1
|
Chen Z, Zeng Y, Ma P, Xu Q, Zeng L, Song X, Yu F. Integrated GMPS and RAMP3 as a signature to predict prognosis and immune heterogeneity in hepatocellular carcinoma. Gene 2025; 933:148958. [PMID: 39312983 DOI: 10.1016/j.gene.2024.148958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly fatal malignant worldwide. As different expression levels of specific genes can lead to different HCC outcomes, we aimed to develop a gene signature capable of predicting HCC prognosis. METHODS In this study, transcriptomic sequencing and relevant clinical data were extracted from public platforms. The guanine monophosphate synthase (GMPS)|receptor activity-modifying protein 3 (RAMP3) gene pair was developed based on the relative values of gene expression levels. Nomograms were developed using R software. Immune status was assessed through single-sample gene set enrichment analysis. GMPS knockdown was achieved through siRNA transfection. Quantitative reverse transcription PCR, apoptosis assays, and cell proliferation were performed to verify the function of GMPS|RAMP3 in HCC cells. RESULTS Here, a gene pair containing GMPS and RAMP3 was successfully constructed. We demonstrated that the GMPS|RAMP3 gene pair was an independent predictor with strong prognostic prediction power, based on which a nomogram was established. Functional analysis revealed that the enrichment of cell cycle-related pathways and immune status differed considerably between the two groups, with cell cycle-related genes highly expressed in the high GMPS|RAMP3 value group. Finally, cell experiments indicated that GMPS knockdown significantly repressed proliferation, promoted apoptosis, and enhanced the sensitivity of HCC cells to gemcitabine. CONCLUSIONS The gene pair GMPS|RAMP3 is a novel prognostic predictor of HCC, providing a promising approach to the treatment and assessment of immune heterogeneity in HCC.
Collapse
Affiliation(s)
- Zhuoyan Chen
- Department of Gastroenterology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peipei Ma
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Song
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Hou C, Hu Y, Zhang T. Research on curcumin mediating immunotherapy of colorectal cancer by regulating cancer associated fibroblasts. Anticancer Drugs 2024:00001813-990000000-00325. [PMID: 39264802 DOI: 10.1097/cad.0000000000001659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The objective was to investigate curcumin's (Cur) function and associated molecular mechanisms in regulating tumor immunity in colon cancer. Primary cancer-associated fibroblasts (CAFs) from mouse CT26 colon cancer tumors were isolated. Validation of primary CAFs using immunofluorescence assay was done. Cell Counting Kit-8 experiments, real-time quantitative PCR (qPCR), and enzyme linked immunosorbent assay experiments were conducted to investigate how curcumin affected the growth and cytokine secretion functions of CAFs. The effect of curcumin on regulating PD-L1 expression on CT26 cells through CAFs in vitro was explored through coculture of CAFs and tumor cells, qPCR, and western blot experiments. A mouse colon cancer cell model was established in Balb/c nude mice to explore the effect of curcumin on colon tumor cells. Changes in the tumor microenvironment were detected by flow cytometry to explore the synergistic effect of curcumin combined with anti-PD-1 monoclonal antibody in the treatment of mouse colon cancer. In vitro, curcumin prevented the growth and TGF-β secretion of CT26 cells. At the same time, curcumin inhibited the secretion of TGF-β by CAFs, thereby downregulating the PD-L1 expression of CT26 cells. In vivo, curcumin combined with anti-PD-1 antibodies can further enhance the inhibitory effect of PD-1 antibodies on tumors and increase the number of tumor-suppressing immune cells in the tumor microenvironment, such as M1 macrophages and CD8 T cells, thus inhibiting tumors. Immune M2 macrophages, regulatory T cells, and other cells were reduced. In conclusion, curcumin reduces the expression of PD-L1 in colon cancer cells and improves the tumor immune microenvironment by inhibiting the proliferation of CAFs and the secretion of TGF-β. Curcumin and anti-PD-1 treatment have synergistic inhibitory effects on colon cancer.
Collapse
Affiliation(s)
- Chenliang Hou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology
| | - Yanning Hu
- Department of Radiology, The First Hospital of Neijiang, Neijiang, Sichuan, China
| | - Tao Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Ceylan A, Artac M, Kocak MZ, Artac H. Epidermal growth factor receptor and programmed cell death-1 expression levels in peripheral T cell subsets of patients with non-small cell lung cancer. Scand J Immunol 2024; 100:e13398. [PMID: 39072784 DOI: 10.1111/sji.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths, in part due to its late diagnosis. Increased epidermal growth factor receptor (EGFR) expression in cancer cells is associated with a poor prognosis, and EGFR tyrosine kinase inhibitors are widely used in cancer treatment. This study aimed to clarify the relationship between EGFR expression on T cells and cancer prognosis in patients with non-small cell lung cancer (NSCLC). Forty patients with NSCLC and 40 healthy volunteers were included in this study. Peripheral CD4+T helper (Th1, Th2, Th9, Th17, Th1Th17, follicular and peripheral Th) and cytotoxic T lymphocyte (CD8+follicular and peripheral T) subsets were identified with flow cytometry according to their chemokine receptors. EGFR expression on T lymphocytes in relation to overall survival (OS) was investigated in patients with NSCLC. The patients [mean age (min-max) = 64.03 (45-83); 20 stage I-III and 20 stage IV] had increased EGFR expression on CD3+T, CD4+Th, Th1, Th2, and Th17 cells compared to the controls (p < 0.05). High EGFR expression on CD3+T, CD4+Th, Th1, and Th2 cells was associated with poor OS. Also, PD-1 expression on lymphocytes, CD3+T, and Th cells was increased in patients with NSCLC compared to controls. The high expression of EGFR and PD-1 on Th cells and the reduced percentage of lymphocytes and Th cells, especially in stage IV patients with NSCLC, revealed that increased EGFR activity may trigger apoptosis of Th cells and promote the development of metastases, while high EGFR expression on CD3+T, CD4+Th, Th1, and Th2 cells may be an independent poor prognostic marker in NSCLC.
Collapse
Affiliation(s)
- Ayca Ceylan
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Mehmet Artac
- Department of Medical Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Zahid Kocak
- Department of Medical Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Hasibe Artac
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
4
|
Liu J, Lyu Q, Wu M, Zhou Y, Wang T, Zhang Y, Fan N, Yang C, Wang W. Integrating mTOR Inhibition and Photodynamic Therapy Based on Carrier-Free Nanodrugs for Breast Cancer Immunotherapy. Adv Healthc Mater 2024:e2402357. [PMID: 39235716 DOI: 10.1002/adhm.202402357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Conventional photodynamic therapy (PDT) in cancer treatment needs to utilize oxygen to produce reactive oxygen species to eliminate malignant tissues. However, oxygen consumption in tumor microenvironment exacerbates cancer cell hypoxia and may promote vasculature angiogenesis. Since the mammalian target of rapamycin (mTOR) signaling pathway plays a vital role in endothelial cell proliferation and fibrosis, mTOR inhibitor drugs hold the potential to reverse hypoxia-evoked angiogenesis for improved PDT effect. In this study, a carrier-free nanodrug formulation composed of Torin 1 as mTORC1/C2 dual inhibitor and Verteporfin as a photosensitizer and Yes-associated protein inhibitor is developed. These two drug molecules can self-assemble into stable nanoparticles through π-π stacking and hydrophobic interactions with good long-term stability. The nanodrugs can prompt synergistic apoptosis, combinational anti-angiogenesis, and strong immunogenic cell death effects upon near-infrared light irradiation in vitro. Furthermore, the nanosystem also exhibits improved antitumor effect, anti-cancer immune response, and distant tumor inhibition through tumor microenvironment remodeling in vivo. In this way, the nanodrugs can reverse PDT-elicited angiogenesis and promote cancer immunotherapy to eliminate tumor tissues and prevent metastasis. This nanosystem provides insights into integrating mTOR inhibitors and photosensitizers for safe and effective breast cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Jinzhao Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Qingyang Lyu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Meicen Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Yang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Tianyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Yichi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Ni Fan
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Chang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
5
|
Tiersma JF, Evers B, Bakker BM, Reijngoud DJ, de Bruyn M, de Jong S, Jalving M. Targeting tumour metabolism in melanoma to enhance response to immune checkpoint inhibition: A balancing act. Cancer Treat Rev 2024; 129:102802. [PMID: 39029155 DOI: 10.1016/j.ctrv.2024.102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Immune checkpoint inhibition has transformed the treatment landscape of advanced melanoma and long-term survival of patients is now possible. However, at least half of the patients do not benefit sufficiently. Metabolic reprogramming is a hallmark of cancer cells and may contribute to both tumour growth and immune evasion by the tumour. Preclinical studies have indeed demonstrated that modulating tumour metabolism can reduce tumour growth while improving the functionality of immune cells. Since metabolic pathways are commonly shared between immune and tumour cells, it is essential to understand how modulating tumour metabolism in patients influences the intricate balance of pro-and anti-tumour immune effects in the tumour microenvironment. The key question is whether modulating tumour metabolism can inhibit tumour cell growth as well as facilitate an anti-tumour immune response. Here, we review current knowledge on the effect of tumour metabolism on the immune response in melanoma. We summarise metabolic pathways in melanoma and non-cancerous cells in the tumour microenvironment and discuss models and techniques available to study the metabolic-immune interaction. Finally, we discuss clinical use of these techniques to improve our understanding of how metabolic interventions can tip the balance towards a favourable, immune permissive microenvironment in melanoma patients.
Collapse
Affiliation(s)
- J F Tiersma
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B Evers
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signalling, and Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - B M Bakker
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signalling, and Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D J Reijngoud
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signalling, and Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M de Bruyn
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - S de Jong
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Jalving
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Martínez-Vila C, González-Navarro EA, Teixido C, Martin R, Aya F, Juan M, Arance A. Lymphocyte T Subsets and Outcome of Immune Checkpoint Inhibitors in Melanoma Patients: An Oncologist's Perspective on Current Knowledge. Int J Mol Sci 2024; 25:9506. [PMID: 39273452 PMCID: PMC11394732 DOI: 10.3390/ijms25179506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer, and its incidence has been steadily increasing over the past few decades, particularly in the Caucasian population. Immune checkpoint inhibitors (ICI), anti-PD-1 monotherapy or in combination with anti-CTLA-4, and more recently, anti-PD-1 plus anti-LAG-3 have changed the clinical evolution of this disease. However, a significant percentage of patients do not benefit from these therapies. Therefore, to improve patient selection, it is imperative to look for novel biomarkers. Immune subsets, particularly the quantification of lymphocyte T populations, could contribute to the identification of ICI responders. The main purpose of this review is to thoroughly examine significant published data on the potential role of lymphocyte T subset distribution in peripheral blood (PB) or intratumorally as prognostic and predictive of response biomarkers in advanced melanoma patients treated with ICI regardless of BRAFV600 mutational status.
Collapse
Affiliation(s)
- Clara Martínez-Vila
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1-3, 08243 Manresa, Spain
- Programa de Doctorat en Medicina i Recerca Translacional, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Roda 70, 08500 Vic, Spain
| | - Europa Azucena González-Navarro
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Cristina Teixido
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Roberto Martin
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Francisco Aya
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| |
Collapse
|
7
|
Myrda J, Bremm F, Schaft N, Dörrie J. The Role of the Large T Antigen in the Molecular Pathogenesis of Merkel Cell Carcinoma. Genes (Basel) 2024; 15:1127. [PMID: 39336718 PMCID: PMC11431464 DOI: 10.3390/genes15091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The large T antigen (LT) of the Merkel cell polyomavirus (MCPyV) is crucial for Merkel cell carcinoma (MCC), a rare but very aggressive form of neuroendocrine skin cancer. The clonal integration of MCPyV DNA into the host genome is a signature event of this malignancy. The resulting expression of oncogenes, including the small T (sT) antigen and a truncated form of the LT (truncLT), directly contribute to carcinogenesis. The truncation of the C-terminus of LT prevents the virus from replicating due to the loss of the origin binding domain (OBD) and the helicase domain. This precludes cytopathic effects that would lead to DNA damage and ultimately cell death. At the same time, the LxCxE motif in the N-terminus is retained, allowing truncLT to bind the retinoblastoma protein (pRb), a cellular tumor suppressor. The continuously inactivated pRb promotes cell proliferation and tumor development. truncLT exerts several classical functions of an oncogene: altering the host cell cycle, suppressing innate immune responses to viral DNA, causing immune escape, and shifting metabolism in favor of cancer cells. Given its central role in MCC, the LT is a major target for therapeutic interventions with novel approaches, such as immune checkpoint inhibition, T cell-based immunotherapy, and cancer vaccines.
Collapse
Affiliation(s)
- Julia Myrda
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
8
|
Deng J, Wei K, Fang J, Li Y. Deep self-reconstruction driven joint nonnegative matrix factorization model for identifying multiple genomic imaging associations in complex diseases. J Biomed Inform 2024; 156:104684. [PMID: 38936566 DOI: 10.1016/j.jbi.2024.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Comprehensive analysis of histopathology images and transcriptomics data enables the identification of candidate biomarkers and multimodal association patterns. Most existing multimodal data association studies are derived from extensions of the joint nonnegative matrix factorization model for identifying complex data associations, which can make full use of clinical prior information. However, the raw data were usually taken as the input without considering the underlying complex multi-subspace structure, influencing the subsequent integration analysis results. METHODS This study proposed a deep-self reconstructed joint nonnegative matrix factorization (DSRJNMF) model to use self-expressive properties to reconstruct the raw data to characterize the similarity structure associated with clinical labels. Then, the sparsity, orthogonality, and regularization constraints constructed from prior information are added to the DSRJNMF model to determine the sparse set of biologically relevant features across modalities. RESULTS The algorithm has been applied to identify the imaging genetic association of triple negative breast cancer (TNBC). Multilevel experimental results demonstrate that the proposed algorithm better estimates potential associations between pathological image features and miRNA-gene and identifies consistent multimodal imaging genetic biomarkers to guide the interpretation of TNBC. CONCLUSION The propose method provides a novel idea of data association analysis oriented to complex diseases.
Collapse
Affiliation(s)
- Jin Deng
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiana Fang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
9
|
Hummelink K, van der Noort V, Muller M, Schouten RD, van den Heuvel MM, Thommen DS, Smit EF, Meijer GA, Monkhorst K. Head-to-head comparison of composite and individual biomarkers to predict clinical benefit to PD-1 blockade in non-small cell lung cancer. PLoS One 2024; 19:e0293707. [PMID: 39083541 PMCID: PMC11290656 DOI: 10.1371/journal.pone.0293707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/15/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The efficacy of PD-1 blocking agents in advanced NSCLC has shown prolonged effectiveness, but only in a minority of patients. Multiple biomarkers have been explored to predict treatment benefit, yet their combined performance remains inadequately examined. In this study, we assessed the combined predictive performance of multiple biomarkers in NSCLC patients treated with nivolumab. METHODS Pretreatment samples from 135 patients receiving nivolumab were used to evaluate the predictive performance of CD8 tumor-infiltrating lymphocytes (TILs), intratumoral (IT) localization of CD8 TILs, PD-1 high expressing TILs (PD1T TILs), CD3 TILs, CD20 B-cells, tertiary lymphoid structures (TLS), PD-L1 tumor proportion score (TPS) and the Tumor Inflammation score (TIS). Patients were randomly assigned to a training (n = 55) and validation cohort (n = 80). The primary outcome measure was Disease Control at 6 months (DC 6m) and the secondary outcome measure was DC at 12 months (DC 12m). RESULTS In the validation cohort, the two best performing composite biomarkers (i.e. CD8+IT-CD8 and CD3+IT-CD8) demonstrated similar or lower sensitivity (64% and 83%) and NPV (76% and 85%) compared to individual biomarkers PD-1T TILs and TIS (sensitivity: 72% and 83%, NPV: 86% and 84%) for DC 6m, respectively. Additionally, at 12 months, both selected composite biomarkers (CD8+IT-CD8 and CD8+TIS) demonstrated inferior predictive performance compared to PD-1T TILs and TIS alone. PD-1T TILs and TIS showed high sensitivity (86% and 100%) and NPV (95% and 100%) for DC 12m. PD-1T TILs could more accurately discriminate patients with no long-term benefit, as specificity was substantially higher compared to TIS (74% versus 39%). CONCLUSION Composite biomarkers did not show improved predictive performance compared to PD-1T TILs and TIS alone for both the 6- and 12-month endpoints. PD-1T TILs and TIS identified patients with DC 12m with high sensitivity. Patients with no long-term benefit to PD-1 blockade were most accurately identified by PD-1T TILs.
Collapse
Affiliation(s)
- Karlijn Hummelink
- Department of Pathology, Division of Diagnostic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Thoracic Oncology, Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Mirte Muller
- Department of Thoracic Oncology, Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robert D. Schouten
- Department of Thoracic Oncology, Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michel M. van den Heuvel
- Department of Thoracic Oncology, Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniela S. Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Egbert F. Smit
- Department of Thoracic Oncology, Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gerrit A. Meijer
- Department of Pathology, Division of Diagnostic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, Division of Diagnostic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Muijlwijk T, Nijenhuis DNLM, Ganzevles SH, Ekhlas F, Ballesteros-Merino C, Peferoen LAN, Bloemena E, Fox BA, Poell JB, Leemans CR, Brakenhoff RH, van de Ven R. Immune cell topography of head and neck cancer. J Immunother Cancer 2024; 12:e009550. [PMID: 39053947 DOI: 10.1136/jitc-2024-009550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Approximately 50% of head and neck squamous cell carcinomas (HNSCC) recur after treatment with curative intent. Immune checkpoint inhibitors are treatment options for recurrent/metastatic HNSCC; however, less than 20% of patients respond. To increase this response rate, it is fundamental to increase our understanding of the spatial tumor immune microenvironment (TIME). METHODS In total, 53 HNSCC specimens were included. Using a seven-color multiplex immunohistochemistry panel we identified tumor cells, CD163+macrophages, B cells, CD8+T cells, CD4+T helper cells and regulatory T cells (Tregs) in treatment-naive surgical resection specimens (n=29) and biopsies (n=18). To further characterize tumor-infiltrating CD8+T cells, we stained surgical resection specimens (n=12) with a five-color tumor-resident panel including CD103, Ki67, CD8 and pan-cytokeratin. Secretome analysis was performed on matched tumor suspensions (n=11) to measure protein levels. RESULTS Based on CD8+T cell infiltrates, we identified four different immunotypes: fully infiltrated, stroma-restricted, immune-excluded, and immune-desert. We found higher cytokine levels in fully infiltrated tumors compared with other immunotypes. While the highest immune infiltrates were observed in the invasive margin for all immune cells, CD163+macrophages and Tregs had the highest tendency to infiltrate the tumor center. Within the tumor center, especially B cells stayed at the tumor stroma, whereas CD163+macrophages, followed by T cells, were more often localized within tumor fields. Also, B cells were found further away from other cells and often formed aggregates while T cells and CD163+macrophages tended to be more closely located to each other. Across resection specimens from various anatomical sites within the head and neck, oral cavity tumors exhibited the highest densities of Tregs. Moreover, the distance from B cells and T cells to tumor cells was shortest in oral cavity squamous cell carcinoma (OCSCC), suggesting more interaction between lymphocytes and tumor cells. Also, the fraction of T cells within 10 µm of CD163+macrophages was lowest in OCSCC, indicating fewer myeloid/T-cell suppressive interactions in OCSCC. CONCLUSIONS We comprehensively described the TIME of HNSCC using a unique data set of resection specimens. We discovered that the composition, as well as the relative localization of immune cells in the TIME, differed in distinct anatomical sites of the head and neck.
Collapse
Affiliation(s)
- Tara Muijlwijk
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Dennis N L M Nijenhuis
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Sonja H Ganzevles
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Fatima Ekhlas
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Carmen Ballesteros-Merino
- Molecular and Tumor Immunology Laboratory, Providence Cancer Institute, Robert W. Franz Research Center at the Earle A. Chiles Research Institute, Portland, Oregon, USA
| | - Laura A N Peferoen
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Pathology, Amsterdam UMC - Locatie VUMC, Amsterdam, The Netherlands
- Maxillofacial Surgery/ Oral Pathology, Academic Center for Dentistry, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Pathology, Amsterdam UMC - Locatie VUMC, Amsterdam, The Netherlands
- Maxillofacial Surgery/ Oral Pathology, Academic Center for Dentistry, Amsterdam, The Netherlands
| | - Bernard A Fox
- Molecular and Tumor Immunology Laboratory, Providence Cancer Institute, Robert W. Franz Research Center at the Earle A. Chiles Research Institute, Portland, Oregon, USA
| | - Jos B Poell
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - C René Leemans
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Li C, Hong W, Reuben A, Wang L, Maitra A, Zhang J, Cheng C. TimiGP-Response: the pan-cancer immune landscape associated with response to immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600089. [PMID: 38979334 PMCID: PMC11230183 DOI: 10.1101/2024.06.21.600089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Accumulating evidence suggests that the tumor immune microenvironment (TIME) significantly influences the response to immunotherapy, yet this complex relationship remains elusive. To address this issue, we developed TimiGP-Response (TIME Illustration based on Gene Pairing designed for immunotherapy Response), a computational framework leveraging single-cell and bulk transcriptomic data, along with response information, to construct cell-cell interaction networks associated with responders and estimate the role of immune cells in treatment response. This framework was showcased in triple-negative breast cancer treated with immune checkpoint inhibitors targeting the PD-1:PD-L1 interaction, and orthogonally validated with imaging mass cytometry. As a result, we identified CD8+ GZMB+ T cells associated with responders and its interaction with regulatory T cells emerged as a potential feature for selecting patients who may benefit from these therapies. Subsequently, we analyzed 3,410 patients with seven cancer types (melanoma, non-small cell lung cancer, renal cell carcinoma, metastatic urothelial carcinoma, hepatocellular carcinoma, breast cancer, and esophageal cancer) treated with various immunotherapies and combination therapies, as well as several chemo- and targeted therapies as controls. Using TimiGP-Response, we depicted the pan-cancer immune landscape associated with immunotherapy response at different resolutions. At the TIME level, CD8 T cells and CD4 memory T cells were associated with responders, while anti-inflammatory (M2) macrophages and mast cells were linked to non-responders across most cancer types and datasets. Given that T cells are the primary targets of these immunotherapies and our TIME analysis highlights their importance in response to treatment, we portrayed the pan-caner landscape on 40 T cell subtypes. Notably, CD8+ and CD4+ GZMK+ effector memory T cells emerged as crucial across all cancer types and treatments, while IL-17-producing CD8+ T cells were top candidates associated with immunotherapy non-responders. In summary, this study provides a computational method to study the association between TIME and response across the pan-cancer immune landscape, offering resources and insights into immune cell interactions and their impact on treatment efficacy.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, TX 77030, USA
| | - Wei Hong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandre Reuben
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, TX 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, TX 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, TX 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Lung Cancer Genomics Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Lung Cancer Interception Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Cheng D, Qiu K, Li D, Mao M, Rao Y, Song Y, Feng L, Shao X, Jiang C, Wang Y, Li L, Chen X, Wu S, Wang H, Liu J, Yu H, Zhang W, Chen F, Zhao Y, Ren J. Molecular and transcriptional basis of bidirectional CD4 + T cell exhaustion in oropharyngeal squamous cell carcinoma. MedComm (Beijing) 2024; 5:e572. [PMID: 38868329 PMCID: PMC11167179 DOI: 10.1002/mco2.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 06/14/2024] Open
Abstract
Tumor-infiltrating CD4+ T cells orchestrate the adaptive immune response through remarkable plasticity, and the expression patterns of exhaustion-related inhibitory receptors in these cells differ significantly from those of CD8+ T cells. Thus, a better understanding of the molecular basis of CD4+ T cell exhaustion and their responses to immune checkpoint blockade (ICB) is required. Here, we integrated multiomics approaches to define the phenotypic and molecular profiles of exhausted CD4+ T cells in oropharyngeal squamous cell carcinoma (OPSCC). Two distinct immune-promoting (Module 1) and immunosuppressive (Module 2) functional modules in tumor-infiltrating CD4+ T cells were identified, and both the immune-promoting function of Module 1 cells and immunosuppressive function of Module 2 cells were positively associated with their corresponding exhaustion states. Furthermore, the application of ICBs targeting effector CD4+ T cells in Module 1 (αPD-1) and Treg cells in Module 2 (αCTLA-4) in mouse models could help reinvigorate the effector function of Module 1-exhausted CD4+ T cells and reduce the immunosuppressive function of Module 2-exhausted CD4+ T cells, ultimately promoting OPSCC tumor regression. Taken together, our study provides a crucial cellular basis for the selection of optimal ICB in treating OPSCC.
Collapse
Affiliation(s)
- Danni Cheng
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ke Qiu
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Daibo Li
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Minzi Mao
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yufang Rao
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yao Song
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Lan Feng
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiuli Shao
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Chuanhuan Jiang
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yan Wang
- Research Core FacilityWest China HospitalSichuan UniversityChengduChina
| | - Li Li
- Institute of Clinical PathologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xuemei Chen
- Research Core FacilityWest China HospitalSichuan UniversityChengduChina
| | - Sisi Wu
- Research Core FacilityWest China HospitalSichuan UniversityChengduChina
| | - Haiyang Wang
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jun Liu
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Haopeng Yu
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Fei Chen
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yu Zhao
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jianjun Ren
- Department of Oto‐Rhino‐LaryngologyWest China Hospital, Sichuan UniversityChengduSichuanChina
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
13
|
Ye Z, Cheng P, Huang Q, Hu J, Huang L, Hu G. Immunocytes interact directly with cancer cells in the tumor microenvironment: one coin with two sides and future perspectives. Front Immunol 2024; 15:1388176. [PMID: 38840908 PMCID: PMC11150710 DOI: 10.3389/fimmu.2024.1388176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The tumor microenvironment is closely linked to the initiation, promotion, and progression of solid tumors. Among its constitutions, immunologic cells emerge as critical players, facilitating immune evasion and tumor progression. Apart from their indirect impact on anti-tumor immunity, immunocytes directly influence neoplastic cells, either bolstering or impeding tumor advancement. However, current therapeutic modalities aimed at alleviating immunosuppression from regulatory cells on effector immune cell populations may not consistently yield satisfactory results in various solid tumors, such as breast carcinoma, colorectal cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils, and tumor-associated macrophages on tumor cells within the tumor microenvironment. The review also delves into the underlying mechanisms involved and presents the outcomes of clinical trials based on these direct effects, aiming to propose innovative and efficacious therapeutic strategies for addressing solid tumors.
Collapse
Affiliation(s)
- Zhiyi Ye
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Hu
- School of Medicine, Shaoxing University, Zhejiang, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Liang Y, Luo H, Li X, Liu S, Habib A, Liu B, Huang J, Wang J, Yi H, Hu B, Zheng L, Xie J, Zhu N. PD-L1 targeted peptide demonstrates potent antitumor and immunomodulatory activity in cancer immunotherapy. Front Immunol 2024; 15:1367040. [PMID: 38745661 PMCID: PMC11091243 DOI: 10.3389/fimmu.2024.1367040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Background In recent years, immunotherapy has been emerging as a promising alternative therapeutic method for cancer patients, offering potential benefits. The expression of PD-L1 by tumors can inhibit the T-cell response to the tumor and allow the tumor to evade immune surveillance. To address this issue, cancer immunotherapy has shown promise in disrupting the interaction between PD-L1 and its ligand PD-1. Methods We used mirror-image phage display technology in our experiment to screen and determine PD-L1 specific affinity peptides (PPL-C). Using CT26 cells, we established a transplanted mouse tumor model to evaluate the inhibitory effects of PPL-C on tumor growth in vivo. We also demonstrated that PPL-C inhibited the differentiation of T regulatory cells (Tregs) and regulated the production of cytokines. Results In vitro, PPL-C has a strong affinity for PD-L1, with a binding rate of 0.75 μM. An activation assay using T cells and mixed lymphocytes demonstrated that PPL-C inhibits the interaction between PD-1 and PD-L1. PPL-C or an anti-PD-L1 antibody significantly reduced the rate of tumor mass development in mice compared to those given a control peptide (78% versus 77%, respectively). The results of this study demonstrate that PPL-C prevents or retards tumor growth. Further, immunotherapy with PPL-C enhances lymphocyte cytotoxicity and promotes proliferation in CT26-bearing mice. Conclusion PPL-C exhibited antitumor and immunoregulatory properties in the colon cancer. Therefore, PPL-C peptides of low molecular weight could serve as effective cancer immunotherapy.
Collapse
Affiliation(s)
- Yulai Liang
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Huazao Luo
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xue Li
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuang Liu
- Renal Division, Department of Internal Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Arslan Habib
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Baoxiu Liu
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiansheng Huang
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingbo Wang
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Yi
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Hu
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Liuhai Zheng
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Xie
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
16
|
Zheng J, Deng Y, Huang B, Chen X. Prognostic implications of STK11 with different mutation status and its relationship with tumor-infiltrating immune cells in non-small cell lung cancer. Front Immunol 2024; 15:1387896. [PMID: 38736875 PMCID: PMC11082287 DOI: 10.3389/fimmu.2024.1387896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background Mutations in STK11 (STK11Mut) gene may present a negative impact on survival in Non-small Cell Lung Cancer (NSCLC) patients, however, its relationship with immune related genes remains unclear. This study is to unveil whether overexpressed- and mutated-STK11 impact survival in NSCLC and to explore whether immune related genes (IRGs) are involved in STK11 mutations. Methods 188 NSCLC patients with intact formalin-fixed paraffin-embedded (FFPE) tissue available for detecting STK11 protein expression were included in the analysis. After immunohistochemical detection of STK11 protein, patients were divided into high STK11 expression group (STK11High) and low STK11 expression group (STK11Low), and then Kaplan-Meier survival analysis and COX proportional hazards model were used to compare the overall survival (OS) and progression-free survival (PFS) of the two groups of patients. In addition, the mutation data from the TCGA database was used to categorize the NSCLC population, namely STK11 Mutated (STK11Mut) and wild-type (STK11Wt) subgroups. The difference in OS between STK11Mut and STK11Wt was compared. Finally, bioinformatics analysis was used to compare the differences in IRGs expression between STK11Mut and STK11Wt populations. Results The median follow-up time was 51.0 months (range 3.0 - 120.0 months) for real-life cohort. At the end of follow-up, 64.36% (121/188) of patients experienced recurrence or metastasis. 64.89% (122/188) of patients ended up in cancer-related death. High expression of STK11 was a significant protective factor for NSCLC patients, both in terms of PFS [HR=0.42, 95% CI= (0.29-0.61), P<0.001] and OS [HR=0.36, 95% CI= (0.25, 0.53), P<0.001], which was consistent with the finding in TCGA cohorts [HR=0.76, 95%CI= (0.65, 0.88), P<0.001 HR=0.76, 95%CI= (0.65, 0.88), P<0.001]. In TCGA cohort, STK11 mutation was a significant risk factor for NSCLC in both lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) histology in terms of OS [HR=6.81, 95%CI= (2.16, 21.53), P<0.001; HR=1.50, 95%CI= (1.00, 2.26), P=0.051, respectively]. Furthermore, 7 IRGs, namely CALCA, BMP6, S100P, THPO, CGA, PCSK1 and MUC5AC, were found significantly overexpressed in STK11-mutated NSCLC in both LUSC and LUAD histology. Conclusions Low STK11 expression at protein level and presence of STK11 mutation were associated with poor prognosis in NSCLC, and mutated STK11 might probably alter the expression IRGs profiling.
Collapse
Affiliation(s)
- Jianqing Zheng
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yujie Deng
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bifen Huang
- Department of Obstetrics and Gynecology, Quanzhou Medical College People’s Hospital Affiliated, Quanzhou, Fujian, China
| | - Xiaohui Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Interdisciplinary Institute of Medical Engineering of Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
17
|
Zhang L, Wang WQ, Chen JH, Feng J, Liao YZ, Zou Y, Liu R. Tumor-infiltrating immune cells and survival in head and neck squamous cell carcinoma: a retrospective computational study. Sci Rep 2024; 14:6390. [PMID: 38493212 PMCID: PMC10944537 DOI: 10.1038/s41598-024-56738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
The immune infiltration profiles of the tumor microenvironment have effects on the prognosis of head and neck squamous cell carcinoma (HNSCC). Whereas, HNSCC is a heterogeneous group of tumors, but past work has not taken this into consideration. Herein, we investigate the associations between survival and the function of immune cells in different tumorigenic sites of HNSCC. 1149 samples of HNSCC were collected from publicly accessible databases. Based on gene expression data, CIBERSORTx was applied to determine the proportion of 22 immune cell subpopulations. In the Cox regression model, the associations between overall survival, disease-free survival, and immune cells were examined, modeling gene expression and immune cell proportion as quartiles. Consensus cluster analysis was utilized to uncover immune infiltration profiles. Regardless of tumor sites, CD8+ T cells and activated CD4 memory T cells were associated with favorable survival, while eosinophils were the opposite. The survival of the hypopharynx, oral cavity, and larynx subsites was somewhat affected by immune cells, while the survival of the oropharynx subsite potentially was the most impacted. High expression of TIGIT, CIITA, and CXCR6 was linked to better survival, mainly in the oropharynx subsite. Immune cell clusters with four distinct survival profiles were discovered, of which the cluster with a high CD8+ T cell content had a better prognosis. The immune-infiltration pattern is related to the survival of HNSCC to varying degrees depending on the tumor sites; forthcoming studies into immune-mediated infiltration profiles will lay the groundwork for treating HNSCC with precision therapy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Wei-Quan Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jun-Hong Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jia Feng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Ya-Zhou Liao
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - You Zou
- High Performance Computing Center, Central South University, Changsha, 410008, People's Republic of China.
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
18
|
Gao Y, Gong Y, Lu J, Hao H, Shi X. Targeting YAP1 to improve the efficacy of immune checkpoint inhibitors in liver cancer: mechanism and strategy. Front Immunol 2024; 15:1377722. [PMID: 38550587 PMCID: PMC10972981 DOI: 10.3389/fimmu.2024.1377722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Liver cancer is the third leading of tumor death, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Immune checkpoint inhibitors (ICIs) are yielding much for sufferers to hope for patients, but only some patients with advanced liver tumor respond. Recent research showed that tumor microenvironment (TME) is critical for the effectiveness of ICIs in advanced liver tumor. Meanwhile, metabolic reprogramming of liver tumor leads to immunosuppression in TME. These suggest that regulating the abnormal metabolism of liver tumor cells and firing up TME to turn "cold tumor" into "hot tumor" are potential strategies to improve the therapeutic effect of ICIs in liver tumor. Previous studies have found that YAP1 is a potential target to improve the efficacy of anti-PD-1 in HCC. Here, we review that YAP1 promotes immunosuppression of TME, mainly due to the overstimulation of cytokines in TME by YAP1. Subsequently, we studied the effects of YAP1 on metabolic reprogramming in liver tumor cells, including glycolysis, gluconeogenesis, lipid metabolism, arachidonic acid metabolism, and amino acid metabolism. Lastly, we summarized the existing drugs targeting YAP1 in the treatment of liver tumor, including some medicines from natural sources, which have the potential to improve the efficacy of ICIs in the treatment of liver tumor. This review contributed to the application of targeted YAP1 for combined therapy with ICIs in liver tumor patients.
Collapse
Affiliation(s)
- Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Huiqin Hao
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
- Basic Laboratory of Integrated Traditional Chinese and Western, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
19
|
Jin Y, Zhao Q, Fan C, Song X, Teng C, Lv Y, Jiang Q, Huang D, Li L, Shen W, Xin T. Peripheral T-cell subsets in radiofrequency ablation for tumors from different origins. Asian J Surg 2024; 47:1378-1382. [PMID: 38160147 DOI: 10.1016/j.asjsur.2023.12.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/27/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUNDS Radiofrequency ablation (RFA) is known to destroy tumoral tissue and activate immune cells. This study aimed to investigate the impact of RFA on peripheral T-cell responses and its relationship with tumor origin and hepatitis status. METHODS A retrospective analysis was conducted on 62 patients with various types of tumors, including hepatocellular carcinoma, colorectal cancer, lung cancer, breast cancer, and others, who underwent RFA treatment between June 2017 and December 2018. Blood samples were collected before and one day after RFA treatment. The peripheral T-cell subsets were measured by flow cytometry, and their changes were analyzed. RESULTS The study found a decrease in the CD4+CD8-and CD4-CD8+ T-cell subsets after RFA, but no significant changes were observed in the populations of CD4+CD8+ and the CD4+CD8-/CD4-CD8+ ratio. Furthermore, no significant differences were observed in peripheral T-cell subsets concerning tumor type or hepatitis status. CONCLUSIONS The study suggests that RFA treatment may have a short-term impact on peripheral T-cell responses, characterized by a decrease in certain T-cell subsets. However, these changes do not seem to be related to the tumor type or hepatitis status of the patients.
Collapse
Affiliation(s)
- Yinghua Jin
- Department of Oncology, Dushu Lake Hospital Affiliated of Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China.
| | - Qiuyu Zhao
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chengjuan Fan
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowei Song
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chong Teng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanju Lv
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuying Jiang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dayong Huang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Li
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weixi Shen
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Xin
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
20
|
Chen J, Yu F, He G, Hao W, Hu W. A nomogram based on peripheral lymphocyte for predicting 8-year survival in patients with prostate cancer: a single-center study using LASSO-cox regression. BMC Cancer 2024; 24:254. [PMID: 38395827 PMCID: PMC10885398 DOI: 10.1186/s12885-024-11929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
PURPOSE The purpose of this study was to develop a functional clinical nomogram for predicting 8-year overall survival (OS) of patients with prostate cancer (PCa) primary based on peripheral lymphocyte. PATIENTS AND METHODS Using data from a single-institutional registry of 94 patients with PCa in China, this study identified and integrated significant prognostic factors for survival to build a nomogram. The discriminative ability was measured by concordance index (C-index) and ROC curves (Receiver Operating Characteristic Curves). And the predictive accuracy was measured by the calibration curves. Decision curve analyses (DCA) was used to measure the clinical usefulness. RESULTS A total of 94 patients were included for analysis. Five independent prognostic factors were identified by LASSO-Cox regression and incorporated into the nomogram: age, the T stage, the absolute counts of peripheral CD3(+)CD4(+) T lymphocytes, CD3(-)CD16(+)CD56(+) NK cells and CD4(+)/CD8(+) ratio. The area under the curve (AUC) values of the predictive model for 5-, 8-, and 10-year overall survival were 0.81, 0.76, and 0.73, respectively. The calibration curves for probability of 5-,8- and 10-year OS showed optimal agreement between nomogram prediction and actual observation. The stratification into different risk groups allowed significant distinction. DCA indicated the good clinical application value of the model. CONCLUSION We developed a novel nomogram that enables personalized prediction of OS for patients diagnosed with PCa. This finding revealed a relative in age and survival rate in PCa, and a more favorable prognosis in patients exhibiting higher levels of CD4 + T, CD4+/CD8 + ratio and CD3(-)CD16(+)CD56(+) NK cells specifically. This clinically applicable prognostic model exhibits promising predictive capabilities, offering valuable support to clinicians in informed decision-making process.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China
| | - Feng Yu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China
| | - Ganyuan He
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China
| | - Wenke Hao
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China.
| | - Wenxue Hu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Xia Y, Yang M, Xiao X, Tang W, Deng J, Wu L, Xu H, Tang Y, Chen W, Wang Y. Low-intensity pulsed ultrasound activated the anti-tumor immunity by irradiating the spleen of mice in 4 T-1 breast cancer. Cancer Immunol Immunother 2024; 73:50. [PMID: 38349555 PMCID: PMC10864467 DOI: 10.1007/s00262-023-03613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/13/2023] [Indexed: 02/15/2024]
Abstract
Tumor immunotherapy is booming around the world. However, strategies to activate the immune system and alleviate the immunosuppression still need to be refined. Here, we demonstrate for the first time that low-intensity pulsed ultrasound (LIPUS, spatial average time average intensity (Isata) is 200 mW/cm2, frequency is 0.3 MHz, repetition frequency is 1 kHz, and duty cycle is 20%) triggers the immune system and further reverses the immunosuppressive state in the mouse models of breast cancer by irradiating the spleen of mice. LIPUS inhibited tumor growth and extended survival in mice with 4 T-1 tumors. Further studies had previously shown that LIPUS enhanced the activation of CD4+ and CD8+ T cells in the spleen and led to significant changes in cytokines, as well as induced upregulation of mRNA levels involved in multiple immune regulatory pathways in the spleen. In addition, LIPUS promoted tumor-infiltrating lymphocyte accumulation and CD8+ T cell activation and improved the dynamics of cytokines/chemokines in the tumor microenvironment, resulting in a reversal of the immunosuppressive state of the tumor microenvironment. These results suggest a novel approach to activate the immune response by irradiating the spleen with LIPUS.
Collapse
Affiliation(s)
- Yi Xia
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| | - Meijie Yang
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Xinfang Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| | - Wentao Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| | - Juan Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| | - Liu Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| | - Haopeng Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| | - Yilin Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| | - Wenzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
22
|
Quail DF, Park M, Welm AL, Ekiz HA. Breast Cancer Immunity: It is TIME for the Next Chapter. Cold Spring Harb Perspect Med 2024; 14:a041324. [PMID: 37188526 PMCID: PMC10835621 DOI: 10.1101/cshperspect.a041324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Our ability to interrogate the tumor immune microenvironment (TIME) at an ever-increasing granularity has uncovered critical determinants of disease progression. Not only do we now have a better understanding of the immune response in breast cancer, but it is becoming possible to leverage key mechanisms to effectively combat this disease. Almost every component of the immune system plays a role in enabling or inhibiting breast tumor growth. Building on early seminal work showing the involvement of T cells and macrophages in controlling breast cancer progression and metastasis, single-cell genomics and spatial proteomics approaches have recently expanded our view of the TIME. In this article, we provide a detailed description of the immune response against breast cancer and examine its heterogeneity in disease subtypes. We discuss preclinical models that enable dissecting the mechanisms responsible for tumor clearance or immune evasion and draw parallels and distinctions between human disease and murine counterparts. Last, as the cancer immunology field is moving toward the analysis of the TIME at the cellular and spatial levels, we highlight key studies that revealed previously unappreciated complexity in breast cancer using these technologies. Taken together, this article summarizes what is known in breast cancer immunology through the lens of translational research and identifies future directions to improve clinical outcomes.
Collapse
Affiliation(s)
- Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Departments of Biochemistry, Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, 35430 Urla, Izmir, Turkey
| |
Collapse
|
23
|
Chen J, Chan TTH, Zhou J. Lipid metabolism in the immune niche of tumor-prone liver microenvironment. J Leukoc Biol 2024; 115:68-84. [PMID: 37474318 DOI: 10.1093/jleuko/qiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
The liver is a common primary site not only for tumorigenesis, but also for cancer metastasis. Advanced cancer patients with liver metastases also show reduced response rates and survival benefits when treated with immune checkpoint inhibitors. Accumulating evidence has highlighted the importance of the liver immune microenvironment in determining tumorigenesis, metastasis-organotropism, and immunotherapy resistance. Various immune cells such as T cells, natural killer and natural killer T cells, macrophages and dendritic cells, and stromal cells including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and hepatocytes are implicated in contributing to the immune niche of tumor-prone liver microenvironment. In parallel, as the major organ for lipid metabolism, the increased abundance of lipids and their metabolites is linked to processes crucial for nonalcoholic fatty liver disease and related liver cancer development. Furthermore, the proliferation, differentiation, and functions of hepatic immune and stromal cells are also reported to be regulated by lipid metabolism. Therefore, targeting lipid metabolism may hold great potential to reprogram the immunosuppressive liver microenvironment and synergistically enhance the immunotherapy efficacy in the circumstance of liver metastasis. In this review, we describe how the hepatic microenvironment adapts to the lipid metabolic alterations in pathologic conditions like nonalcoholic fatty liver disease. We also illustrate how these immunometabolic alterations promote the development of liver cancers and immunotherapy resistance. Finally, we discuss the current therapeutic options and hypothetic combination immunotherapies for the treatment of advanced liver cancers.
Collapse
Affiliation(s)
- Jintian Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Thomas T H Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| |
Collapse
|
24
|
Cardador CM, de Castro TB, de Castro RJA, Bocca AL, Camargo LC, Pacheco TA, Muehlmann LA, Longo JPF. Doxorubicin-induced Immunogenic Cell Death Impairs Tumor Progression and Distant Metastasis in a 4T1 Breast Cancer Tumor Model. Curr Pharm Des 2024; 30:2493-2504. [PMID: 39041268 DOI: 10.2174/0113816128316870240610045550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Cancer is an individual disease and its formation and development are specific to each host. Conventional treatments are ineffective in complex cases, such as metastasis, and have severe adverse side effects. New strategies are needed to address the problem, and the use of immunogenic cell death (ICD) as a trigger or booster of the immune system through the exposure of damage-associated molecular patterns, along with tumor antigens, by cancerous cells is presented as an immunization approach in this work. METHODS For this purpose, 4T1 cells were exposed to doxorubicin (DOX) for 24 hours and then, these cells undergoing ICD were subcutaneously administered to mice. The ICD induction by DOX on 4T1 was assessed by flow cytometry and image analysis. This immunization process was performed three times and after the last administration, the immunized mice were challenged with a subcutaneous xenograft of live cancer cells. RESULTS The results demonstrate that the mice immunized with cells undergoing ICD after exposure to DOX presented no primary tumor or indications of distant metastatic lesion development. CONCLUSION In summary, our findings indicate that the immunization process utilizing ICD is indeed efficacious in managing this aggressive form of pre-clinical breast cancer.
Collapse
Affiliation(s)
- Camila Magalhães Cardador
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Thaís Bergmann de Castro
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | | | - Anamélia Lorenzetti Bocca
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Luana Cristina Camargo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Thyago Arruda Pacheco
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Luís Alexandre Muehlmann
- Department of Genetics and Morphology, Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| | - João Paulo Figueiró Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
25
|
Pan S, Fan R, Han B, Tong A, Guo G. The potential of mRNA vaccines in cancer nanomedicine and immunotherapy. Trends Immunol 2024; 45:20-31. [PMID: 38142147 DOI: 10.1016/j.it.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
Owing to their outstanding performance against COVID-19, mRNA vaccines have brought great hope for combating various incurable diseases, including cancer. Differences in the encoded proteins result in different molecular and cellular mechanisms of mRNA vaccines. With the rapid development of nanotechnology and molecular medicine, personalized antigen-encoding mRNA vaccines that enhance antigen presentation can trigger effective immune responses and prevent off-target toxicities. Herein, we review new insights into the influence of encoded antigens, cytokines, and other functional proteins on the mechanisms of mRNA vaccines. We also highlight the importance of delivery systems and chemical modifications for mRNA translation efficiency, stability, and targeting, and we discuss the potential problems and application prospects of mRNA vaccines as versatile tools for combating cancer.
Collapse
Affiliation(s)
- Shulin Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, China
| | - Aiping Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Jalilian E, Abolhasani-Zadeh F, Afgar A, Samoudi A, Zeinalynezhad H, Langroudi L. Neutralizing tumor-related inflammation and reprogramming of cancer-associated fibroblasts by Curcumin in breast cancer therapy. Sci Rep 2023; 13:20770. [PMID: 38008819 PMCID: PMC10679154 DOI: 10.1038/s41598-023-48073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023] Open
Abstract
Tumor-associated inflammation plays a vital role in cancer progression. Among the various stromal cells, cancer-associated fibroblasts are promising targets for cancer therapy. Several reports have indicated potent anti-inflammatory effects attributed to Curcumin. This study aimed to investigate whether inhibiting the inflammatory function of cancer-associated fibroblasts (CAFs) with Curcumin can restore anticancer immune responses. CAFs were isolated from breast cancer tissues, treated with Curcumin, and co-cultured with patients' PBMCs to evaluate gene expression and cytokine production alterations. Blood and breast tumor tissue samples were obtained from 12 breast cancer patients with stage II/III invasive ductal carcinoma. Fibroblast Activation Protein (FAP) + CAFs were extracted from tumor tissue, treated with 10 μM Curcumin, and co-cultured with corresponding PBMCs. The expression of smooth muscle actin-alpha (α-SMA), Cyclooxygenase-2(COX-2), production of PGE2, and immune cell cytokines were evaluated using Real-Time PCR and ELISA, respectively. Analyzes showed that treatment with Curcumin decreased the expression of genes α-SMA and COX-2 and the production of PGE2 in CAFs. In PBMCs co-cultured with Curcumin-treated CAFs, the expression of FoxP3 decreased along with the production of TGF-β, IL-10, and IL-4. An increase in IFN-γ production was observed that followed by increased T-bet expression. According to our results, Curcumin could reprogram the pro-tumor phenotype of CAFs and increase the anti-tumor phenotype in PBMCs. Thus, CAFs, as a component of the tumor microenvironment, are a suitable target for combination immunotherapies of breast cancer.
Collapse
Affiliation(s)
- Elnaz Jalilian
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, Iran
| | | | - Ali Afgar
- Departmeny of Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Arash Samoudi
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, Iran
| | - Hamid Zeinalynezhad
- Department of Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Langroudi
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, Iran.
| |
Collapse
|
27
|
Piroozkhah M, Gholinezhad Y, Piroozkhah M, Shams E, Nazemalhosseini-Mojarad E. The molecular mechanism of actions and clinical utilities of tumor infiltrating lymphocytes in gastrointestinal cancers: a comprehensive review and future prospects toward personalized medicine. Front Immunol 2023; 14:1298891. [PMID: 38077386 PMCID: PMC10704251 DOI: 10.3389/fimmu.2023.1298891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal (GI) cancers remain a significant global health burden, accounting for a substantial number of cases and deaths. Regrettably, the inadequacy of dependable biomarkers hinders the precise forecasting of patient prognosis and the selection of appropriate therapeutic sequencing for individuals with GI cancers, leading to suboptimal outcomes for numerous patients. The intricate interplay between tumor-infiltrating lymphocytes (TILs) and the tumor immune microenvironment (TIME) has been shown to be a pivotal determinant of response to anti-cancer therapy and consequential clinical outcomes across a multitude of cancer types. Therefore, the assessment of TILs has garnered global interest as a promising prognostic biomarker in oncology, with the potential to improve clinical decision-making substantially. Moreover, recent discoveries in immunotherapy have progressively changed the landscape of cancer treatment and significantly prolonged the survival of patients with advanced cancers. Nonetheless, the response rate remains constrained within solid tumor sufferers, even when TIL landscapes appear comparable, which calls for the development of our understanding of cellular and molecular cross-talk between TIME and tumor. Hence, this comprehensive review encapsulates the extant literature elucidating the TILs' underlying molecular pathogenesis, prognostic significance, and their relevance in the realm of immunotherapy for patients afflicted by GI tract cancers. Within this review, we demonstrate that the type, density, and spatial distribution of distinct TIL subpopulations carries pivotal implications for the prediction of anti-cancer treatment responses and patient survival. Furthermore, this review underscores the indispensable role of TILs in modulating therapeutic responses within distinct molecular subtypes, such as those characterized by microsatellite stability or programmed cell death ligand-1 expression in GI tract cancers. The review concludes by outlining future directions in TIL-based personalized medicine, including integrating TIL-based approaches into existing treatment regimens and developing novel therapeutic strategies that exploit the unique properties of TILs and their potential as a promising avenue for personalized cancer treatment.
Collapse
Affiliation(s)
- Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobin Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Liu Y, Liu S, Yan L, Zhang Q, Liu W, Huang X, Liu S. Contribution of m5C RNA Modification-Related Genes to Prognosis and Immunotherapy Prediction in Patients with Ovarian Cancer. Mediators Inflamm 2023; 2023:1400267. [PMID: 38022687 PMCID: PMC10661868 DOI: 10.1155/2023/1400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background 5-Methylcytosine (m5C) RNA modification is closely implicated in the occurrence of a variety of cancers. Here, we established a novel prognostic signature for ovarian cancer (OC) patients based on m5C RNA modification-related genes and explored the correlation between these genes with the tumor immune microenvironment. Methods Methylated-RNA immunoprecipitation sequencing helped us to identify candidate genes related to m5C RNA modification at first. Based on TCGA database, we screened the differentially expressed candidate genes related to the prognosis and constructed a prognostic model using LASSO Cox regression analyses. Notably, the accuracy of the model was evaluated by Kaplan-Meier analysis and receiver operator characteristic curves. Independent prognostic risk factors were investigated by Cox proportional hazard model. Furthermore, we also analyzed the biological functions and pathways involved in the signature. Finally, the immune response of the model was visualized in great detail. Results Totally, 2,493 candidate genes proved to be involved in m5C modification of RNA for OC. We developed a signature with prognostic value consisting of six m5C RNA modification-related genes. Specially, samples have been split into two cohorts with low- and high-risk scores according to the model, in which the low-risk OC patients exhibited dramatically better overall survival time than those with high-risk scores. Besides, not only was this model a prognostic factor independent of other clinical characteristics but it predicted the intensity of the immune response in OC. Significantly, the accuracy and availability of the signature were verified by ICGC database. Conclusions Our study bridged the gap between m5C RNA modification and the prognosis of OC and was expected to provide an effective breakthrough for immunotherapy in OC patients.
Collapse
Affiliation(s)
- Yibin Liu
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
| | - Shouze Liu
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Lu Yan
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
| | - Qianqian Zhang
- Department of Gynecology and Obstetrics, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Wenhua Liu
- Department of Pain, Cangzhou Hospital of Integrated TCM-WM Hebei, Cangzhou, Hebei 061001, China
| | - Xianghua Huang
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
| | - Shikai Liu
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| |
Collapse
|
29
|
Richter F, Paget C, Apetoh L. STING-driven activation of T cells: relevance for the adoptive cell therapy of cancer. Cell Stress 2023; 7:95-104. [PMID: 37970489 PMCID: PMC10642958 DOI: 10.15698/cst2023.11.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
Adoptive cell therapy (ACT) can successfully treat hematopoietic cancers but lacks efficacy against solid tumors. This is due to insufficient T cell infiltration, high tumor heterogeneity, frequent antigen loss with subsequent tumor escape, and the immunosuppressive tumor microenvironment (TME). Alternative methods to boost the anticancer efficacy of adoptively transferred cells are actively pursued. Among adjuvants that are utilized to stimulate anticancer immune responses, ligands of the stimulator of interferon genes (STING) pathway have received increasing attention. STING activation can trigger dendritic cell (DC) activation and endogenous immune responses, thereby preventing tumor escape. Activation of the STING pathway in the context of ACT was accordingly associated with improved T cell trafficking and persistence in the TME combined with the reduced presence of immunosuppressive cells. Recent findings also suggest cell-intrinsic effects of STING ligands on T cells. Activation of the STING signaling pathway was in this regard shown to enhance effector functions of CD4+ and CD8+ T cells, suggesting that the STING signaling could be exploited to harness T cell anticancer functions. In this review, we will discuss how the STING signaling can be used to enhance the anticancer efficacy of ACT.
Collapse
Affiliation(s)
- Fabian Richter
- Centre d'Étude des Pathologies Respiratoires, U1100, INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Christophe Paget
- Centre d'Étude des Pathologies Respiratoires, U1100, INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
30
|
Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer 2023; 23:710-724. [PMID: 37488363 DOI: 10.1038/s41568-023-00602-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.
Collapse
Affiliation(s)
- Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric P Rahrmann
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ben D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
31
|
Liu D, Che X, Wang X, Ma C, Wu G. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer. Pharmaceuticals (Basel) 2023; 16:1384. [PMID: 37895855 PMCID: PMC10610367 DOI: 10.3390/ph16101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review delves into the rapidly evolving arena of cancer vaccines. Initially, we examine the intricate constitution of the tumor microenvironment (TME), a dynamic factor that significantly influences tumor heterogeneity. Current research trends focusing on harnessing the TME for effective tumor vaccine treatments are also discussed. We then provide a detailed overview of the current state of research concerning tumor immunity and the mechanisms of tumor vaccines, describing the complex immunological processes involved. Furthermore, we conduct an exhaustive analysis of the contemporary research landscape of tumor vaccines, with a particular focus on peptide vaccines, DNA/RNA-based vaccines, viral-vector-based vaccines, dendritic-cell-based vaccines, and whole-cell-based vaccines. We analyze and summarize these categories of tumor vaccines, highlighting their individual advantages, limitations, and the factors influencing their effectiveness. In our survey of each category, we summarize commonly used tumor vaccines, aiming to provide readers with a more comprehensive understanding of the current state of tumor vaccine research. We then delve into an innovative strategy combining cancer vaccines with other therapies. By studying the effects of combining tumor vaccines with immune checkpoint inhibitors, radiotherapy, chemotherapy, targeted therapy, and oncolytic virotherapy, we establish that this approach can enhance overall treatment efficacy and offset the limitations of single-treatment approaches, offering patients more effective treatment options. Following this, we undertake a meticulous analysis of the entire process of personalized cancer vaccines, elucidating the intricate process from design, through research and production, to clinical application, thus helping readers gain a thorough understanding of its complexities. In conclusion, our exploration of tumor vaccines in this review aims to highlight their promising potential in cancer treatment. As research in this field continues to evolve, it undeniably holds immense promise for improving cancer patient outcomes.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| |
Collapse
|
32
|
He Y, Hong C, Huang S, Kaskow JA, Covarrubias G, Pires IS, Sacane JC, Hammond PT, Belcher AM. STING Protein-Based In Situ Vaccine Synergizes CD4 + T, CD8 + T, and NK Cells for Tumor Eradication. Adv Healthc Mater 2023; 12:e2300688. [PMID: 37015729 PMCID: PMC10964211 DOI: 10.1002/adhm.202300688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/15/2023] [Indexed: 04/06/2023]
Abstract
Stimulator of interferon genes (STING) signaling is a promising target in cancer immunotherapy, with many ongoing clinical studies in combination with immune checkpoint blockade (ICB). Existing STING-based therapies largely focus on activating CD8+ T cell or NK cell-mediated cytotoxicity, while the role of CD4+ T cells in STING signaling has yet to be extensively studied in vivo. Here, a distinct CD4-mediated, protein-based combination therapy of STING and ICB as an in situ vaccine, is reported. The treatment eliminates subcutaneous MC38 and YUMM1.7 tumors in 70-100% of mice and protected all cured mice against rechallenge. Mechanistic studies reveal a robust TH 1 polarization and suppression of Treg of CD4+ T cells, followed by an effective collaboration of CD4+ T, CD8+ T, and NK cells to eliminate tumors. Finally, the potential to overcome host STING deficiency by significantly decreasing MC38 tumor burden in STING KO mice is demonstrated, addressing the translational challenge for the 19% of human population with loss-of-function STING variants.
Collapse
Affiliation(s)
- Yanpu He
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Celestine Hong
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Shengnan Huang
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Material Science and EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Justin A. Kaskow
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Gil Covarrubias
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ivan S. Pires
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - James C. Sacane
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Angela M. Belcher
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Material Science and EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
33
|
Wang YM, Cai W, Xue QM, Zhang JY, Zhou L, Xiong SY, Deng H. Prognostic role of different PD-L1 expression patterns and tumor-infiltrating lymphocytes in high-grade serous ovarian cancer: a systematic review and meta-analysis. Front Immunol 2023; 14:1234894. [PMID: 37654479 PMCID: PMC10465691 DOI: 10.3389/fimmu.2023.1234894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Background The prognostic value of programmed cell death ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes (TILs) in high-grade serous ovarian cancer (HGSOC) remains a controversial topic in the research field. To comprehensively assess the importance of PD-L1 and TILs in this particular subtype of ovarian cancer, we performed a meta-analysis. Methods We conducted a comprehensive search of PubMed, Embase, Scopus, Web of Science, and Cochrane Library databases up to December 25, 2022. The association between PD-L1, TILs, and survival outcomes was evaluated using the combined hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs). Results This meta-analysis comprised 11 trials involving a total of 1746 cases. The results revealed no significant association between PD-L1 expression in tumor cells (TCs) and overall survival (OS, HR = 0.76, 95% CI: 0.52-1.09, p = 0.136) or progression-free survival (PFS, HR = 0.71, 95% CI: 0.4 -1.24, p = 0.230). Nevertheless, a correlation was observed between PD-L1 expression in immune cells (ICs) and OS (HR = 0.73, 95% CI: 0.55-0.97, p = 0.031). Furthermore, the presence of CD8+ and PD-1+ TILs was found to significantly enhance OS (HR = 0.70, 95% CI = 0.55-0.87, p = 0.002; HR = 0.57, 95% CI = 0.40-0.80, p = 0.001, respectively) and PFS (HR = 0.62, 95% CI = 0.41-0.92, p = 0.019; HR = 0.52, 95% CI = 0.35-0.78, p = 0.002, respectively), whereas the presence of CD3+ and CD4+ TILs was positively associated with OS (HR = 0.50, 95% CI = 0.29-0.87, p = 0.014; HR = 0.55, 95% CI = 0.34-0.91, p = 0.020, respectively). Conclusion This study indicates a positive correlation between ICs-derived PD-L1 and survival, while no significant correlation was observed between TCs-derived PD-L1 and prognosis. These results highlight the importance of studying PD-L1 expression in ICs as a prognostic predictor. In addition, the presence of TILs was found to significantly improve patient survival, suggesting that TILs may be a valuable prognostic biomarker. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022366411.
Collapse
Affiliation(s)
- Ye-Min Wang
- Department of Pathology, the Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Cai
- Department of Pathology, the Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing-Ming Xue
- Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jin-Yao Zhang
- Department of Pathology, the Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lv Zhou
- Department of Pathology, the Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Su-Yi Xiong
- Department of Pathology, the Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huan Deng
- Department of Pathology, the Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
34
|
Wen M, Li Y, Qin X, Qin B, Wang Q. Insight into Cancer Immunity: MHCs, Immune Cells and Commensal Microbiota. Cells 2023; 12:1882. [PMID: 37508545 PMCID: PMC10378520 DOI: 10.3390/cells12141882] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer cells circumvent immune surveillance via diverse strategies. In accordance, a large number of complex studies of the immune system focusing on tumor cell recognition have revealed new insights and strategies developed, largely through major histocompatibility complexes (MHCs). As one of them, tumor-specific MHC-II expression (tsMHC-II) can facilitate immune surveillance to detect tumor antigens, and thereby has been used in immunotherapy, including superior cancer prognosis, clinical sensitivity to immune checkpoint inhibition (ICI) therapy and tumor-bearing rejection in mice. NK cells play a unique role in enhancing innate immune responses, accounting for part of the response including immunosurveillance and immunoregulation. NK cells are also capable of initiating the response of the adaptive immune system to cancer immunotherapy independent of cytotoxic T cells, clearly demonstrating a link between NK cell function and the efficacy of cancer immunotherapies. Eosinophils were shown to feature pleiotropic activities against a variety of solid tumor types, including direct interactions with tumor cells, and accessorily affect immunotherapeutic response through intricating cross-talk with lymphocytes. Additionally, microbial sequencing and reconstitution revealed that commensal microbiota might be involved in the modulation of cancer progression, including positive and negative regulatory bacteria. They may play functional roles in not only mucosal modulation, but also systemic immune responses. Here, we present a panorama of the cancer immune network mediated by MHCI/II molecules, immune cells and commensal microbiota and a discussion of prospective relevant intervening mechanisms involved in cancer immunotherapies.
Collapse
Affiliation(s)
- Minting Wen
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yingjing Li
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Xiaonan Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Bing Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Qiong Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
35
|
Mehra S, Garrido VT, Dosch AR, Lamichhane P, Srinivasan S, Singh SP, Zhou Z, De Castro Silva I, Joshi C, Ban Y, Datta J, Gilboa E, Merchant NB, Nagathihalli NS. Remodeling of Stromal Immune Microenvironment by Urolithin A Improves Survival with Immune Checkpoint Blockade in Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1224-1236. [PMID: 37448553 PMCID: PMC10337606 DOI: 10.1158/2767-9764.crc-22-0329] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a significant contributor to cancer-related morbidity and mortality, and it is known for its resistance to conventional treatment regimens, including chemotherapy and immune checkpoint blockade (ICB)-based therapies. We have previously shown that Urolithin A (Uro A), a gut microbial metabolite derived from pomegranates, can target and inhibit KRAS-dependent PI3K/AKT/mTOR signaling pathways to overcome therapeutic resistance and improve survival in PDAC. However, the effect of Uro A on the tumor immune microenvironment and its ability to enhance ICB efficacy has not been explored. This study demonstrates that Uro A treatment reduces stromal fibrosis and reinvigorates the adaptive T-cell immune response to overcome resistance to PD-1 blockade in a genetically engineered mouse model (GEMM) of PDAC. Flow cytometric-based analysis of Uro A-treated mouse tumors revealed a significant attenuation of immunosuppressive tumor-associated M2-like macrophages with a concurrent increase in the infiltration of CD4+ and CD8+ T cells with memory-like phenotype along with reduced expression of the exhaustion-associated protein, PD-1. Importantly, the combination of Uro A treatment with anti-PD-1 immunotherapy promoted enhancement of the antitumor response with increased infiltration of CD4+ Th1 cells, ultimately resulting in a remarkable improvement in overall survival in GEMM of PDAC. Overall, our findings provide preclinical evidence for the potential of Uro A as a novel therapeutic agent to increase sensitivity to immunotherapy in PDAC and warrant further mechanistic exploration in preclinical and clinical studies. Significance Immunotherapeutic agents are ineffective against pancreatic cancer, mainly due to the immunosuppressive tumor microenvironment and stromal desmoplasia. Our current study demonstrates the therapeutic utility of a novel gut microbial metabolite, Uro A, to remodel the stromal-immune microenvironment and improve overall survival with anti-PD-1 therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Siddharth Mehra
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Vanessa T. Garrido
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Austin R. Dosch
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Supriya Srinivasan
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Samara P. Singh
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Zhiqun Zhou
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Iago De Castro Silva
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Yuguang Ban
- Department of Biostatistics and Bioinformatics, University of Miami, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Jashodeep Datta
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Eli Gilboa
- Department of Microbiology and Immunology, University of Miami, Miami, Florida
| | - Nipun B. Merchant
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nagaraj S. Nagathihalli
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
36
|
Zheng H, Wang G, Liu M, Cheng H. Traditional Chinese medicine inhibits PD-1/PD-L1 axis to sensitize cancer immunotherapy: a literature review. Front Oncol 2023; 13:1168226. [PMID: 37397393 PMCID: PMC10312112 DOI: 10.3389/fonc.2023.1168226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Programmed death-1 (PD-1) and its programmed death-ligand 1 (PD-L1) comprise the PD-1/PD-L1 axis and maintain tumor immune evasion. Cancer immunotherapy based on anti-PD-1/PD-L1 antibodies is the most promising anti-tumor treatment available but is currently facing the thorny problem of unsatisfactory outcomes. Traditional Chinese Medicine (TCM), with its rich heritage of Chinese medicine monomers, herbal formulas, and physical therapies like acupuncture, moxibustion, and catgut implantation, is a multi-component and multi-target system of medicine known for enhancing immunity and preventing the spread of disease. TCM is often used as an adjuvant therapy for cancer in clinical practices, and recent studies have demonstrated the synergistic effects of combining TCM with cancer immunotherapy. In this review, we examined the PD-1/PD-L1 axis and its role in tumor immune escape while exploring how TCM therapies can modulate the PD-1/PD-L1 axis to improve the efficacy of cancer immunotherapy. Our findings suggest that TCM therapy can enhance cancer immunotherapy by reducing the expression of PD-1 and PD-L1, regulating T-cell function, improving the tumor immune microenvironment, and regulating intestinal flora. We hope this review may serve as a valuable resource for future studies on the sensitization of immune checkpoint inhibitors (ICIs) therapy.
Collapse
Affiliation(s)
- Huilan Zheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Li M, Jiang P, Wei S, Yang Y, Xiong L, Wang J, Li C. Gasdermin D Plays an Oncogenic Role in Glioma and Correlates to an Immunosuppressive Microenvironment. Biomolecules 2023; 13:904. [PMID: 37371484 DOI: 10.3390/biom13060904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Understanding the molecular mechanisms driving oncogenic processes in glioma is important in order to develop efficient treatments. Recent studies have proposed gasdermin D (GSDMD) as a newly discovered pyroptosis executive protein associated with tumorigenesis. However, the precise effect of GSDMD on glioma progression remains unknown. METHODS The expression levels of GSDMD in 931 glioma and 1157 normal control tissues were collected. A series of bioinformatic approaches and in vivo and in vitro experiments were used to investigate the roles and mechanisms of GDSMD in glioma. RESULTS Significant upregulation of GSDMD was detected in glioma tissues compared to normal brain tissues. Patients with glioma and higher GSDMD levels had shorter overall survival, and the Cox regression analysis revealed that GSDMD was an independent risk factor. In addition, upregulation of GSDMD was associated with higher tumor mutation burden and PD-1/PD-L1 expression. Immune infiltration and single-cell analyses indicated that GSDMD was positively associated with an immunosuppressive microenvironment with more infiltrated macrophages and cancer-associated fibroblasts. Furthermore, the in vitro and in vivo experiments revealed that GSDMD knockdown inhibited glioma proliferation, migration, and growth in vivo. CONCLUSION Our analyses revealed a relatively comprehensive understanding of the oncogenic role of GSDMD in glioma. GSDMD is a promising prognostic biomarker and a potential target for glioma treatment.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Liting Xiong
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
38
|
Malaina I, Gonzalez-Melero L, Martínez L, Salvador A, Sanchez-Diez A, Asumendi A, Margareto J, Carrasco-Pujante J, Legarreta L, García MA, Pérez-Pinilla MB, Izu R, Martínez de la Fuente I, Igartua M, Alonso S, Hernandez RM, Boyano MD. Computational and Experimental Evaluation of the Immune Response of Neoantigens for Personalized Vaccine Design. Int J Mol Sci 2023; 24:9024. [PMID: 37240369 PMCID: PMC10219310 DOI: 10.3390/ijms24109024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
In the last few years, the importance of neoantigens in the development of personalized antitumor vaccines has increased remarkably. In order to study whether bioinformatic tools are effective in detecting neoantigens that generate an immune response, DNA samples from patients with cutaneous melanoma in different stages were obtained, resulting in a total of 6048 potential neoantigens gathered. Thereafter, the immunological responses generated by some of those neoantigens ex vivo were tested, using a vaccine designed by a new optimization approach and encapsulated in nanoparticles. Our bioinformatic analysis indicated that no differences were found between the number of neoantigens and that of non-mutated sequences detected as potential binders by IEDB tools. However, those tools were able to highlight neoantigens over non-mutated peptides in HLA-II recognition (p-value 0.03). However, neither HLA-I binding affinity (p-value 0.08) nor Class I immunogenicity values (p-value 0.96) indicated significant differences for the latter parameters. Subsequently, the new vaccine, using aggregative functions and combinatorial optimization, was designed. The six best neoantigens were selected and formulated into two nanoparticles, with which the immune response ex vivo was evaluated, demonstrating a specific activation of the immune response. This study reinforces the use of bioinformatic tools in vaccine development, as their usefulness is proven both in silico and ex vivo.
Collapse
Affiliation(s)
- Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lorena Gonzalez-Melero
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Aiala Salvador
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - Ana Sanchez-Diez
- Department of Dermatology, Basurto University Hospital, 48013 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Javier Margareto
- Technological Services Division, Health and Quality of Life, TECNALIA, 01510 Miñano, Spain
| | - Jose Carrasco-Pujante
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Leire Legarreta
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - María Asunción García
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Martín Blas Pérez-Pinilla
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Rosa Izu
- Department of Dermatology, Basurto University Hospital, 48013 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
| | - Ildefonso Martínez de la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
- CEBAS-CSIC Institute, Department of Nutrition, 30100 Murcia, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - María Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
39
|
Mohammad Mirzaei N, Hao W, Shahriyari L. Investigating the spatial interaction of immune cells in colon cancer. iScience 2023; 26:106596. [PMID: 37168560 PMCID: PMC10165418 DOI: 10.1016/j.isci.2023.106596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
The intricate network of interactions between cells and molecules in the tumor microenvironment creates a heterogeneous ecosystem. The proximity of the cells and molecules to their activators and inhibitors is essential in the progression of tumors. Here, we develop a system of partial differential equations coupled with linear elasticity to investigate the effects of spatial interactions on the tumor microenvironment. We observe interesting cell and cytokine distribution patterns, which are heavily affected by macrophages. We also see that cytotoxic T cells get recruited and suppressed at the site of macrophages. Moreover, we observe that anti-tumor macrophages reorganize the patterns in favor of a more spatially restricted cancer and necrotic core. Furthermore, the adjoint-based sensitivity analysis indicates that the most sensitive model's parameters are directly related to macrophages. The results emphasize the widely acknowledged effect of macrophages in controlling cancer cells population and spatially arranging cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, 01003 MA, USA
| | - Wenrui Hao
- Department of Mathematics, Pennsylvania State University, University Park, 16802 PA, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, 01003 MA, USA
- Corresponding author
| |
Collapse
|
40
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
41
|
Hinshaw DC, Benavides GA, Metge BJ, Swain CA, Kammerud SC, Alsheikh HA, Elhamamsy A, Chen D, Darley-Usmar V, Rathmell JC, Welner RS, Samant RS, Shevde LA. Hedgehog Signaling Regulates Treg to Th17 Conversion Through Metabolic Rewiring in Breast Cancer. Cancer Immunol Res 2023; 11:687-702. [PMID: 37058110 PMCID: PMC10159910 DOI: 10.1158/2326-6066.cir-22-0426] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/18/2022] [Accepted: 02/28/2023] [Indexed: 04/15/2023]
Abstract
The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Dominique C. Hinshaw
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney A. Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah C. Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert S. Welner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Senior author
| |
Collapse
|
42
|
Valerio TI, Furrer CL, Sadeghipour N, Patrock SJX, Tillery SA, Hoover AR, Liu K, Chen WR. Immune modulations of the tumor microenvironment in response to phototherapy. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2023; 16:2330007. [PMID: 38550850 PMCID: PMC10976517 DOI: 10.1142/s1793545823300070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The tumor microenvironment (TME) promotes pro-tumor and anti-inflammatory metabolisms and suppresses the host immune system. It prevents immune cells from fighting against cancer effectively, resulting in limited efficacy of many current cancer treatment modalities. Different therapies aim to overcome the immunosuppressive TME by combining various approaches to synergize their effects for enhanced anti-tumor activity and augmented stimulation of the immune system. Immunotherapy has become a major therapeutic strategy because it unleashes the power of the immune system by activating, enhancing, and directing immune responses to prevent, control, and eliminate cancer. Phototherapy uses light irradiation to induce tumor cell death through photothermal, photochemical, and photo-immunological interactions. Phototherapy induces tumor immunogenic cell death, which is a precursor and enhancer for anti-tumor immunity. However, phototherapy alone has limited effects on long-term and systemic anti-tumor immune responses. Phototherapy can be combined with immunotherapy to improve the tumoricidal effect by killing target tumor cells, enhancing immune cell infiltration in tumors, and rewiring pathways in the TME from anti-inflammatory to pro-inflammatory. Phototherapy-enhanced immunotherapy triggers effective cooperation between innate and adaptive immunities, specifically targeting the tumor cells, whether they are localized or distant. Herein, the successes and limitations of phototherapy combined with other cancer treatment modalities will be discussed. Specifically, we will review the synergistic effects of phototherapy combined with different cancer therapies on tumor elimination and remodeling of the immunosuppressive TME. Overall, phototherapy, in combination with other therapeutic modalities, can establish anti-tumor pro-inflammatory phenotypes in activated tumor-infiltrating T cells and B cells and activate systemic anti-tumor immune responses.
Collapse
Affiliation(s)
- Trisha I. Valerio
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Coline L. Furrer
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Negar Sadeghipour
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
- School of Electrical and Computer Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Sophia-Joy X. Patrock
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Sayre A. Tillery
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Ashley R. Hoover
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Kaili Liu
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
43
|
Abstract
Recent advances in cancer immunotherapy - ranging from immune-checkpoint blockade therapy to adoptive cellular therapy and vaccines - have revolutionized cancer treatment paradigms, yet the variability in clinical responses to these agents has motivated intense interest in understanding how the T cell landscape evolves with respect to response to immune intervention. Over the past decade, the advent of multidimensional single-cell technologies has provided the unprecedented ability to dissect the constellation of cell states of lymphocytes within a tumour microenvironment. In particular, the rapidly expanding capacity to definitively link intratumoural phenotypes with the antigen specificity of T cells provided by T cell receptors (TCRs) has now made it possible to focus on investigating the properties of T cells with tumour-specific reactivity. Moreover, the assessment of TCR clonality has enabled a molecular approach to track the trajectories, clonal dynamics and phenotypic changes of antitumour T cells over the course of immunotherapeutic intervention. Here, we review the current knowledge on the cellular states and antigen specificities of antitumour T cells and examine how fine characterization of T cell dynamics in patients has provided meaningful insights into the mechanisms underlying effective cancer immunotherapy. We highlight those T cell subsets associated with productive T cell responses and discuss how diverse immunotherapies might leverage the pre-existing tumour-reactive T cell pool or instruct de novo generation of antitumour specificities. Future studies aimed at elucidating the factors associated with the elicitation of productive antitumour T cell immunity are anticipated to instruct the design of more efficacious treatment strategies.
Collapse
Affiliation(s)
- Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
44
|
Rhee JK. Distinct cellular composition between normal surgical margins and tumor tissues in oral squamous cell carcinoma. Genes Genomics 2023; 45:763-769. [PMID: 37004589 DOI: 10.1007/s13258-023-01379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Adequate resection of normal surgical margins is important. However, the clear distinction between the normal surgical margins and tumor tissues is still difficult. OBJECTIVE Here, this study analyzed the variety of cell types in tumors and the normal surgical margins using a computational approach. METHODS The composition of cell types was compared between the two tissues by statistical and machine learning approaches. RESULTS The results showed the distinct cellular composition between tumor-adjacent and tumor tissues. In particular, endothelial cells were highly represented and macrophages were underrepresented at the normal surgical margin. Moreover, the normal surgical margin and tumor tissues could be discriminated using a machine learning algorithm. CONCLUSION The results will help to understand cellular differences between normal surgical margins and tumor tissues and to provide potentials for tumor detection and treatment.
Collapse
Affiliation(s)
- Je-Keun Rhee
- School of Systems Biomedical Science, Soongsil University, Seoul, 06987, Republic of Korea.
| |
Collapse
|
45
|
Zhang L, Yu B, Liu Z, Wei J, Pan J, Jiang C, Li Z. Analysis of the Clinicopathological Characteristics, Prognosis, and Lymphocyte Infiltration of Esophageal Neuroendocrine Neoplasms: A Surgery-Based Cohort and Propensity-Score Matching Study. Cancers (Basel) 2023; 15:cancers15061732. [PMID: 36980618 PMCID: PMC10046526 DOI: 10.3390/cancers15061732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Esophageal neuroendocrine neoplasms (E-NENs) are a rare and poorly reported subtype of esophageal carcinoma. We analyzed the differences in clinicopathological features, prognosis, and tumor-infiltrating lymphocytes (TILs) between E-NENs and esophageal squamous cell carcinoma (ESCC). Methods: A total of 3620 patients who underwent esophagectomy were enrolled retrospectively. The study cohort was divided into two groups (E-NENs and ESCC) through propensity-score matching, and the prognosis and TILs were compared between the two groups. The TILs were assessed using tumor specimens (including six cases of ESCC, six cases of neuroendocrine carcinomas [NECs], and six cases of mixed neuroendocrine–non-neuroendocrine neoplasms [MiNENs]). Results: E-NENs accounted for 3.0% (107/3620) of cases, among which there were just 3 neuroendocrine tumor cases, 51 NEC cases, and 53 MiNENs cases. After matching, esophageal neuroendocrine carcinomas (E-NECs) showed both poorer 5-year overall survival (OS; 35.4% vs. 54.8%, p = 0.0019) and recurrence-free survival (RFS; 29.3% vs. 48.9%, p < 0.001) compared with ESCC. However, the differences were not prominent in the subgroup with stage I. No significant survival benefit was observed for E-NECs with multimodal therapy. Multivariate analysis demonstrated that E-NECs are an independent risk factor for OS and RFS. In the exploratory analysis, E-NECs were associated with less infiltration of immune cells compared with ESCC. Conclusion: E-NECs are significantly associated with a poorer prognosis than ESCC except for early-stage disease. The fewer TILs within the tumor microenvironment of E-NECs compared with ESCC results in weaker anti-tumor immunity and may lead to a poorer prognosis.
Collapse
Affiliation(s)
- Long Zhang
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Boyao Yu
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhichao Liu
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jinzhi Wei
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jie Pan
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chao Jiang
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhigang Li
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Correspondence:
| |
Collapse
|
46
|
Ji L, Zhang Q, Cao Y, Liu L. A prognostic risk model, tumor immune environment modulation, and drug prediction of ferroptosis and amino acid metabolism-related genes in hepatocellular carcinoma. Hum Cell 2023; 36:1173-1189. [PMID: 36892792 DOI: 10.1007/s13577-023-00885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
The prognosis of hepatocellular carcinoma (HCC) is challenging due to its heterogeneity. Ferroptosis and amino acid metabolism have been shown to be closely related to HCC. We obtained HCC-related expression data from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. We then crossed differentially expressed genes (DEGs), amino acid metabolism genes, and ferroptosis-related genes (FRGs) to obtain amino acid metabolism-ferroptosis-related differentially expressed genes (AAM-FR DEGs). Moreover, we developed a prognostic model using Cox analysis, followed by a correlation analysis of risk scores with clinical characteristics. We also performed an immune microenvironment analysis and drug sensitivity analysis. Finally, the expression levels of model genes were verified by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical assays. We found that the 18 AAM-FR DEGs were mainly enriched to the alpha-amino acid metabolic process and amino acid biosynthesis pathways. Cox analysis identified CBS, GPT2, SUV39H1, and TXNRD1 as prognostic biomarkers for the risk model construction. Our results showed that the risk scores differed between pathology stage, pathology T stage, and HBV, and the number of HCC patients in the two groups. In addition, the expression of PD-L1 and CTLA-4 was high in the high-risk group, and the half-maximal inhibitory concentration (IC50) of sorafenib also differed between the two groups. Finally, the experimental validation demonstrated that the expression of biomarkers was consistent with the study analysis. Therefore, in this study, we constructed and validated a prognostic model (CBS, GPT2, SUV39H1, and TXNRD1) related to ferroptosis and amino acid metabolism and examined their prognostic value for HCC.
Collapse
Affiliation(s)
- Lina Ji
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China
- Department of Digestive Oncology, Cancer Center, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qianqian Zhang
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China
- Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yumeng Cao
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Lixin Liu
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, China.
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China.
- Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
47
|
Regression in cutaneous melanoma: histological assessment, immune mechanisms and clinical implications. Pathology 2023; 55:227-235. [PMID: 36639333 DOI: 10.1016/j.pathol.2022.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022]
Abstract
Tumour regression is an immunologically driven process that results in complete or partial disappearance of tumour cells. This can be observed in histological sections as replacement of tumour cells with fibrosis, angiogenesis, and a variable inflammatory infiltrate. In primary cutaneous melanoma, the prognostic significance of regression has been debated for decades, in part because inconsistent histological criteria are used in prognostication studies. It is broadly accepted that CD8+ T lymphocytes are the primary effectors of the anti-tumour response, but the interplay between melanoma and the immune system is complex, dynamic, and incompletely understood. Sustained progress in unravelling the pathogenesis of melanoma regression has led to the identification of therapeutic targets, culminating in the development of immune checkpoint inhibitors for the management of advanced disease. Modern techniques allow for high-resolution spatial analyses of the tumour microenvironment. Such studies may lead to better understanding of the immune drivers of melanoma regression, thereby facilitating the search for new prognostic and predictive biomarkers to assist clinical decision-making.
Collapse
|
48
|
Moritoh K, Shoji K, Amagai Y, Fujiyuki T, Sato H, Yoneda M, Kai C. Immune response elicited in the tumor microenvironment upon rMV-SLAMblind cancer virotherapy. Cancer Sci 2023; 114:2158-2168. [PMID: 36715555 PMCID: PMC10154881 DOI: 10.1111/cas.15740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Oncolytic virotherapy is a promising therapy for cancer. We previously established a recombinant measles virus (rMV-SLAMblind) that targets NECTIN4-expressing cancer cells and demonstrated its antitumor effects using a xenograft model in an immunodeficient mouse. In the current study, to investigate the immune response after rMV-SLAMblind therapy, we developed an immunocompetent cancer mouse model by introducing the NECTIN4 gene into mouse cancer cell lines. NECTIN4-expressing mouse cancer cells were successfully killed by rMV-SLAMblind in vitro. After transplantation of the NECTIN4-expressing tumor cells, rMV-SLAMblind significantly suppressed tumor growth in immunocompetent mice. Thus, this immunocompetent mouse cancer model could be a powerful tool in which to study the effect of rMV-SLAMblind therapy on the immune response. Using this model we found that rMV-SLAMblind elicited significant activation of natural killer cells, type 1 helper T cells and the tumor-specific CD8+ T-cell response in the tumor microenvironment. Immune cell depletion study revealed that CD8+ cells particularly played significant roles in the therapeutic efficacy of rMV-SLAMblind. Thus, rMV-SLAMblind exerts a therapeutic effect, not only directly by tumor cell killing, but also indirectly by efficient induction of antitumor immunity.
Collapse
Affiliation(s)
- Kanako Moritoh
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichiro Shoji
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Amagai
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoko Fujiyuki
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Adotévi O, Vernerey D, Jacoulet P, Meurisse A, Laheurte C, Almotlak H, Jacquin M, Kaulek V, Boullerot L, Malfroy M, Orillard E, Eberst G, Lagrange A, Favier L, Gainet-Brun M, Doucet L, Teixeira L, Ghrieb Z, Clairet AL, Guillaume Y, Kroemer M, Hocquet D, Moltenis M, Limat S, Quoix E, Mascaux C, Debieuvre D, Fagnoni-Legat C, Borg C, Westeel V. Safety, Immunogenicity, and 1-Year Efficacy of Universal Cancer Peptide-Based Vaccine in Patients With Refractory Advanced Non-Small-Cell Lung Cancer: A Phase Ib/Phase IIa De-Escalation Study. J Clin Oncol 2023; 41:373-384. [PMID: 36070539 DOI: 10.1200/jco.22.00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Universal cancer peptide-based vaccine (UCPVax) is a therapeutic vaccine composed of two highly selected helper peptides to induce CD4+ T helper-1 response directed against telomerase. This phase Ib/IIa trial was designed to test the safety, immunogenicity, and efficacy of a three-dose schedule in patients with metastatic non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Patients with refractory NSCLC were assigned to receive three vaccination doses of UCPVax (0.25 mg, 0.5 mg, and 1 mg) using a Bayesian-based phase Ib followed by phase IIa de-escalating design. The primary end points were dose-limiting toxicity and immune response after three first doses of vaccine. Secondary end points were overall survival (OS) and progression-free survival at 1 year. RESULTS A total of 59 patients received UCPVax; 95% had three prior lines of systemic therapy. No dose-limiting toxicity was observed in 15 patients treated in phase Ib. The maximum tolerated dose was 1 mg. Fifty-one patients were eligible for phase IIa. The third and sixth dose of UCPVax induced specific CD4+ T helper 1 response in 56% and 87.2% of patients, respectively, with no difference between three dose levels. Twenty-one (39%) patients achieved disease control (stable disease, n = 20; complete response, n = 1). The 1-year OS was 34.1% (95% CI, 23.1 to 50.4), and the median OS was 9.7 months, with no significant difference between dose levels. The 1-year progression-free survival and the median OS were 17.2% (95% CI, 7.8 to 38.3) and 11.6 months (95% CI, 9.7 to 16.7) in immune responders (P = .015) and 4.5% (95% CI, 0.7 to 30.8) and 5.6 months (95% CI, 2.5 to 10) in nonresponders (P = .005), respectively. CONCLUSION UCPVax was highly immunogenic and safe and provide interesting 1-year OS rate in heavily pretreated advanced NSCLC.
Collapse
Affiliation(s)
- Olivier Adotévi
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Besançon, France
| | - Dewi Vernerey
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Besançon, France.,Department of Medical Oncology, Methodology and Quality of Life Unit in Oncology, University Hospital of Besançon, Besançon, France
| | - Pascale Jacoulet
- Department of Pneumology, University Hospital of Besançon, Besançon, France
| | - Aurélia Meurisse
- Department of Medical Oncology, Methodology and Quality of Life Unit in Oncology, University Hospital of Besançon, Besançon, France
| | - Caroline Laheurte
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Plateforme de Biomonitoring, Besançon, France
| | - Hamadi Almotlak
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Marion Jacquin
- INSERM CIC-1431, Clinical Investigation Center in Biotherapy, University Hospital of Besançon, Besançon, France
| | - Vincent Kaulek
- Department of Pneumology, University Hospital of Besançon, Besançon, France
| | - Laura Boullerot
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Plateforme de Biomonitoring, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, University Hospital of Besançon, Besançon, France
| | - Marine Malfroy
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Besançon, France
| | - Emeline Orillard
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,Department of Pneumology, University Hospital of Besançon, Besançon, France
| | - Guillaume Eberst
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Besançon, France.,Department of Pneumology, University Hospital of Besançon, Besançon, France
| | - Aurélie Lagrange
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Laure Favier
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Marie Gainet-Brun
- Department of Pneumology, University Hospital of Besançon, Besançon, France
| | - Ludovic Doucet
- Department of Medical Oncology, AP-HP Hôpital Saint Louis, Paris, France
| | - Luis Teixeira
- Department of Medical Oncology, AP-HP Hôpital Saint Louis, Paris, France
| | - Zineb Ghrieb
- INSERM CIC 1427, Centre d'Investigations Cliniques, Université de Paris Cité, AP-HP Hôpital Saint-Louis, Paris, France
| | - Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Yves Guillaume
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Marie Kroemer
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Didier Hocquet
- Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France
| | - Mélanie Moltenis
- Vigilance Unit, Department of Clinical Research and Innovation, University Hospital of Besançon, Besançon, France
| | - Samuel Limat
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Besançon, France.,Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Elisabeth Quoix
- Department of Pneumology, Strasbourg University Hospital, Strasbourg, France
| | - Céline Mascaux
- University of Strasbourg, Inserm UMR_S1113, IRFAC, Laboratory Streinth (Stress rEsponse and iNnovative therapy against cancer), ITI InnoVec, Strasbourg, France
| | | | | | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, University Hospital of Besançon, Besançon, France
| | - Virginie Westeel
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Besançon, France.,Department of Pneumology, University Hospital of Besançon, Besançon, France
| |
Collapse
|
50
|
Targeting Epigenetic Mechanisms: A Boon for Cancer Immunotherapy. Biomedicines 2023; 11:biomedicines11010169. [PMID: 36672677 PMCID: PMC9855697 DOI: 10.3390/biomedicines11010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Immunotherapy is rapidly emerging as a promising approach against cancer. In the last decade, various immunological mechanisms have been targeted to induce an increase in the immune response against cancer cells. However, despite promising results, many patients show partial response, resistance, or serious toxicities. A promising way to overcome this is the use of immunotherapeutic approaches, in combination with other potential therapeutic approaches. Aberrant epigenetic modifications play an important role in carcinogenesis and its progression, as well as in the functioning of immune cells. Thus, therapeutic approaches targeting aberrant epigenetic mechanisms and the immune response might provide an effective antitumor effect. Further, the recent development of potent epigenetic drugs and immunomodulators gives hope to this combinatorial approach. In this review, we summarize the synergy mechanism between epigenetic therapies and immunotherapy for the treatment of cancer, and discuss recent advancements in the translation of this approach.
Collapse
|