1
|
Liang B, Xing X, Storts H, Ye Z, Claybon H, Austin R, Ding R, Liu B, Wen H, Miles WO, Fishel R, Wang JJ. Antagonistic roles of cGAS/STING signaling in colorectal cancer chemotherapy. Front Oncol 2024; 14:1441935. [PMID: 39469633 PMCID: PMC11513249 DOI: 10.3389/fonc.2024.1441935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
FOLFOX, composed of 5-FU, oxaliplatin and leucovorin, is a first line chemotherapy regimen for colorectal cancer (CRC) treatment. In this study, we show that 5-FU and oxaliplatin induce DNA damage and activate cGAS/STING signaling leading to enhanced expression of interferon (IFN) β, IFN-stimulated genes and inflammatory cytokines in mouse and human colon cancer cells as well as increased intratumoral CD8+ T cells in mice. Crucially, 5-FU and oxaliplatin increase PD-L1 expression at the mRNA and protein levels, which has been shown to inhibit CD8+ T cell function. Depletion of cGAS, STING, IRF3, or IFNα/β receptor 1 (IFNAR1) abolishes this increase, indicating that 5-FU/oxaliplatin mediated upregulation of PD-L1 expression is dependent on tumor cell intrinsic cGAS/STING signaling. These results imply opposing roles for FOLFOX during cancer treatment. On one hand, 5-FU and oxaliplatin activate the innate immune response to facilitate anti-tumor immunity, and conversely upregulate PD-L1 expression to evade immune surveillance. Analysis of TCGA colon cancer dataset shows a positive correlation between expression of PD-L1 and components of the cGAS/STING pathway, supporting a role for cGAS/STING signaling in upregulating PD-L1 expression in colon cancer patients. Tumor studies in syngeneic immune competent mice demonstrate that the combination of 5-FU/oxaliplatin and anti-PD-1 significantly reduced tumor growth of colon cancer cells compared to 5-FU/oxaliplatin treatment alone. Taken together, our studies have identified a unique pathway leading to chemoresistance and provide a rationale to combine FOLFOX with anti-PD-1/PD-L1 as an effective CRC treatment.
Collapse
Affiliation(s)
- Beiyuan Liang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Xuanxuan Xing
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Hayden Storts
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Zhen Ye
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Hazel Claybon
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Ryan Austin
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Rachel Ding
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Haitao Wen
- Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Wayne O. Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Jing J. Wang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Sun Y, Wu Y, Pang G, Huang J, Sheng M, Xie J, Chen P, Wang Y, Yin D, Zhao G, Bohlander SK, Huang J, Xu GL, Gao H, Zhou D, Shi Y. STING is crucial for the survival of RUNX1::RUNX1T1 leukemia cells. Leukemia 2024; 38:2102-2114. [PMID: 39179670 DOI: 10.1038/s41375-024-02383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Even though acute myeloid leukemia (AML) patients with a RUNX1::RUNX1T1 (AE) fusion have a relatively favorable prognosis, approximately 50% relapse within 2.5 years and develop resistance to subsequent chemotherapy [1]. It is therefore imperative to identify novel therapeutic targets for AE leukemia to improve outcomes. In this study, we unveil that targeting STING effectively suppresses the growth of AE leukemia cells. Both genetic and pharmacological inhibition of STING lead to the diminish of AE leukemia cells. Importantly, in a mouse primary AE leukemia model, STING deletion significantly attenuates leukemogenesis and prolongs the animals' lifespan. Blocking the downstream inflammatory pathway of STING yields similar effects to STING inhibition in AE leukemia cells, highlighting the pivotal role of STING-dependent inflammatory responses in sustaining the survival of AE leukemia cells. Moreover, through a genome-wide CRISPR screen, we identified fatty acid desaturase 2 (FADS2) as a non-canonical factor downstream of STING inhibition that mediates cell death. Inhibition of STING releases FADS2 activity, consequently inducing the synthesis of polyunsaturated fatty acids (PUFAs) and triggering lipid peroxidation-associated cell death [2]. Taken together, these findings reveal a critical function of STING in the survival of AE-positive AML cells and suggest STING to be a potential therapeutic target for clinical intervention in these patients.
Collapse
Affiliation(s)
- Yue Sun
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Yushuang Wu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Guozheng Pang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Jingru Huang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Mengyao Sheng
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Jiaying Xie
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Pingyue Chen
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Yin Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Dongrui Yin
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
| | - Guangjie Zhao
- Huashan Hospital, Fudan University, Shanghai, 200024, China
| | - Stefan K Bohlander
- Leukaemia & Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
| | - Guo-Liang Xu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hai Gao
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China.
| | - Dan Zhou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai, 201399, China.
| | - Yuheng Shi
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) & Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Barr J, Walz A, Restaino AC, Amit M, Barclay SM, Vichaya EG, Spanos WC, Dantzer R, Talbot S, Vermeer PD. Tumor-infiltrating nerves functionally alter brain circuits and modulate behavior in a mouse model of head-and-neck cancer. eLife 2024; 13:RP97916. [PMID: 39302290 DOI: 10.7554/elife.97916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.
Collapse
Affiliation(s)
- Jeffrey Barr
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
| | - Austin Walz
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
| | - Anthony C Restaino
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
- University of South Dakota, Sanford School of Medicine, Vermillion, United States
| | - Moran Amit
- University of Texas, MD Anderson Cancer Center, Houston, United States
| | - Sarah M Barclay
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
| | - Elisabeth G Vichaya
- Baylor University, Department of Psychology and Neuroscience, Waco, United States
| | - William C Spanos
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
- University of South Dakota, Sanford School of Medicine, Vermillion, United States
| | - Robert Dantzer
- University of Texas, MD Anderson Cancer Center, Houston, United States
| | - Sebastien Talbot
- Queen's University, Department of Biomedical and Molecular Sciences, Kingston, Canada
| | - Paola D Vermeer
- Sanford Research, Cancer Biology and Immunotherapies Group, Sioux Falls, Sioux Falls, United States
- University of South Dakota, Sanford School of Medicine, Vermillion, United States
| |
Collapse
|
4
|
Hou Z, Lu F, Lin J, Wu Y, Chen L, Fang H, Chen L, Zhang S, Huang H, Pan Y. Loss of Annexin A1 in macrophages restrains efferocytosis and remodels immune microenvironment in pancreatic cancer by activating the cGAS/STING pathway. J Immunother Cancer 2024; 12:e009318. [PMID: 39237260 PMCID: PMC11381726 DOI: 10.1136/jitc-2024-009318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Pancreatic cancer is an incurable malignant disease with extremely poor prognosis and a complex tumor microenvironment. We sought to characterize the role of Annexin A1 (ANXA1) in pancreatic cancer, including its ability to promote efferocytosis and antitumor immune responses. METHODS The tumor expression of ANXA1 and cleaved Caspase-3 (c-Casp3) and numbers of tumor-infiltrating CD68+ macrophages in 151 cases of pancreatic cancer were examined by immunohistochemistry and immunofluorescence. The role of ANXA1 in pancreatic cancer was investigated using myeloid-specific ANXA1-knockout mice. The changes in tumor-infiltrating immune cell populations induced by ANXA1 deficiency in macrophages were assessed by single-cell RNA sequencing and flow cytometry. RESULTS ANXA1 expression in pancreatic cancer patient samples correlated with the number of CD68+ macrophages. The percentage of ANXA1+ tumor-infiltrating macrophages negatively correlated with c-Casp3 expression and was significantly associated with worse survival. In mice, myeloid-specific ANXA1 deficiency inhibited tumor growth and was accompanied by the accumulation of apoptotic cells in pancreatic tumor tissue caused by inhibition of macrophage efferocytosis, which was dependent on cGAS-STING pathway-induced type I interferon signaling. ANXA1 deficiency significantly remodeled the intratumoral lymphocyte and macrophage compartments in tumor-bearing mice by increasing the number of effector T cells and pro-inflammatory macrophages. Furthermore, combination therapy of ANXA1 knockdown with gemcitabine and anti-programmed cell death protein-1 antibody resulted in synergistic inhibition of pancreatic tumor growth. CONCLUSION This research uncovers a novel role of macrophage ANXA1 in pancreatic cancer. ANXA1-mediated regulation of efferocytosis by tumor-associated macrophages promotes antitumor immune response via STING signaling, suggesting potential treatment strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Zelin Hou
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jiajing Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yuwei Wu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Linjin Chen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Haizong Fang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Linlin Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shihan Zhang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
5
|
Yang J, Luo Z, Ma J, Wang Y, Cheng N. A next-generation STING agonist MSA-2: From mechanism to application. J Control Release 2024; 371:273-287. [PMID: 38789087 DOI: 10.1016/j.jconrel.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The stimulator of interferon genes (STING) connects the innate and adaptive immune system and plays a significant role in antitumor immunity. Over the past decades, endogenous and CDN-derived STING agonists have been a hot topic in the research of cancer immunotherapies. However, these STING agonists are either in infancy with limited biological effects or have failed in clinical trials. In 2020, a non-nucleotide STING agonist MSA-2 was identified, which exhibited satisfactory antitumor effects in animal studies and is amenable to oral administration. Due to its distinctive binding mode and enhanced bioavailability, there have been accumulating interests and an array of studies on MSA-2 and its derivatives, spanning its structure-activity relationship, delivery systems, applications in combination therapies, etc. Here, we provide a comprehensive review of MSA-2 and interventional strategies based on this family of STING agonists to help more researchers extend the investigation on MSA-2 in the future.
Collapse
Affiliation(s)
- Junhan Yang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhenyu Luo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jingyi Ma
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ningtao Cheng
- School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Wang MM, Choi MR, Battistella C, Gattis B, Qiao B, Evangelopoulos M, Mirkin CA, Olvera de la Cruz M, Zhang B, Gianneschi NC. Proteomimetic Polymers Trigger Potent Antigen-Specific T Cell Responses to Limit Tumor Growth. J Am Chem Soc 2024; 146:14959-14971. [PMID: 38781575 DOI: 10.1021/jacs.3c05340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Elicitation of effective antitumor immunity following cancer vaccination requires the selective activation of distinct effector cell populations and pathways. Here we report a therapeutic approach for generating potent T cell responses using a modular vaccination platform technology capable of inducing directed immune activation, termed the Protein-like Polymer (PLP). PLPs demonstrate increased proteolytic resistance, high uptake by antigen-presenting cells (APCs), and enhanced payload-specific T cell responses. Key design parameters, namely payload linkage chemistry, degree of polymerization, and side chain composition, were varied to optimize vaccine formulations. Linking antigens to the polymer backbone using an intracellularly cleaved disulfide bond copolymerized with a diluent amount of oligo(ethylene glycol) (OEG) resulted in the highest payload-specific potentiation of antigen immunogenicity, enhancing dendritic cell (DC) activation and antigen-specific T cell responses. Vaccination with PLPs carrying either gp100, E7, or adpgk peptides significantly increased the survival of mice inoculated with B16F10, TC-1, or MC38 tumors, respectively, without the need for adjuvants. B16F10-bearing mice immunized with gp100-carrying PLPs showed increased antitumor CD8+ T cell immunity, suppressed tumor growth, and treatment synergy when paired with two distinct stimulator of interferon gene (STING) agonists. In a human papillomavirus-associated TC-1 model, combination therapy with PLP and 2'3'-cGAMP resulted in 40% of mice completely eliminating implanted tumors while also displaying curative protection from rechallenge, consistent with conferment of lasting immunological memory. Finally, PLPs can be stored long-term in a lyophilized state and are highly tunable, underscoring the unique properties of the platform for use as generalizable cancer vaccines.
Collapse
Affiliation(s)
- Max M Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Mi-Ran Choi
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Claudia Battistella
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Brayley Gattis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Natural Sciences, Baruch College, City University of New York, New York, New York 10010, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60208, United States
| |
Collapse
|
7
|
Zhou Z, Huang S, Fan F, Xu Y, Moore C, Li S, Han C. The multiple faces of cGAS-STING in antitumor immunity: prospects and challenges. MEDICAL REVIEW (2021) 2024; 4:173-191. [PMID: 38919400 PMCID: PMC11195429 DOI: 10.1515/mr-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.
Collapse
Affiliation(s)
- Zheqi Zhou
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sanling Huang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Xu
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Casey Moore
- Departments of Immunology, Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sirui Li
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
8
|
Delaunay T, Son S, Park S, Kaur B, Ahn J, Barber GN. Exogenous non-coding dsDNA-dependent trans-activation of phagocytes augments anti-tumor immunity. Cell Rep Med 2024; 5:101528. [PMID: 38677283 PMCID: PMC11148645 DOI: 10.1016/j.xcrm.2024.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/25/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Stimulator of interferon genes (STING)-dependent signaling is requisite for effective anti-microbial and anti-tumor activity. STING signaling is commonly defective in cancer cells, which enables tumor cells to evade the immunosurveillance system. We evaluate here whether intrinsic STING signaling in such tumor cells could be reconstituted by creating recombinant herpes simplex viruses (rHSVs) that express components of the STING signaling pathway. We observe that rHSVs expressing STING and/or cGAS replicate inefficiently yet retain in vivo anti-tumor activity, independent of oncolytic activity requisite on the trans-activation of extrinsic STING signaling in phagocytes by engulfed microbial dsDNA species. Accordingly, the in vivo effects of virotherapy could be simulated by nanoparticles incorporating non-coding dsDNA species, which comparably elicit the trans-activation of phagocytes and augment the efficacy of established cancer treatments including checkpoint inhibition and radiation therapy. Our results help elucidate mechanisms of virotherapeutic anti-tumor activity as well as provide alternate strategies to treat cancer.
Collapse
Affiliation(s)
- Tiphaine Delaunay
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sehee Son
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Seongji Park
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Balveen Kaur
- Georgia Cancer Center, Augusta University Medical Center, Augusta, GA, USA
| | - Jeonghyun Ahn
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Glen N Barber
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
9
|
Kansal V, Kinney BL, Schmitt NC. Characterization of the tumor microenvironment in the mouse oral cancer (MOC1) model after orthotopic implantation in the buccal mucosa. Head Neck 2024; 46:1056-1062. [PMID: 38445546 PMCID: PMC11003840 DOI: 10.1002/hed.27722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Preclinical models are invaluable for studies of head and neck cancer. There is growing interest in the use of orthotopic syngeneic models, wherein cell lines are injected into the oral cavity of immunocompetent mice. In this brief report, we describe injection of mouse oral cancer 1 (MOC1) cells into the buccal mucosa and illustrate the tumor growth pattern, lymph node response, and changes in the tumor immune microenvironment over time. METHODS MOC1 cells were injected into the buccal mucosa of C57BL6 mice. Animals were sacrificed at 7, 14, 21, or 27 days. Tumors and lymph nodes were analyzed by flow cytometry. RESULTS All mice developed tumors by day 7 and required euthanasia for tumor burden and/or weight loss by day 27. Lymph node mapping showed that these tumors reliably drain to a submandibular lymph node. The proportion of intratumoral CD8+ T cells decreased over time, while neutrophilic myeloid cells increased dramatically. Growth of orthotopic MOC2 and MOC22 also showed similar growth patterns versus published data in flank tumors. CONCLUSIONS When used orthotopically in the buccal mucosa, the MOC1 model induces a robust lymph node response and distinct pattern of immune cell infiltration, with peak immune infiltration by day 14.
Collapse
Affiliation(s)
- Vikash Kansal
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Brendan L.C. Kinney
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Nicole C. Schmitt
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
10
|
Dong MP, Dharmaraj N, Kaminagakura E, Xue J, Leach DG, Hartgerink JD, Zhang M, Hanks HJ, Ye Y, Aouizerat BE, Vining K, Thomas CM, Dovat S, Young S, Viet CT. Stimulator of Interferon Genes Pathway Activation through the Controlled Release of STINGel Mediates Analgesia and Anti-Cancer Effects in Oral Squamous Cell Carcinoma. Biomedicines 2024; 12:920. [PMID: 38672274 PMCID: PMC11047833 DOI: 10.3390/biomedicines12040920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) presents significant treatment challenges due to its poor survival and intense pain at the primary cancer site. Cancer pain is debilitating, contributes to diminished quality of life, and causes opioid tolerance. The stimulator of interferon genes (STING) agonism has been investigated as an anti-cancer strategy. We have developed STINGel, an extended-release formulation that prolongs the availability of STING agonists, which has demonstrated an enhanced anti-tumor effect in OSCC compared to STING agonist injection. This study investigates the impact of intra-tumoral STINGel on OSCC-induced pain using two separate OSCC models and nociceptive behavioral assays. Intra-tumoral STINGel significantly reduced mechanical allodynia in the orofacial cancer model and alleviated thermal and mechanical hyperalgesia in the hind paw model. To determine the cellular signaling cascade contributing to the antinociceptive effect, we performed an in-depth analysis of immune cell populations via single-cell RNA-seq. We demonstrated an increase in M1-like macrophages and N1-like neutrophils after STINGel treatment. The identified regulatory pathways controlled immune response activation, myeloid cell differentiation, and cytoplasmic translation. Functional pathway analysis demonstrated the suppression of translation at neuron synapses and the negative regulation of neuron projection development in M2-like macrophages after STINGel treatment. Importantly, STINGel treatment upregulated TGF-β pathway signaling between various cell populations and peripheral nervous system (PNS) macrophages and enhanced TGF-β signaling within the PNS itself. Overall, this study sheds light on the mechanisms underlying STINGel-mediated antinociception and anti-tumorigenic impact.
Collapse
Affiliation(s)
- Minh Phuong Dong
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Neeraja Dharmaraj
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - Estela Kaminagakura
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São Paulo 12245-00, Brazil;
| | - Jianfei Xue
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - David G. Leach
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (D.G.L.); (J.D.H.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (D.G.L.); (J.D.H.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Michael Zhang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Hana-Joy Hanks
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Yi Ye
- Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010, USA;
- NYU Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Bradley E. Aouizerat
- NYU Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Kyle Vining
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Materials Science and Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carissa M. Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Simon Young
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - Chi T. Viet
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| |
Collapse
|
11
|
Fang J, Zhang J, Meng L, Li H, Xia D, Wang Y, Chen H, Liao Z, Zhuang R, Li Y, Zhang X, Guo Z. 18F-Labeled Amidobenzimidazole Analogue for Visualizing STING Expression in Tumor. Mol Pharm 2024; 21:1942-1951. [PMID: 38447198 DOI: 10.1021/acs.molpharmaceut.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The stimulator of interferon genes (STING) is pivotal in mediating STING-dependent type I interferon production, which is crucial for enhancing tumor rejection. Visualizing STING within the tumor microenvironment is valuable for STING-related treatments, yet the availability of suitable STING imaging probes is limited. In this study, we developed [18F]AlF-ABI, a novel 18F-labeled agent featuring an amidobenzimidazole core structure, for positron emission tomography (PET) imaging of STING in B16F10 and CT26 tumors. [18F]AlF-ABI was synthesized with a decay-corrected radiochemical yield of 38.0 ± 7.9% and radiochemical purity exceeding 97%. The probe exhibited a nanomolar STING binding affinity (KD = 35.6 nM). Upon administration, [18F]AlF-ABI rapidly accumulated at tumor sites, demonstrating significantly higher uptake in B16F10 tumors compared to CT26 tumors, consistent with STING immunofluorescence patterns. Specificity was further validated through in vitro cell experiments and in vivo blocking PET imaging. These findings suggest that [18F]AlF-ABI holds promise as an effective agent for visualizing STING in the tumor microenvironment.
Collapse
Affiliation(s)
- Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jingru Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Lingxin Meng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Huifeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Dongsheng Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yaoxuan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Hao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Zhenhuan Liao
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng, Beijing 100730, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| |
Collapse
|
12
|
Li G, Zhao X, Zheng Z, Zhang H, Wu Y, Shen Y, Chen Q. cGAS-STING pathway mediates activation of dendritic cell sensing of immunogenic tumors. Cell Mol Life Sci 2024; 81:149. [PMID: 38512518 PMCID: PMC10957617 DOI: 10.1007/s00018-024-05191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Type I interferons (IFN-I) play pivotal roles in tumor therapy for three decades, underscoring the critical importance of maintaining the integrity of the IFN-1 signaling pathway in radiotherapy, chemotherapy, targeted therapy, and immunotherapy. However, the specific mechanism by which IFN-I contributes to these therapies, particularly in terms of activating dendritic cells (DCs), remains unclear. Based on recent studies, aberrant DNA in the cytoplasm activates the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signaling pathway, which in turn produces IFN-I, which is essential for antiviral and anticancer immunity. Notably, STING can also enhance anticancer immunity by promoting autophagy, inflammation, and glycolysis in an IFN-I-independent manner. These research advancements contribute to our comprehension of the distinctions between IFN-I drugs and STING agonists in the context of oncology therapy and shed light on the challenges involved in developing STING agonist drugs. Thus, we aimed to summarize the novel mechanisms underlying cGAS-STING-IFN-I signal activation in DC-mediated antigen presentation and its role in the cancer immune cycle in this review.
Collapse
Affiliation(s)
- Guohao Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiangqian Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zuda Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hucheng Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yundi Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
13
|
Kaskas A, Clavijo P, Friedman J, Craveiro M, Allen CT. Complete tumor resection reverses neutrophilia-associated suppression of systemic anti-tumor immunity. Oral Oncol 2024; 150:106705. [PMID: 38280289 PMCID: PMC10939739 DOI: 10.1016/j.oraloncology.2024.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
OBJECTIVES Tumor infiltrating neutrophils suppress T cell function, but whether neutrophils in circulation contribute to systemic immunosuppression is unclear. We aimed to study whether peripheral neutrophils that accumulate with tumor progression contribute to systemic immunosuppression, and if observed suppression of systemic anti-tumor immunity could be reversed with complete surgical tumor removal. MATERIALS AND METHODS Syngeneic murine oral cancers were established in immunocompetent mice. Proteomic and functional immune assays were used to study plasma cytokine concentration, peripheral immune frequencies, and systemic anti-tumor immunity with and without complete primary tumor resection. RESULTS Ly6G+ neutrophilic cells, but not other myeloid cell types, accumulated in the periphery of mice with progressing tumors. This accumulation positively associated with plasma G-CSF concentration. Circulating neutrophils were functionally immunosuppressive. Complete surgical tumor removal reversed the observed neutrophilia, with neutrophil frequencies returning to baseline in 21 days. Multiple independent functional assays revealed enhanced systemic anti-tumor immunity in mice following tumor resection compared to tumor-bearing mice, and the observed enhanced systemic immunity could be reproduced with selective neutrophil depletion. CONCLUSIONS Complete primary tumor resection can reverse neutrophilia that develops during tumor progression and result in enhanced systemic anti-tumor immunity. Primary tumor removal relieves neutrophil-driven systemic immunosuppression and may itself contribute to the clinical benefit observed with neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Amir Kaskas
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Clavijo
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay Friedman
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marco Craveiro
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Shaha S, Rodrigues D, Mitragotri S. Locoregional drug delivery for cancer therapy: Preclinical progress and clinical translation. J Control Release 2024; 367:737-767. [PMID: 38325716 DOI: 10.1016/j.jconrel.2024.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Systemic drug delivery is the current clinically preferred route for cancer therapy. However, challenges associated with tumor localization and off-tumor toxic effects limit the clinical effectiveness of this route. Locoregional drug delivery is an emerging viable alternative to systemic therapies. With the improvement in real-time imaging technologies and tools for direct access to tumor lesions, the clinical applicability of locoregional drug delivery is becoming more prominent. Theoretically, locoregional treatments can bypass challenges faced by systemic drug delivery. Preclinically, locoregional delivery of drugs has demonstrated enhanced therapeutic efficacy with limited off-target effects while still yielding an abscopal effect. Clinically, an array of locoregional strategies is under investigation for the delivery of drugs ranging in target and size. Locoregional tumor treatment strategies can be classified into two main categories: 1) direct drug infusion via injection or implanted port and 2) extended drug elution via injected or implanted depot. The number of studies investigating locoregional drug delivery strategies for cancer treatment is rising exponentially, in both preclinical and clinical settings, with some approaches approved for clinical use. Here, we highlight key preclinical advances and the clinical relevance of such locoregional delivery strategies in the treatment of cancer. Furthermore, we critically analyze 949 clinical trials involving locoregional drug delivery and discuss emerging trends.
Collapse
Affiliation(s)
- Suyog Shaha
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Danika Rodrigues
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Wong SA, Manon VA, Young S, Viet CT. Innovations in Molecular Biomarkers and Biomaterial-Based Immunotherapies for Head & Neck Cancer. CURRENT SURGERY REPORTS 2024; 12:45-51. [PMID: 38523630 PMCID: PMC10954983 DOI: 10.1007/s40137-024-00386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 03/26/2024]
Abstract
Purpose of Review Oral squamous cell carcinoma (OSCC) survival rates have remained stagnant due to a lack of targeted therapies and diagnostic tools. Patient risk is currently determined solely through clinicopathologic features, primarily tumor staging, which lacks the necessary precision to stratify patients by risk and accurately dictate adjuvant treatment. Similarly, conventional OSCC therapies have well-established toxicities and limited efficacy. Recent Findings Recent studies show that patient risk can now be assessed using non-invasive techniques, at earlier time points, and with greater accuracy using molecular biomarker panels. Additionally, novel immunotherapies not only utilize the host's immune response to combat disease but also have the potential to form immunological memory to prevent future recurrence. Localized controlled-release formulas have further served to reduce toxicity and allow the de-escalation of other treatment modalities. Summary We review the latest advances in head and neck cancer diagnosis and treatment, including novel molecular biomarkers and immunotherapies.
Collapse
Affiliation(s)
- Sarah Anne Wong
- School of Medicine, Orthopaedic Trauma Institute, University of California San Francisco, 2550 23rd St., Bldg. 9, 3rd Floor, San Francisco, CA 94110 USA
| | - Victoria A. Manon
- Bernard and Gloria Pepper Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston School of Dentistry, 7500 Cambridge Street, Suite 6510, Houston, TX 77054 USA
| | - Simon Young
- Bernard and Gloria Pepper Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston School of Dentistry, 7500 Cambridge Street, Suite 6510, Houston, TX 77054 USA
| | - Chi T. Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, 11092 Anderson St., Loma Linda, CA 92350 USA
| |
Collapse
|
16
|
Kansal V, Kinney BLC, Schmitt NC. Orthotopic injection of an established syngeneic mouse oral cancer cell line (MOC1) induces a robust draining lymph node response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575399. [PMID: 38260311 PMCID: PMC10802585 DOI: 10.1101/2024.01.12.575399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Preclinical models are invaluable for studies on the pathogenesis and treatment of head and neck cancer. In recent years, there has been growing interest in the use of orthotopic syngeneic models, wherein head and neck cancer cell lines are injected into the oral cavity of immunocompetent mice. However, few such orthotopic models have been described in detail. In this brief report, we describe techniques for injection of mouse oral cancer 1 (MOC1) cells into the buccal mucosa and illustrate the tumor growth pattern, lymph node response, and changes in the tumor immune microenvironment over time. Methods MOC1 cells were injected into the buccal mucosa of C57BL6 mice. Animals were sacrificed at 7, 14, 21, or 27 days. Tumors and lymph nodes were harvested and analyzed for immune cell subsets by flow cytometry. Results All inoculated mice developed palpable buccal tumors by day 7 and required euthanasia for tumor burden and/or weight loss by day 27. Lymph node mapping showed that these tumors reliably drain to a submandibular lymph node, which enlarges considerably over time. As in MOC1 tumors in the flank, the proportion of intratumoral CD8+ T cells decreased over time, while neutrophilic myeloid cells increased dramatically. However, the pattern and time course of immune changes in the TME were slightly different in the orthotopic buccal model. Conclusions When used orthotopically in the buccal mucosa, the MOC1 model induces a robust lymph node response and distinct pattern of immune cell infiltration, with peak immune infiltration by day 14.
Collapse
|
17
|
Xu T, Dai J, Tang L, Sun L, Si L, Guo J. Systemic administration of STING agonist promotes myeloid cells maturation and antitumor immunity through regulating hematopoietic stem and progenitor cell fate. Cancer Immunol Immunother 2023; 72:3491-3505. [PMID: 37550427 PMCID: PMC10991199 DOI: 10.1007/s00262-023-03502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
STING is a pivotal mediator of effective innate and adaptive anti-tumor immunity; however, intratumoral administration of STING agonists have shown limited therapeutic benefit in clinical trials. The systemic effect of the intravenous delivery of STING agonists in cancer is not well-defined. Here, we demonstrated that systemic administration of STING agonist inhibited melanoma growth, improved inflammatory effector cell infiltration, and induced bone marrow mobilization and extramedullary hematopoiesis, causing widespread changes in immune components in the peripheral blood. The systemically administered STING agonist promoted HSC expansion and influenced lineage fate commitment, which was manifested as the differentiation of HSPCs was skewed toward myeloid cells at the expense of B-cell lymphopoiesis and erythropoiesis. Transcriptome analysis revealed upregulation of myeloid lineage differentiation-related and type I interferon-related genes. This myeloid-biased differentiation promoted the production and maturation of myeloid cells toward an activated phenotype. Furthermore, depletion of Gr-1+ myeloid cells attenuated the anti-tumor immunity of STING agonist. Our findings reveal the anti-tumor mechanism of systemic administration of STING agonist that involves modulating HSPC differentiation and promoting myeloid cells maturation. Our study may help explain the limited clinical activity of STING agonists administered intratumorally.
Collapse
Affiliation(s)
- Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Lirui Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Linzi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
18
|
Dong W, Chen M, Chang C, Jiang T, Su L, Chen C, Zhang G. Remodeling of Tumor Microenvironment by Nanozyme Combined cGAS-STING Signaling Pathway Agonist for Enhancing Cancer Immunotherapy. Int J Mol Sci 2023; 24:13935. [PMID: 37762239 PMCID: PMC10530945 DOI: 10.3390/ijms241813935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nanozymes and cyclic GMP-AMP synthase (cGAS) the stimulator of interferon genes (STING) signaling pathway, as powerful organons, can remodel the tumor microenvironment (TME) to increase efficacy and overcome drug resistance in cancer immunotherapy. Nanozymes have the potential to manipulate the TME by producing reactive oxygen species (ROS), which lead to positive oxidative stress in tumor cells. Cyclic dinucleotide (2',3'-cGAMP), as a second messenger, exists in the TME and can regulate it to achieve antitumor activity. In this work, Co,N-doped carbon dots (CoNCDs) were used as a model nanozyme to evaluate the properties of the anti-tumor mechanism, and effective inhibition of S180 tumor was achieved. Based on CoNCDs' good biocompatibility and therapeutic effect on the tumor, we then introduced the cGAS-STING agonist, and the combination of the CoNCDs and STING agonist significantly inhibited tumor growth, and no significant systemic toxicity was observed. The combined system achieved the enhanced tumor synergistic immunotherapy through TME reprogramming via the peroxidase-like activity of the CoNCDs and cGAS-STING signaling pathway agonist synergistically. Our work provides not only a new effective way to reprogram TME in vivo, but also a promising synergic antitumor therapy strategy.
Collapse
Affiliation(s)
- Wenpei Dong
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mengting Chen
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chun Chang
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Tao Jiang
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Li Su
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Changpo Chen
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guisheng Zhang
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
19
|
Yu J, Li M, Ren B, Cheng L, Wang X, Ma Z, Yong WP, Chen X, Wang L, Goh BC. Unleashing the efficacy of immune checkpoint inhibitors for advanced hepatocellular carcinoma: factors, strategies, and ongoing trials. Front Pharmacol 2023; 14:1261575. [PMID: 37719852 PMCID: PMC10501787 DOI: 10.3389/fphar.2023.1261575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer, representing approximately 85% of cases. The diagnosis is often made in the middle and late stages, necessitating systemic treatment as the primary therapeutic option. Despite sorafenib being the established standard of care for advanced HCC in the past decade, the efficacy of systemic therapy remains unsatisfactory, highlighting the need for novel treatment modalities. Recent breakthroughs in immunotherapy have shown promise in HCC treatment, particularly with immune checkpoint inhibitors (ICIs). However, the response rate to ICIs is currently limited to approximately 15%-20% of HCC patients. Recently, ICIs demonstrated greater efficacy in "hot" tumors, highlighting the urgency to devise more effective approaches to transform "cold" tumors into "hot" tumors, thereby enhancing the therapeutic potential of ICIs. This review presented an updated summary of the factors influencing the effectiveness of immunotherapy in HCC treatment, identified potential combination therapies that may improve patient response rates to ICIs, and offered an overview of ongoing clinical trials focusing on ICI-based combination therapy.
Collapse
Affiliation(s)
- Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wei Peng Yong
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Kim Y, Cho NY, Jin L, Jin HY, Kang GH. Prognostic significance of STING expression in solid tumor: a systematic review and meta-analysis. Front Oncol 2023; 13:1244962. [PMID: 37711192 PMCID: PMC10497868 DOI: 10.3389/fonc.2023.1244962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Objective Stimulator of interferon genes (STING) is a key regulator in initiating innate immune response from sensing cytosolic DNA. Recent studies have revealed that the cGAS-STING signaling pathway has a crucial role in tumor development and progression across cancer types. Herein, we conducted a meta-analysis to explore the relationship between the immunoexpression of STING and the survival outcome of patients in various solid tumors. Studies relevant to the subject were searched from PubMed, Embase, and Web of Science. Results Eleven studies including 2,345 patients were eligible for the analysis. STING expression in tumor cells was related to improved disease-free survival/recurrence-free survival (DFS/RFS) (HR = 0.656, 95% CI = 0.455-0.946, p = 0.024) but not with overall survival (OS) (HR = 0.779, 95% CI = 0.534-1.136, p = 0.194). STING expression in stromal cells, however, did not show significant correlation with DFS/RFS and OS (HR = 0.979, 95% CI = 0.565-1.697, p-value = 0.940 and HR = 1.295, 95% CI = 0.845-1.985, p = 0.235, respectively). In a subgroup analysis, STING expression in tumor cells was associated with better DFS (HR = 0.622, 95% CI = 0.428-0.903, p = 0.012). In tumor cells, favorable DFS/RFS were also related to studies from univariate analysis and the gastrointestinal system (HR = 0.667, 95% CI = 0.482-0.923, p = 0.015 and HR = 0.566, 95% CI = 0.330-0.971, p = 0.039). Conclusions STING expression in tumor cells is associated with favorable outcome in solid tumors. Systematic review registration https://www.crd.york.ac.uk/prospero/, registration number: CRD42023427027.
Collapse
Affiliation(s)
- Younghoon Kim
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Lingyan Jin
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Yeong Jin
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Teo ZL, O'Connor MJ, Versaci S, Clarke KA, Brown ER, Percy LW, Kuykhoven K, Mintoff CP, Savas P, Virassamy B, Luen SJ, Byrne A, Sant S, Lindeman GJ, Darcy PK, Loi S. Combined PARP and WEE1 inhibition triggers anti-tumor immune response in BRCA1/2 wildtype triple-negative breast cancer. NPJ Breast Cancer 2023; 9:68. [PMID: 37582853 PMCID: PMC10427618 DOI: 10.1038/s41523-023-00568-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
Novel therapeutic strategies that can effectively combine with immunotherapies are needed in the treatment of triple-negative breast cancer (TNBC). We demonstrate that combined PARP and WEE1 inhibition are synergistic in controlling tumour growth in BRCA1/2 wild-type TNBC preclinical models. The PARP inhibitor (PARPi) olaparib combined with the WEE1 inhibitor (WEE1i) adavosertib triggered increases in anti-tumour immune responses, including STING pathway activation. Combinations with a STING agonist resulted in further improved durable tumour regression and significant improvements in survival outcomes in murine tumour models of BRCA1/2 wild-type TNBC. In addition, we have identified baseline tumour-infiltrating lymphocyte (TIL) levels as a potential predictive biomarker of response to PARPi, WEE1i and immunotherapies in BRCA1/2 wild-type TNBC.
Collapse
Affiliation(s)
- Zhi Ling Teo
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | - Stephanie Versaci
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Kylie A Clarke
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Emmaline R Brown
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Luke W Percy
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Keilly Kuykhoven
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | | | - Peter Savas
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Balaji Virassamy
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Stephen J Luen
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ann Byrne
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Sneha Sant
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Geoffrey J Lindeman
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Phillip K Darcy
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sherene Loi
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
22
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
23
|
Heath BR, Gong W, Taner HF, Broses L, Okuyama K, Cheng W, Jin M, Fitzsimonds ZR, Manousidaki A, Wu Y, Zhang S, Wen H, Chinn SB, Bartee E, Xie Y, Moon JJ, Lei YL. Saturated fatty acids dampen the immunogenicity of cancer by suppressing STING. Cell Rep 2023; 42:112303. [PMID: 36952341 PMCID: PMC10514241 DOI: 10.1016/j.celrep.2023.112303] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Oncogenes destabilize STING in epithelial cell-derived cancer cells, such as head and neck squamous cell carcinomas (HNSCCs), to promote immune escape. Despite the abundance of tumor-infiltrating myeloid cells, HNSCC presents notable resistance to STING stimulation. Here, we show how saturated fatty acids in the microenvironment dampen tumor response to STING stimulation. Using single-cell analysis, we found that obesity creates an IFN-I-deprived tumor microenvironment with a massive expansion of suppressive myeloid cell clusters and contraction of effector T cells. Saturated fatty acids, but not unsaturated fatty acids, potently inhibit the STING-IFN-I pathway in HNSCC cells. Myeloid cells from obese mice show dampened responses to STING stimulation and are more suppressive of T cell activation. In agreement, obese hosts exhibited increased tumor burden and lower responsiveness to STING agonist. As a mechanism, saturated fatty acids induce the expression of NLRC3, depletion of which results in a T cell inflamed tumor microenvironment and IFN-I-dependent tumor control.
Collapse
Affiliation(s)
- Blake R Heath
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Wang Gong
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Hülya F Taner
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Oral Health Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Luke Broses
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Kohei Okuyama
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Wanqing Cheng
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Max Jin
- Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI, USA
| | - Zackary R Fitzsimonds
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andriana Manousidaki
- Department of Computational Mathematics, Science, and Engineering, Department of Statistics, Michigan State University, East Lansing, MI, USA
| | - Yuesong Wu
- Department of Computational Mathematics, Science, and Engineering, Department of Statistics, Michigan State University, East Lansing, MI, USA
| | - Shaoping Zhang
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Steven B Chinn
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Eric Bartee
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science, and Engineering, Department of Statistics, Michigan State University, East Lansing, MI, USA
| | - James J Moon
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Yu Leo Lei
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Graduate Program in Oral Health Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Liu JL, Yang M, Bai JG, Liu Z, Wang XS. “Cold” colorectal cancer faces a bottleneck in immunotherapy. World J Gastrointest Oncol 2023; 15:240-250. [PMID: 36908324 PMCID: PMC9994051 DOI: 10.4251/wjgo.v15.i2.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023] Open
Abstract
The advent of immunotherapy and the development of immune checkpoint inhibitors (ICIs) are changing the way we think about cancer treatment. ICIs have shown clinical benefits in a variety of tumor types, and ICI-based immunotherapy has shown effective clinical outcomes in immunologically “hot” tumors. However, for immunologically “cold” tumors such as colorectal cancer (CRC), only a limited number of patients are currently benefiting from ICIs due to limitations such as individual differences and low response rates. In this review, we discuss the classification and differences between hot and cold CRC and the current status of research on cold CRC, and summarize the treatment strategies and challenges of immunotherapy for cold CRC. We also explain the mechanism, biology, and role of immunotherapy for cold CRC, which will help clarify the future development of immunotherapy for cold CRC and discovery of more emerging strategies for the treatment of cold CRC.
Collapse
Affiliation(s)
- Jia-Liang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Jun-Ge Bai
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Xi-Shan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
25
|
Kansal V, Burnham AJ, Kinney BLC, Saba NF, Paulos C, Lesinski GB, Buchwald ZS, Schmitt NC. Statin drugs enhance responses to immune checkpoint blockade in head and neck cancer models. J Immunother Cancer 2023; 11:jitc-2022-005940. [PMID: 36650022 PMCID: PMC9853267 DOI: 10.1136/jitc-2022-005940] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Anti-PD-1 immune checkpoint blockade is approved for first-line treatment of recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), but few patients respond. Statin drugs (HMG-CoA reductase inhibitors) are associated with superior survival in several cancer types, including HNSCC. Emerging data suggest that manipulation of cholesterol may enhance some aspects of antitumor immunity. METHODS We used syngeneic murine models (mouse oral cancer, MOC1 and TC-1) to investigate our hypothesis that a subset of statin drugs would enhance antitumor immunity and delay tumor growth. RESULTS Using an ex vivo coculture assay of murine cancer cells and tumor infiltrating lymphocytes, we discovered that all seven statin drugs inhibited tumor cell proliferation. Simvastatin and lovastatin also enhanced T-cell killing of tumor cells. In mice, daily oral simvastatin or lovastatin enhanced tumor control and extended survival when combined with PD-1 blockade, with rejection of MOC1 tumors in 30% of mice treated with lovastatin plus anti-PD-1. Results from flow cytometry of tumors and tumor-draining lymph nodes suggested T cell activation and shifts from M2 to M1 macrophage predominance as potential mechanisms of combination therapy. CONCLUSIONS These results suggest that statins deserve further study as well-tolerated, inexpensive drugs that may enhance responses to PD-1 checkpoint blockade and other immunotherapies for HNSCC.
Collapse
Affiliation(s)
- Vikash Kansal
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Andre J Burnham
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Brendan L C Kinney
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Nabil F Saba
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA,Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chrystal Paulos
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA,Departments of Surgery and Microbiology/Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gregory B Lesinski
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA,Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Nicole C Schmitt
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Hargadon KM. Genetic dysregulation of immunologic and oncogenic signaling pathways associated with tumor-intrinsic immune resistance: a molecular basis for combination targeted therapy-immunotherapy for cancer. Cell Mol Life Sci 2023; 80:40. [PMID: 36629955 PMCID: PMC11072992 DOI: 10.1007/s00018-023-04689-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Since the turn of the century, advances in targeted therapy and immunotherapy have revolutionized the treatment of cancer. Although these approaches have far outperformed traditional therapies in various clinical settings, both remain plagued by mechanisms of innate and acquired resistance that limit therapeutic efficacy in many patients. With a focus on tumor-intrinsic resistance to immunotherapy, this review highlights our current understanding of the immunologic and oncogenic pathways whose genetic dysregulation in cancer cells enables immune escape. Emphasis is placed on genomic, epigenomic, transcriptomic, and proteomic aberrations that influence the activity of these pathways in the context of immune resistance. Specifically, the role of pathways that govern interferon signaling, antigen processing and presentation, and immunologic cell death as determinants of tumor immune susceptibility are discussed. Likewise, mechanisms of tumor immune resistance mediated by dysregulated RAS-MAPK, WNT, PI3K-AKT-mTOR, and cell cycle pathways are described. Finally, this review highlights the ways in which recent insight into genetic dysregulation of these immunologic and oncogenic signaling pathways is informing the design of combination targeted therapy-immunotherapy regimens that aim to restore immune susceptibility of cancer cells by overcoming resistance mechanisms that often limit the success of monotherapies.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA.
| |
Collapse
|
27
|
Meric-Bernstam F, Sweis RF, Kasper S, Hamid O, Bhatia S, Dummer R, Stradella A, Long GV, Spreafico A, Shimizu T, Steeghs N, Luke JJ, McWhirter SM, Müller T, Nair N, Lewis N, Chen X, Bean A, Kattenhorn L, Pelletier M, Sandhu S. Combination of the STING Agonist MIW815 (ADU-S100) and PD-1 Inhibitor Spartalizumab in Advanced/Metastatic Solid Tumors or Lymphomas: An Open-Label, Multicenter, Phase Ib Study. Clin Cancer Res 2023; 29:110-121. [PMID: 36282874 PMCID: PMC11188043 DOI: 10.1158/1078-0432.ccr-22-2235] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 10/21/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE The stimulator of IFN genes (STING) is a transmembrane protein that plays a role in the immune response to tumors. Single-agent STING agonist MIW815 (ADU-S100) has demonstrated immune activation but limited antitumor activity. This phase Ib, multicenter, dose-escalation study assessed the safety and tolerability of MIW815 plus spartalizumab (PDR001), a humanized IgG4 antibody against PD-1, in 106 patients with advanced solid tumors or lymphomas. PATIENTS AND METHODS Patients were treated with weekly intratumoral injections of MIW815 (50-3,200 μg) on a 3-weeks-on/1-week-off schedule or once every 4 weeks, plus a fixed dose of spartalizumab (400 mg) intravenously every 4 weeks. RESULTS Common adverse events were pyrexia (n = 23; 22%), injection site pain (n = 21; 20%), and diarrhea (n = 12; 11%). Overall response rate was 10.4%. The MTD was not reached. Pharmacodynamic biomarker analysis demonstrated on-target activity. CONCLUSIONS The combination of MIW815 and spartalizumab was well tolerated in patients with advanced/metastatic cancers, including in patients with anti-PD-1 refractory disease. Minimal antitumor responses were seen.
Collapse
Affiliation(s)
| | | | - Stefan Kasper
- University Hospital Essen, West German Cancer Center, Essen, Germany
| | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars Sinai Affiliate, Los Angeles, California
| | | | - Reinhard Dummer
- Universitaetsspital Zuerich Dermatology, Zurich, Switzerland
| | - Agostina Stradella
- Institut Catalàd’Oncologia - Hospital Duran i Reynals, L’Hospitalet de Llobregat, Catalunya, Spain
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, and Mater and Royal North Shore Hospitals, Sydney, Australia
| | | | | | | | - Jason J. Luke
- The University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Nitya Nair
- Aduro Biotech, Inc., Berkeley, California
| | - Nancy Lewis
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Xinhui Chen
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey
| | - Andrew Bean
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Lisa Kattenhorn
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Marc Pelletier
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre and the University of Melbourne, Melbourne, Australia
| |
Collapse
|
28
|
Tripathi S, Najem H, Mahajan AS, Zhang P, Low JT, Stegh AH, Curran MA, Ashley DM, James CD, Heimberger AB. cGAS-STING pathway targeted therapies and their applications in the treatment of high-grade glioma. F1000Res 2022; 11:1010. [PMID: 36324813 PMCID: PMC9597127 DOI: 10.12688/f1000research.125163.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 01/13/2023] Open
Abstract
Median survival of patients with glioblastoma (GBM) treated with standard of care which consists of maximal safe resection of the contrast-enhancing portion of the tumor followed by radiation therapy with concomitant adjuvant temozolomide (TMZ) remains 15 months. The tumor microenvironment (TME) is known to contain immune suppressive myeloid cells with minimal effector T cell infiltration. Stimulator of interferon genes (STING) is an important activator of immune response and results in production of Type 1 interferon and antigen presentation by myeloid cells. This review will discuss important developments in STING agonists, potential biomarkers for STING response, and new combinatorial therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Shashwat Tripathi
- Department of Neurological Surgery,, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA,Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hinda Najem
- Department of Neurological Surgery,, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA,Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Akanksha Sanjay Mahajan
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA,Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery,, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA,Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin T Low
- Department of Neurological Surgery, Preston Robert Tisch Brain Tumor Center, Duke University Medical School, Durham, NC, 27710, USA
| | - Alexander H Stegh
- Department of Neurological Surgery, The Brain Tumor Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David M Ashley
- Department of Neurological Surgery, Preston Robert Tisch Brain Tumor Center, Duke University Medical School, Durham, NC, 27710, USA
| | - Charles David James
- Department of Neurological Surgery,, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA,Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery,, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA,Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA,
| |
Collapse
|
29
|
Sui H, Dongye S, Liu X, Xu X, Wang L, Jin CQ, Yao M, Gong Z, Jiang D, Zhang K, Liu Y, Liu H, Jiang G, Su Y. Immunotherapy of targeting MDSCs in tumor microenvironment. Front Immunol 2022; 13:990463. [PMID: 36131911 PMCID: PMC9484521 DOI: 10.3389/fimmu.2022.990463] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous cells which are abnormally accumulated during the differentiation of myeloid cells. Immunosuppression is the main functional feature of MDSCs, which inhibit T cell activity in the tumor microenvironment (TME) and promote tumoral immune escape. The main principle for immunotherapy is to modulate, restore, and remodel the plasticity and potential of immune system to have an effective anti-tumor response. In the TME, MDSCs are major obstacles to cancer immunotherapy through reducing the anti-tumor efficacy and making tumor cells more resistant to immunotherapy. Therefore, targeting MDSCs treatment becomes the priority of relevant studies and provides new immunotherapeutic strategy for cancer treatment. In this review, we mainly discuss the functions and mechanisms of MDSCs as well as their functional changes in the TME. Further, we review therapeutic effects of immunotherapy against MDSCs and potential breakthroughs regarding immunotherapy targeting MDSCs and immune checkpoint blockade (ICB) immunotherapy.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryolog, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengyi Dongye
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryolog, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xinghua Xu
- Department of Histology and Embryolog, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Wang
- Department of Pathology and Forensic Medicine, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Christopher Q. Jin
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Minhua Yao
- Department of Histology and Embryolog, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryolog, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Daniel Jiang
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Kexin Zhang
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Yaling Liu
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- Tuberculosis Prevention and Control Institute of Kashgar, Kashgar City, Xinjiang Uygur Autonomous Region, China
| | - Hui Liu
- Department of Histology and Embryolog, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Hui Liu, ; Guomin Jiang, ; Yanping Su,
| | - Guomin Jiang
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- *Correspondence: Hui Liu, ; Guomin Jiang, ; Yanping Su,
| | - Yanping Su
- Department of Histology and Embryolog, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Hui Liu, ; Guomin Jiang, ; Yanping Su,
| |
Collapse
|
30
|
Kono M, Saito S, Egloff AM, Allen CT, Uppaluri R. The mouse oral carcinoma (MOC) model: A 10-year retrospective on model development and head and neck cancer investigations. Oral Oncol 2022; 132:106012. [PMID: 35820346 PMCID: PMC9364442 DOI: 10.1016/j.oraloncology.2022.106012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022]
Abstract
Preclinical models of cancer have long been paramount to understanding tumor development and advancing the treatment of cancer. Creating preclinical models that mimic the complexity and heterogeneity of human tumors is a key challenge in the advancement of cancer therapy. About ten years ago, we created the mouse oral carcinoma (MOC) cell line models that were derived from 7, 12-dimethylbenz(a) anthracene (DMBA)-induced mouse oral squamous cell cancers. This model has been used in numerous investigations, including studies on tumor biology and therapeutics. We have seen remarkable progress in cancer immunology in recent years, and these cell lines, which are syngeneic to C57BL/6 background, have also been used to study the anti-tumor immune response. Herein, we aim to review the MOC model from its development and characterization to its use in non-immunological and immunological preclinical head and neck squamous cell carcinoma (HNSCC) studies. Integrating and refining these MOC model studies and extending findings to other systems will provide crucial insights for translational approaches aimed at improving head and neck cancer treatment.
Collapse
Affiliation(s)
- Michihisa Kono
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Otolaryngology - Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.
| | - Shin Saito
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Otolaryngology - Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Ann Marie Egloff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Surgery/Otolaryngology, Brigham and Women's Hospital, United States.
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institutes on Deafness and Communication Disorders, NIH, Bethesda, MD, United States.
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Surgery/Otolaryngology, Brigham and Women's Hospital, United States.
| |
Collapse
|
31
|
Wang W, Lozar T, Golfinos AE, Lee D, Gronski E, Ward-Shaw E, Hayes M, Bruce JY, Kimple RJ, Hu R, Harari PM, Xu J, Keske A, Sondel PM, Fitzpatrick MB, Dinh HQ, Lambert PF. Stress Keratin 17 Expression in Head and Neck Cancer Contributes to Immune Evasion and Resistance to Immune-Checkpoint Blockade. Clin Cancer Res 2022; 28:2953-2968. [PMID: 35621713 PMCID: PMC9250640 DOI: 10.1158/1078-0432.ccr-21-3039] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/25/2021] [Accepted: 04/20/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE We investigated whether in human head and neck squamous cell carcinoma (HNSCC) high levels of expression of stress keratin 17 (K17) are associated with poor survival and resistance to immunotherapy. EXPERIMENTAL DESIGN We investigated the role of K17 in regulating both the tumor microenvironment and immune responsiveness of HNSCC using a syngeneic mouse HNSCC model, MOC2. MOC2 gives rise to immunologically cold tumors that are resistant to immune-checkpoint blockade (ICB). We engineered multiple, independent K17 knockout (KO) MOC2 cell lines and monitored their growth and response to ICB. We also measured K17 expression in human HNSCC of patients undergoing ICB. RESULTS MOC2 tumors were found to express K17 at high levels. When knocked out for K17 (K17KO MOC2), these cells formed tumors that grew slowly or spontaneously regressed and had a high CD8+ T-cell infiltrate in immunocompetent syngeneic C57BL/6 mice compared with parental MOC2 tumors. This phenotype was reversed when we depleted mice for T cells. Whereas parental MOC2 tumors were resistant to ICB treatment, K17KO MOC2 tumors that did not spontaneously regress were eliminated upon ICB treatment. In a cohort of patients with HNSCC receiving pembrolizumab, high K17 expression correlated with poor response. Single-cell RNA-sequencing analysis revealed broad differences in the immune landscape of K17KO MOC2 tumors compared with parental MOC2 tumors, including differences in multiple lymphoid and myeloid cell types. CONCLUSIONS We demonstrate that K17 expression in HNSCC contributes to immune evasion and resistance to ICB treatment by broadly altering immune landscapes of tumors.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Taja Lozar
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA,University of Ljubljana, Ljubljana, Slovenia
| | - Athena E. Golfinos
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Denis Lee
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Ellery Gronski
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Justine Y. Bruce
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Jin Xu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aysenur Keske
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA,University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison
| | - Megan B. Fitzpatrick
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Huy Q. Dinh
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA,University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison WI, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research/ Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison WI, USA,University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
32
|
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. Int J Mol Sci 2022; 23:ijms23137325. [PMID: 35806328 PMCID: PMC9266676 DOI: 10.3390/ijms23137325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.
Collapse
|
33
|
Mao C, Yeh S, Fu J, Porosnicu M, Thomas A, Kucera GL, Votanopoulos KI, Tian S, Ming X. Delivery of an ectonucleotidase inhibitor with ROS-responsive nanoparticles overcomes adenosine-mediated cancer immunosuppression. Sci Transl Med 2022; 14:eabh1261. [PMID: 35675434 DOI: 10.1126/scitranslmed.abh1261] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumor evasion of immune destruction is associated with the production of immunosuppressive adenosine in the tumor microenvironment (TME). Anticancer therapies can trigger adenosine triphosphate (ATP) release from tumor cells, causing rapid formation of adenosine by the ectonucleotidases CD39 and CD73, thereafter exacerbating immunosuppression in the TME. The goal of this study was to develop an approach to facilitate cancer therapy-induced immunogenic cell death including ATP release and to limit ATP degradation into adenosine, in order to achieve durable antitumor immune response. Our approach was to construct reactive oxygen species (ROS)-producing nanoparticles that carry an ectonucleotidase inhibitor ARL67156 by electronic interaction and phenylboronic ester. Upon near-infrared irradiation, nanoparticle-produced ROS induced ATP release from MOC1 cancer cells in vitro and triggered the cleavage of phenylboronic ester, facilitating the release of ARL67156 from the nanoparticles. ARL67156 prevented conversion of ATP to adenosine and enhanced anticancer immunity in an MOC1-based coculture model. We tested this approach in mouse tumor models. Nanoparticle-based ROS-responsive drug delivery reprogramed the immunogenic landscape in tumors, eliciting tumor-specific T cell responses and tumor regression, conferring long-term survival in mouse models. We demonstrated that TME reprograming sets the stage for response to anti-programmed cell death protein 1 (PD1) immunotherapy, and the combination resulted in tumor regression in a 4T1 breast cancer mouse model that was resistant to PD1 blockade. Furthermore, our approach also induced immunological effects in patient-derived organotypic tumor spheroid model, suggesting potential translation of our nanoparticle approach for treating human cancers.
Collapse
Affiliation(s)
- Chengqiong Mao
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Stacy Yeh
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Juan Fu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mercedes Porosnicu
- Depatment of Internal Medicine - Section of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Alexandra Thomas
- Depatment of Internal Medicine - Section of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Gregory L Kucera
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Konstantinos I Votanopoulos
- Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA.,Department of Surgery - Section of Surgical Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Shaomin Tian
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xin Ming
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
34
|
Wu W, Zhang Z, Jing D, Huang X, Ren D, Shao Z, Zhang Z. SGLT2 inhibitor activates the STING/IRF3/IFN-β pathway and induces immune infiltration in osteosarcoma. Cell Death Dis 2022; 13:523. [PMID: 35662245 PMCID: PMC9166744 DOI: 10.1038/s41419-022-04980-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) is an important mediator of epithelial glucose transport and has been reported that SGLT2, robustly and diffusely expressed in malignant cancer cells, was overexpressed in various tumors, and inhibiting the SGLT2 expression significantly inhibited tumor progression. By blocking the functional activity of SGLT2, SGLT2 inhibitors have shown anticancer effects in several malignant cancers, including breast cancer, cervical cancer, hepatocellular cancer, prostate cancer, and lung cancer. However, the anticancer effect of SGLT2 inhibitors in osteosarcoma and the specific mechanism are still unclear. In the present study, we found that SGLT2 was overexpressed at the protein level in osteosarcoma. Furthermore, our results showed that the SGLT2 inhibitor significantly inhibited osteosarcoma tumor growth and induced infiltration of immune cells in vivo by upregulating STING expression and activating the IRF3/IFN-β pathway, which could attribute to the suppression of AKT phosphorylation. In addition, the combined treatment with SGLT2 inhibitor and STING agonist 2'3'-cGAMP exerted synergistic antitumor effects in osteosarcoma. Furthermore, the overexpression of SGLT2 at the protein level was correlated with the degradation of SGLT2 induced by TRIM21. This result demonstrated that SGLT2 is a novel therapeutic target of osteosarcoma, and that the SGLT2 inhibitor, especially in combination with 2'3'-cGAMP, is a potential therapeutic drug.
Collapse
Affiliation(s)
- Wei Wu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhenhao Zhang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Doudou Jing
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xin Huang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Dianyun Ren
- grid.33199.310000 0004 0368 7223Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zengwu Shao
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhicai Zhang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
35
|
Zhang Z, Bu L, Luo J, Guo J. Targeting protein kinases benefits cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188738. [PMID: 35660645 DOI: 10.1016/j.bbcan.2022.188738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
Abstract
Small-molecule kinase inhibitors have been well established and successfully developed in the last decades for cancer target therapies. However, intrinsic or acquired drug resistance is becoming the major barrier for their clinical application. With the development of immunotherapies, in particular the discovery of immune checkpoint inhibitors (ICIs), the combination of ICIs with other therapies have recently been extensively explored, among which combination of ICIs with kinase inhibitors achieves promising clinical outcome in a plethora of cancer types. Here we comprehensively summarize the potent roles of protein kinases in modulating immune checkpoints both in tumor and immune cells, and reshaping tumor immune microenvironments by evoking innate immune response and neoantigen generation or presentation. Moreover, the clinical trial and approval of combined administration of kinase inhibitors with ICIs are collected, highlighting the precise strategies to benefit cancer immune therapies.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lang Bu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junhang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
36
|
Indini A, Massi D, Pirro M, Roila F, Grossi F, Sahebkar A, Glodde N, Bald T, Mandalà M. Targeting inflamed and non-inflamed melanomas: biological background and clinical challenges. Semin Cancer Biol 2022; 86:477-490. [DOI: 10.1016/j.semcancer.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 10/31/2022]
|
37
|
Zhou J, Cui X, Xie Y, Zhang M, Gao J, Zhou X, Ding J, Cen S. Identification of Ziyuglycoside II from natural products library as a novel STING agonist. ChemMedChem 2022; 17:e202100719. [PMID: 35293138 DOI: 10.1002/cmdc.202100719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/11/2022] [Indexed: 11/05/2022]
Abstract
Given the emerging pivotal roles of STING (stimulator of interferon genes) in host pathogen defense and immune-oncology, STING is regarded as a promising target for drug development. CDNs (cyclic dinucleotides) are the first-generation STING agonists. However, their poor metabolic stability and membrane permeability utterly limits therapeutic applications. By contrast, small molecule STING agonists show superiority of properties such as molecular weight, polar character, and delivery diversity. The quest for the potent small molecular agonist of human STING remains ongoing. In our study, through an IRF/IFN pathway-targeted cell-based screen of natural products library, we identified a small-molecular STING agonist Ziyuglycoside II, termed as ST12, with potent stimulation of IRF/IFN pathway and NF-κB pathway. Furthermore, its binding to the C-terminal domain of human STING detected by bio-layer interferometry technique, indicating that ST12 is a human STING agonist. Further tanimoto similarity analyze with existing small-molecule STING agonists indicates that ST12 represents a lead compound with a novel core-structure for the further optimization. Insert abstract text here.
Collapse
Affiliation(s)
- Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Immunology, Nanwei Road, 100050, Beijing, CHINA
| | - Xiangling Cui
- Institute of Medicinal biotechnology, Medicinal chemistry, CHINA
| | - Yongli Xie
- Institute of Medicinal biotechnology, Medicinal chemistry, CHINA
| | - Min Zhang
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Jieke Gao
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Xujun Zhou
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Medicinal chemistry, CHINA
| | - Shan Cen
- Institute of Medicinal Biotechnology, Immune, CHINA
| |
Collapse
|
38
|
Ren X, Guo S, Guan X, Kang Y, Liu J, Yang X. Immunological Classification of Tumor Types and Advances in Precision Combination Immunotherapy. Front Immunol 2022; 13:790113. [PMID: 35296094 PMCID: PMC8918549 DOI: 10.3389/fimmu.2022.790113] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Immunity is an important physiological function acquired throughout evolution as a defense system against the invasion of pathogenic microorganisms. The immune system also eliminates senescent cells and maintains homeostasis, monitoring cell mutations and preventing tumor development via the action of the immune cells and molecules. Immunotherapy often relies on the interaction of immune cells with the tumor microenvironment (TME). Based on the distribution of the number of lymphocytes (CD3 and CD8) in the center and edge of the tumor and the expression level of B7-H1/PD-L1, tumors are divided into hot tumors, cold tumors, and intermediate tumors (including immune-suppressed and isolated). This review focuses on the advances in precision combination immunotherapy, which has been widely explored in recent years, and its application in different tumor types.
Collapse
Affiliation(s)
- Xiufang Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Songyi Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaojiao Guan
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiamei Liu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xianghong Yang,
| |
Collapse
|
39
|
Basu S, Middya S, Banerjee M, Ghosh R, Pryde DC, Yadav DB, Shrivastava R, Surya A. The discovery of potent small molecule cyclic urea activators of STING. Eur J Med Chem 2022; 229:114087. [PMID: 34998056 DOI: 10.1016/j.ejmech.2021.114087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 01/08/2023]
Abstract
STING mediates innate immune responses that are triggered by the presence of cytosolic DNA. Activation of STING to boost antigen recognition is a therapeutic modality that is currently being tested in cancer patients using nucleic-acid based macrocyclic STING ligands. We describe here the discovery of 3,4-dihydroquinazolin-2(1H)-one based 6,6-bicyclic heterocyclic agonists of human STING that activate all known human variants of STING with high potency.
Collapse
Affiliation(s)
- Sourav Basu
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Sandip Middya
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Monali Banerjee
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Rajib Ghosh
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - David C Pryde
- Curadev Pharma Ltd., Innovation House, Discovery Park, Ramsgate Road, Sandwich, Kent, CT13 9ND, UK
| | - Dharmendra B Yadav
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Ritesh Shrivastava
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Arjun Surya
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India.
| |
Collapse
|
40
|
Orr B, Mahdi H, Fang Y, Strange M, Uygun I, Rana M, Zhang L, Suarez Mora A, Pusateri A, Elishaev E, Kang C, Tseng G, Gooding W, Edwards RP, Kalinski P, Vlad AM. Phase I trial combining chemokine-targeting with loco-regional chemo-immunotherapy for recurrent, platinum-sensitive ovarian cancer shows induction of CXCR3 ligands and markers of type 1 immunity. Clin Cancer Res 2022; 28:2038-2049. [PMID: 35046055 DOI: 10.1158/1078-0432.ccr-21-3659] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased prevalence of cytotoxic T lymphocytes (CTL) in the tumor microenvironment (TME) predicts positive outcomes in patients with epithelial ovarian cancer (EOC), while the regulatory Treg cells predict poor outcomes. Guided by the synergistic activity of TLR3 ligands, interferon-a (IFNa) and cyclooxygenase-2 (COX-2) blockers in selectively enhancing CTL-attractants but suppressing Treg-attractants, we tested a novel intraperitoneal (IP) chemo-immunotherapy combination, to assess its tolerability and TME-modulatory impact in patients with recurrent EOC. METHODS Twelve patients were enrolled in phase I portion of the trial NCT02432378, and treated with IP cisplatin, IP rintatolimod (dsRNA, TLR3 ligand) and oral celecoxib (COX-2 blocker). Patients in cohorts 2, 3 and 4 also received IP IFNa at 2, 6 and 18 million units (MU), respectively. Primary objectives were to evaluate safety, identify phase 2 recommended dose (P2RD) and characterize changes in the immune TME. Peritoneal resident cells and IP wash fluid were profiled via NanoString and Meso Scale Discovery (MSD) multiplex assay, respectively. RESULTS The P2RD of IFNa was 6 MU. Median progression-free and overall survival were 8.4 and 30 months, respectively. Longitudinal sampling of the peritoneal cavity via IP washes demonstrated local upregulation of interferon-stimulated genes (ISG), including CTL-attracting chemokines (CXCL-9, -10, -11), MHC I/II, perforin and granzymes. These changes were present two days post chemokine modulation and subsided within one week. CONCLUSION The chemokine-modulating IP-CITC is safe, tolerable, and associated with ISG changes that favor CTL chemoattraction and function. This combination (plus DC vaccine) will be tested in a phase II trial.
Collapse
Affiliation(s)
- Brian Orr
- Gynecologic Oncology, Medical University of South Carolina
| | - Haider Mahdi
- Gynecologic Oncology, University of Pittsburgh Medical Center
| | - Yusi Fang
- Biostatistics, University of Pittsburgh, Graduate School of Public Health
| | | | - Ibrahim Uygun
- Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute
| | - Mainpal Rana
- Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine
| | - Lixin Zhang
- Immunology, University of Pittsburgh School of Medicine
| | | | | | - Esther Elishaev
- Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh
| | - Chaeryon Kang
- Biostatistics, University of Pittsburgh Graduate School of Public Health
| | | | | | - Robert P Edwards
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh
| | | | - Anda M Vlad
- Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine
| |
Collapse
|
41
|
Xu Y, He L, Fu Q, Hu J. Metabolic Reprogramming in the Tumor Microenvironment With Immunocytes and Immune Checkpoints. Front Oncol 2021; 11:759015. [PMID: 34858835 PMCID: PMC8632143 DOI: 10.3389/fonc.2021.759015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), Ipilimumab, Nivolumab, Pembrolizumab and Atezolizumab, have been applied in anti-tumor therapy and demonstrated exciting performance compared to conventional treatments. However, the unsatisfactory response rates, high recurrence and adaptive resistance limit their benefits. Metabolic reprogramming appears to be one of the crucial barriers to immunotherapy. The deprivation of required nutrients and altered metabolites not only promote tumor progression but also confer dysfunction on immune cells in the tumor microenvironment (TME). Glycolysis plays a central role in metabolic reprogramming and immunoregulation in the TME, and many therapies targeting glycolysis have been developed, and their combinations with ICIs are in preclinical and clinical trials. Additional attention has been paid to the role of amino acids, lipids, nucleotides and mitochondrial biogenesis in metabolic reprogramming and clinical anti-tumor therapy. This review attempts to describe reprogramming metabolisms within tumor cells and immune cells, from the aspects of glycolysis, amino acid metabolism, lipid metabolism, nucleotide metabolism and mitochondrial biogenesis and their impact on immunity in the TME, as well as the significance of targeting metabolism in anti-tumor therapy, especially in combination with ICIs. In particular, we highlight the expression mechanism of programmed cell death (ligand) 1 [PD-(L)1] in tumor cells and immune cells under reprogramming metabolism, and discuss in detail the potential of targeting key metabolic pathways to break resistance and improve the efficacy of ICIs based on results from current preclinical and clinical trials. Besides, we draw out biomarkers of potential predictive value in ICIs treatment from a metabolic perspective.
Collapse
Affiliation(s)
- Yaolin Xu
- Department of Oncology, The People's Hospital of China Medical University/The People's Hospital of LiaoNing Province, Shenyang, China
| | - Lijie He
- Department of Oncology, The People's Hospital of China Medical University/The People's Hospital of LiaoNing Province, Shenyang, China
| | - Qiang Fu
- Department of Cardiology, The People's Hospital of China Medical University/The People's Hospital of LiaoNing Province, Shenyang, China
| | - Junzhe Hu
- The Second Clinic Medical College, China Medical University, Shenyang, China
| |
Collapse
|
42
|
Gong W, Donnelly CR, Heath BR, Bellile E, Donnelly LA, Taner HF, Broses L, Brenner JC, Chinn SB, Ji RR, Wen H, Nör JE, Wang J, Wolf GT, Xie Y, Lei YL. Cancer-specific type-I interferon receptor signaling promotes cancer stemness and effector CD8+ T-cell exhaustion. Oncoimmunology 2021; 10:1997385. [PMID: 34858725 PMCID: PMC8632299 DOI: 10.1080/2162402x.2021.1997385] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type-I interferon (IFN-I) signaling is critical to maintaining antigen-presenting cell function for anti-tumor immunity. However, recent studies have suggested that IFN-I signaling may also contribute to more aggressive phenotypes, raising the possibility that IFN-I downstream signaling in cancer and myeloid cells may exert dichotomous functions.We analyzed the clinicopathologic correlation of cancer-specific IFN-I activation in 195 head and neck squamous cell carcinoma patients. We also characterized the immune impact of IFN-I receptor (IFNAR1)-deficiency in syngeneic tumor models using biochemistry, flow cytometry, and single-cell RNA-Seq. We stained HNSCC tissue microarrays with a sensitive IFN-I downstream signaling activation marker, MX1, and quantitated cancer cell-specific MX1 staining. Kaplan-Meier analysis revealed that MX1-high tumors exhibited worse survival, a phenotype that depends on the number of CD8+ intratumoral T-cells. We found that cancer-specific IFNAR1 engagement promotes cancer stemness and higher expression levels of suppressive immune checkpoint receptor ligands in cancer-derived exosomes. Notably, mice bearing Ifnar1-deficient tumors exhibited lower tumor burden, increased T-cell infiltration, reduced exhausted CD4+PD1high T-cells, and increased effector population CD8+IFN-γ+ T-cells. Then, we performed single-cell RNA-sequencing and discovered that cancer-specific IFN-I signaling not only restricts effector cells expansion but also dampens their functional fitness.The beneficial role of IFN-I activation is largely dependent on the myeloid compartment. Cancer-specific IFN-I receptor engagement promotes cancer stemness and the release of cancer-derived exosomes with high expression levels of immune checkpoint receptor ligands. Cancer-specific IFN-I activation is associated with poor immunogenicity and worse clinical outcomes in HNSCC.
Collapse
Affiliation(s)
- Wang Gong
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Christopher R Donnelly
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Blake R Heath
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Emily Bellile
- Department of Biostatistics, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Lorenza A Donnelly
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Division of Craniofacial and Surgical Services, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA
| | - Hülya F Taner
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Luke Broses
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J Chad Brenner
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Steven B Chinn
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio, USA
| | - Jacques E Nör
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA.,Department of Cariology, Restorative Science and Endodontics, University of Michigan, Ann Arbor, MI, USA
| | - Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Gregory T Wolf
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Appleton E, Hassan J, Chan Wah Hak C, Sivamanoharan N, Wilkins A, Samson A, Ono M, Harrington KJ, Melcher A, Wennerberg E. Kickstarting Immunity in Cold Tumours: Localised Tumour Therapy Combinations With Immune Checkpoint Blockade. Front Immunol 2021; 12:754436. [PMID: 34733287 PMCID: PMC8558396 DOI: 10.3389/fimmu.2021.754436] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer patients with low or absent pre-existing anti-tumour immunity ("cold" tumours) respond poorly to treatment with immune checkpoint inhibitors (ICPI). In order to render these patients susceptible to ICPI, initiation of de novo tumour-targeted immune responses is required. This involves triggering of inflammatory signalling, innate immune activation including recruitment and stimulation of dendritic cells (DCs), and ultimately priming of tumour-specific T cells. The ability of tumour localised therapies to trigger these pathways and act as in situ tumour vaccines is being increasingly explored, with the aspiration of developing combination strategies with ICPI that could generate long-lasting responses. In this effort, it is crucial to consider how therapy-induced changes in the tumour microenvironment (TME) act both as immune stimulants but also, in some cases, exacerbate immune resistance mechanisms. Increasingly refined immune monitoring in pre-clinical studies and analysis of on-treatment biopsies from clinical trials have provided insight into therapy-induced biomarkers of response, as well as actionable targets for optimal synergy between localised therapies and ICB. Here, we review studies on the immunomodulatory effects of novel and experimental localised therapies, as well as the re-evaluation of established therapies, such as radiotherapy, as immune adjuvants with a focus on ICPI combinations.
Collapse
Affiliation(s)
- Elizabeth Appleton
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jehanne Hassan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charleen Chan Wah Hak
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Nanna Sivamanoharan
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Anna Wilkins
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Adel Samson
- Leeds Institute of Medical Research at St. James, University of Leeds, Leeds, United Kingdom
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kevin J. Harrington
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Alan Melcher
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Erik Wennerberg
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| |
Collapse
|
44
|
Yan H, Chen W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines (Basel) 2021; 9:917. [PMID: 34452042 PMCID: PMC8402453 DOI: 10.3390/vaccines9080917] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic dinucleotides (CDNs), originally discovered as bacterial second messengers, play critical roles in bacterial signal transduction, cellular processes, biofilm formation, and virulence. The finding that CDNs can trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signalling pathway has prompted the extensive research and development of CDNs as potential immunostimulators and novel molecular adjuvants for induction of systemic and mucosal innate and adaptive immune responses. In this review, we summarize the chemical structure, biosynthesis regulation, and the role of CDNs in enhancing the crosstalk between host innate and adaptive immune responses. We also discuss the strategies to improve the efficient delivery of CDNs and the recent advance and future challenges in the development of CDNs as potential adjuvants in prophylactic vaccines against infectious diseases and in therapeutic vaccines against cancers.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wangxue Chen
- Human Health and Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
45
|
Hargadon KM. The role of interferons in melanoma resistance to immune checkpoint blockade: mechanisms of escape and therapeutic implications. Br J Dermatol 2021; 185:1095-1104. [PMID: 34185875 DOI: 10.1111/bjd.20608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoint blockade (ICB) therapy has achieved unprecedented success in the treatment of metastatic melanoma, though its efficacy is often limited by innate and acquired mechanisms of resistance. Type I and type II interferons (IFNs) act as key determinants of checkpoint blockade therapeutic outcome, and tumour-intrinsic and -extrinsic factors that disrupt IFN activity confer resistance to various checkpoint inhibitors. This review highlights our current understanding of the mechanisms by which tumours disrupt IFN function in the context of ICB, and it discusses therapeutic strategies to overcome these mechanisms of resistance and improve the clinical reach of ICB therapy in patients with melanoma.
Collapse
Affiliation(s)
- K M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| |
Collapse
|
46
|
Kol A, Lubbers JM, Terwindt ALJ, Workel HH, Plat A, Wisman GBA, Bart J, Nijman HW, De Bruyn M. Combined STING levels and CD103+ T cell infiltration have significant prognostic implications for patients with cervical cancer. Oncoimmunology 2021; 10:1936391. [PMID: 34178428 PMCID: PMC8205031 DOI: 10.1080/2162402x.2021.1936391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Activation of STimulator of INterferon Genes (STING) is important for induction of anti-tumor immunity. A dysfunctional STING pathway is observed in multiple cancer types and associates with poor prognosis and inferior response to immunotherapy. However, the association between STING and prognosis in virally induced cancers such as HPV-positive cervical cancer remains unknown. Here, we investigated the prognostic value of STING protein levels in cervical cancer using tumor tissue microarrays of two patient groups, primarily treated with surgery (n = 251) or radio(chemo)therapy (n = 255). We also studied CD103, an integrin that marks tumor-reactive cytotoxic T cells that reside in tumor epithelium and that is reported to associate with improved prognosis. Notably, we found that a high level of STING protein was an independent prognostic factor for improved survival in both the surgery and radio(chemo)therapy group. High infiltration of CD103+ T cells was associated with improved survival in the radio(chemo)therapy group. The combination of STING levels and CD103+ T cell infiltration is strongly associated with improved prognosis. We conclude that combining the prognostic values of STING and CD103 may improve the risk stratification of cervical cancer patients, independent from established clinical prognostic parameters.
Collapse
Affiliation(s)
- Arjan Kol
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Joyce M Lubbers
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Anouk L J Terwindt
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Hagma H Workel
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Annechien Plat
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - G Bea A Wisman
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Joost Bart
- University of Groningen, University Medical Center Groningen, Department of Pathology, The Netherlands
| | - Hans W Nijman
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Marco De Bruyn
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| |
Collapse
|
47
|
Buchwald ZS, Schmitt NC. Immunotherapeutic Strategies for Head and Neck Cancer. Otolaryngol Clin North Am 2021; 54:729-742. [PMID: 34116846 DOI: 10.1016/j.otc.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunotherapy has revolutionized the treatment of cancer, including head and neck squamous cell carcinoma (HNSCC). Most immune therapies consist of biologics, including monoclonal antibodies, vaccines, and cell therapy. This article reviews basic tumor immunology and provides an overview of immunotherapeutic strategies used for HNSCC. The current indications for use of programmed cell death protein 1 immune checkpoint inhibitors in recurrent/metastatic HNSCC are summarized. In addition, new immunotherapeutic biologics and combinations under investigation in early-phase clinical trials are highlighted.
Collapse
Affiliation(s)
- Zachary S Buchwald
- Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Road NE, C5086, Atlanta, GA 30322, USA; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicole C Schmitt
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
48
|
Fang T, Xiao J, Zhang Y, Hu H, Zhu Y, Cheng Y. Combined with interventional therapy, immunotherapy can create a new outlook for tumor treatment. Quant Imaging Med Surg 2021; 11:2837-2860. [PMID: 34079746 PMCID: PMC8107298 DOI: 10.21037/qims-20-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Recent progress in immunotherapy provides hope of a complete cure to cancer patients. However, recent studies have reported that only a limited number of cancer patients with a specific immune status, known as "cold tumor", can benefit from a single immune agent. Although the combination of immune agents with different mechanisms can partially increase the low response rate and improve efficacy, it can also result in more side effects. Therefore, discovering therapies that can improve tumors' response rate to immunotherapy without increasing toxicity for patients is urgently needed. Tumor interventional therapy is promising. It mainly includes transcatheter arterial chemoembolization, ablation, radioactive particle internal irradiation, and photodynamic interventional therapy based on a luminal stent. Interventional therapy can directly kill tumor cells by targeted drug delivery in situ, thus reducing drug dosage and systemic toxicity like cytokine release syndrome. More importantly, interventional therapy can regulate the immune system through numerous mechanisms, making it a suitable choice for immunotherapy to combine with. In this review, we provide a brief description of immunotherapies (and their side effects) on tumors of different immune types and preliminarily elaborate on interventional therapy mechanisms to improve immune efficacy. We also discuss the progress and challenges of the combination of interventional therapy and immunotherapy.
Collapse
Affiliation(s)
- Tonglei Fang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junyuan Xiao
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiran Zhang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
49
|
Hayman TJ, Baro M, MacNeil T, Phoomak C, Aung TN, Cui W, Leach K, Iyer R, Challa S, Sandoval-Schaefer T, Burtness BA, Rimm DL, Contessa JN. STING enhances cell death through regulation of reactive oxygen species and DNA damage. Nat Commun 2021; 12:2327. [PMID: 33875663 PMCID: PMC8055995 DOI: 10.1038/s41467-021-22572-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Resistance to DNA-damaging agents is a significant cause of treatment failure and poor outcomes in oncology. To identify unrecognized regulators of cell survival we performed a whole-genome CRISPR-Cas9 screen using treatment with ionizing radiation as a selective pressure, and identified STING (stimulator of interferon genes) as an intrinsic regulator of tumor cell survival. We show that STING regulates a transcriptional program that controls the generation of reactive oxygen species (ROS), and that STING loss alters ROS homeostasis to reduce DNA damage and to cause therapeutic resistance. In agreement with these data, analysis of tumors from head and neck squamous cell carcinoma patient specimens show that low STING expression is associated with worse outcomes. We also demonstrate that pharmacologic activation of STING enhances the effects of ionizing radiation in vivo, providing a rationale for therapeutic combinations of STING agonists and DNA-damaging agents. These results highlight a role for STING that is beyond its canonical function in cyclic dinucleotide and DNA damage sensing, and identify STING as a regulator of cellular ROS homeostasis and tumor cell susceptibility to reactive oxygen dependent, DNA damaging agents.
Collapse
Affiliation(s)
- Thomas J Hayman
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Marta Baro
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tyler MacNeil
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Chatchai Phoomak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Thazin Nwe Aung
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Wei Cui
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
50
|
Vathiotis IA, Johnson JM, Argiris A. Enhancing programmed cell death protein 1 axis inhibition in head and neck squamous cell carcinoma: Combination immunotherapy. Cancer Treat Rev 2021; 97:102192. [PMID: 33819755 DOI: 10.1016/j.ctrv.2021.102192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Anti-programmed cell death protein 1 immunotherapy has become the new standard in the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). However, the population that benefits is small, warranting drug combinations and novel approaches. HNSCC is a profoundly immunosuppressive disease, characterized by the interplay among different immune regulatory pathways. As clinical trials evaluating immunotherapy combinations in patients with HNSCC have started producing preliminary results, preclinical evidence on potential new targets for combination immunotherapy continues to accumulate. This review summarizes emerging clinical and preclinical data on immunotherapy combinations for the treatment of HNSCC.
Collapse
Affiliation(s)
- Ioannis A Vathiotis
- Department of Pathology, Yale University, 310 Cedar Street, New Haven, CT, USA
| | - Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, 1025 Walnut Street, Suite 700, Philadelphia, PA, USA
| | - Athanassios Argiris
- Department of Medical Oncology, Thomas Jefferson University, 1025 Walnut Street, Suite 700, Philadelphia, PA, USA
| |
Collapse
|