients (9.4%) received matched targeted therapy. The median overall survival of patients who received matched therapy or not was 26.1 months (95% confidence interval (CI), 16.7-35.5 months) and 10.6 months (95% CI, 8.1-13.1 months; hazard ratio, 0.28, 95% CI, 0.14-0.55, p < 0.001), respectively. CONCLUSIONS This study provides comprehensive insights into the genomic profiles of diverse cancers in Taiwan, highlighting the crucial role of CGP in identifying actionable genomic alterations and guiding effective therapeutic strategies in real-world practice.
Collapse
Affiliation(s)
- Ling-Jen Hung
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chen-Yang Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Kai-Che Tung
- Patient Journey Solution Division, Roche Products Ltd., Taipei, Taiwan; Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jen-Shi Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Yueh-Fu Fang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ping-Chi Liu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Keelung Chang Gung Memorial Hospital and Chang Gung University, Keelung, Taiwan
| | - Kun-Yun Yeh
- Division of Hematology-Oncology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital and Chang Gung University, Keelung, Taiwan
| | - Pei-Hung Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital and Chang Gung University, Keelung, Taiwan
| | - John Wen-Cheng Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Yung-Chang Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Chi Chou
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
15
|
Lococo F, De Paolis E, Evangelista J, Dell'Amore A, Giannarelli D, Chiappetta M, Campanella A, Sassorossi C, Cancellieri A, Calabrese F, Conca A, Vita E, Minucci A, Bria E, Castello A, Urbani A, Rea F, Margaritora S, Scambia G. Comparative Analysis of Comprehensive Genomic Profile in Thymomas and Recurrent Thymomas Reveals Potentially Actionable Mutations for Target Therapies. Int J Mol Sci 2024; 25:9560. [PMID: 39273507 PMCID: PMC11394945 DOI: 10.3390/ijms25179560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Molecular profiles of thymomas and recurrent thymomas are far from being defined. Herein, we report an analysis of a comprehensive genetic profile (CGP) in a highly selected cohort of recurrent thymomas. Among a cohort of 426 thymomas, the tissue was available in 23 recurrent tumors for matching the biomolecular results obtained from primary and relapse samples. A control group composed of non-recurrent thymoma patients was selected through a propensity score match analysis. CGP was performed using the NGS Tru-SightOncology assay to evaluate TMB, MSI, and molecular alterations in 523 genes. CGP does not differ when comparing initial tumor with tumor relapse. A significantly higher frequency of cell cycle control genes alterations (100.0% vs. 57.1%, p = 0.022) is detected in patients with early recurrence (<32 months) compared to late recurrent cases. The CGPs were similar in recurrent thymomas and non-recurrent thymomas. Finally, based on NGS results, an off-label treatment or clinical trial could be potentially proposed in >50% of cases (oncogenic Tier-IIC variants). In conclusion, CGPs do not substantially differ between initial tumor vs. tumor recurrence and recurrent thymomas vs. non-recurrent thymomas. Cell cycle control gene alterations are associated with an early recurrence after thymectomy. Multiple target therapies are potentially available by performing a comprehensive CGP, suggesting that a precision medicine approach on these patients could be further explored.
Collapse
Affiliation(s)
- Filippo Lococo
- Thoracic Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elisa De Paolis
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Jessica Evangelista
- Thoracic Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Dell'Amore
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
| | - Diana Giannarelli
- Epidemiology and Biostatistics Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Chiappetta
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Annalisa Campanella
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Carolina Sassorossi
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Fiorella Calabrese
- Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
| | - Alessandra Conca
- Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
| | - Emanuele Vita
- UOSD Oncologia Toraco-Polmonare, Comprehensive Cancer Center, Fondazione Policlinico Universitario Ago-stino Gemelli IRCCS, 00168 Rome, Italy
| | - Angelo Minucci
- Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
| | - Emilio Bria
- UOSD Oncologia Toraco-Polmonare, Comprehensive Cancer Center, Fondazione Policlinico Universitario Ago-stino Gemelli IRCCS, 00168 Rome, Italy
- UOC Oncologia Medica, Ospedale Isola Tiberina-Gemelli Isola, 00186 Roma, Italy
| | - Angelo Castello
- Nuclear Medicine Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Urbani
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Federico Rea
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
| | - Stefano Margaritora
- Thoracic Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Scambia
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| |
Collapse
|
16
|
Elkrief A, Odintsov I, Smith RS, Vojnic M, Hayashi T, Khodos I, Markov V, Liu Z, Lui AJW, Bloom JL, Offin MD, Rudin CM, de Stanchina E, Riely GJ, Somwar R, Ladanyi M. Combination of MDM2 and Targeted Kinase Inhibitors Results in Prolonged Tumor Control in Lung Adenocarcinomas With Oncogenic Tyrosine Kinase Drivers and MDM2 Amplification. JCO Precis Oncol 2024; 8:e2400241. [PMID: 39259915 PMCID: PMC11404768 DOI: 10.1200/po.24.00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/06/2024] [Accepted: 08/04/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE MDM2, a negative regulator of the TP53 tumor suppressor, is oncogenic when amplified. MDM2 amplification (MDM2amp) is mutually exclusive with TP53 mutation and is seen in 6% of patients with lung adenocarcinoma (LUAD), with significant enrichment in subsets with receptor tyrosine kinase (RTK) driver alterations. Recent studies have shown synergistic activity of MDM2 and MEK inhibition in patient-derived LUAD models with MDM2amp and RTK driver alterations. However, the combination of MDM2 and RTK inhibitors in LUAD has not been studied. METHODS We evaluated the combination of MDM2 and RTK inhibition in patient-derived models of LUAD. RESULTS In a RET-fusion LUAD patient-derived model with MDM2amp, MDM2 inhibition with either milademetan or AMG232 combined with selpercatinib resulted in long-term in vivo tumor control markedly superior to either agent alone. Similarly, in an EGFR-mutated model with MDM2amp, combining either milademetan or AMG232 with osimertinib resulted in long-term in vivo tumor control, which was strikingly superior to either agent alone. CONCLUSION These preclinical in vivo data provide a rationale for further clinical development of this combinatorial targeted therapy approach.
Collapse
Affiliation(s)
- Arielle Elkrief
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Igor Odintsov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Roger S Smith
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Morana Vojnic
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Takuo Hayashi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Inna Khodos
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vladimir Markov
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zebing Liu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Allan J W Lui
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jamie L Bloom
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael D Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Charles M Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Elisa de Stanchina
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gregory J Riely
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
17
|
Jeong J, Kim D, Ryu YM, Park JM, Yoon SY, Ahn B, Kim GH, Jeong SU, Sung HJ, Lee YI, Kim SY, Cho YM. Artificial intelligence algorithm for neoplastic cell percentage estimation and its application to copy number variation in urinary tract cancer. J Pathol Transl Med 2024; 58:229-240. [PMID: 39112099 PMCID: PMC11424195 DOI: 10.4132/jptm.2024.07.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Bladder cancer is characterized by frequent mutations, which provide potential therapeutic targets for most patients. The effectiveness of emerging personalized therapies depends on an accurate molecular diagnosis, for which the accurate estimation of the neoplastic cell percentage (NCP) is a crucial initial step. However, the established method for determining the NCP, manual counting by a pathologist, is time-consuming and not easily executable. METHODS To address this, artificial intelligence (AI) models were developed to estimate the NCP using nine convolutional neural networks and the scanned images of 39 cases of urinary tract cancer. The performance of the AI models was compared to that of six pathologists for 119 cases in the validation cohort. The ground truth value was obtained through multiplexed immunofluorescence. The AI model was then applied to 41 cases in the application cohort that underwent next-generation sequencing testing, and its impact on the copy number variation (CNV) was analyzed. RESULTS Each AI model demonstrated high reliability, with intraclass correlation coefficients (ICCs) ranging from 0.82 to 0.88. These values were comparable or better to those of pathologists, whose ICCs ranged from 0.78 to 0.91 in urothelial carcinoma cases, both with and without divergent differentiation/ subtypes. After applying AI-driven NCP, 190 CNV (24.2%) were reclassified with 66 (8.4%) and 78 (9.9%) moved to amplification and loss, respectively, from neutral/minor CNV. The neutral/minor CNV proportion decreased by 6%. CONCLUSIONS These results suggest that AI models could assist human pathologists in repetitive and cumbersome NCP calculations.
Collapse
Affiliation(s)
- Jinahn Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mi Ryu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Ja-Min Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Sun Young Yoon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Bokyung Ahn
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi Hwan Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Se Un Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun-Jung Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Il Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Xu L, Liddell B, Nesic K, Geissler F, Ashwood L, Wakefield M, Scott C, Waddell N, Kondrashova O. High-level tumour methylation of BRCA1 and RAD51C is required for homologous recombination deficiency in solid cancers. NAR Cancer 2024; 6:zcae033. [PMID: 39055334 PMCID: PMC11270467 DOI: 10.1093/narcan/zcae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
In ovarian and breast cancer, promoter methylation of BRCA1 or RAD51C is a promising biomarker for PARP inhibitor response, as high levels lead to homologous recombination deficiency (HRD). Yet the extent and role of such methylation in other cancers is not clear. This study comprehensively investigated promoter methylation of eight homologous recombination repair genes across 23 solid cancer types. Here, we showed that BRCA1 methylated cancers were associated with reduced gene expression, loss of heterozygosity (LOH), TP53 mutations and genomic features of HRD. We identified BRCA1 methylation in 3% of the copy-number high subtype of endometrial cancer, and as a rare event in six other cancer types, including lung squamous cell, pancreatic, bladder and stomach cancer. RAD51C promoter methylation was widespread across multiple cancer types, but HRD features were only observed for cases which contained high-level tumour methylation and LOH of RAD51C. While RAD51C methylation was frequent in stomach adenocarcinoma (6%) and low-grade glioma (2.5%), it was mostly detected at a low tumour level, suggestive of heterozygous methylation, and was associated with CpG island methylator phenotype. Our findings indicate that high-level tumour methylation of BRCA1 and RAD51C should be explored as a PARP inhibitor biomarker across multiple cancers.
Collapse
Affiliation(s)
- Lijun Xu
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Brett Liddell
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Franziska Geissler
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Lauren M Ashwood
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicola Waddell
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Olga Kondrashova
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Fleming AM, Gehle DB, Freitas JP, Hendrick LE, Yakoub D, Abdelhafeez H, Nezakatgoo N, Deneve JL, Langham MR, Glazer ES, Shibata D, Merchant NB, Dickson PV, Murphy AJ. CTNNB1 exon 3 mutations in metastatic solid pseudopapillary neoplasm of the pancreas. J Surg Oncol 2024. [PMID: 39155692 DOI: 10.1002/jso.27808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND AND OBJECTIVES Solid pseudopapillary neoplasm (SPN) of the pancreas demonstrates an indolent disease course; however, some patients present with a "malignant" phenotype, including distant metastases resistant to chemotherapy. This analysis identifies molecular drivers of metastatic SPN using the world's largest clinicogenomics database. METHODS The American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange was queried for primary and metastatic SPN samples. Sample-level genomic alterations were compared. A pan-pancreatic cancer analysis assessed relevant mutations among all metastatic pancreatic malignancies. RESULTS Among 28 SPN samples identified (n = 17 primary, n = 11 metastatic), the most commonly mutated gene was CTNNB1, (24/28 samples; 85.7%). Most mutations were missense (21/24; 87.5%) or in-frame deletions (3/24; 12.5%). The most common CTNNB1 mutations in primary SPN were exon 3 S37F/C missense mutations (6/16 profiled patients, 37.5%), contrasting exon 3 D32N/Y/H missense mutations in metastatic samples (6/11 profiled patients, 54.5%). Metastatic SPN had higher rates of CTNNB1 mutations than metastases from pancreatic ductal adenocarcinoma (72.7% vs. 1.1%; q < 0.0001), pancreatic neuroendocrine tumor (72.7% vs. 2.5%; q < 0.0001), and pancreatic acinar cell carcinoma (72.7% vs. 11.5%; q = 0.0254). CONCLUSIONS Missense mutations along exon 3 of CTNNB1 predominate metastatic SPN, differentiating these patients from those with metastases from analogous pancreatic malignancies.
Collapse
Affiliation(s)
- Andrew M Fleming
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daniel B Gehle
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Julia Pedo Freitas
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Leah E Hendrick
- Division of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Danny Yakoub
- Department of Surgery, Augusta University Medical Center, Augusta, Georgia, USA
| | - Hafeez Abdelhafeez
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nosratollah Nezakatgoo
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jeremiah L Deneve
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Max R Langham
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Evan S Glazer
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nipun B Merchant
- Department of Surgery, University of Miami Health System, Miami, Florida, USA
| | - Paxton V Dickson
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Andrew J Murphy
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
20
|
Halik A, Tilgner M, Silva P, Estrada N, Altwasser R, Jahn E, Heuser M, Hou HA, Pratcorona M, Hills RK, Metzeler KH, Fenwarth L, Dolnik A, Terre C, Kopp K, Blau O, Szyska M, Christen F, Krönke J, Vasseur L, Löwenberg B, Esteve J, Valk PJM, Duchmann M, Chou WC, Linch DC, Döhner H, Gale RE, Döhner K, Bullinger L, Yoshida K, Damm F. Genomic characterization of AML with aberrations of chromosome 7: a multinational cohort of 519 patients. J Hematol Oncol 2024; 17:70. [PMID: 39160538 PMCID: PMC11331663 DOI: 10.1186/s13045-024-01590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Deletions and partial losses of chromosome 7 (chr7) are frequent in acute myeloid leukemia (AML) and are linked to dismal outcome. However, the genomic landscape and prognostic impact of concomitant genetic aberrations remain incompletely understood. METHODS To discover genetic lesions in adult AML patients with aberrations of chromosome 7 [abn(7)], 60 paired diagnostic/remission samples were investigated by whole-exome sequencing in the exploration cohort. Subsequently, a gene panel including 66 genes and a SNP backbone for copy-number variation detection was designed and applied to the remaining samples of the validation cohort. In total, 519 patients were investigated, of which 415 received intensive induction treatment, typically containing a combination of cytarabine and anthracyclines. RESULTS In the exploration cohort, the most frequently mutated gene was TP53 (33%), followed by epigenetic regulators (DNMT3A, KMT2C, IDH2) and signaling genes (NRAS, PTPN11). Thirty percent of 519 patients harbored ≥ 1 mutation in genes located in commonly deleted regions of chr7-most frequently affecting KMT2C (16%) and EZH2 (10%). KMT2C mutations were often subclonal and enriched in patients with del(7q), de novo or core-binding factor AML (45%). Cancer cell fraction analysis and reconstruction of mutation acquisition identified TP53 mutations as mainly disease-initiating events, while del(7q) or -7 appeared as subclonal events in one-third of cases. Multivariable analysis identified five genetic lesions with significant prognostic impact in intensively treated AML patients with abn(7). Mutations in TP53 and PTPN11 (11%) showed the strongest association with worse overall survival (OS, TP53: hazard ratio [HR], 2.53 [95% CI 1.66-3.86]; P < 0.001; PTPN11: HR, 2.24 [95% CI 1.56-3.22]; P < 0.001) and relapse-free survival (RFS, TP53: HR, 2.3 [95% CI 1.25-4.26]; P = 0.008; PTPN11: HR, 2.32 [95% CI 1.33-4.04]; P = 0.003). By contrast, IDH2-mutated patients (9%) displayed prolonged OS (HR, 0.51 [95% CI 0.30-0.88]; P = 0.0015) and durable responses (RFS: HR, 0.5 [95% CI 0.26-0.96]; P = 0.036). CONCLUSION This work unraveled formerly underestimated genetic lesions and provides a comprehensive overview of the spectrum of recurrent gene mutations and their clinical relevance in AML with abn(7). KMT2C mutations are among the most frequent gene mutations in this heterogeneous AML subgroup and warrant further functional investigation.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Female
- Male
- Middle Aged
- Adult
- Chromosomes, Human, Pair 7/genetics
- Aged
- Mutation
- Cohort Studies
- Young Adult
- Chromosome Aberrations
- Prognosis
- Aged, 80 and over
- Adolescent
- Exome Sequencing
- DNA Copy Number Variations
- Tumor Suppressor Protein p53/genetics
- Genomics/methods
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
Collapse
Affiliation(s)
- Adriane Halik
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marlon Tilgner
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Patricia Silva
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Natalia Estrada
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Altwasser
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ekaterina Jahn
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Department of Internal Medicine IV, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, and Division of General Medicine, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei City, Taiwan
| | - Marta Pratcorona
- Hospital de la Santa Creu i Sant Pau. Institut de Recerca Sant Pau. Department of Medicine, Universitat Autonoma of Barcelona, Barcelona, Spain
| | - Robert K Hills
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Klaus H Metzeler
- Department of Hematology, Cell Therapy, Hemostaseology and Infectious Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Laurene Fenwarth
- Unité Mixte de Recherche (UMR) 9020-UMR1277, Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalo-Universitaire (CHU) Lille, Institut de Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Anna Dolnik
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christine Terre
- Laboratoire de Cytogénétique, Service de Biologie, CH de Versailles, Le Chesnay, France
| | - Klara Kopp
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Olga Blau
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Szyska
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friederike Christen
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (Deutsches Konsortium Für Translationale Krebsforschung, DKTK), Partner Site, Berlin, Germany
| | - Loïc Vasseur
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC Cancer Institute, and Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordi Esteve
- Hematology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, and Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Matthieu Duchmann
- Institut de Recherche Saint-Louis (IRSL), Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Centre National de la Recherche Scientifique (CNRS) UMR 7212 GenCellDis, Université Paris Cité, Paris, France
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, and Division of General Medicine, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei City, Taiwan
| | - David C Linch
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Rosemary E Gale
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (Deutsches Konsortium Für Translationale Krebsforschung, DKTK), Partner Site, Berlin, Germany
| | - Kenichi Yoshida
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Frederik Damm
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- German Cancer Consortium (Deutsches Konsortium Für Translationale Krebsforschung, DKTK), Partner Site, Berlin, Germany.
| |
Collapse
|
21
|
Tosello V, Grassi A, Rose D, Bao LC, Zulato E, Dalle Fratte C, Polano M, Del Bianco P, Pasello G, Guarneri V, Indraccolo S, Bonanno L. Binary classification of copy number alteration profiles in liquid biopsy with potential clinical impact in advanced NSCLC. Sci Rep 2024; 14:18545. [PMID: 39122833 PMCID: PMC11316016 DOI: 10.1038/s41598-024-68229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Liquid biopsy has recently emerged as an important tool in clinical practice particularly for lung cancer patients. We retrospectively evaluated cell-free DNA analyses performed at our Institution by next generation sequencing methodology detecting the major classes of genetic alterations. Starting from the graphical representation of chromosomal alterations provided by the analysis software, we developed a support vector machine classifier to automatically classify chromosomal profiles as stable (SCP) or unstable (UCP). High concordance was found between our binary classification and tumor fraction evaluation performed using shallow whole genome sequencing. Among clinical features, UCP patients were more likely to have ≥ 3 metastatic sites and liver metastases. Longitudinal assessment of chromosomal profiles in 33 patients with lung cancer receiving immune checkpoint inhibitors (ICIs) showed that only patients that experienced early death or hyperprogressive disease retained or acquired an UCP within 3 weeks from the beginning of ICIs. UCP was not observed following ICIs among patients that experienced progressive disease or clinical benefit. In conclusion, our binary classification, applied to whole copy number alteration profiles, could be useful for clinical risk stratification during systemic treatment for non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Valeria Tosello
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Angela Grassi
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Dominic Rose
- Sequencing Solutions, Roche Diagnostics Deutschland GmbH, Mannheim, Germany
| | - Loc Carlo Bao
- Department of Surgery, Oncology, Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Elisabetta Zulato
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Chiara Dalle Fratte
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano IRCCS, Aviano, Italy
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giulia Pasello
- Department of Surgery, Oncology, Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology, Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
- Department of Surgery, Oncology, Gastroenterology, University of Padova, Padua, Italy.
| | - Laura Bonanno
- Department of Surgery, Oncology, Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
22
|
Kim D, Vanderbilt C, Yang SR, Nandakumar S, Nafa K, Feratovic R, Rekhtman N, Rijo I, Casanova J, Yun A, Brannon AR, Berger M, Ladanyi M, Lin O, Arcila M. Maximizing the clinical utility and performance of cytology samples for comprehensive genetic profiling - A report on the impact of process optimization through the analysis of 4,871 cytology samples profiled by MSK-IMPACT. RESEARCH SQUARE 2024:rs.3.rs-4746484. [PMID: 39108489 PMCID: PMC11302697 DOI: 10.21203/rs.3.rs-4746484/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Comprehensive molecular profiling by next generation sequencing (NGS) has revolutionized tumor classification and biomarker evaluation. However, routine implementation is challenged by the scant nature of diagnostic material obtained through minimally invasive procedures. Here, we describe our long-term experience in profiling cytology samples with an in-depth assessment of the performance, quality metrics, biomarker identification capabilities, and potential pitfalls. We highlight the impact of several optimization strategies to maximize performance with 4,871 prospectively sequenced clinical cytology samples tested by MSK-IMPACT™. Special emphasis is given to the use of residual supernatant cell free DNA (ScfDNA) as a valuable source of tumor DNA. Overall, cytology samples were similar in performance to surgical samples in identifying clinically relevant genomic alterations, achieving success rates up to 93% with full optimization. While cell block (CB) samples had excellent performance overall, low-level cross-contamination was identified in a small proportion of cases (4.7%), a common pitfall intrinsic to the processing of paraffin blocks, suggesting that more stringent precautions and processing modifications should be considered in quality control initiatives. By contrast ScfDNA samples had negligible contamination. Finally, ScfDNA testing exclusively used as a rescue strategy delivered successful results in 71% of cases where tumor tissue from CB was depleted.
Collapse
Affiliation(s)
- David Kim
- Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | | | | | | | - Anita Yun
- Memorial Sloan Kettering Cancer Center
| | | | | | | | - Oscar Lin
- Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
23
|
Majumder B, Nataraj NB, Maitreyi L, Datta S. Mismatch repair-proficient tumor footprints in the sands of immune desert: mechanistic constraints and precision platforms. Front Immunol 2024; 15:1414376. [PMID: 39100682 PMCID: PMC11294168 DOI: 10.3389/fimmu.2024.1414376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Mismatch repair proficient (MMRp) tumors of colorectal origin are one of the prevalent yet unpredictable clinical challenges. Despite earnest efforts, optimal treatment modalities have yet to emerge for this class. The poor prognosis and limited actionability of MMRp are ascribed to a low neoantigen burden and a desert-like microenvironment. This review focuses on the critical roadblocks orchestrated by an immune evasive mechanistic milieu in the context of MMRp. The low density of effector immune cells, their weak spatiotemporal underpinnings, and the high-handedness of the IL-17-TGF-β signaling are intertwined and present formidable challenges for the existing therapies. Microbiome niche decorated by Fusobacterium nucleatum alters the metabolic program to maintain an immunosuppressive state. We also highlight the evolving strategies to repolarize and reinvigorate this microenvironment. Reconstruction of anti-tumor chemokine signaling, rational drug combinations eliciting T cell activation, and reprograming the maladapted microbiome are exciting developments in this direction. Alternative vulnerability of other DNA damage repair pathways is gaining momentum. Integration of liquid biopsy and ex vivo functional platforms provide precision oncology insights. We illustrated the perspectives and changing landscape of MMRp-CRC. The emerging opportunities discussed in this review can turn the tide in favor of fighting the treatment dilemma for this elusive cancer.
Collapse
|
24
|
Estevam GO, Linossi EM, Rao J, Macdonald CB, Ravikumar A, Chrispens KM, Capra JA, Coyote-Maestas W, Pimentel H, Collisson EA, Jura N, Fraser JS. Mapping kinase domain resistance mechanisms for the MET receptor tyrosine kinase via deep mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603579. [PMID: 39071407 PMCID: PMC11275805 DOI: 10.1101/2024.07.16.603579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5,764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We identified common resistance sites across type I, type II, and type I ½ inhibitors, unveiled unique resistance and sensitizing mutations for each inhibitor, and validated non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.
Collapse
Affiliation(s)
- Gabriella O. Estevam
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Tetrad Graduate Program, UCSF, San Francisco, CA, United States
| | - Edmond M. Linossi
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, United States
| | - Jingyou Rao
- Department of Computer Science, UCLA, Los Angeles, CA, United States
| | - Christian B. Macdonald
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
| | - Ashraya Ravikumar
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
| | - Karson M. Chrispens
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Biophysics Graduate Program, UCSF, San Francisco, CA, United States
| | - John A. Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, United States
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Quantitative Biosciences Institute, UCSF, San Francisco, CA, United States
| | - Harold Pimentel
- Department of Computer Science, UCLA, Los Angeles, CA, United States
- Department of Computational Medicine and Human Genetics, UCLA, Los Angeles, CA, United States
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Eric A. Collisson
- Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Natalia Jura
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, United States
- Quantitative Biosciences Institute, UCSF, San Francisco, CA, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Quantitative Biosciences Institute, UCSF, San Francisco, CA, United States
| |
Collapse
|
25
|
Ylagan M, Xu Q, Kowalski J. TTSBBC: triplex target site biomarkers and barcodes in cancer. Nucleic Acids Res 2024; 52:W547-W555. [PMID: 38661214 PMCID: PMC11223863 DOI: 10.1093/nar/gkae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
The technology of triplex-forming oligonucleotides (TFOs) provides an approach to manipulate genes at the DNA level. TFOs bind to specific sites on genomic DNA, creating a unique intermolecular triple-helix DNA structure through Hoogsteen hydrogen bonding. This targeting by TFOs is site-specific and the locations TFOs bind are referred to as TFO target sites (TTS). Triplexes have been observed to selectively influence gene expression, homologous recombination, mutations, protein binding, and DNA damage. These sites typically feature a poly-purine sequence in duplex DNA, and the characteristics of these TTS sequences greatly influence the formation of the triplex. We introduce TTSBBC, a novel analysis and visualization platform designed to explore features of TTS sequences to enable users to design and validate TTSs. The web server can be freely accessed at https://kowalski-labapps.dellmed.utexas.edu/TTSBBC/.
Collapse
Affiliation(s)
- Maya Ylagan
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX78712, USA
| | - Qi Xu
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX78712, USA
| | - Jeanne Kowalski
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX78712, USA
| |
Collapse
|
26
|
Zettler ME. Dose Optimization of Targeted Therapies for Oncologic Indications. Cancers (Basel) 2024; 16:2180. [PMID: 38927886 PMCID: PMC11202153 DOI: 10.3390/cancers16122180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Therapeutic advances in oncology in the 21st century have contributed to significant declines in cancer mortality. Notably, targeted therapies comprised the largest proportion of oncology drugs approved by the United States (US) Food and Drug Administration (FDA) over the past 25 years and have become the standard of care for the treatment of many cancers. However, despite the metamorphosis of the therapeutic landscape, some aspects of cancer drug development have remained essentially unchanged. In particular, the dose-finding methodology originally developed for cytotoxic chemotherapy drugs continues to be implemented, even though this approach no longer represents the most appropriate strategy for modern cancer therapies. In recognition of the need to reconsider assumptions, adapt the dose selection process for newer drugs, and design alternative strategies, the FDA has undertaken several initiatives in recent years to address these concerns. These actions include the launch of Project Optimus in 2021 and the issuance of draft guidance for industry on dose optimization of oncology drugs in 2023. Amid this evolving regulatory environment, the present manuscript reviews case studies for six different targeted cancer therapies, highlighting how dose-finding challenges have been managed to date by oncologists, sponsors, and regulators.
Collapse
|
27
|
Huang Z, Zhang Y, Xu Q, Song L, Li Y, Guo W, Lin S, Jiang W, Wang Z, Deng L, Qin H, Zhang X, Tong F, Zhang R, Liu Z, Zhang L, Yu J, Dong X, Gong Q, Deng J, Chen X, Wang J, Zhang G, Yang N, Zeng L, Zhang Y. Clinical treatment patterns, molecular characteristics and survival outcomes of ROS1-rearranged non-small cell lung cancer: A large multicenter retrospective study. Lung Cancer 2024; 192:107827. [PMID: 38795459 DOI: 10.1016/j.lungcan.2024.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) harboring ROS1 rearrangements is a molecular subset that exhibits favorable responses to tyrosine kinase inhibitor (TKI) treatment than chemotherapy. This study investigated real-world treatment patterns and survival outcomes among patients with ROS1-rearranged advanced NSCLC. METHODS We conducted a retrospective analysis of patients with ROS1-rearranged advanced NSCLC treated in four different hospitals in China from August 2018 to March 2022. The study analyzed gene fusion distribution, resistance patterns, and survival outcomes. RESULTS ROS1 rearrangement occurs in 1.8 % (550/31,225) of our study cohort. CD74 was the most common ROS1 fusion partner, accounting for 45.8 %. Crizotinib was used in 73.9 % of patients in the first-line treatment, and an increased use of chemotherapy, ceritinib, and lorlatinib was seen in the second-line setting. Lung (43.2 %) and brain (27.6 %) were the most common sites of progression in first-line setting, while brain progression (39.2 %) was the most common site of progression in second-line. Median overall survival was 46 months (95 % confidence intervals: 39.6-52.4). First-line crizotinib use yielded significantly superior survival outcomes over chemotherapy in terms of progression-free (18.5 vs. 6.0; p < 0.001) and overall survival (49.8 vs. 37; p = 0.024). The choice of treatment in the latter line also had survival implications, wherein survival outcomes were better when first-line crizotinib was followed by sequential TKI therapy than first-line chemotherapy followed by TKI therapy. CONCLUSIONS Our study provided insights into the real-world treatment, drug resistance patterns, and survival outcomes among patients with ROS1-rearranged NSCLC. This information serves as a valuable reference for guiding the treatment of this molecular subset of NSCLC.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuda Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining 810000, China
| | - Lianxi Song
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Medical Oncology, Yiyang Central Hospital, Yiyang 413000, China
| | - Yizhi Li
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Wenhuan Guo
- Department of Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, China
| | - Shaoding Lin
- Department of Medical Oncology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, China
| | - Wenjuan Jiang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Zhan Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Li Deng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Haoyue Qin
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xing Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhaoyi Liu
- Department of Medical Oncology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Lin Zhang
- Department of Radiotherapy, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha Hunan 410008, China
| | - Juan Yu
- Department of Medical Oncology, Zhangjiajie People's Hospital, Zhangjiajie, Hunan 410008, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Gong
- Department of Good Clinical Trials, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Jun Deng
- Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Xue Chen
- Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Jing Wang
- Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun 999077, Hong Kong, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China.
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410000, China.
| |
Collapse
|
28
|
Beatson EL, Risdon EN, Napoli GC, Price DK, Chau CH, Figg WD. Genomic Characterization of Preclinical Prostate Cancer Cell Line Models. Int J Mol Sci 2024; 25:6111. [PMID: 38892296 PMCID: PMC11172770 DOI: 10.3390/ijms25116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
As we move into the era of precision medicine, the growing relevance of genetic alterations to prostate cancer (PCa) development and treatment demonstrates the importance of characterizing preclinical models at the genomic level. Our study investigated the genomic characterization of eight PCa cell lines to understand which models are clinically relevant. We designed a custom AmpliSeq DNA gene panel that encompassed key molecular pathways targeting AR signaling, apoptosis, DNA damage repair, and PI3K/AKT/PTEN, in addition to tumor suppressor genes. We examined the relationship between cell line genomic alterations and therapeutic response. In addition, using DepMap's Celligner tool, we identified which preclinical models are most representative of specific prostate cancer patient populations on cBioPortal. These data will help investigators understand the genetic differences in preclinical models of PCa and determine which ones are relevant for use in their translational research.
Collapse
Affiliation(s)
| | | | | | | | | | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (D.K.P.); (C.H.C.)
| |
Collapse
|
29
|
Edsjö A, Russnes HG, Lehtiö J, Tamborero D, Hovig E, Stenzinger A, Rosenquist R. High-throughput molecular assays for inclusion in personalised oncology trials - State-of-the-art and beyond. J Intern Med 2024; 295:785-803. [PMID: 38698538 DOI: 10.1111/joim.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In the last decades, the development of high-throughput molecular assays has revolutionised cancer diagnostics, paving the way for the concept of personalised cancer medicine. This progress has been driven by the introduction of such technologies through biomarker-driven oncology trials. In this review, strengths and limitations of various state-of-the-art sequencing technologies, including gene panel sequencing (DNA and RNA), whole-exome/whole-genome sequencing and whole-transcriptome sequencing, are explored, focusing on their ability to identify clinically relevant biomarkers with diagnostic, prognostic and/or predictive impact. This includes the need to assess complex biomarkers, for example microsatellite instability, tumour mutation burden and homologous recombination deficiency, to identify patients suitable for specific therapies, including immunotherapy. Furthermore, the crucial role of biomarker analysis and multidisciplinary molecular tumour boards in selecting patients for trial inclusion is discussed in relation to various trial concepts, including drug repurposing. Recognising that today's exploratory techniques will evolve into tomorrow's routine diagnostics and clinical study inclusion assays, the importance of emerging technologies for multimodal diagnostics, such as proteomics and in vivo drug sensitivity testing, is also discussed. In addition, key regulatory aspects and the importance of patient engagement in all phases of a clinical trial are described. Finally, we propose a set of recommendations for consideration when planning a new precision cancer medicine trial.
Collapse
Affiliation(s)
- Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Hege G Russnes
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
- Cancer genomics and proteomics, Karolinska University Hospital, Solna, Sweden
| | - David Tamborero
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Eivind Hovig
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Albrecht Stenzinger
- Institute of Pathology, Division of Molecular Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
30
|
Mirzayans R. Changing the Landscape of Solid Tumor Therapy from Apoptosis-Promoting to Apoptosis-Inhibiting Strategies. Curr Issues Mol Biol 2024; 46:5379-5396. [PMID: 38920994 PMCID: PMC11202608 DOI: 10.3390/cimb46060322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The many limitations of implementing anticancer strategies under the term "precision oncology" have been extensively discussed. While some authors propose promising future directions, others are less optimistic and use phrases such as illusion, hype, and false hypotheses. The reality is revealed by practicing clinicians and cancer patients in various online publications, one of which has stated that "in the quest for the next cancer cure, few researchers bother to look back at the graveyard of failed medicines to figure out what went wrong". The message is clear: Novel therapeutic strategies with catchy names (e.g., synthetic "lethality") have not fulfilled their promises despite decades of extensive research and clinical trials. The main purpose of this review is to discuss key challenges in solid tumor therapy that surprisingly continue to be overlooked by the Nomenclature Committee on Cell Death (NCCD) and numerous other authors. These challenges include: The impact of chemotherapy-induced genome chaos (e.g., multinucleation) on resistance and relapse, oncogenic function of caspase 3, cancer cell anastasis (recovery from late stages of apoptosis), and pitfalls of ubiquitously used preclinical chemosensitivity assays (e.g., cell "viability" and tumor growth delay studies in live animals) that score such pro-survival responses as "lethal" events. The studies outlined herein underscore the need for new directions in the management of solid tumors.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
31
|
Cyberski TF, Singh A, Korzinkin M, Mishra V, Pun F, Shen L, Wing C, Cheng X, Baird B, Miao Y, Elkabets M, Kochanny S, Guo W, Dyer E, Pearson AT, Juloori A, Lingen M, Cole G, Zhavoronkov A, Agrawal N, Izumchenko E, Rosenberg AJ. Acquired resistance to immunotherapy and chemoradiation in MYC amplified head and neck cancer. NPJ Precis Oncol 2024; 8:114. [PMID: 38783041 PMCID: PMC11116544 DOI: 10.1038/s41698-024-00606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The proto-oncogene MYC encodes a nuclear transcription factor that has an important role in a variety of cellular processes, such as cell cycle progression, proliferation, metabolism, adhesion, apoptosis, and therapeutic resistance. MYC amplification is consistently observed in aggressive forms of several solid malignancies and correlates with poor prognosis and distant metastases. While the tumorigenic effects of MYC in patients with head and neck squamous cell carcinoma (HNSCC) are well known, the molecular mechanisms by which the amplification of this gene may confer treatment resistance, especially to immune checkpoint inhibitors, remains under-investigated. Here we present a unique case of a patient with recurrent/metastatic (R/M) HNSCC who, despite initial response to nivolumab-based treatment, developed rapidly progressive metastatic disease after the acquisition of MYC amplification. We conducted comparative transcriptomic analysis of this patient's tumor at baseline and upon progression to interrogate potential molecular processes through which MYC may confer resistance to immunotherapy and/or chemoradiation and used TCGA-HNSC dataset and an institutional cohort to further explore clinicopathologic features and key molecular networks associated with MYC amplification in HNSCC. This study highlights MYC amplification as a potential mechanism of immune checkpoint inhibitor resistance and suggest its use as a predictive biomarker and potential therapeutic target in R/M HNSCC.
Collapse
Affiliation(s)
- Thomas F Cyberski
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Alka Singh
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | | | - Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Frank Pun
- Insilico Medicine, Pak Shek Kok, Hong Kong
| | - Le Shen
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Claudia Wing
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Xiangying Cheng
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Brandon Baird
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Yuxuan Miao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University, Beer Sheva, Israel
| | - Sara Kochanny
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Wenji Guo
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Emma Dyer
- Harvard T.H. Chan School of Public Health, Cambridge, MA, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Aditya Juloori
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Mark Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Grayson Cole
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Nishant Agrawal
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| | - Ari J Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
32
|
Mehdi M, Szabo A, Shreenivas A, Thomas JP, Tsai S, Christians KK, Evans DB, Clarke CN, Hall WA, Erickson B, Ahmed G, Thapa B, McFall T, George B, Kurzrock R, Kamgar M. Chemotherapy-free treatment targeting fusions and driver mutations in KRAS wild-type pancreatic ductal adenocarcinoma, a case series. Ther Adv Med Oncol 2024; 16:17588359241253113. [PMID: 38770091 PMCID: PMC11104030 DOI: 10.1177/17588359241253113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Background KRAS wild-type (WT) pancreatic ductal adenocarcinoma (PDAC) represents a distinct entity with unique biology. The therapeutic impact of matched targeted therapy in these patients in a real-world setting, to date, is less established. Objectives The aim of our study was to review our institutional database to identify the prevalence of actionable genomic alterations in patients with KRAS-WT tumors and to evaluate the therapeutic impact of matched targeted therapy in these patients. Design We reviewed electronic medical records of patients with KRAS-WT PDAC and advanced disease (n = 14) who underwent clinical-grade tissue ± liquid next-generation sequencing (315-648 genes for tissue) between years 2015 and 2021. Methods Demographic and disease characteristics were summarized using descriptive parameters. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. Results Of 236 PDAC patients, 14 had advanced/metastatic disease with KRAS-WT tumors. Median age at diagnosis was 66 years. There was a high frequency of potentially actionable genomic alterations, including three (21%) with BRAF alterations, two (14%) with fusions [RET-PCM1 and FGFR2-POC1B (N = 1 each)]; and one with a druggable EGFR (EGFR E746_A755delISERD) variant; two other patients had an STK11 and a MUTYH alteration. Five patients were treated with matched targeted therapy, with three having durable benefit: (i) erlotinib for EGFR-altered tumor, followed by osimertinib/capmatinib when MET amplification emerged (first-line therapy); (ii) pralsetinib for RET fusion (fifth line); and (iii) dabrafenib/trametinib for BRAF N486_P490del (third line). Duration of time on chemotherapy-free matched targeted therapy for these patients was 17+, 11, and 18+ months, respectively. Conclusion Sustained therapeutic benefit can be achieved in a real-world setting in a subset of patients with advanced/metastatic KRAS-WT PDAC treated with chemotherapy-free matched targeted agents. Prospective studies are warranted.
Collapse
Affiliation(s)
- Maahum Mehdi
- Department of Medicine, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Aditya Shreenivas
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - James P. Thomas
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Kathleen K. Christians
- Department of Surgery, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Douglas B. Evans
- Department of Surgery, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Callisia N. Clarke
- Department of Surgery, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Gulrayz Ahmed
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Bicky Thapa
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Thomas McFall
- Department of Biochemistry, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Ben George
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Razelle Kurzrock
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| | - Mandana Kamgar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin and the LaBahn Pancreatic Cancer Program, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| |
Collapse
|
33
|
Vanni I, Pastorino L, Andreotti V, Comandini D, Fornarini G, Grassi M, Puccini A, Tanda ET, Pastorino A, Martelli V, Mastracci L, Grillo F, Cabiddu F, Guadagno A, Coco S, Allavena E, Barbero F, Bruno W, Dalmasso B, Bellomo SE, Marchiò C, Spagnolo F, Sciallero S, Berrino E, Ghiorzo P. Combining germline, tissue and liquid biopsy analysis by comprehensive genomic profiling to improve the yield of actionable variants in a real-world cancer cohort. J Transl Med 2024; 22:462. [PMID: 38750555 PMCID: PMC11097509 DOI: 10.1186/s12967-024-05227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Comprehensive next-generation sequencing is widely used for precision oncology and precision prevention approaches. We aimed to determine the yield of actionable gene variants, the capacity to uncover hereditary predisposition and liquid biopsy appropriateness instead of, or in addition to, tumor tissue analysis, in a real-world cohort of cancer patients, who may benefit the most from comprehensive genomic profiling. METHODS Seventy-eight matched germline/tumor tissue/liquid biopsy DNA and RNA samples were profiled using the Hereditary Cancer Panel (germline) and the TruSight Oncology 500 panel (tumor tissue/cfDNA) from 23 patients consecutively enrolled at our center according to at least one of the following criteria: no available therapeutic options; long responding patients potentially fit for other therapies; rare tumor; suspected hereditary cancer; primary cancer with high metastatic potential; tumor of unknown primary origin. Variants were annotated for OncoKB and AMP/ASCO/CAP classification. RESULTS The overall yield of actionable somatic and germline variants was 57% (13/23 patients), and 43.5%, excluding variants previously identified by somatic or germline routine testing. The accuracy of tumor/cfDNA germline-focused analysis was demonstrated by overlapping results of germline testing. Five germline variants in BRCA1, VHL, CHEK1, ATM genes would have been missed without extended genomic profiling. A previously undetected BRAF p.V600E mutation was emblematic of the clinical utility of this approach in a patient with a liver undifferentiated embryonal sarcoma responsive to BRAF/MEK inhibition. CONCLUSIONS Our study confirms the clinical relevance of performing extended parallel tumor DNA and cfDNA testing to broaden therapeutic options, to longitudinally monitor cfDNA during patient treatment, and to uncover possible hereditary predisposition following tumor sequencing in patient care.
Collapse
Affiliation(s)
- I Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - L Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
| | - V Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - D Comandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - G Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - M Grassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - A Puccini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - E T Tanda
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
- Medical Oncology Unit 2, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - A Pastorino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - V Martelli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - L Mastracci
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132, Genoa, Italy
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - F Grillo
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132, Genoa, Italy
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - F Cabiddu
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - A Guadagno
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - S Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - E Allavena
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
| | - F Barbero
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - W Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
| | - B Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - S E Bellomo
- Pathology Unit, Candiolo Cancer Institute, FPO - IRCCS, 10060, Candiolo, Turin, Italy
| | - C Marchiò
- Pathology Unit, Candiolo Cancer Institute, FPO - IRCCS, 10060, Candiolo, Turin, Italy
- Department of Medical Sciences, University of Torino, 10060, Turin, Italy
| | - F Spagnolo
- Medical Oncology Unit 2, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Plastic Surgery, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132, Genoa, Italy
| | - S Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - E Berrino
- Pathology Unit, Candiolo Cancer Institute, FPO - IRCCS, 10060, Candiolo, Turin, Italy
- Department of Medical Sciences, University of Torino, 10060, Turin, Italy
| | - P Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy.
| |
Collapse
|
34
|
Sastre-Garau X, Estrada-Virrueta L, Radvanyi F. HPV DNA Integration at Actionable Cancer-Related Genes Loci in HPV-Associated Carcinomas. Cancers (Basel) 2024; 16:1584. [PMID: 38672666 PMCID: PMC11048798 DOI: 10.3390/cancers16081584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
In HPV-associated carcinomas, some examples of cancer-related genes altered by viral insertion and corresponding to potential therapeutic targets have been described, but no quantitative assessment of these events, including poorly recurrent targets, has been reported to date. To document these occurrences, we built and analyzed a database comprised of 1455 cases, including HPV genotypes and tumor localizations. Host DNA sequences targeted by viral integration were classified as "non-recurrent" (one single reported case; 838 loci), "weakly recurrent" (two reported cases; 82 loci), and highly recurrent (≥3 cases; 43 loci). Whereas the overall rate of cancer-related target genes was 3.3% in the Gencode database, this rate increased to 6.5% in "non-recurrent", 11.4% in "weakly recurrent", and 40.1% in "highly recurrent" genes targeted by integration (p = 4.9 × 10-4). This rate was also significantly higher in tumors associated with high-risk HPV16/18/45 than other genotypes. Among the genes targeted by HPV insertion, 30.2% corresponded to direct or indirect druggable targets, a rate rising to 50% in "highly recurrent" targets. Using data from the literature and the DepMap 23Q4 release database, we found that genes targeted by viral insertion could be new candidates potentially involved in HPV-associated oncogenesis. A more systematic characterization of HPV/host fusion DNA sequences in HPV-associated cancers should provide a better knowledge of HPV-driven carcinogenesis and favor the development of personalize patient treatments.
Collapse
Affiliation(s)
- Xavier Sastre-Garau
- Department of Pathology, Centre Hospitalier Intercommunal de Créteil, 40, Avenue de Verdun, 94010 Créteil, France
| | - Lilia Estrada-Virrueta
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France; (L.E.-V.); (F.R.)
| | - François Radvanyi
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France; (L.E.-V.); (F.R.)
| |
Collapse
|
35
|
Goodwin RJA, Platz SJ, Reis-Filho JS, Barry ST. Accelerating Drug Development Using Spatial Multi-omics. Cancer Discov 2024; 14:620-624. [PMID: 38571424 DOI: 10.1158/2159-8290.cd-24-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
SUMMARY Spatial biology approaches enabled by innovations in imaging biomarker platforms and artificial intelligence-enabled data integration and analysis provide an assessment of patient and disease heterogeneity at ever-increasing resolution. The utility of spatial biology data in accelerating drug programs, however, requires balancing exploratory discovery investigations against scalable and clinically applicable spatial biomarker analysis.
Collapse
Affiliation(s)
- Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Stefan J Platz
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jorge S Reis-Filho
- Cancer Biomarker Development, Early Oncology, AstraZeneca, Gaithersburg, Maryland
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
36
|
Elvin JA. Understanding the Landscape of Clinically Available Molecular Testing. Surg Oncol Clin N Am 2024; 33:217-230. [PMID: 38401906 DOI: 10.1016/j.soc.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Over the past three decades, the landscape of clinically available molecular tests has evolved due to advancements in basic science cancer research and the subsequent utilization of this knowledge to develop DNA, RNA, and protein-based molecular assays for oncology that can be employed for routine clinical use in diagnostics laboratories. Molecular testing of tumors is revealing gaps in previous histopathologic classification systems and opportunities for new, personalized treatment paradigms. Awareness of validated molecular assay options and their general advantages and limitations is crucial for oncology care providers to ensure the optimal test(s) are selected for each patient's circumstances.
Collapse
Affiliation(s)
- Julia A Elvin
- Pathology and Diagnostic Medicine, Foundation Medicine, Inc 400 Summer Street, Boston, MA 02210, USA.
| |
Collapse
|
37
|
Wagner J, Fröhling S. Sarcoma ecotypes determine immunotherapy benefit. NATURE CANCER 2024; 5:536-538. [PMID: 38684825 DOI: 10.1038/s43018-024-00762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Affiliation(s)
- Johanna Wagner
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
38
|
Edsjö A, Gisselsson D, Staaf J, Holmquist L, Fioretos T, Cavelier L, Rosenquist R. Current and emerging sequencing-based tools for precision cancer medicine. Mol Aspects Med 2024; 96:101250. [PMID: 38330674 DOI: 10.1016/j.mam.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Current precision cancer medicine is dependent on the analyses of a plethora of clinically relevant genomic aberrations. During the last decade, next-generation sequencing (NGS) has gradually replaced most other methods for precision cancer diagnostics, spanning from targeted tumor-informed assays and gene panel sequencing to global whole-genome and whole-transcriptome sequencing analyses. The shift has been impelled by a clinical need to assess an increasing number of genomic alterations with diagnostic, prognostic and predictive impact, including more complex biomarkers (e.g. microsatellite instability, MSI, and homologous recombination deficiency, HRD), driven by the parallel development of novel targeted therapies and enabled by the rapid reduction in sequencing costs. This review focuses on these sequencing-based methods, puts their emergence in a historic perspective, highlights their clinical utility in diagnostics and decision-making in pediatric and adult cancer, as well as raises challenges for their clinical implementation. Finally, the importance of applying sensitive tools for longitudinal monitoring of treatment response and detection of measurable residual disease, as well as future avenues in the rapidly evolving field of sequencing-based methods are discussed.
Collapse
Affiliation(s)
- Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - David Gisselsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Lund, Sweden
| | - Louise Holmquist
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden; Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Lee G, Lee SM, Lee S, Jeong CW, Song H, Lee SY, Yun H, Koh Y, Kim HU. Prediction of metabolites associated with somatic mutations in cancers by using genome-scale metabolic models and mutation data. Genome Biol 2024; 25:66. [PMID: 38468344 PMCID: PMC11290261 DOI: 10.1186/s13059-024-03208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Oncometabolites, often generated as a result of a gene mutation, show pro-oncogenic function when abnormally accumulated in cancer cells. Identification of such mutation-associated metabolites will facilitate developing treatment strategies for cancers, but is challenging due to the large number of metabolites in a cell and the presence of multiple genes associated with cancer development. RESULTS Here we report the development of a computational workflow that predicts metabolite-gene-pathway sets. Metabolite-gene-pathway sets present metabolites and metabolic pathways significantly associated with specific somatic mutations in cancers. The computational workflow uses both cancer patient-specific genome-scale metabolic models (GEMs) and mutation data to generate metabolite-gene-pathway sets. A GEM is a computational model that predicts reaction fluxes at a genome scale and can be constructed in a cell-specific manner by using omics data. The computational workflow is first validated by comparing the resulting metabolite-gene pairs with multi-omics data (i.e., mutation data, RNA-seq data, and metabolome data) from acute myeloid leukemia and renal cell carcinoma samples collected in this study. The computational workflow is further validated by evaluating the metabolite-gene-pathway sets predicted for 18 cancer types, by using RNA-seq data publicly available, in comparison with the reported studies. Therapeutic potential of the resulting metabolite-gene-pathway sets is also discussed. CONCLUSIONS Validation of the metabolite-gene-pathway set-predicting computational workflow indicates that a decent number of metabolites and metabolic pathways appear to be significantly associated with specific somatic mutations. The computational workflow and the resulting metabolite-gene-pathway sets will help identify novel oncometabolites and also suggest cancer treatment strategies.
Collapse
Affiliation(s)
- GaRyoung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Mi Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University College of Medicine, and Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyojin Song
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, BioProcess Engineering Research Center, and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, BioProcess Engineering Research Center, and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
40
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
41
|
Fielding D, Lakis V, Dalley AJ, Chittoory H, Newell F, Koufariotis LT, Patch AM, Kazakoff S, Bashirzadeh F, Son JH, Ryan K, Steinfort D, Williamson JP, Bint M, Pahoff C, Nguyen PT, Twaddell S, Arnold D, Grainge C, Pattison A, Fairbairn D, Gune S, Christie J, Holmes O, Leonard C, Wood S, Pearson JV, Lakhani SR, Waddell N, Simpson PT, Nones K. Evaluation of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration (EBUS-TBNA) Samples from Advanced Non-Small Cell Lung Cancer for Whole Genome, Whole Exome and Comprehensive Panel Sequencing. Cancers (Basel) 2024; 16:785. [PMID: 38398180 PMCID: PMC10887389 DOI: 10.3390/cancers16040785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is often the only source of tumor tissue from patients with advanced, inoperable lung cancer. EBUS-TBNA aspirates are used for the diagnosis, staging, and genomic testing to inform therapy options. Here we extracted DNA and RNA from 220 EBUS-TBNA aspirates to evaluate their suitability for whole genome (WGS), whole exome (WES), and comprehensive panel sequencing. For a subset of 40 cases, the same nucleic acid extraction was sequenced using WGS, WES, and the TruSight Oncology 500 assay. Genomic features were compared between sequencing platforms and compared with those reported by clinical testing. A total of 204 aspirates (92.7%) had sufficient DNA (100 ng) for comprehensive panel sequencing, and 109 aspirates (49.5%) had sufficient material for WGS. Comprehensive sequencing platforms detected all seven clinically reported tier 1 actionable mutations, an additional three (7%) tier 1 mutations, six (15%) tier 2-3 mutations, and biomarkers of potential immunotherapy benefit (tumor mutation burden and microsatellite instability). As expected, WGS was more suited for the detection and discovery of emerging novel biomarkers of treatment response. WGS could be performed in half of all EBUS-TBNA aspirates, which points to the enormous potential of EBUS-TBNA as source material for large, well-curated discovery-based studies for novel and more effective predictors of treatment response. Comprehensive panel sequencing is possible in the vast majority of fresh EBUS-TBNA aspirates and enhances the detection of actionable mutations over current clinical testing.
Collapse
Affiliation(s)
- David Fielding
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; (A.J.D.); (H.C.); (S.R.L.); (P.T.S.)
- Department of Thoracic Medicine, The Royal Brisbane & Women’s Hospital, Brisbane, QLD 4006, Australia; (F.B.); (J.H.S.); (K.R.)
| | - Vanessa Lakis
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (V.L.); (F.N.); (L.T.K.); (A.-M.P.); (S.K.); (O.H.); (C.L.); (S.W.); (J.V.P.); (N.W.); (K.N.)
| | - Andrew J. Dalley
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; (A.J.D.); (H.C.); (S.R.L.); (P.T.S.)
| | - Haarika Chittoory
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; (A.J.D.); (H.C.); (S.R.L.); (P.T.S.)
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (V.L.); (F.N.); (L.T.K.); (A.-M.P.); (S.K.); (O.H.); (C.L.); (S.W.); (J.V.P.); (N.W.); (K.N.)
| | - Lambros T. Koufariotis
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (V.L.); (F.N.); (L.T.K.); (A.-M.P.); (S.K.); (O.H.); (C.L.); (S.W.); (J.V.P.); (N.W.); (K.N.)
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (V.L.); (F.N.); (L.T.K.); (A.-M.P.); (S.K.); (O.H.); (C.L.); (S.W.); (J.V.P.); (N.W.); (K.N.)
| | - Stephen Kazakoff
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (V.L.); (F.N.); (L.T.K.); (A.-M.P.); (S.K.); (O.H.); (C.L.); (S.W.); (J.V.P.); (N.W.); (K.N.)
| | - Farzad Bashirzadeh
- Department of Thoracic Medicine, The Royal Brisbane & Women’s Hospital, Brisbane, QLD 4006, Australia; (F.B.); (J.H.S.); (K.R.)
| | - Jung Hwa Son
- Department of Thoracic Medicine, The Royal Brisbane & Women’s Hospital, Brisbane, QLD 4006, Australia; (F.B.); (J.H.S.); (K.R.)
| | - Kimberley Ryan
- Department of Thoracic Medicine, The Royal Brisbane & Women’s Hospital, Brisbane, QLD 4006, Australia; (F.B.); (J.H.S.); (K.R.)
| | - Daniel Steinfort
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (D.S.); (J.C.)
| | - Jonathan P. Williamson
- Department of Thoracic Medicine, Liverpool Hospital Sydney, Sydney, NSW 2170, Australia;
| | - Michael Bint
- Department of Respiratory and Sleep Medicine, Sunshine Coast University Hospital, Birtinya, QLD 4575, Australia; (M.B.); (A.P.)
| | - Carl Pahoff
- Department of Thoracic Medicine, Gold Coast University Hospital, Southport, QLD 4215, Australia;
| | - Phan Tien Nguyen
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
| | - Scott Twaddell
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW 2305, Australia; (S.T.); (D.A.); (C.G.)
| | - David Arnold
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW 2305, Australia; (S.T.); (D.A.); (C.G.)
| | - Christopher Grainge
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW 2305, Australia; (S.T.); (D.A.); (C.G.)
| | - Andrew Pattison
- Department of Respiratory and Sleep Medicine, Sunshine Coast University Hospital, Birtinya, QLD 4575, Australia; (M.B.); (A.P.)
| | - David Fairbairn
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Brisbane, QLD 4006, Australia;
| | - Shailendra Gune
- NSW Health Pathology South, Liverpool Hospital, Sydney, NSW 2170, Australia;
| | - Jemma Christie
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (D.S.); (J.C.)
| | - Oliver Holmes
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (V.L.); (F.N.); (L.T.K.); (A.-M.P.); (S.K.); (O.H.); (C.L.); (S.W.); (J.V.P.); (N.W.); (K.N.)
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (V.L.); (F.N.); (L.T.K.); (A.-M.P.); (S.K.); (O.H.); (C.L.); (S.W.); (J.V.P.); (N.W.); (K.N.)
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (V.L.); (F.N.); (L.T.K.); (A.-M.P.); (S.K.); (O.H.); (C.L.); (S.W.); (J.V.P.); (N.W.); (K.N.)
| | - John V. Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (V.L.); (F.N.); (L.T.K.); (A.-M.P.); (S.K.); (O.H.); (C.L.); (S.W.); (J.V.P.); (N.W.); (K.N.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; (A.J.D.); (H.C.); (S.R.L.); (P.T.S.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Brisbane, QLD 4006, Australia;
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (V.L.); (F.N.); (L.T.K.); (A.-M.P.); (S.K.); (O.H.); (C.L.); (S.W.); (J.V.P.); (N.W.); (K.N.)
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; (A.J.D.); (H.C.); (S.R.L.); (P.T.S.)
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (V.L.); (F.N.); (L.T.K.); (A.-M.P.); (S.K.); (O.H.); (C.L.); (S.W.); (J.V.P.); (N.W.); (K.N.)
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4067, Australia
| |
Collapse
|
42
|
Kan M, Kouchi Y, Ohyama H, Usui G, Fukuyo M, Takano S, Kishimoto T, Kaneda A, Ohtsuka M, Kato N. Genomic Analysis of Undifferentiated Carcinoma of the Pancreas with Squamous Differentiation: A Case Report. Cureus 2024; 16:e55175. [PMID: 38558649 PMCID: PMC10980578 DOI: 10.7759/cureus.55175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 04/04/2024] Open
Abstract
Pancreatic cancer is an intractable malignancy associated with a dismal prognosis. Undifferentiated carcinoma, a rare subtype, poses a clinical challenge owing to a limited understanding of its molecular characteristics. In this study, we conducted genomic analysis specifically on a case of undifferentiated carcinoma of the pancreas exhibiting squamous differentiation. An 80-year-old male, previously treated for colorectal cancer, presented with a mass with central cystic degeneration in the pancreatic tail. The mass was diagnosed pathologically as undifferentiated carcinoma of the pancreas with squamous differentiation. Despite surgical resection and chemotherapy, the patient faced early postoperative recurrence, emphasizing the aggressive nature of this malignancy. Genomic analysis of distinct histologic components revealed some common mutations between undifferentiated and squamous components, including Kirsten rat sarcoma virus (KRAS) and TP53. Notably, the squamous component harbored some specific mutations in SMARCA4 and SMARCB1 genes that code for members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. The common mutations in the undifferentiated and squamous cell carcinoma components from this analysis suggest that they originate from a common origin. The discussion also underscores the scarcity of genomic analyses on undifferentiated carcinoma of the pancreas, with existing literature pointing to SWI/SNF complex-related gene mutations. However, our case introduces chromatin remodeling factor mutations as relevant in squamous differentiation. In conclusion, this study provides valuable insights into the genomic landscape of undifferentiated pancreatic carcinoma with squamous differentiation. These findings suggest the importance of further research and targeted therapies to improve the management of undifferentiated carcinoma of the pancreas and enhance patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Genki Usui
- Molecular Oncology, Chiba University, Chiba, JPN
| | | | | | | | | | | | - Naoya Kato
- Gastroenterology, Chiba University, Chiba, JPN
| |
Collapse
|
43
|
LoPiccolo J, Gusev A, Christiani DC, Jänne PA. Lung cancer in patients who have never smoked - an emerging disease. Nat Rev Clin Oncol 2024; 21:121-146. [PMID: 38195910 PMCID: PMC11014425 DOI: 10.1038/s41571-023-00844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths globally. Although smoking-related lung cancers continue to account for the majority of diagnoses, smoking rates have been decreasing for several decades. Lung cancer in individuals who have never smoked (LCINS) is estimated to be the fifth most common cause of cancer-related deaths worldwide in 2023, preferentially occurring in women and Asian populations. As smoking rates continue to decline, understanding the aetiology and features of this disease, which necessitate unique diagnostic and treatment paradigms, will be imperative. New data have provided important insights into the molecular and genomic characteristics of LCINS, which are distinct from those of smoking-associated lung cancers and directly affect treatment decisions and outcomes. Herein, we review the emerging data regarding the aetiology and features of LCINS, particularly the genetic and environmental underpinnings of this disease as well as their implications for treatment. In addition, we outline the unique diagnostic and therapeutic paradigms of LCINS and discuss future directions in identifying individuals at high risk of this disease for potential screening efforts.
Collapse
Affiliation(s)
- Jaclyn LoPiccolo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
44
|
Horak P, Fröhling S. Measuring Progress in Precision Oncology. Cancer Discov 2024; 14:18-19. [PMID: 38213297 DOI: 10.1158/2159-8290.cd-23-1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
SUMMARY In this issue of Cancer Discovery, Suehnholz and colleagues describe their efforts to quantify the gradual yet steady progress of precision oncology by surveying the regulatory approvals of targeted cancer therapies, and thus the actionability of corresponding molecular alterations in clinical practice, over more than 20 years. Their work also suggests a relationship between the discovery of candidate therapeutic targets through comprehensive tumor profiling and molecularly guided cancer drug development. See related article by Suehnholz et al., p. 49 (5).
Collapse
Affiliation(s)
- Peter Horak
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
45
|
Tang C, Castillon VJ, Waters M, Fong C, Park T, Boscenco S, Kim S, Schultz N, Ostrovnaya I, Gusev A, Jee J, Reznik E. Obesity shapes selection for driver mutations in cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.24301114. [PMID: 38260500 PMCID: PMC10802644 DOI: 10.1101/2024.01.10.24301114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Obesity is a leading risk factor for cancer, but whether obesity is linked to specific genomic subtypes of cancer is unknown. Here, we examined the relationship between obesity and tumor genotype in two large clinicogenomic corpora. Obesity was associated with specific driver mutations in lung adenocarcinoma, endometrial carcinoma, and cancers of unknown primary, independent of clinical covariates and genetic ancestry. Obesity is therefore a putative driver of etiologic heterogeneity across cancers.
Collapse
Affiliation(s)
- Cerise Tang
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Venise Jan Castillon
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michele Waters
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chris Fong
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tricia Park
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sonia Boscenco
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susie Kim
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus Schultz
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Irina Ostrovnaya
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Division of Genetics, Brigham & Women's Hospital, Boston, MA
- The Broad Institute, Cambridge, MA
| | - Justin Jee
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ed Reznik
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|