1
|
Liu Y, Tan H, Dai J, Lin J, Zhao K, Hu H, Zhong C. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J Adv Res 2025:S2090-1232(24)00622-2. [PMID: 39778768 DOI: 10.1016/j.jare.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has emerged as a groundbreaking approach in cancer treatment, primarily realized through the manipulation of immune cells, notably T cell adoption and immune checkpoint blockade. Nevertheless, the manipulation of T cells encounters formidable hurdles. Macrophages, serving as the pivotal link between innate and adaptive immunity, play crucial roles in phagocytosis, cytokine secretion, and antigen presentation. Consequently, macrophage-targeted therapies have garnered significant attention. AIM OF REVIEW We aim to provide the most cutting-edge insights and future perspectives for macrophage-targeted therapies, fostering the development of novel and effective cancer treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW To date, the forefront strategies for macrophage targeting encompass: altering their plasticity, harnessing CAR-macrophages, and targeting phagocytosis checkpoints. Macrophages are characterized by their remarkable diversity and plasticity, offering a unique therapeutic target. In this context, we critically analyze the innovative strategies aimed at transforming macrophages from their M2 (tumor-promoting) to M1 (tumor-suppressing) phenotype. Furthermore, we delve into the design principles, developmental progress, and advantages of CAR-macrophages. Additionally, we illuminate the challenges encountered in targeting phagocytosis checkpoints on macrophages and propose potential strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Hubei University of Medicine, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province 442000, China; General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430048, China
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Jianghua Lin
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Haibo Hu
- Department of Cardiothoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
2
|
McDonald JF. Adaptive Significance of Non-coding RNAs: Insights from Cancer Biology. Mol Biol Evol 2025; 42:msae269. [PMID: 39761690 PMCID: PMC11725524 DOI: 10.1093/molbev/msae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
The molecular basis of adaptive evolution and cancer progression are both complex processes that share many striking similarities. The potential adaptive significance of environmentally-induced epigenetic changes is currently an area of great interest in both evolutionary and cancer biology. In the field of cancer biology intense effort has been focused on the contribution of stress-induced non-coding RNAs (ncRNAs) in the activation of epigenetic changes associated with elevated mutation rates and the acquisition of environmentally adaptive traits. Examples of this process are presented and combined with more recent findings demonstrating that stress-induced ncRNAs are transferable from somatic to germline cells leading to cross-generational inheritance of acquired adaptive traits. The fact that ncRNAs have been implicated in the transient adaptive response of various plants and animals to environmental stress is consistent with findings in cancer biology. Based on these collective observations, a general model as well as specific and testable hypotheses are proposed on how transient ncRNA-mediated adaptive responses may facilitate the transition to long-term biological adaptation in both cancer and evolution.
Collapse
Affiliation(s)
- John F McDonald
- Professor Emeritus, School of Biological Sciences, Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Farooqi AA, Shepetov AM, Rakhmetova V, Ruslan Z, Almabayeva A, Saussakova S, Baigonova K, Baimaganbetova K, Sundetgali K, Kapanova G. Interplay between JAK/STAT pathway and non-coding RNAs in different cancers. Noncoding RNA Res 2024; 9:1009-1022. [PMID: 39022684 PMCID: PMC11254501 DOI: 10.1016/j.ncrna.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 07/20/2024] Open
Abstract
Progress in the identification of core multi-protein modules within JAK/STAT pathway has enabled researchers to develop a better understanding of the linchpin role of deregulated signaling cascade in carcinogenesis and metastasis. More excitingly, complex interplay between JAK/STAT pathway and non-coding RNAs has been shown to reprogramme the outcome of signaling cascade and modulate immunological responses within tumor microenvironment. Wealth of information has comprehensively illustrated that most of this complexity regulates the re-shaping of the immunological responses. Increasingly sophisticated mechanistic insights have illuminated fundamental role of STAT-signaling in polarization of macrophages to M2 phenotype that promotes disease aggressiveness. Overall, JAK/STAT signaling drives different stages of cancer ranging from cancer metastasis to the reshaping of the tumor microenvironment. JAK/STAT signaling has also been found to play role in the regulation of infiltration and activity of natural killer cells and CD4/CD8 cells by PD-L1/PD-1 signaling. In this review, we have attempted to set spotlight on regulation of JAK/STAT pathway by microRNAs, long non-coding RNAs and circular RNAs in primary tumors and metastasizing tumors. Therefore, existing knowledge gaps need to be addressed to propel this fledgling field of research to the forefront and bring lncRNAs and circRNAs to the frontline of clinical practice. Leveraging the growing momentum will enable interdisciplinary researchers to gain transition from segmented view to a fairly detailed conceptual continuum.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Abay M. Shepetov
- Department of Nephrology, Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty, 050000, Kazakhstan
| | | | - Zharilkassimov Ruslan
- Department of Surgical Diseases with a Course of Cardio-thoracic Surgery and Maxillofacial Surgery, NJSC “Astana Medical University”, Astana, Kazakhstan
| | - Aigul Almabayeva
- Department of Human Anatomy, NJSC “Astana Medical University”, Astana City, Kazakhstan
| | - Saniya Saussakova
- Department of Public Health and Management, NJSC “Astana Medical University”, Astana, Kazakhstan
| | | | | | | | - Gulnara Kapanova
- Al-Farabi Kazakh National University, Kazakhstan
- Scientific Center of Anti-Infectious Drugs, 75 Al-Farabi Ave, Almaty, 050040, Kazakhstan
| |
Collapse
|
4
|
Shi H, Wang P, Wang J, Chen L, Qin Y, Lv J. Global lncRNA expression signature in pre-metastatic lung and their regulatory effects in pulmonary metastasis. Front Immunol 2024; 15:1506561. [PMID: 39676873 PMCID: PMC11638156 DOI: 10.3389/fimmu.2024.1506561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Background Lung metastasis has garnered significant attention due to its prevalent occurrence. Pre-metastatic niche (PMN) establishment is a critical prerequisite for the onset of lung metastasis. Emerging evidence indicates that long noncoding RNAs (lncRNAs) play pivotal roles in the metastatic cascade to the lungs. However, the relationship between lncRNA expression profiles and the formation of PMN remains uncharacterized. This study aims to explore the expression profiles and potential roles of lncRNAs in the context of pre-metastatic lung microenvironment. Methods RNA sequencing was utilized to elucidate the lncRNA landscape in pre-metastatic lung of murine models. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to infer the prospective functions of the differentially expressed lncRNAs. Among these, lncRNA Gm5144-202 in alveolar macrophages (AMs) was further scrutinized for its role in driving M2 macrophage polarization, facilitating the formation of PMN, and orchestrating the apoptosis, proliferation, and migration of tumor cells in vitro. Results A total of 232 lncRNAs exhibited differential expression in pre-metastatic murine lungs compared to normal controls, predominantly enriching pathways such as PI3K-Akt signaling, calcium signaling, neuroactive ligand-receptor interaction, and NF-κB signaling. Notably, lncRNA Gm5144-202 exhibited the most pronounced difference, with elevated level in alveolar macrophages (AMs) during the pre-metastatic phase. Silencing of lncRNA Gm5144-202 impeded the polarization of M2-like macrophages, suppressed the expression of factors critical for the formation of the PMN, and inhibited tumor cell invasion. Conclusions Our research delineated the lncRNA expression profiles in pre-metastatic pulmonary tissues and identified, for the first time, the pivotal role of lncRNA Gm5144-202 in modulating M2 macrophage polarization and tumor cell invasiveness. Consequently, targeting lncRNA Gm5144-202 holds substantial promise for translational applications aimed at mitigating pulmonary metastasis.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Peng Wang
- Clinical Laboratory, Rizhao Center for Disease Control and Prevention, Rizhao, Shandong, China
| | - Jiaan Wang
- Blood Transfusion Department, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jie Lv
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
5
|
Wang Z, Tan W, Li B, Chen J, Zhu J, Xu F, Tang F, Yoshida S, Zhou Y. LncRNA-MM2P regulates retinal neovascularization through M2 macrophage polarization. Exp Eye Res 2024; 248:110072. [PMID: 39241859 DOI: 10.1016/j.exer.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The study aims to investigate the effects and potential mechanisms of lncRNA-MM2P on retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). The OIR model was established in C57BL/6J mice. RAW264.7 cell line and bone marrow-derived macrophages (BMDMs) from mice were used for in vitro studies. RT-qPCR was used to analyze the expressions of lncRNA and mRNAs. The protein expression levels were determined by western blotting. The size of avascular areas and neovascular tufts were assessed based on isolectin B4 immunofluorescence staining images. The human retinal endothelial cells (HRECs) were used to evaluate the proliferation, migration, and tube formation of endothelial cells. The expression of lncRNA-MM2P was significantly upregulated from P17 to P25 in OIR retinas. Knockdown of lncRNA-MM2P levels in vivo led to a significant reduction in the neovascular tufts and avascular areas in the retinas of OIR mice. Knockdown of lncRNA-MM2P levels in vitro suppressed the expression of M2 markers in macrophages. Moreover, we found a significant inhibition of avascular areas and neovascular tufts in OIR mice injected intravitreally with M2 macrophages treated by shRNA-MM2P. The cellular functions of proliferation, migration, and tube formation were significantly attenuated in HRECs cultured with a supernatant of shRNA-MM2P-treated M2 macrophages. Our results indicate that lncRNA-MM2P regulates retinal neovascularization by inducing M2 polarization of macrophages in OIR mice. Therefore, lncRNA-MM2P may be a potential molecular target for immunoregulation of retinal neovascularization.
Collapse
Affiliation(s)
- Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fan Xu
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health, Nanning, Guangxi, 530021, China
| | - Fen Tang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health, Nanning, Guangxi, 530021, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Xue Z, Liu J, Xing W, Mu F, Wu Y, Zhao J, Liu X, Wang D, Wang J, Li X, Wang J, Huang B. Hypoxic glioma-derived exosomal miR-25-3p promotes macrophage M2 polarization by activating the PI3K-AKT-mTOR signaling pathway. J Nanobiotechnology 2024; 22:628. [PMID: 39407269 PMCID: PMC11481566 DOI: 10.1186/s12951-024-02888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Exosomes (EXO) play crucial roles in intercellular communication and glioma microenvironment modulation. Tumor-associated macrophages are more likely to become M2-like type macrophages in the immunosuppressive microenvironment. Here, we aimed to investigate the effects and molecular mechanisms of hypoxic glioma-derived exosomes mediated M2-like macrophage polarization. METHODS Highly expressed miRNAs in exosomes derived from glioma cells cultured under hypoxia condition compared to normoxic condition were identified through microRNA sequencing. The polarization status of macrophages was determined using qRT-PCR, Western blotting, flow cytometry, and immunohistochemistry. By using RNA-seq, we aimed to identify the downstream target genes regulated by miR-25-3p in macrophages and investigate the mechanistic pathways through which it exerts its effects. The proliferation and migration capabilities of glioma cells were assessed through EdU, Transwell assays, and in vivo experiments. RESULTS We found that miR-25-3p was upregulated in the exosomes derived from hypoxic glioma cells and can be transferred to the macrophage. In macrophages, miR-25-3p downregulates the expression of PHLPP2, thereby activating the PI3K-AKT-mTOR signaling pathway, ultimately leading to macrophage M2 polarization. As part of a feedback loop, M2-polarized macrophages can, in turn, promote malignant glioma progression. CONCLUSION Our study reveals that miR-25-3p from hypoxic glioma cells is delivered to macrophages via exosomes as a mediator, promoting M2 polarization of macrophages through the miR-25-3p/PHLPP2/PI3K-AKT signaling pathway. This study suggests that targeted interventions to modulate miR-25-3p expression, transmission, or inhibition of PI3K-AKT pathway activation can disrupt the immune-suppressive microenvironment, providing a novel approach for immunotherapy in gliomas.
Collapse
Affiliation(s)
- Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Junzhi Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Wenchen Xing
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Feiyu Mu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Yanzhao Wu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Jiangli Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Xuchen Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China.
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China.
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China.
| |
Collapse
|
7
|
Gan T, Liu W, Wang Y, Huang D, Hu J, Wang Y, Xiong J, Wang X, Xu Q, Xiong N, Lu S, Wang Z. LncRNA MAAMT facilitates macrophage recruitment and proinflammatory activation and exacerbates autoimmune myocarditis through the SRSF1/NF-κB axis. Int J Biol Macromol 2024; 278:134193. [PMID: 39069042 DOI: 10.1016/j.ijbiomac.2024.134193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in dilated cardiomyopathy (DCM). However, the biological functions and regulatory mechanisms of lncRNAs in DCM remain elusive. Using a mouse model of experimental autoimmune myocarditis (EAM) to mimic DCM, we successfully constructed a dynamic lncRNA expression library for EAM by lncRNA microarray and found that the expression of a macrophage-enriched lncRNA, MAAMT, was significantly increased in the myocardial tissue of mice at the acute stage of EAM. Functionally, MAAMT knockdown alleviated the recruitment and proinflammatory activation of macrophages in the heart, spleen, and peripheral blood of mice at the acute stage of EAM, reduced myocardial inflammation and injury, and eventually reversed ventricular remodelling and improved cardiac function in mice at the chronic stage of EAM. Mechanistically, we identified serine/arginine-rich splicing factor 1 (SRSF1) as an MAAMT-interacting protein in macrophages using RNA pull-down assays coupled with mass spectrometry. MAAMT knockdown attenuated the ubiquitination-mediated degradation of SRSF1, increased the protein expression of SRSF1, and restrained the activation of the NF-κB pathway in macrophages, thereby inhibiting the proinflammatory activation of macrophages. Collectively, our results demonstrate that MAAMT is a key proinflammatory regulator of myocarditis that promotes macrophage activation through the SRSF1-NF-κB axis, providing a new insight into early effective treatment strategies for DCM.
Collapse
Affiliation(s)
- Ting Gan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenhu Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Hu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingjie Xiong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuehua Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ni Xiong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Lu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Helal IM, Kamal MA, Abd El-Aziz MK, El Tayebi HM. Epigenetic tuning of tumour-associated macrophages (TAMs): a potential approach in hepatocellular carcinoma (HCC) immunotherapy. Expert Rev Mol Med 2024; 26:e18. [PMID: 39320855 PMCID: PMC11440614 DOI: 10.1017/erm.2024.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 09/26/2024]
Abstract
Recent development in immunotherapy for cancer treatment has substantiated to be more effective than most of the other treatments. Immunity is the first line of defence of the body; nevertheless, cancerous cells can manipulate immunity compartments to play several roles in tumour progression. Tumour-associated macrophages (TAMs), one of the most dominant components in the tumour microenvironment, are recognized as anti-tumour suppressors. Unfortunately, the complete behaviour of TAMs is still unclear and understudied. TAM density is directly correlated with the progression and poor prognosis of hepatocellular carcinoma (HCC), therefore studying TAMs from different points of view passing by all the factors that may affect its existence, polarization, functions and repolarization are of great importance. Different epigenetic regulations were reported to have a direct relation with both HCC and TAMs. Here, this review discusses different epigenetic regulations that can affect TAMs in HCC whether positively or negatively.
Collapse
Affiliation(s)
- Israa M. Helal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Monica A. Kamal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Mostafa K. Abd El-Aziz
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| |
Collapse
|
9
|
Huanjie Z, Bukhari I, Fazhan L, Wen H, Wang J, Wanqing W, Yuming F, Youcai T, AlJowaie RM, Aziz IM, Xiufeng C, Yang M, Pengyuan Z. P53-associated lncRNAs regulate immune functions and RNA-modifiers in gastric cancer. Heliyon 2024; 10:e35228. [PMID: 39166030 PMCID: PMC11334848 DOI: 10.1016/j.heliyon.2024.e35228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
TP53, a guardian of the genome, suppresses or enhances tumors through various regulatory pathways. However, the role of p53-related long non-coding RNAs (lncRNAs) in immune regulation of tumor microenvironment and prognosis of gastric cancer (GC) is so far unelucidated. We analyzed the role of TP53-associated lncRNAs (obtained from the TP53LNC-DB database) in immune regulation, immune cell infiltration and RNA modification in gastric cancer. Firstly, using multivariate COX regression analysis, we identified eight lncRNAs related to the prognosis of GC. Furthermore, based on the expression of the lncRNA signature and risk score, the GC patients were divided into high-risk and low-risk groups. We found that M2-macrophages have significantly higher infiltration in the high-risk group. Similarly, significant differences in immune function (APC_co_stimulation, CCR, and checkpoint) and m6A modification (FTO, ZC3H13, YTHDC1, and RBM15), and m5C modification (NOP2 and TET1) between both groups were also observed. These signature lncRNAs were also positively associated with oxidative stress-related genes (MPO, MAPK14, HMOX1, and APP). Additionally, we found that high expression of GAS5 and low expression of MALAT1 in Helicobacter pylori (H-pylori) positive GC patients. Finally, GC patients in the low-risk group showed higher resistance to immunotherapy while patients in the high-risk group were more sensitive to various chemotherapy drugs. Based on these findings, we conclude that p53-associated lncRNAs signature could potentially predict the immune status and overall survival, and may also be used for risk management and planning immunotherapy for gastric cancer patients.
Collapse
Affiliation(s)
- Zhao Huanjie
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
| | - Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Li Fazhan
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
| | - Huijuan Wen
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
| | - Jingyun Wang
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Wu Wanqing
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Fu Yuming
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Tang Youcai
- Department of Pediatrics, the Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Reem M. AlJowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chu Xiufeng
- Department of Oncology, the Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Mi Yang
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhongyuan, 450001, Zhengzhou, Henan China, China
- Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Sciences, Zhengzhou, Henan, China
| | - Zheng Pengyuan
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhongyuan, 450001, Zhengzhou, Henan China, China
- Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Sciences, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Li YN, Liang YP, Zhang JQ, Li N, Wei ZY, Rao Y, Chen JH, Jin YY. Dynamic A-to-I RNA editing during acute neuroinflammation in sepsis-associated encephalopathy. Front Neurosci 2024; 18:1435185. [PMID: 39156629 PMCID: PMC11328407 DOI: 10.3389/fnins.2024.1435185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction The activation of cerebral endothelial cells (CECs) has recently been reported to be the earliest acute neuroinflammation event in the CNS during sepsis-associated encephalopathy (SAE). Importantly, adenosine-to-inosine (A-to-I) RNA editing mediated by ADARs has been associated with SAE, yet its role in acute neuroinflammation in SAE remains unclear. Methods Our current study systematically analyzed A-to-I RNA editing in cerebral vessels, cerebral endothelial cells (CECs), and microglia sampled during acute neuroinflammation after treatment in a lipopolysaccharide (LPS)-induced SAE mouse model. Results Our results showed dynamic A-to-I RNA editing activity changes in cerebral vessels during acute neuroinflammation. Differential A-to-I RNA editing (DRE) associated with acute neuroinflammation were identified in these tissue or cells, especially missense editing events such as S367G in antizyme inhibitor 1 (Azin1) and editing events in lincRNAs such as maternally expressed gene 3 (Meg3), AW112010, and macrophage M2 polarization regulator (Mm2pr). Importantly, geranylgeranyl diphosphate synthase 1 (Ggps1) and another three genes were differentially edited across cerebral vessels, CECs, and microglia. Notably, Spearman correlation analysis also revealed dramatic time-dependent DRE during acute neuroinflammation, especially in GTP cyclohydrolase1 (Gch1) and non-coding RNA activated by DNA damage (Norad), both with the editing level positively correlated with both post-LPS treatment time and edited gene expression in cerebral vessels and CECs. Discussion The findings in our current study demonstrate substantial A-to-I RNA editing changes during acute neuroinflammation in SAE, underlining its potential role in the disease.
Collapse
Affiliation(s)
- Yu-Ning Li
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jing-Qian Zhang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Na Li
- Wuxi Maternal and Child Healthcare Hospital, Wuxi, Jiangsu, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yijian Rao
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Liu H, Huang M, Xin D, Wang H, Yu H, Pu W. Natural products with anti-tumorigenesis potential targeting macrophage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155794. [PMID: 38875811 DOI: 10.1016/j.phymed.2024.155794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Inflammation is a risk factor for tumorigenesis. Macrophage, a subset of immune cells with high plasticity, plays a multifaceted role in this process. Natural products, which are bioactive compounds derived from traditional herbs or foods, have exhibited diverse effects on macrophages and tumorigenesis making them a valuable resource of drug discovery or optimization in tumor prevention. PURPOSE Provide a comprehensive overview of the various roles of macrophages in tumorigenesis, as well as the effects of natural products on tumorigenesis by modulating macrophage function. METHODS A thorough literature search spanning the past two decades was carried out using PubMed, Web of Science, Elsevier, and CNKI following the PRISMA guidelines. The search terms employed included "macrophage and tumorigenesis", "natural products, macrophages and tumorigenesis", "traditional Chinese medicine and tumorigenesis", "natural products and macrophage polarization", "macrophage and tumor related microenvironment", "macrophage and tumor signal pathway", "toxicity of natural products" and combinations thereof. Furthermore, certain articles are identified through the tracking of citations from other publications or by accessing the websites of relevant journals. Studies that meet the following criteria are excluded: (1) Articles not written in English or Chinese; (2) Full texts were not available; (3) Duplicate articles and irrelevant studies. The data collected was organized and summarized based on molecular mechanisms or compound structure. RESULTS This review elucidates the multifaceted effect of macrophages on tumorigenesis, encompassing process such as inflammation, angiogenesis, and tumor cell invasion by regulating metabolism, non-coding RNA, signal transduction and intercellular crosstalk. Natural products, including vitexin, ovatodiolide, ligustilide, and emodin, as well as herbal remedies, have demonstrated efficacy in modulating macrophage function, thereby attenuating tumorigenesis. These interventions mainly focus on mitigating the initial inflammatory response or modifying the inflammatory environment within the precancerous niche. CONCLUSIONS These mechanistic insights of macrophages in tumorigenesis offer valuable ideas for researchers. The identified natural products facilitate the selection of promising candidates for future cancer drug development.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Manru Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Dandan Xin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
12
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
13
|
Li K, Xie T, Li Y, Huang X. LncRNAs act as modulators of macrophages within the tumor microenvironment. Carcinogenesis 2024; 45:363-377. [PMID: 38459912 DOI: 10.1093/carcin/bgae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have been established as pivotal players in various cellular processes, encompassing the regulation of transcription, translation and post-translational modulation of proteins, thereby influencing cellular functions. Notably, lncRNAs exert a regulatory influence on diverse biological processes, particularly in the context of tumor development. Tumor-associated macrophages (TAMs) exhibit the M2 phenotype, exerting significant impact on crucial processes such as tumor initiation, angiogenesis, metastasis and immune evasion. Elevated infiltration of TAMs into the tumor microenvironment (TME) is closely associated with a poor prognosis in various cancers. LncRNAs within TAMs play a direct role in regulating cellular processes. Functioning as integral components of tumor-derived exosomes, lncRNAs prompt the M2-like polarization of macrophages. Concurrently, reports indicate that lncRNAs in tumor cells contribute to the expression and release of molecules that modulate TAMs within the TME. These actions of lncRNAs induce the recruitment, infiltration and M2 polarization of TAMs, thereby providing critical support for tumor development. In this review, we survey recent studies elucidating the impact of lncRNAs on macrophage recruitment, polarization and function across different types of cancers.
Collapse
Affiliation(s)
- Kangning Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Luo H, Jing H, Chen W. An extensive overview of the role of lncRNAs generated from immune cells in the etiology of cancer. Int Immunopharmacol 2024; 133:112063. [PMID: 38677091 DOI: 10.1016/j.intimp.2024.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Long non-coding RNAs (lncRNAs) are involved in the control of critical tumor-suppressor and oncogenic pathways in cancer. These types of non-coding RNAs could affect both immune and cancer cells. The thorough analysis of lncRNAs derived from immune cells and the incorporation of new findings significantly advance our understanding of the complex role of lncRNAs in the context of cancer. This work highlights the promise of lncRNAs for translational therapeutic approaches while also establishing a solid foundation for comprehending the complex link between lncRNAs and cancer through a coherent narrative. The main findings of this article are that types of lncRNAs derived from immune cells, such as MM2P and MALAT1, can affect the behaviors of cancer cells, like invasion, angiogenesis, and proliferation. As research in this area grows, the therapeutic potential of targeting these lncRNAs offers promising opportunities for expanding our understanding of cancer biology and developing cutting-edge, precision-based therapies for cancer therapy.
Collapse
Affiliation(s)
- Hong Luo
- Department of Oncology, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China.
| | - Hailiang Jing
- Department of Integrative Medicine, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China
| | - Wei Chen
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
15
|
Yang P, He S, Ye L, Weng H. Transcription Factor ETV4 Activates AURKA to Promote PD-L1 Expression and Mediate Immune Escape in Lung Adenocarcinoma. Int Arch Allergy Immunol 2024; 185:910-920. [PMID: 38781935 DOI: 10.1159/000537754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION The occurrence and progression of lung adenocarcinoma (LUAD) impair T-cell immune responses, causing immune escape and subsequently affecting the efficacy of immunotherapy in patients. Aurora kinase A (AURKA) is upregulated in varying cancers, but its role in LUAD immune escape is elusive. This work attempted to explore molecular mechanisms of AURKA regulation in LUAD immune escape. METHODS Through bioinformatics analysis, AURKA level in LUAD was evaluated, and potential upstream transcription factors of AURKA were predicted using hTFtarget. ETS variant transcription factor 4 (ETV4) expression in LUAD was analyzed through The Cancer Genome Atlas. Pearson's correlation analysis was then utilized to test the correlation between AURKA and ETV4. Interaction and binding between AURKA and ETV4 were validated through dual-luciferase assay and chromatin immunoprecipitation. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) tested relative mRNA expression of AURKA and ETV4 in LUAD cells, cell counting kit-8 assayed cell viability, and Western blot analysis was conducted to determine the protein level of programmed death-ligand 1 (PD-L1). Coculture of LUAD cells with activated CD8+ T cells was carried out, and an LDH assay was used to assess the cytotoxicity of CD8+ T cells against LUAD cells. Interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α) levels in the coculture system were assessed by enzyme-linked immunosorbent assay (ELISA). Western blot assessed protein levels of JAK2, p-JAK2, STAT3, and p-STAT3. RESULTS Compared to normal tissues, AURKA and ETV4 were upregulated in tumor tissues, and AURKA presented a negative association with CD8+ T-cell immune infiltration but a positive association with PD-L1. qRT-PCR unveiled significantly upregulated mRNA of AURKA and ETV4 in LUAD cells compared to normal lung epithelial cells. Knockdown of AURKA significantly decreased cell viability and PD-L1 protein level in LUAD cells, enhanced cytotoxicity of CD8+ T cells against LUAD cells and IFN-γ, IL-2, and TNF-α expression, while overexpression of AURKA yielded opposite results. Furthermore, the knockdown of ETV4 could reverse the oncogenic characteristics of cells caused by AURKA overexpression. CONCLUSION Our study illustrated that ETV4/AURKA axis promoted PD-L1 expression, suppressed CD8+ T-cell activity, and mediated immune escape in LUAD by regulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ping Yang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Fujian Province, Fuzhou, China
| | - Shangxiang He
- Department of Medical Oncology, Shanghai Artemed Hospital, Shanghai, China
| | - Ling Ye
- Department of Respiratory and Critical Care Medicine, People's Hospital of Fujian Province, Fuzhou, China
| | - Heng Weng
- Department of Respiratory and Critical Care Medicine, People's Hospital of Fujian Province, Fuzhou, China
| |
Collapse
|
16
|
Li W, Zhang H, You Z, Guo B. LncRNAs in Immune and Stromal Cells Remodel Phenotype of Cancer Cell and Tumor Microenvironment. J Inflamm Res 2024; 17:3173-3185. [PMID: 38774447 PMCID: PMC11108079 DOI: 10.2147/jir.s460730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Emerging studies suggest that long non-coding RNAs (lncRNAs) participate in the mutual regulation of cells in tumor microenvironment, thereby affecting the anti-tumor immune activity of immune cells. Additionally, the intracellular pathways mediated by lncRNAs can affect the expression of immune checkpoints or change the cell functions, including cytokines secretion, of immune and stromal cells in tumor microenvironment, which further influences cancer patients' prognosis and treatment response. With the in-depth research, lncRNAs have shown great potency as a new immunotherapy target and predict immunotherapy response. The research on lncRNAs provides us with a new insight into developing new immunotherapy drugs and predicting the outcome of immunotherapy. With development of RNA sequencing technology, amounts of lncRNAs were found to be dysregulated in immune and stromal cells rather than tumor cells. These lncRNAs function through ceRNA network or regulating transcript factor activity, thus leading abnormal differentiation and activation of immune and stromal cells. Here, we review the function of lncRNAs in the immune microenvironment and focus on the alteration of lncRNAs in immune and stromal cells, and discuss how these alterations affect tumor growth, metastasis and treatment response.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Clinical Oncology, Qianjiang Hospital Affiliated to Renmin Hospital of Wuhan University, Qianjiang, Hubei, People’s Republic of China
- Department of Clinical Oncology, Qianjiang Central Hospital of Hubei Province, Qianjiang, Hubei, People’s Republic of China
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zuo You
- Department of Traditional Chinese Medicine, Xianfeng County People’s Hospital, Enshi, Hubei, People’s Republic of China
| | - Baozhu Guo
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
17
|
Xu L, Xing Z, Yuan J, Han Y, Jiang Z, Han M, Hou X, Xing W, Li Z. Ultrasmall Nanoparticles Regulate Immune Microenvironment by Activating IL-33/ST2 to Alleviate Renal Ischemia-Reperfusion Injury. Adv Healthc Mater 2024; 13:e2303276. [PMID: 38335143 DOI: 10.1002/adhm.202303276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) is a common disease with high morbidity and mortality. Renal IRI can cause the disorder of immune microenvironment and reprograming the immune microenvironment to alleviate excessive inflammatory response is crucial for its treatment. Cytokine IL-33 can improve the immune inflammatory microenvironment by modulating both innate and adaptive immune cells, and serve as an important target for modulating immune microenvironment of renal IRI. Herein, we report that bilobetin-functionalized ultrasmall Cu2- xSe nanoparticles (i.e., CSPB NPs) can activate the PKA/p-CREB/IL-33/ST2 signaling pathway to regulate innate and adaptive immune cells for reprograming the immune microenvironment of IRI-induced acute kidney injury. The biocompatible CSPB NPs can promote the polarization of M1-like macrophages into M2-like macrophages, and the expansion of ILC2 and Treg cells by activating IL-33/ST2 to modulate the excessive immune inflammatory response of renal IRI. More importantly, they can rapidly accumulate at the injured kidney to significantly alleviate IRI. This work demonstrates that modulating the expression of cytokines to reprogram immune microenvironment has great potential in the treatment of renal IRI and other ischemic diseases.
Collapse
Affiliation(s)
- Liyao Xu
- Department of Radiology, Affiliated Hospital 3, Soochow University, Changzhou, 213003, P. R. China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P. R. China
| | - Zhaoyu Xing
- Department of Radiology, Affiliated Hospital 3, Soochow University, Changzhou, 213003, P. R. China
| | - Jiaxin Yuan
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P. R. China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P. R. China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P. R. China
| | - Mengxiao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P. R. China
| | - Xianao Hou
- Department of Radiology, Affiliated Hospital 3, Soochow University, Changzhou, 213003, P. R. China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P. R. China
| | - Wei Xing
- Department of Radiology, Affiliated Hospital 3, Soochow University, Changzhou, 213003, P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P. R. China
| |
Collapse
|
18
|
Ma Y, Chen H, Li H, Zheng M, Zuo X, Wang W, Wang S, Lu Y, Wang J, Li Y, Wang J, Qiu M. Intratumor microbiome-derived butyrate promotes lung cancer metastasis. Cell Rep Med 2024; 5:101488. [PMID: 38565146 PMCID: PMC11031379 DOI: 10.1016/j.xcrm.2024.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Most recurrences of lung cancer (LC) occur within 3 years after surgery, but the underlying mechanism remains unclear. Here, we collect LC tissues with shorter (<3 years, recurrence group) and longer (>3 years, non-recurrence group) recurrence-free survival. By using 16S sequencing, we find that intratumor microbiome diversity is lower in the recurrence group and butyrate-producing bacteria are enriched in the recurrence group. The intratumor microbiome signature and circulating microbiome DNA can accurately predict LC recurrence. We prove that intratumor injection of butyrate-producing bacteria Roseburia can promote subcutaneous tumor growth. Mechanistically, bacteria-derived butyrate promotes LC metastasis by increasing expression of H19 in tumor cells through inhibiting HDAC2 and increasing H3K27 acetylation at the H19 promoter and inducing M2 macrophage polarization. Depletion of macrophages partially abolishes the metastasis-promoting effect of butyrate. Our results provide evidence for the cross-talk between the intratumor microbiome and LC metastasis and suggest the potential prognostic and therapeutic value of the intratumor microbiome.
Collapse
Affiliation(s)
- Yi Ma
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, China
| | - Haiming Chen
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Haoran Li
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Meiling Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100010, China; Department of Chinese Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Xianglin Zuo
- Department of Science & Technology, Biobank of Jiangsu Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Wenxiang Wang
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Shaodong Wang
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Yiming Lu
- Department of Genetics & Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Li
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China.
| | - Jie Wang
- Department of Science & Technology, Biobank of Jiangsu Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Mantang Qiu
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China.
| |
Collapse
|
19
|
Xie M, Gong T, Wang Y, Li Z, Lu M, Luo Y, Min L, Tu C, Zhang X, Zeng Q, Zhou Y. Advancements in Photothermal Therapy Using Near-Infrared Light for Bone Tumors. Int J Mol Sci 2024; 25:4139. [PMID: 38673726 PMCID: PMC11050412 DOI: 10.3390/ijms25084139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Bone tumors, particularly osteosarcoma, are prevalent among children and adolescents. This ailment has emerged as the second most frequent cause of cancer-related mortality in adolescents. Conventional treatment methods comprise extensive surgical resection, radiotherapy, and chemotherapy. Consequently, the management of bone tumors and bone regeneration poses significant clinical challenges. Photothermal tumor therapy has attracted considerable attention owing to its minimal invasiveness and high selectivity. However, key challenges have limited its widespread clinical use. Enhancing the tumor specificity of photosensitizers through targeting or localized activation holds potential for better outcomes with fewer adverse effects. Combinations with chemotherapies or immunotherapies also present avenues for improvement. In this review, we provide an overview of the most recent strategies aimed at overcoming the limitations of photothermal therapy (PTT), along with current research directions in the context of bone tumors, including (1) target strategies, (2) photothermal therapy combined with multiple therapies (immunotherapies, chemotherapies, and chemodynamic therapies, magnetic, and photodynamic therapies), and (3) bifunctional scaffolds for photothermal therapy and bone regeneration. We delve into the pros and cons of these combination methods and explore current research focal points. Lastly, we address the challenges and prospects of photothermal combination therapy.
Collapse
Affiliation(s)
- Mengzhang Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Taojun Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Zhuangzhuang Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yi Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Xingdong Zhang
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Qin Zeng
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yong Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| |
Collapse
|
20
|
Afra F, Eftekhar SP, Farid AS, Ala M. Non-coding RNAs in cancer immunotherapy: A solution to overcome immune resistance? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:215-240. [PMID: 39461753 DOI: 10.1016/bs.pmbts.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
With the rapid advancement in immunotherapy, cancer immune resistance has become more evident, which demands new treatment approaches to achieve greater efficacy. Non-coding RNAs (ncRNAs) are a heterogeneous group of RNAs that are not translated to proteins but instead regulate different stages of gene expression. Recent studies have increasingly supported the critical role of ncRNAs in immune cell-cancer cell cross-talk, and numerous ncRNAs have been implicated in the immune evasion of cancer cells. Cancer cells take advantage of ncRNAs to modulate several signaling pathways and upregulate the expression of immune checkpoints and anti-inflammatory mediators, thereby dampening the anti-tumor response of M1 macrophages, dendritic cells, cytotoxic T cells, and natural killer cells or potentiating the immunosuppressive properties of M2 macrophages, regulatory T cells, and myeloid-derived suppressive cells. Upregulation of immunosuppressive ncRNAs or downregulation of immunogenic ncNRAs is a major driver of resistance to immune checkpoint inhibitors, cancer vaccines, and other means of cancer immunotherapy, making ncRNAs ideal targets for treatment. In addition, ncRNAs released by cancer cells have been demonstrated to possess prognostic values for patients who undergo cancer immunotherapy. Future clinical trials are urged to consider the potential of ncRNAs in cancer immunotherapy.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Wan Q, Deng Y, Wei R, Ma K, Tang J, Deng YP. Tumor-infiltrating macrophage associated lncRNA signature in cutaneous melanoma: implications for diagnosis, prognosis, and immunotherapy. Aging (Albany NY) 2024; 16:4518-4540. [PMID: 38475660 PMCID: PMC10968696 DOI: 10.18632/aging.205606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 03/14/2024]
Abstract
Along with the increasing knowledge of long noncoding RNA, the interaction between the long noncoding RNA (lncRNA) and tumor immune infiltration is increasingly valued. However, there is a lack of understanding of correlation between regulation of specific lncRNAs and tumor-infiltrating macrophages within melanoma. In this research, a macrophage associated lncRNA signature was identified by multiple machine learning algorithms and the robust and effectiveness of signature also validated in other independent datasets. The signature contained six specific lncRNAs (PART1, LINC00968, LINC00954, LINC00944, LINC00518 and C20orf197) was constructed, which could diagnose melanoma and predict the prognosis of patients. Moreover, our signature achieves higher accuracy than the previous well-established markers and regarded as an independent prognostic indicator. The pathway enrichment revealed that these lncRNAs were closely correlated with many immune processes. In addition, the signature was associated with different immune microenvironment and applied to predict response of immune checkpoint inhibitor therapy (low risk of patients well respond to anti-PD-1 therapy and high risk is insensitive to anti-CTLA-4 therapy). Therefore, our finding supplies a more accuracy and effective lncRNA signature for tumor-infiltrating macrophages targeting treatment approaches and affords a new clinical application for predicting the response of immunotherapies in melanomas.
Collapse
Affiliation(s)
- Qi Wan
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuhua Deng
- Department of Infection Control, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ran Wei
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ke Ma
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying-Ping Deng
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Wang A, Zheng WS, Luo Z, Bai L, Zhang S. The innovative checkpoint inhibitors of lung adenocarcinoma, cg09897064 methylation and ZBP1 expression reduction, have implications for macrophage polarization and tumor growth in lung cancer. J Transl Med 2024; 22:173. [PMID: 38369516 PMCID: PMC10874569 DOI: 10.1186/s12967-024-04995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
Lung cancer, a prevalent and aggressive disease, is characterized by recurrence and drug resistance. It is essential to comprehend the fundamental processes and discover novel therapeutic objectives for augmenting treatment results. Based on our research findings, we have identified a correlation between methylation of cg09897064 and decreased expression of ZBP1, indicating a link to unfavorable prognosis in patients with lung cancer. Furthermore, these factors play a role in macrophage polarization, with ZBP1 upregulated in M1 macrophages compared to both M0 and M2 polarized macrophages. We observed cg09897064 methylation in M2 polarization, but not in M0 and M1 polarized macrophages. ATACseq analysis revealed closed chromatin accessibility of ZBP1 in M0 polarized macrophages, while open accessibility was observed in both M1 and M2 polarized macrophages. Our findings suggest that ZBP1 is downregulated in M0 polarized macrophages due to closed chromatin accessibility and downregulated in M2 polarized macrophages due to cg09897064 methylation. Further investigations manipulating cg09897064 methylation and ZBP1 expression through overexpression plasmids and shRNAs provided evidence for their role in modulating macrophage polarization and tumor growth. ZBP1 inhibits M2 polarization and suppresses tumor growth, while cg09897064 methylation promotes M2 polarization and macrophage-induced tumor growth. In mechanism investigations, we found that cg09897064 methylation impairs CEBPA binding to the ZBP1 promoter, leading to decreased ZBP1 expression. Clinical experiments were conducted to validate the correlation between methylation at cg09897064, ZBP1 expression, and macrophage M2 polarization. Targeting these factors may hold promise as a strategy for developing innovative checkpoint inhibitors in lung cancer treatment.
Collapse
Affiliation(s)
- Ailing Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei-Sha Zheng
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Luo
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lian Bai
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shi Zhang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Cao J, Dong R, Jiang L, Gong Y, Yuan M, You J, Meng W, Chen Z, Zhang N, Weng Q, Zhu H, He Q, Ying M, Yang B. Correction: LncRNA-MM2P Identified as a Modulator of Macrophage M2 Polarization. Cancer Immunol Res 2024; 12:275. [PMID: 38303655 DOI: 10.1158/2326-6066.cir-23-0983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
|
24
|
Fitzgerald KA, Shmuel-Galia L. Lnc-ing RNA to intestinal homeostasis and inflammation. Trends Immunol 2024; 45:127-137. [PMID: 38220553 DOI: 10.1016/j.it.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in numerous biological processes, including the immune system. Initial research in this area focused on cell-based studies, but recent advances underscore the profound significance of lncRNAs at the organismal level, providing invaluable insights into their roles in inflammatory diseases. In this rapidly evolving field, lncRNAs have been described with pivotal roles in the intestinal tract where they regulate intestinal homeostasis and inflammation by influencing processes such as immune cell development, inflammatory signaling pathways, epithelial barrier function, and cellular metabolism. Understanding the regulation and function of lncRNAs in this tissue may position lncRNAs not only as potential disease biomarkers but also as promising targets for therapeutic intervention in inflammatory bowel disease and related diseases.
Collapse
Affiliation(s)
- Katherine A Fitzgerald
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Liraz Shmuel-Galia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Che N, Li M, Liu X, Cui CA, Gong J, Xuan Y. Macelignan prevents colorectal cancer metastasis by inhibiting M2 macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155144. [PMID: 37925889 DOI: 10.1016/j.phymed.2023.155144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/23/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) metastasis is a complicated process that not only involves tumor cells but also the effects of M2 type tumor-associated macrophages, a key component of the tumor microenvironment (TME), act a crucial role in cancer metastasis. Macelignan, an orally active lignan isolated from Myristica fragrans, possesses various beneficial biological activities, including anti-cancer effects, but its effect on macrophage polarization in the TME remains unknown. PURPOSE To evaluate the inhibitory potency and prospective mechanism of macelignan on M2 polarization of macrophages and CRC metastasis. METHODS The polarization and specific mechanism of M1 and M2 macrophage regulated by macelignan were determined by western blot, flow cytometry, immunofluorescence and network pharmacology. In vitro and in vivo function assays were performed to investigate the roles of macelignan in CRC metastasis. RESULTS Macelignan efficiently inhibited IL-4/13-induced polarization of M2 macrophages by suppressing the PI3K/AKT pathway in a reactive oxygen species (ROS)-dependent manner. The proportion of CD206+ M2 macrophages was elevated in patients with CRC liver metastasis. Furthermore, macelignan inhibited M2 macrophage-mediated metastasis of CRC cells in vitro and in vivo. Mechanistically, macelignan reduced secretion of IL-1β from M2 macrophages, which in turn blocked NF-κB p65 nuclear translocation and inhibited metastasis. CONCLUSION Macelignan suppressed macrophage M2 polarization via ROS-mediated PI3K/AKT signaling pathway, thus preventing IL-1β/NF-κB-dependent CRC metastasis. In the present study, we reveal a previously unrecognized mechanism of macelignan in the prevention of CRC metastasis and demonstrate its effectively and safely therapeutic potential in CRC treatment.
Collapse
Affiliation(s)
- Nan Che
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Mengxuan Li
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Xingzhe Liu
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Chun-Ai Cui
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Jie Gong
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Yanhua Xuan
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Pathology, Yanbian University College of Medicine, Yanji, China.
| |
Collapse
|
26
|
Arab I, Park J, Shin JJ, Shin HS, Suk K, Lee WH. Macrophage lncRNAs in cancer development: Long-awaited therapeutic targets. Biochem Pharmacol 2023; 218:115890. [PMID: 37884197 DOI: 10.1016/j.bcp.2023.115890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
In the tumor microenvironment, the interplay among macrophages, cancer cells, and endothelial cells is multifaceted. Tumor-associated macrophages (TAMs), which often exhibit an M2 phenotype, contribute to tumor growth and angiogenesis, while cancer cells and endothelial cells reciprocally influence macrophage behavior. This complex interrelationship highlights the importance of targeting these interactions for the development of novel cancer therapies aimed at disrupting tumor progression and angiogenesis. Accumulating evidence underscores the indispensable involvement of lncRNAs in shaping macrophage functionality and contributing to the development of cancer. Animal studies have further validated the therapeutic potential of manipulating macrophage lncRNA activity to ameliorate disease severity and reduce morbidity rates. This review provides a survey of our current understanding of macrophage-associated lncRNAs, with a specific emphasis on their molecular targets and their regulatory impact on cancer progression. These lncRNAs predominantly govern macrophage polarization, favoring the dominance of M2 macrophages or TAMs. Exosomes or extracellular vesicles mediate lncRNA transfer between macrophages and cancer cells, affecting cellular functions of each other. Moreover, this review presents therapeutic strategies targeting cancer-associated lncRNAs. The insights and findings presented in this review pertaining to macrophage lncRNAs can offer valuable information for the development of treatments against cancer.
Collapse
Affiliation(s)
- Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
27
|
Liao X, Ruan X, Yao P, Yang D, Wu X, Zhou X, Jing J, Wei D, Liang Y, Zhang T, Qin S, Jiang H. LncRNA-Gm9866 promotes liver fibrosis by activating TGFβ/Smad signaling via targeting Fam98b. J Transl Med 2023; 21:778. [PMID: 37919785 PMCID: PMC10621198 DOI: 10.1186/s12967-023-04642-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE The exact mechanism and target molecules of liver fibrosis have remained largely elusive. Here, we investigated the role of long noncoding RNA Gm9866(lncRNA-Gm9866) on liver fibrosis. METHODS The transcription of lncRNA-Gm9866 in activated cells and mouse fibrotic livers was determined by quantitative polymerase chain reaction (qRT-PCR). The effects of lentivirus-mediated knockdown or overexpression of lncRNA-Gm9866 in liver fibrosis were examined in vitro and in vivo. Furthermore, bioinformatics analysis, cell samples validation, fluorescence in situ hybridization (FISH) co-localization, RNA binding protein immunoprecipitation (RIP), actinomycin D test and Western blot (WB) were carried out to explore the potential mechanism of lncRNA-Gm9866. RESULTS The expression of α-smooth muscle actin (α-SMA), Collagen I (COL-1) and lncRNA-Gm9866 were significantly increased in tissues and cells. Overexpressing lncRNA-Gm9866 promoted the activation of hepatic stellate cells (HSCs). Silencing lncRNA-Gm9866 inhibited the activation of HSCs and transforming growth factor-β1 (TGFβ1) induced fibrosis. Overexpressing lncRNA-Gm9866 promoted hepatocytes (HCs) apoptosis and the expression of pro-fibrogenic genes, inhibited the proliferation and migration of HCs. Knockdown of lncRNA-Gm9866 inhibited the apoptosis of HCs, the expression of pro-fibrogenic genes, TGFβ1 induced fibrosis and the occurrence of carbon tetrachloride (CCl4)-induced liver fibrosis, and promoted the proliferation and migration of HCs. Mechanistically, lncRNA-Gm9866 may directly bine with Fam98b. Silencing Fam98b in stably overexpressing lncRNA-Gm9866 cell lines reversed the increase of pro-fibrogenic genes and pro-apoptotic genes, fibrosis related pathway protein TGFβ1, Smad2/3, p-Smad2/3 and Notch3 induced by overexpressing lncRNA-Gm9866. CONCLUSIONS LncRNA-Gm9866 may regulate TGFβ/Smad and Notch pathways by targeting Fam98b to regulate liver fibrosis. LncRNA-Gm9866 may be a new target for diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiaomin Liao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xianxian Ruan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Peishan Yao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dan Yang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xianbin Wu
- Department of Gastroenterology, The Wuming Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xia Zhou
- Department of Emergency, People's Hospital of Guizhou Province, Guiyang, 550000, Guizhou, China
| | - Jie Jing
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dafu Wei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yaodan Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Taicheng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shanyu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Haixing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
28
|
Yang X, Luo Y, Li M, Jin Z, Chen G, Gan C. Long non-coding RNA NBR2 suppresses the progression of colorectal cancer by downregulating miR-19a to regulate M2 macrophage polarization. CHINESE J PHYSIOL 2023; 66:546-557. [PMID: 38149567 DOI: 10.4103/cjop.cjop-d-23-00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract that significantly impacts the health of patients and lacks promising methods of diagnosis. Tumor-associated macrophages (TAMs) are involved in CRC progression, and their function is regulated by long non-coding RNAs (lncRNAs). The lncRNA NBR2 was recently reported as an oncogene, whose function in CRC remains uncertain. The present study aimed to investigate the biological function of lncRNA NBR2 in the progression of CRC and its underlying molecular mechanisms. Ten pairs of clinical CRC and para-carcinoma tissues were collected to determine the expression levels of lncRNA NBR2 and miR-19a, and the polarization state of TAMs. Quantitative reverse transcriptase-polymerase chain reaction was used to evaluate the expression of miR-19a, and western blotting was used to determine the expression levels of tumor necrosis factor-α, human leukocyte antigen-DR, arginase-1, CD163, CD206, interleukin-4, AMP-activated protein kinase (AMPK), p-AMPK, hypoxia-inducible factor-1α (HIF-1α), protein kinase B (AKT), p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR in TAMs. The proliferative ability of HCT-116 cells was detected using the CCK8 assay, and the migratory ability of HCT-116 cells was evaluated using the Transwell assay. The interaction between lncRNA NBR2 and miR-19a was determined using the luciferase assay. The lncRNA NBR2 was downregulated and miR-19a was highly expressed in CRC cells, accompanied by a high M2 polarization. Downregulated miR-19a promoted M1 polarization, activated AMPK, suppressed HIF-1α and AKT/mTOR signaling pathways, and promoted antitumor properties in NBR2-overexpressed TAMs, which were all reversed by the introduction of the miR-19a mimic. LncRNA NBR2 was verified to target miR-19a in macrophages according to the results of the luciferase assay. Collectively, lncRNA NBR2 may suppress the progression of CRC by downregulating miR-19a to regulate M2 macrophage polarization.
Collapse
Affiliation(s)
- Xiaoting Yang
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Ye Luo
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Mengying Li
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Zhan Jin
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Gao Chen
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Chunchun Gan
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| |
Collapse
|
29
|
Peng K, Biao C, Zhao YY, Jun LC, Wei W, A Bu Li Zi YLNYZ, Song L. Long non-coding RNA MM2P suppresses M1-polarized macrophages-mediated excessive inflammation to prevent sodium taurocholate-induced acute pancreatitis by blocking SHP2-mediated STAT3 dephosphorylation. Clin Exp Med 2023; 23:3589-3603. [PMID: 37486591 DOI: 10.1007/s10238-023-01126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
M1 macrophage-mediated excessive inflammatory response plays a key role in the onset and progression of acute pancreatitis (AP), and this study aimed to investigate the role and underlying mechanisms by which the macrophage polarization-related long noncoding RNA (lncRNA) MM2P participated in the regulation of AP progression. By performing quantitative reverse-transcription PCR (qRT-PCR) assay, lncRNA MM2P was found to be downregulated in both sodium taurocholate-induced AP model mice tissues and lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and gain-of-function experiments confirmed that overexpression of lncRNA MM2P counteracted inflammatory responses, reduced macrophage infiltration and facilitated M1-to-M2 transformation of macrophages to ameliorate AP development in vitro and in vivo. Further mechanical experiments revealed that lncRNA MM2P inhibited Src homology 2 containing protein tyrosine phosphatase 2 (SHP2)-mediated signal transducer and activator of transcription 3 (STAT3) dephosphorylation to activate the STAT3 signaling, and silencing of SHP2 suppressed M1 type skewing in LPS-induced RAW264.7 cells. Interestingly, our rescuing experiments verified that lncRNA MM2P-induced suppressing effects on M1-polarization of LPS-treated RAW264.7 cells were abrogated by co-treating cells with STAT3 inhibitor stattic. Collectively, our data for the first time revealed that lncRNA MM2P suppressed M1-polarized macrophages to attenuate the progression of sodium taurocholate-induced AP, and lncRNA MM2P might be an ideal biomarker for AP diagnosis and treatment.
Collapse
Affiliation(s)
- Kang Peng
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Chen Biao
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Yin Yong Zhao
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Li Chao Jun
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Wang Wei
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | | | - Lin Song
- General Surgery Department, The First People's Hospital of Urumqi (Children's Hospital of Urumqi), Jiankang Road No. 1, Tianshan District, Urumqi, 830002, Xinjiang, China.
| |
Collapse
|
30
|
Li M, Che N, Liu X, Xuan Y, Jin Y. Dauricine regulates prostate cancer progression by inhibiting PI3K/AKT-dependent M2 polarization of macrophages. Biochem Pharmacol 2023; 217:115838. [PMID: 37778445 DOI: 10.1016/j.bcp.2023.115838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
M2 type tumor-associated macrophages, an essential component of the tumor microenvironment (TME), have been proved to contribute to tumor metastasis. Dauricine (Dau) has recently received widespread attention due to its multiple targets and low price. However, the effect of Dau on macrophage polarization of TME remains unclear. In this study, we investigated the effect of Dau on prostate cancer (PCa) metastasis and specifically its correlation to macrophage polarization. Our results showed that Dau efficiently suppressed M2 polarization of macrophages induced by interleukin (IL) -4 and IL-13. Mechanistically, Dau inhibited the activity of PI3K/AKT signaling pathway, which subsequently suppressed macrophage differentiation to M2 type. Importantly, our study indicated that Dau decreased the release of chitinase 3-like protein 1 (CHI3L1) from M2 macrophages, which ultimately inhibited the M2 macrophage-mediated progression of PCa cells in vitro and in vivo. Taken together, our data demonstrated that Dau suppressed M2 polarization of macrophages via downregulation of the PI3K/AKT signaling pathway, in turn, preventing proliferation, epithelial-mesenchymal transition, migration, and invasion of PCa cells. Thus, this study reveals a previously unrecognized function of Dau in inhibition of PCa progression via intervention in M2 polarization of macrophages.
Collapse
Affiliation(s)
- Mengxuan Li
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Nan Che
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Xingzhe Liu
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Yanhua Xuan
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Pathology, Yanbian University College of Medicine, Yanji, China.
| | - Yu Jin
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Human Anatomy and Histoembryology, Yanbian University College of Medicine, Yanji, China.
| |
Collapse
|
31
|
Xu J, Shi Q, Wang B, Ji T, Guo W, Ren T, Tang X. The role of tumor immune microenvironment in chordoma: promising immunotherapy strategies. Front Immunol 2023; 14:1257254. [PMID: 37720221 PMCID: PMC10502727 DOI: 10.3389/fimmu.2023.1257254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Chordoma is a rare malignant bone tumor with limited therapeutic options, which is resistant to conventional chemotherapy and radiotherapy, and targeted therapy is also shown with little efficacy. The long-standing delay in researching its mechanisms of occurrence and development has resulted in the dilemma of no effective treatment targets and no available drugs in clinical practice. In recent years, the role of the tumor immune microenvironment in driving tumor growth has become a hot and challenging topic in the field of cancer research. Immunotherapy has shown promising results in the treatment of various tumors. However, the study of the immune microenvironment of chordoma is still in its infancy. In this review, we aim to present a comprehensive reveal of previous exploration on the chordoma immune microenvironment and propose promising immunotherapy strategies for chordoma based on these characteristics.
Collapse
Affiliation(s)
- Jiuhui Xu
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Qianyu Shi
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tao Ji
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
32
|
Wang X, Wang L, Liu W, Liu X, Jia X, Feng X, Li F, Zhu R, Yu J, Zhang H, Wu H, Wu J, Wang C, Yu B, Yu X. Dose-related immunomodulatory effects of recombinant TRAIL in the tumor immune microenvironment. J Exp Clin Cancer Res 2023; 42:216. [PMID: 37605148 PMCID: PMC10464183 DOI: 10.1186/s13046-023-02795-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND In addition to specifically inducing tumor cell apoptosis, recombinant tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has also been reported to influence the cancer immune microenvironment; however, its underlying effects and mechanisms remain unclear. Investigating the immunomodulatory effects and mechanisms of recombinant TRAIL in the tumor microenvironment (TME) may provide an important perspective and facilitate the exploration of novel TRAIL strategies for tumor therapy. METHODS Immunocompetent mice with different tumors were treated with three doses of recombinant TRAIL, and then the tumors were collected for immunological detection and mechanistic investigation. Methodological approaches include flow cytometry analysis and single-cell sequencing. RESULTS In an immunocompetent mouse model, recombinant soluble mouse TRAIL (smTRAIL) had dose-related immunomodulatory effects. The optimal dose of smTRAIL (2 mg/kg) activated innate immune cells and CD8+ T cells, whereas higher doses of smTRAIL (8 mg/kg) promoted the formation of a tumor-promoting immune microenvironment to counteract the apoptotic effects on tumor cells. The higher doses of smTRAIL treatment promoted M2-like macrophage recruitment and polarization and increased the production of protumor inflammatory cytokines, such as IL-10, which deepened the suppression of natural killer (NK) cells and CD8+ T cells in the tumor microenvironment. By constructing an HU-HSC-NPG.GM3 humanized immune system mouse model, we further verified the immunomodulatory effects induced by recombinant soluble human TRAIL (shTRAIL) and found that combinational administration of shTRAIL and trabectedin, a macrophage-targeting drug, could remodel the tumor immune microenvironment, further enhance antitumor immunity, and strikingly improve antitumor effects. CONCLUSION Our results highlight the immunomodulatory role of recombinant TRAIL and suggest promising therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Xupu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyao Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyuan Jia
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Fangshen Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Rui Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiahao Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
33
|
Fan X, Zhang L, La X, Tian J, Israr G, Li A, Wu C, An Y, Li S, Dong X, Li Z. Salvianolic acid A attenuates inflammation-mediated atherosclerosis by suppressing GRP78 secretion of endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116219. [PMID: 36758912 DOI: 10.1016/j.jep.2023.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvianolic acid A (SAA) is the main active component of the classic anti-atherosclerotic drug Salvia miltiorrhiza Bunge. Inflammation-induced infiltration of monocyte/macrophages into the vascular wall is the initiating step in atherogenesis, and targeted blocking of this step may provide a promising avenue for the precise treatment of atherosclerosis. However, the effect of salvianolic acid A on macrophages is still unknown. AIM OF THE STUDY To evaluate the effect of SAA on macrophage infiltration and the underlying mechanism of SAA against atherosclerosis. MATERIALS AND METHODS Vascular endothelial cells were stimulated with lipopolysaccharide (LPS) to simulate the inflammatory environment, and its effect on monocyte/macrophages was evaluated. Mass spectrometry was used to identify the proteins that play a key role and further validated them. LncRNA sequencing, western blot analysis, RNA immunoprecipitation, and RNA pulldown were used to elucidate the mechanism of SAA against atherosclerosis. Finally, ApoE-/- mice were fed a high-fat diet to creat an in vivo atherosclerosis model. Secretory GRP78 content, lipid levels, plaque area, macrophage infiltration, and degree of inflammation were assessed by standard assays after 16 weeks of intragastric administration of SAA or biweekly tail vein injections of GRP78 antibody. RESULTS After LPS stimulation, the increased secretion of GRP78 recruits circulating monocyte/macrophages and drives monocyte/macrophage adhesion and invasion into the vascular intima to promote atherosclerosis progression. Interestingly, SAA exerts anti-atherosclerosis effects by inhibiting the secretion of GRP78. Further mechanistic studies indicated that SAA upregulates the expression of lncRNA NR2F2-AS1, which reverses the abnormal localization of the KDEL receptor (KDELR) caused by inflammation. It promotes the homing of GRP78 from the Golgi apparatus to the endoplasmic reticulum rather than secreting outside the cell. CONCLUSION SAA alleviates atherosclerosis by inhibiting GRP78 secretion via the lncRNA NR2F2-AS1-KDELR axis. The findings not only provide a new direction for the precise therapy of atherosclerosis based on secretory GRP78 but also elucidate the pharmacological mechanism of SAA against atherosclerosis, putting the foundation for further development and clinical application of SAA drugs.
Collapse
Affiliation(s)
- Xiaxia Fan
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Jinmiao Tian
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Ghani Israr
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Yuxuan An
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Songtao Li
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
34
|
Zhang Y, Zhan L, Li J, Jiang X, Yin L. Insights into N6-methyladenosine (m6A) modification of noncoding RNA in tumor microenvironment. Aging (Albany NY) 2023; 15:3857-3889. [PMID: 37178254 PMCID: PMC10449301 DOI: 10.18632/aging.204679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotes, and it participates in the regulation of pathophysiological processes in various diseases, including malignant tumors, by regulating the expression and function of both coding and non-coding RNAs (ncRNAs). More and more studies demonstrated that m6A modification regulates the production, stability, and degradation of ncRNAs and that ncRNAs also regulate the expression of m6A-related proteins. Tumor microenvironment (TME) refers to the internal and external environment of tumor cells, which is composed of numerous tumor stromal cells, immune cells, immune factors, and inflammatory factors that are closely related to tumors occurrence and development. Recent studies have suggested that crosstalk between m6A modifications and ncRNAs plays an important role in the biological regulation of TME. In this review, we summarized and analyzed the effects of m6A modification-associated ncRNAs on TME from various perspectives, including tumor proliferation, angiogenesis, invasion and metastasis, and immune escape. Herein, we showed that m6A-related ncRNAs can not only be expected to become detection markers of tumor tissue samples, but can also be wrapped into exosomes and secreted into body fluids, thus exhibiting potential as markers for liquid biopsy. This review provides a deeper understanding of the relationship between m6A-related ncRNAs and TME, which is of great significance to the development of a new strategy for precise tumor therapy.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Jing Li
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Li Yin
- Department of Biopharmaceutics, Yulin Normal University, Guangxi, Yulin 537000, China
- Bioengineering and Technology Center for Native Medicinal Resources Development, Yulin Normal University, Yulin 537000, China
| |
Collapse
|
35
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
36
|
Zhang C, Wei S, Dai S, Li X, Wang H, Zhang H, Sun G, Shan B, Zhao L. The NR_109/FUBP1/c-Myc axis regulates TAM polarization and remodels the tumor microenvironment to promote cancer development. J Immunother Cancer 2023; 11:jitc-2022-006230. [PMID: 37217247 DOI: 10.1136/jitc-2022-006230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and exert an important role in tumor progression. Due to the heterogeneity and plasticity of TAMs, modulating the polarization states of TAMs is considered as a potential therapeutic strategy for tumors. Long noncoding RNAs (lncRNAs) have been implicated in various physiological and pathological processes, yet the underlying mechanism on how lncRNAs manipulate the polarization states of TAMs is still unclear and remains to be further investigated. METHODS Microarray analyses were employed to characterize the lncRNA profile involved in THP-1-induced M0, M1 and M2-like macrophage. Among those differentially expressed lncRNAs, NR_109 was further studied, for its function in M2-like macrophage polarization and the effects of the condition medium or macrophages mediated by NR_109 on tumor proliferation, metastasis and TME remodeling both in vitro and in vivo. Moreover, we revealed how NR_109 interacted with far upstream element-binding protein 1 (FUBP1) to regulate the protein stability through hindering ubiquitination modification by competitively binding with JVT-1. Finally, we examined sections of tumor patients to probe the correlation among the expression of NR_109 and related proteins, showing the clinical significance of NR_109. RESULTS We found that lncRNA NR_109 was highly expressed in M2-like macrophages. Knockdown NR_109 impeded IL-4 induced M2-like macrophage polarization and significantly reduced the activity of M2-like macrophages to support the proliferation and metastasis of tumor cells in vitro and in vivo. Mechanistically, NR_109 competed with JVT-1 to bind FUBP1 at its C-terminus domain, impeded the ubiquitin-mediated degradation of FUBP1, activated c-Myc transcription and thus promoted M2-like macrophages polarization. Meanwhile, as a transcription factor, c-Myc could bind to the promoter of NR_109 and enhance the transcription of NR_109. Clinically, high NR_109 expression was found in CD163+ TAMs from tumor tissues and was positively correlated with poor clinical stages of patients with gastric cancer and breast cancer. CONCLUSIONS Our work revealed for the first time that NR_109 exerted a crucial role in regulating the phenotype-remodeling and function of M2-like macrophages via a NR_109/FUBP1/c-Myc positive feedback loop. Thus, NR_109 has great translational potentials in the diagnosis, prognosis and immunotherapy of cancer.
Collapse
Affiliation(s)
- Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suli Dai
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huixia Wang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
37
|
Yang X, Wu M, Yan X, Zhang C, Luo Y, Yu J. Pulsatilla Saponins Inhibit Experimental Lung Metastasis of Melanoma via Targeting STAT6-Mediated M2 Macrophages Polarization. Molecules 2023; 28:3682. [PMID: 37175092 PMCID: PMC10179893 DOI: 10.3390/molecules28093682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Pulsatilla saponins (PS) extracts from Pulsatilla chinensis (Bge.) Regel, are a commonly used traditional Chinese medicine. In the previous study, we found Pulsatilla saponins displayed anti-tumor activity without side effects such as bone marrow suppression. However, the mechanism of the anti-tumor effect was not illustrated well. Since M2-like tumor-associated macrophages (TAMs) that required activation of the signal transducer and activator of transcription 6 (STAT6) for polarization are the important immune cells in the tumor microenvironment and play a key role in tumor progress and metastasis, this study aimed to confirm whether Pulsatilla saponins could inhibit the development and metastasis of tumors by inhibiting the polarization of M2 macrophages. We investigated the relevance of M2 macrophage polarization and the anti-tumor effects of Pulsatilla saponins in vitro and in vivo. In vitro, Pulsatilla saponins could decrease the mRNA level of M2 marker genes Arg1, Fizz1, Ym1, and CD206, and the down-regulation effect of phosphorylated STAT6 induced by IL-4; moreover, the conditioned medium (CM) from bone marrow-derived macrophages (BMDM) treated with Pulsatilla saponins could inhibit the proliferation and migration of B16-F0 cells. In vivo, Pulsatilla saponins could reduce the number of lung metastasis loci, down-regulate the expression of M2 marker genes, and suppress the expression of phosphorylated STAT6 in tumor tissues. Furthermore, we used AS1517499 (AS), a STAT6 inhibitor, to verify the role of PS on M2 macrophage polarization both in vitro and in vivo. We found that Pulsatilla saponins failed to further inhibit STAT6 activation; the mRNA level of Arg1, Fizz1, Ym1, and CD206; and the proliferation and migration of B16-F0 cells after AS1517499 intervention in vitro. Similar results were obtained in vivo. These results illustrated that Pulsatilla saponins could effectively suppress tumor progress by inhibiting the polarization of M2 macrophages via the STAT6 signaling pathway; this revealed a novel mechanism for its anti-tumor activity.
Collapse
Affiliation(s)
- Xin Yang
- Center for Translational Medicine, Jiangxi Key Laboratory of Traditional Chinese Medicine in Prevention and Treatment of Vascular Remodeling Associated Disease, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Miaolin Wu
- Center for Translational Medicine, Jiangxi Key Laboratory of Traditional Chinese Medicine in Prevention and Treatment of Vascular Remodeling Associated Disease, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Xin Yan
- The Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Cheng Zhang
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yingying Luo
- Center for Translational Medicine, Jiangxi Key Laboratory of Traditional Chinese Medicine in Prevention and Treatment of Vascular Remodeling Associated Disease, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, China
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
38
|
Xiang M, Liu L, Wu T, Wei B, Liu H. RNA-binding proteins in degenerative joint diseases: A systematic review. Ageing Res Rev 2023; 86:101870. [PMID: 36746279 DOI: 10.1016/j.arr.2023.101870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs), which are conserved proteins comprising multiple intermediate sequences, can interact with proteins, messenger RNA (mRNA) of coding genes, and non-coding RNAs to perform different biological functions, such as the regulation of mRNA stability, selective polyadenylation, and the management of non-coding microRNA (miRNA) synthesis to affect downstream targets. This article will highlight the functions of RBPs, in degenerative joint diseases (intervertebral disc degeneration [IVDD] and osteoarthritis [OA]). It will reviews the latest advancements on the regulatory mechanism of RBPs in degenerative joint diseases, in order to understand the pathophysiology, early diagnosis and treatment of OA and IVDD from a new perspective.
Collapse
Affiliation(s)
- Min Xiang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tingrui Wu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Bo Wei
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
39
|
Hezam K, Wang C, Fu E, Zhou M, Liu Y, Wang H, Zhu L, Han Z, Han ZC, Chang Y, Li Z. Superior protective effects of PGE2 priming mesenchymal stem cells against LPS-induced acute lung injury (ALI) through macrophage immunomodulation. Stem Cell Res Ther 2023; 14:48. [PMID: 36949464 PMCID: PMC10032272 DOI: 10.1186/s13287-023-03277-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have demonstrated remarkable therapeutic promise for acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS). MSC secretomes contain various immunoregulatory mediators that modulate both innate and adaptive immune responses. Priming MSCs has been widely considered to boost their therapeutic efficacy for a variety of diseases. Prostaglandin E2 (PGE2) plays a vital role in physiological processes that mediate the regeneration of injured organs. METHODS This work utilized PGE2 to prime MSCs and investigated their therapeutic potential in ALI models. MSCs were obtained from human placental tissue. MSCs were transduced with firefly luciferase (Fluc)/eGFP fusion protein for real-time monitoring of MSC migration. Comprehensive genomic analyses explored the therapeutic effects and molecular mechanisms of PGE2-primed MSCs in LPS-induced ALI models. RESULTS Our results demonstrated that PGE2-MSCs effectively ameliorated lung injury and decreased total cell numbers, neutrophils, macrophages, and protein levels in bronchoalveolar lavage fluid (BALF). Meanwhile, treating ALI mice with PGE2-MSCs dramatically reduced histopathological changes and proinflammatory cytokines while increasing anti-inflammatory cytokines. Furthermore, our findings supported that PGE2 priming improved the therapeutic efficacy of MSCs through M2 macrophage polarization. CONCLUSION PGE2-MSC therapy significantly reduced the severity of LPS-induced ALI in mice by modulating macrophage polarization and cytokine production. This strategy boosts the therapeutic efficacy of MSCs in cell-based ALI therapy.
Collapse
Affiliation(s)
- Kamal Hezam
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Chen Wang
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Enze Fu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Hui Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Lihong Zhu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China.
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
40
|
Chen X, Deng Q, Li X, Xian L, Xian D, Zhong J. Natural Plant Extract - Loganin: A Hypothesis for Psoriasis Treatment Through Inhibiting Oxidative Stress and Equilibrating Immunity via Regulation of Macrophage Polarization. Clin Cosmet Investig Dermatol 2023; 16:407-417. [PMID: 36817639 PMCID: PMC9936880 DOI: 10.2147/ccid.s396173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Psoriasis, a chronic immune-mediated inflammatory skin disease, influences approximately 2-3% of the world's population. At present, the etiology of psoriasis remains unclear and there is still no causal treatment available. Recent studies indicate that oxidative stress (OS) and T cells dysregulation may participate in the pathogenesis of psoriasis, among which M1-dominant macrophage polarization is a crucial contributor. Macrophages mainly polarize into two different subsets, ie, classically activated macrophage (M1) and alternatively activated macrophage (M2). M1 polarization tends to exacerbate psoriasis via producing substantial reactive oxygen species (ROS) and inflammatory mediators, to encourage OS invasion and T cells dysregulation. Thus, targeting M1 polarization can be a possible therapeutic alternative for psoriasis. Loganin, belonging to iridoid glycosides, is a pharmaceutically active ingredient originated from Cornus officinalis, exerting multiple biological activities, eg, immunomodulation, antioxidation, anti-inflammation, etc. More importantly, it could effectively suppress M1 polarization, thereby arresting OS aggression and T cells' dysregulation. Numerous studies have confirmed that loganin is quite reliable for diseases treatment via suppressing M1 polarization. Nevertheless, reports about loganin treating psoriasis have seldom appeared so far. Accordingly, we hold a hypothesis that loganin would availably manage psoriasis through preventing M1 polarization. Data from previous studies guarantee the potential of loganin in control of psoriasis.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Qiyan Deng
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiaolong Li
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Li Xian
- Department of Emergency, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Dehai Xian
- Department of Anatomy, Southwest Medical University, Luzhou, 646000, People’s Republic of China,Correspondence: Jianqiao Zhong, Email ; Dehai Xian, Email
| | - Jianqiao Zhong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China,Correspondence: Jianqiao Zhong, Email ; Dehai Xian, Email
| |
Collapse
|
41
|
The Long Noncoding RNA Gm9866/Nuclear Factor- κB Axis Promotes Macrophage Polarization. Mediators Inflamm 2023; 2023:9991916. [PMID: 36756088 PMCID: PMC9899594 DOI: 10.1155/2023/9991916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Macrophages are a type of immune cells with high levels of plasticity and heterogeneity. They can polarize into M1 or M2 functional phenotypes. These two phenotypes exhibit a dynamic balance during polarization-related diseases and play opposing roles. Long noncoding RNAs (lncRNAs) play an important role in biological processes such as cell proliferation, death, and differentiation; however, how long noncoding RNAs affect the cellular functionality of macrophages remains to be studied. Long noncoding RNA Gm9866 was found to be closely related to macrophage polarization through bioinformatics analysis. In this study, by conducting real-time polymerase chain reaction analysis, it was observed that long noncoding RNA Gm9866 expression significantly increased after treatment with interleukin-4 but significantly decreased after treatment with lipopolysaccharide. Fluorescence in situ hybridization revealed that long noncoding RNA Gm9866 was expressed mainly in the nucleus. Real-time polymerase chain reaction analysis showed that overexpression of long noncoding RNA Gm9866 in RAW264.7 cells further promoted the expression of M2 markers MRC1 (macrophage mannose receptor 1) and MRC2 (macrophage mannose receptor 2). Western blotting analysis demonstrated inhibition of nuclear factor-κB (NF-κB) expression. EdU (5-ethynyl-2'-deoxyuridine) and TUNEL (TdT-mediated dUTP nick-end labeling) staining assays revealed that overexpression of long noncoding RNA Gm9866 promoted cell proliferation and inhibited apoptosis. These findings thus indicated that long noncoding RNA Gm9866 promoted macrophage polarization and inhibited the nuclear factor-κB signaling pathway. Thus, long noncoding RNA Gm9866 may serve as a potential diagnostic and therapeutic target for polarization-related diseases such as infectious diseases, inflammatory diseases, liver fibrosis, and tumors.
Collapse
|
42
|
Exploration of the Long Noncoding RNAs Involved in the Crosstalk between M2 Macrophages and Tumor Metabolism in Lung Cancer. Genet Res (Camb) 2023; 2023:4512820. [PMID: 36741921 PMCID: PMC9891836 DOI: 10.1155/2023/4512820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/31/2022] [Accepted: 01/07/2023] [Indexed: 01/27/2023] Open
Abstract
Background Complex regulation exists between tumor metabolism and M2 macrophages. Long noncoding RNAs (lncRNAs) are famous for their wide regulatory role. This study aimed to identify the lncRNAs involved in the crosstalk between tumor metabolism and M2 macrophages. Methods The Cancer Genome Atlas was responsible for the public data. R software was responsible for the analysis of public data. Results Based on the input expression profile, we quantified the M2 macrophage infiltration using the CIBERSORT algorithm and found that M2 macrophages were a risk factor for lung cancer. Also, we found that M2 macrophages were correlated with multiple metabolism pathways. Then, 67 lncRNAs involved in both M2 macrophages and related metabolism pathways were identified. A prognosis signature based on AC027288.3, AP001189.3, FAM30A, GAPLINC, LINC00578, and LINC01936 was established, which had good prognosis prediction ability. The clinical parameters and risk score were combined into a nomogram plot for better prediction of the patient's prognosis. A high fit of actual survival and nomogram-predicted survival was found using the calibration plot. Moreover, in low-risk patients, immunotherapy was more effective, while cisplatin and docetaxel were more effective in high-risk patients. Biological enrichment analysis indicated pathways of notch signaling, TGF-β signaling, interferon alpha response, and interferon-gamma response were activated in the high-risk group. Meanwhile, the risk score was associated with tumor metabolism and M2 macrophages. Also, we found that the promoting effect of CAPLINC on M2 macrophage polarization might act through multiple metabolism pathways. Conclusions Our result can provide new insights into the interaction between M2 macrophages and tumor metabolism, as well as the involved lncRNAs, which can provide the direction for future studies.
Collapse
|
43
|
Luaibi AR, Al-Saffar M, Jalil AT, Rasol MA, Fedorovich EV, Saleh MM, Ahmed OS. Long non-coding RNAs: The modulators of innate and adaptive immune cells. Pathol Res Pract 2023; 241:154295. [PMID: 36608622 DOI: 10.1016/j.prp.2022.154295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Before very sensitive current genomics platforms were discovered, long non-coding RNAs (lncRNAs) as controllers of gene expression, were thought to be accumulated genetic garbage. The past few years have seen a lot of interest in a large classification of non-coding transcripts with an indeterminate length of more than 200 nucleotides [1]. lncRNAs' association with immunity and disease progression has been revealed by a growing body of experimental research. Only a limited subset of lncRNAs, however, has solid proof of their role. It is also clear that various immune cells express lncRNAs differently. In this review, we concentrated on the role of lncRNA expression in the regulation of immune cell function and response to pathological conditions in macrophages, dendritic cells, natural killer (NK) cells, neutrophils, Myeloid-derived suppressor cells (MDSCs), T cells, and B cells. The innate and adaptive immune response systems may be significantly regulated by lncRNAs, according to emerging research. To discover possible therapeutic targets for the therapy of different diseases, it may be helpful to have a better realization of the molecular mechanisms beyond the role of lncRNAs in the immune response. Therefore, it is crucial to investigate lncRNA expression and comprehend its significance for the immune system.
Collapse
Affiliation(s)
- Aseel Riyadh Luaibi
- Utbah bin Ghazwan High School for Girls, Al_Karkh first Directorate of Education, Ministry of Education, Baghdad, Iraq
| | - Montaha Al-Saffar
- Community Health Department, Institute of Medical Technology /Baghdad, Middle Technical University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Mustafa Asaad Rasol
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Eremin Vladimir Fedorovich
- Republican Scientific and Practical Center for Transfusiology and Medical, Biotechnologies, Minsk, Belarus
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq; Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|
44
|
Kovaleva O, Sorokin M, Egorova A, Petrenko A, Shelekhova K, Gratchev A. Macrophage - tumor cell interaction beyond cytokines. Front Oncol 2023; 13:1078029. [PMID: 36910627 PMCID: PMC9995642 DOI: 10.3389/fonc.2023.1078029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Tumor cells communication with tumor associated macrophages is a highly important factor of tumor malignant potential development. For a long time, studies of this interaction were focused on a cytokine- and other soluble factors -mediated processes. Discovery of exosomes and regulatory RNAs as their cargo opened a broad field of research. Non-coding RNAs (ncRNAs) were demonstrated to contribute significantly to the development of macrophage phenotype, not only by regulating expression of certain genes, but also by providing for feedback loops of macrophage activation. Being a usual cargo of macrophage- or tumor cell-derived exosomes ncRNAs provide an important mechanism of tumor-stromal cell interaction that contributes significantly to the pathogenesis of various types of tumors. Despite the volume of ongoing research there are still many gaps that must be filled before the practical use of ncRNAs will be possible. In this review we discuss the role of regulatory RNAs in the development of macrophage phenotype. Further we review recent studies supporting the hypothesis that macrophages may affect the properties of tumor cells and vice versa tumor cells influence macrophage phenotype by miRNA and lncRNA transported between these cells by exosomes. We suggest that this mechanism of tumor cell - macrophage interaction is highly promising for the development of novel diagnostic and therapeutic strategies, though many problems are still to be solved.
Collapse
Affiliation(s)
- Olga Kovaleva
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Maxim Sorokin
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Anastasija Egorova
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Anatoly Petrenko
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Ksenya Shelekhova
- Department of Pathology, Clinical Research and Practical Center for Specialized Oncological Care, St. Petersburg, Russia.,Pathology Department, SPb Medico-Social Institute, St. Petersburg, Russia
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
45
|
Li X, Qin H, Anwar A, Zhang X, Yu F, Tan Z, Tang Z. Molecular mechanism analysis of m6A modification-related lncRNA-miRNA-mRNA network in regulating autophagy in acute pancreatitis. Islets 2022; 14:184-199. [PMID: 36218109 PMCID: PMC9559333 DOI: 10.1080/19382014.2022.2132099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This study aims to explore the molecular mechanism of N6-methyladenosine (m6A) modification-related long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network in regulating autophagy and affecting the occurrence and development of acute pancreatitis (AP). RNA-seq datasets related to AP were obtained from Gene Expression Omnibus (GEO) database and merged after batch effect removal. lncRNAs significantly related to m6A in AP, namely candidate lncRNA, were screened by correlation analysis and differential expression analysis. In addition, candidate autophagy genes were screened through the multiple databases. Furthermore, the key pathways for autophagy to play a role in AP were determined by functional enrichment analysis. Finally, we predicted the miRNAs binding to genes and lncRNAs through TargetScan, miRDB and DIANA TOOLS databases and constructed two types of lncRNA-miRNA-mRNA regulatory networks mediated by upregulated and downregulated lncRNAs in AP. Nine lncRNAs related to m6A were differentially expressed in AP, and 21 candidate autophagy genes were obtained. Phosphoinositide 3-kinase (PI3K)-Akt signaling pathway and Forkhead box O (FoxO) signaling pathway might be the key pathways for autophagy to play a role in AP. Finally, we constructed a lncRNA-miRNA-mRNA regulatory network. An upregulated lncRNA competitively binds to 13 miRNAs to regulate 6 autophagy genes, and a lncRNA-miRNA-mRNA regulatory network in which 2 downregulated lncRNAs competitively bind to 7 miRNAs to regulate 2 autophagy genes. m6A modification-related lncRNA Pvt1, lncRNA Meg3 and lncRNA AW112010 may mediate the lncRNA-miRNA-mRNA network, thereby regulating autophagy to affect the development of AP.
Collapse
Affiliation(s)
- Xiang Li
- Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha, P.R. China
| | - Ali Anwar
- Xiangya School of Public Health, Central South University, Changsha, P.R. China
- Food and Nutrition Society Gilgit Baltistan, Pakistan
| | - Xingwen Zhang
- Emergency Department (three), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Fang Yu
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Zheng Tan
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Zhanhong Tang
- Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- CONTACT Zhanhong Tang Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning530021, Guangxi, P.R. China
| |
Collapse
|
46
|
Chai H, Wang W, Yuan X, Zhu C. Bio-Activated PEEK: Promising Platforms for Improving Osteogenesis through Modulating Macrophage Polarization. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120747. [PMID: 36550953 PMCID: PMC9774947 DOI: 10.3390/bioengineering9120747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
The attention on orthopedic biomaterials has shifted from their direct osteogenic properties to their osteoimmunomodulation, especially the modulation of macrophage polarization. Presently, advanced technologies endow polyetheretherketone (PEEK) with good osteoimmunomodulation by modifying PEEK surface characteristics or incorporating bioactive substances with regulating macrophage polarization. Recent studies have demonstrated that the fabrication of a hydrophilic surface and the incorporation of bioactive substances into PEEK (e.g., zinc, calcium, and phosphate) are good strategies to promote osteogenesis by enhancing the polarization of M2 macrophages. Furthermore, the modification by other osteoimmunomodulatory composites (e.g., lncRNA-MM2P, IL-4, IL-10, and chitosan) and their controlled and desired release may make PEEK an optimal bio-activated implant for regulating and balancing the osteogenic system and immune system. The purpose of this review is to comprehensively evaluate the potential of bio-activated PEEK in polarizing macrophages into M2 phenotype to improve osteogenesis. For this objective, we retrieved and discussed different kinds of bio-activated PEEK regarding improving osteogenesis through modulating macrophage polarization. Meanwhile, the relevant challenges and outlook were presented. We hope that this review can shed light on the development of bio-activated PEEK with more favorable osteoimmunomodulation.
Collapse
Affiliation(s)
- Haobu Chai
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China
| | - Wenzhi Wang
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China
| | - Xiangwei Yuan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (X.Y.); (C.Z.)
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China
- Correspondence: (X.Y.); (C.Z.)
| |
Collapse
|
47
|
Deng Y, Xiao M, Wan AH, Li J, Sun L, Liang H, Wang QP, Yin S, Bu X, Wan G. RNA and RNA Derivatives: Light and Dark Sides in Cancer Immunotherapy. Antioxid Redox Signal 2022; 37:1266-1290. [PMID: 35369726 DOI: 10.1089/ars.2022.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Immunotherapy, which utilizes the patient's immune system to fight tumor cells, has been approved for the treatment of some types of advanced cancer. Recent Advances: The complexity and diversity of tumor immunity are responsible for the varying response rates toward current immunotherapy strategies and highlight the importance of exploring regulators in tumor immunotherapy. Several genetic factors have proved to be critical regulators of tumor immunotherapy. RNAs, including messenger RNAs and non-coding RNAs, play vital and diverse roles in tumorigenesis, metastasis, drug resistance, and immunotherapy response. RNA modifications, including N6-methyladenosine methylation, are involved in tumor immunity. Critical Issues: A critical issue is the lack of summary of the regulatory RNA molecules and their derivatives in mediating immune activities in human cancers that could provide potential applications for tumor immunotherapeutic strategy. Future Directions: This review summarizes the dual roles (the light and dark sides) of RNA and its derivatives in tumor immunotherapy and discusses the development of RNA-based therapies as novel immunotherapeutic strategies for cancer treatment. Antioxid. Redox Signal. 37, 1266-1290.
Collapse
Affiliation(s)
- Yuan Deng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Xiao
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Arabella H Wan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiarui Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lei Sun
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Heng Liang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Sheng Yin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xianzhang Bu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
48
|
Liu H, Nie H, Lai W, Shi Y, Liu X, Li K, Tian L, Xi Z, Lin B. Different exposure modes of PM 2.5 induces bronchial asthma and fibrosis in male rats through macrophage activation and immune imbalance induced by TIPE2 methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114200. [PMID: 36274320 DOI: 10.1016/j.ecoenv.2022.114200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/02/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Exposure to PM2.5 can aggravate the occurrence and development of bronchial asthma and fibrosis. Here, we investigated the differences in bronchial injury caused by different exposure modes of PM2.5 (high concentration intermittent exposure and low concentration continuous exposure), and the mechanism of macrophage activation and respiratory immune imbalance induced by PM2.5, leading to bronchial asthma and airway fibrosis using animal and cell models. A "PM2.5 real-time online concentrated animal whole-body exposure system" was used to conduct PM2.5 respiratory exposure of Wistar rats for 12 weeks, which can enhance oxidative stress in rat bronchus, activate epithelial cells and macrophages, release chemokines, recruit inflammatory cells, release inflammatory factors and extracellular matrix, promote bronchial mucus hypersecretion, inhibit the expression of epithelial cytoskeletal proteins, destroy airway barrier, and induce asthma. Furthermore, PM2.5 induced M2 polarization in lung bronchial macrophages through JAK/STAT and PI3K/Akt signaling pathways, and compared with low concentration continuous exposure, high concentration intermittent exposure of PM2.5 could regulate significantly higher expression of TIPE2 protein through promoter methylation of TIPE2 DNA, thereby activating PI3K/Akt signaling pathway and more effectively inducing M2 polarization of macrophages. Additionally, activated macrophages release IL-23, and activated epithelial cells and macrophages released TGF-β1, which promoted the differentiation of Th17 cells, triggered the Th17 dominant immune response, and activated the TGF-β1/Smad2 signaling pathway, finally causing bronchial fibrosis. Moreover, when the total amount of PM2.5 exposure was equal, high concentration-intermittent exposure was more serious than low concentration-continuous exposure. In vitro experiments, the co-culture models of PM2.5 with BEAS-2B, WL-38 and rat primary alveolar macrophages further confirmed that PM2.5 could induce the macrophage activation through oxidative stress and TIPE2 DNA methylation, and activate the TGF-β1/Smad2 signaling pathway, leading to the occurrence of bronchial fibrosis.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Xuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
49
|
Integrative Analysis Reveals a Nine TP53 Pathway-Related lncRNA Prognostic Signature in Endometrial Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5432806. [PMID: 36262972 PMCID: PMC9576376 DOI: 10.1155/2022/5432806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/19/2021] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Background TP53 mutation is a common mutation gene in uterine corpus endometrial carcinoma (UCEC), and the TP53 signaling pathway plays an essential role in the tumorigenesis, progression, and immune infiltration in UCEC. We aimed to discover TP53 pathway-related lncRNAs in UCEC. Materials and methods. 528 UCEC patients with 587 transcriptional profiles were enrolled in this study. We first investigated the differential status of TP53 signaling pathway between tumor and normal tissues by GSEA analysis, then identified TP53 pathway-related lncRNAs, accordingly establishing a nine TP53 pathway related to the lncRNA signature in the training set and verified this signature in the test set. Besides, the interaction network was constructed; the immune infiltration, drug response to cisplatin and paclitaxel, and mutation atlas were investigated. Finally, we performed a subgroup analysis to check the universality of this signature. Results A nine TP53 pathway-related lncRNA prognostic signature was constructed and verified superior accuracy in predicting the overall survival of UCEC patients. Besides, high-risk patients showed a poor prognosis, but they were more sensitive to the cisplatin and paclitaxel. Notably, M2 macrophages were higher infiltrated in high-risk patients, and TP53 showed a significantly higher mutation in high-risk patients than low-risk patients. Conclusions We constructed and verified a nine TP53 pathway-related lncRNA prognostic signature in UCEC, which also contributes to the decision-making of the chemotherapy.
Collapse
|
50
|
Zhang LJ, Chen F, Liang XR, Ponnusamy M, Qin H, Lin ZJ. Crosstalk among long non-coding RNA, tumor-associated macrophages and small extracellular vesicles in tumorigenesis and dissemination. Front Oncol 2022; 12:1008856. [PMID: 36263199 PMCID: PMC9574020 DOI: 10.3389/fonc.2022.1008856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), which lack protein-coding ability, can regulate cancer cell growth, proliferation, invasion, and metastasis. Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment that have a significant impact on cancer progression. Small extracellular vesicles (sEV) are crucial mediators of intercellular communications. Cancer cell and macrophage-derived sEV can carry lncRNAs that influence the onset and progression of cancer. Dysregulation of lncRNAs, TAMs, and sEV is widely observed in tumors which makes them valuable targets for cancer immunotherapy. In this review, we summarize current updates on the interactions among sEV, lncRNAs, and TAMs in tumors and provide new perspectives on cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Li-jie Zhang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Xiao-ru Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | | | - Hao Qin
- Department of Public Health, Weifang Medical University, Weifang, China
| | - Zhi-juan Lin
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
- *Correspondence: Zhi-juan Lin,
| |
Collapse
|