1
|
Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol 2024; 15:1433113. [PMID: 39611159 PMCID: PMC11604077 DOI: 10.3389/fimmu.2024.1433113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024] Open
Abstract
Although the pathological significance of myeloid cell heterogeneity is still poorly understood, new evidence indicates that distinct macrophage subsets are characterized by specific metabolic programs that influence disease onset and progression. Within this scenario, distinct subsets of macrophages, endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), play critical roles in physiologic and pathological conditions. Of relevance, the substrates of HO-1 activity are the heme groups that derive from cellular catabolism and are converted into carbon monoxide (CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory activities and control oxidative damage. While high levels of expression of HO-1 enzyme by specialized macrophage populations (erythrophagocytes) guarantee the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the action of HO-1 takes on pathological significance in various diseases, and abnormal CO metabolism has been observed in cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration. Modulation of heme catabolism and CO production is therefore a feasible therapeutic opportunity in various diseases. In this review we discuss the role of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular, immune-mediated and neurodegenerative diseases) and highlight new therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
Collapse
Affiliation(s)
- Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Incerti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Milena Bertolotti
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Giulia Ballerini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
2
|
Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem 2024:10.1007/s11010-024-05119-5. [PMID: 39287890 DOI: 10.1007/s11010-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mariarita Spampinato
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
3
|
Perrone F, Pecci F, Maffezzoli M, Giudice GC, Cognigni V, Mazzaschi G, Cantini L, Santamaria L, Paoloni F, Bruno Rocchi ML, Coriano' M, Acunzo A, Quaini F, Tiseo M, Kamal SS, Berardi R, Buti S. Differential impact of lipid profile according to neutrophil-to-lymphocyte ratio status in patients with advanced cancer treated with immunotherapy. Immunotherapy 2024; 16:859-868. [PMID: 39105618 PMCID: PMC11457594 DOI: 10.1080/1750743x.2024.2377953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Aim: To investigate the different impact of each component of lipid profile in advanced cancer patients treated with immune checkpoints inhibitors (ICIs) according to neutrophil-to-lymphocyte ratio (NLR) value.Methods: We retrospectively collected total cholesterol (TC), triglycerides (TGs), low-density lipoproteins (LDL), high-density lipoproteins (HDL).Results: 407 patients were enrolled. In NLR <4 subgroup, TGs <150 mg/dl led to longer PFS (p = 0.01) and OS (p = 0.02) compared with TGs ≥150 mg/dl; LDL <100 mg/dl led to longer PFS (p = 0.004) and OS (p = 0.007) compared with LDL ≥100 mg/dl. In NLR ≥4 subgroup, TC >200 mg/dl led to longer PFS (p = 0.008) and OS (p = 0.004) compared with TC <200 mg/dl.Conclusion: We showed a distinct prognostic impact of lipid profile according to NLR.
Collapse
Affiliation(s)
- Fabiana Perrone
- Medical Oncology Unit, University Hospital of Parma, Parma
- Department of Medicine & Surgery, Parma, University of Parma, Parma
| | - Federica Pecci
- Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona
| | - Michele Maffezzoli
- Medical Oncology Unit, University Hospital of Parma, Parma
- Department of Medicine & Surgery, Parma, University of Parma, Parma
| | - Giulia Claire Giudice
- Medical Oncology Unit, University Hospital of Parma, Parma
- Department of Medicine & Surgery, Parma, University of Parma, Parma
| | - Valeria Cognigni
- Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona
| | - Giulia Mazzaschi
- Medical Oncology Unit, University Hospital of Parma, Parma
- Department of Medicine & Surgery, Parma, University of Parma, Parma
| | | | - Luca Santamaria
- Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona
| | - Francesco Paoloni
- Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona
| | | | | | - Alessandro Acunzo
- Medical Oncology Unit, University Hospital of Parma, Parma
- Department of Medicine & Surgery, Parma, University of Parma, Parma
| | - Federico Quaini
- Department of Medicine & Surgery, Parma, University of Parma, Parma
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma
- Department of Medicine & Surgery, Parma, University of Parma, Parma
| | | | - Rossana Berardi
- Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma
- Department of Medicine & Surgery, Parma, University of Parma, Parma
| |
Collapse
|
4
|
Jansen J, Garmyn M, Güvenç C. The Effect of Body Mass Index on Melanoma Biology, Immunotherapy Efficacy, and Clinical Outcomes: A Narrative Review. Int J Mol Sci 2024; 25:6433. [PMID: 38928137 PMCID: PMC11204248 DOI: 10.3390/ijms25126433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies indicate that a higher body mass index (BMI) might correlate with improved responses to melanoma treatment, especially with immune checkpoint inhibitors (ICIs), despite the general association of obesity with an increased risk of cancer and higher mortality rates. This review examines the paradoxical relationship between BMI and clinical outcomes in melanoma patients by exploring molecular links, the efficacy of immunotherapy, and patient survival outcomes. Our comprehensive literature search across the PubMed and Embase databases revealed a consistent pattern: increased BMI is associated with a better prognosis in melanoma patients undergoing ICI treatment. This "obesity paradox" might be explained by the metabolic and immunological changes in obesity, which could enhance the effectiveness of immunotherapy in treating melanoma. The findings highlight the complexity of the interactions between obesity and melanoma, suggesting that adipose tissue may modulate the immune response and treatment sensitivity favorably. Our review highlights the need for personalized treatment strategies that consider the metabolic profiles of patients and calls for further research to validate BMI as a prognostic factor in clinical settings. This nuanced approach to the obesity paradox in melanoma could significantly impact treatment planning and patient management.
Collapse
Affiliation(s)
| | | | - Canan Güvenç
- Department of Dermatology, University Hospitals Leuven, 3000 Leuven, Belgium; (J.J.); (M.G.)
| |
Collapse
|
5
|
Piening A, Ebert E, Gottlieb C, Khojandi N, Kuehm LM, Hoft SG, Pyles KD, McCommis KS, DiPaolo RJ, Ferris ST, Alspach E, Teague RM. Obesity-related T cell dysfunction impairs immunosurveillance and increases cancer risk. Nat Commun 2024; 15:2835. [PMID: 38565540 PMCID: PMC10987624 DOI: 10.1038/s41467-024-47359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Obesity is a well-established risk factor for human cancer, yet the underlying mechanisms remain elusive. Immune dysfunction is commonly associated with obesity but whether compromised immune surveillance contributes to cancer susceptibility in individuals with obesity is unclear. Here we use a mouse model of diet-induced obesity to investigate tumor-infiltrating CD8 + T cell responses in lean, obese, and previously obese hosts that lost weight through either dietary restriction or treatment with semaglutide. While both strategies reduce body mass, only dietary intervention restores T cell function and improves responses to immunotherapy. In mice exposed to a chemical carcinogen, obesity-related immune dysfunction leads to higher incidence of sarcoma development. However, impaired immunoediting in the obese environment enhances tumor immunogenicity, making the malignancies highly sensitive to immunotherapy. These findings offer insight into the complex interplay between obesity, immunity and cancer, and provide explanation for the obesity paradox observed in clinical immunotherapy settings.
Collapse
Affiliation(s)
- Alexander Piening
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Emily Ebert
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Carter Gottlieb
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Niloufar Khojandi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Lindsey M Kuehm
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kelly D Pyles
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Stephen T Ferris
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Elise Alspach
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ryan M Teague
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Glassman I, Le N, Asif A, Goulding A, Alcantara CA, Vu A, Chorbajian A, Mirhosseini M, Singh M, Venketaraman V. The Role of Obesity in Breast Cancer Pathogenesis. Cells 2023; 12:2061. [PMID: 37626871 PMCID: PMC10453206 DOI: 10.3390/cells12162061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Research has shown that obesity increases the risk for type 2 diabetes mellitus (Type 2 DM) by promoting insulin resistance, increases serum estrogen levels by the upregulation of aromatase, and promotes the release of reactive oxygen species (ROS) by macrophages. Increased circulating glucose has been shown to activate mammalian target of rapamycin (mTOR), a significant signaling pathway in breast cancer pathogenesis. Estrogen plays an instrumental role in estrogen-receptor-positive breast cancers. The role of ROS in breast cancer warrants continued investigation, in relation to both pathogenesis and treatment of breast cancer. We aim to review the role of obesity in breast cancer pathogenesis and novel therapies mediating obesity-associated breast cancer development. We explore the association between body mass index (BMI) and breast cancer incidence and the mechanisms by which oxidative stress modulates breast cancer pathogenesis. We discuss the role of glutathione, a ubiquitous antioxidant, in breast cancer therapy. Lastly, we review breast cancer therapies targeting mTOR signaling, leptin signaling, blood sugar reduction, and novel immunotherapy targets.
Collapse
Affiliation(s)
- Ira Glassman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Nghia Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Aamna Asif
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Anabel Goulding
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Cheldon Ann Alcantara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Annie Vu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Mercedeh Mirhosseini
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Manpreet Singh
- Corona Regional Medical Center, Department of Emergency Medicine, Corona, CA 92882, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| |
Collapse
|
7
|
Chiura T, Mitchell AJ, Grote DL, Khojandi N, Teague RM, Mak PJ. Interactions of azole-based inhibitors with human heme oxygenase. J Inorg Biochem 2023; 244:112238. [PMID: 37119547 PMCID: PMC10189658 DOI: 10.1016/j.jinorgbio.2023.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
Human heme oxygenase-1 (hHO-1) plays a crucial role in human physiology because of its ability to metabolize free heme. The heme degradation products, biliverdin and bilirubin, were shown to have protective antioxidant properties in cells. In the context of cancer, hHO-1 function grants cancer cells defense from standard chemotherapy treatments, leading to the development of azole-based inhibitors that target hHO-1 for potential anticancer therapy. This work reports experimental and theoretical characterization of interactions between three azole-based inhibitors and the active site of hHO-1. It was found that all three compounds have Kd values within the μM order. The electronic absorption and resonance Raman (rR) spectra indicated that they bind to the ferric heme and coordinate through a nitrogen atom. rR measurements revealed varying effects of inhibitors on the geometry of heme vinyl groups in the ferric form of hHO-1. Changes in peripheral group orientation are known to affect heme redox potential, and consequently can reflect the inhibitory properties of studied azoles. The subsequent docking studies showed that inhibitors with lower Kd values are located close to two vinyl groups, while the compound with higher Kd is situated near only one, consistent with the rR studies. Finally, the rR studies of the CO adducts showed that the inhibitors bind to the heme in a reversible manner. Altogether, the combination of ligand binding studies, UV-Vis and rR spectroscopies, as well as computational approach revealed an importance of the steric hindrance imposed by the inhibitor's side chain.
Collapse
Affiliation(s)
- Tapiwa Chiura
- Chemistry Department, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, United States of America
| | - Amanda J Mitchell
- Chemistry Department, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, United States of America
| | - Dakota L Grote
- Chemistry Department, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, United States of America
| | - Niloufar Khojandi
- Molecular Microbiology and Immunology Department, Saint Louis University, 1100 South Grand Blvd, St. Louis, MO 63104, United States of America
| | - Ryan M Teague
- Molecular Microbiology and Immunology Department, Saint Louis University, 1100 South Grand Blvd, St. Louis, MO 63104, United States of America.
| | - Piotr J Mak
- Chemistry Department, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, United States of America.
| |
Collapse
|
8
|
Wang H, Cheng Q, Bao L, Li M, Chang K, Yi X. Cytoprotective Role of Heme Oxygenase-1 in Cancer Chemoresistance: Focus on Antioxidant, Antiapoptotic, and Pro-Autophagy Properties. Antioxidants (Basel) 2023; 12:1217. [PMID: 37371947 DOI: 10.3390/antiox12061217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Chemoresistance remains the foremost challenge in cancer therapy. Targeting reactive oxygen species (ROS) manipulation is a promising strategy in cancer treatment since tumor cells present high levels of intracellular ROS, which makes them more vulnerable to further ROS elevation than normal cells. Nevertheless, dynamic redox evolution and adaptation of tumor cells are capable of counteracting therapy-induced oxidative stress, which leads to chemoresistance. Hence, exploring the cytoprotective mechanisms of tumor cells is urgently needed to overcome chemoresistance. Heme oxygenase-1 (HO-1), a rate-limiting enzyme of heme degradation, acts as a crucial antioxidant defense and cytoprotective molecule in response to cellular stress. Recently, emerging evidence indicated that ROS detoxification and oxidative stress tolerance owing to the antioxidant function of HO-1 contribute to chemoresistance in various cancers. Enhanced HO-1 expression or enzymatic activity was revealed to promote apoptosis resistance and activate protective autophagy, which also involved in the development of chemoresistance. Moreover, inhibition of HO-1 in multiple cancers was identified to reversing chemoresistance or improving chemosensitivity. Here, we summarize the most recent advances regarding the antioxidant, antiapoptotic, and pro-autophagy properties of HO-1 in mediating chemoresistance, highlighting HO-1 as a novel target for overcoming chemoresistance and improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Huan Wang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Qi Cheng
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Lingjie Bao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Mingqing Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Kaikai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xiaofang Yi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
9
|
Zhou K, Li S, Zhao Y, Cheng K. Mechanisms of drug resistance to immune checkpoint inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1127071. [PMID: 36845142 PMCID: PMC9944349 DOI: 10.3389/fimmu.2023.1127071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) in the form of anti-CTLA-4 and anti-PD-1/PD-L1 have become the frontier of cancer treatment and successfully prolonged the survival of patients with advanced non-small cell lung cancer (NSCLC). But the efficacy varies among different patient population, and many patients succumb to disease progression after an initial response to ICIs. Current research highlights the heterogeneity of resistance mechanisms and the critical role of tumor microenvironment (TME) in ICIs resistance. In this review, we discussed the mechanisms of ICIs resistance in NSCLC, and proposed strategies to overcome resistance.
Collapse
Affiliation(s)
- Kexun Zhou
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuo Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital Sichuan University, Chengdu, China
| | - Yi Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Ke Cheng
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Diverse effects of obesity on antitumor immunity and immunotherapy. Trends Mol Med 2023; 29:112-123. [PMID: 36473793 DOI: 10.1016/j.molmed.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 12/07/2022]
Abstract
Currently, obesity is one of the biggest health burdens facing society because it causes several comorbidities, such as type 2 diabetes, atherosclerosis, and heart disease. Obesity is also linked to multiple types of cancer. Obesity is the second most common preventable cause of cancer after smoking; the rates of obesity are increasing worldwide, as are the rates of obesity-associated cancer. Multiple factors link obesity to cancer, such as increased levels of growth hormones and adipokines, gut dysbiosis, altered tumor metabolism, and chronic low-grade inflammation. More recently, obesity has been shown to also affect the immune response against cancer. In this review we discuss the interplay between obesity, the immune system, and cancer.
Collapse
|
11
|
Babl N, Hofbauer J, Matos C, Voll F, Menevse AN, Rechenmacher M, Mair R, Beckhove P, Herr W, Siska PJ, Renner K, Kreutz M, Schnell A. Low-density lipoprotein balances T cell metabolism and enhances response to anti-PD-1 blockade in a HCT116 spheroid model. Front Oncol 2023; 13:1107484. [PMID: 36776340 PMCID: PMC9911890 DOI: 10.3389/fonc.2023.1107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction The discovery of immune checkpoints and the development of their specific inhibitors was acclaimed as a major breakthrough in cancer therapy. However, only a limited patient cohort shows sufficient response to therapy. Hence, there is a need for identifying new checkpoints and predictive biomarkers with the objective of overcoming immune escape and resistance to treatment. Having been associated with both, treatment response and failure, LDL seems to be a double-edged sword in anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing the effects of LDL on T cell performance in tumor immunity may enable individual treatment adjustments in order to enhance the response to routinely administered immunotherapies in different patient populations. The object of this work was to investigate the effect of LDL on T cell activation and tumor immunity in-vitro. Methods Experiments were performed with different LDL dosages (LDLlow = 50 μg/ml and LDLhigh = 200 μg/ml) referring to medium control. T cell phenotype, cytokines and metabolism were analyzed. The functional relevance of our findings was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade. Results The key points of our findings showed that LDLhigh skewed the CD4+ T cell subset into a central memory-like phenotype, enhanced the expression of the co-stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and phenotypical changes were associated with a balanced T cell metabolism, in particular with a significant decrease of reactive oxygen species (ROS). T cell transfer into a HCT116 spheroid model resulted in a significant reduction of the spheroid viability in presence of an anti-PD-1 antibody combined with LDLhigh. Discussion Further research needs to be conducted to fully understand the impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL effects on other lymphocytes and myeloid cells for improving anti-PD-1 immunotherapy. The reason for improved response might be a resilient, less exhausted phenotype with balanced ROS levels.
Collapse
Affiliation(s)
- Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Joshua Hofbauer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Florian Voll
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Ayse Nur Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ruth Mair
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter J. Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Annette Schnell
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,*Correspondence: Annette Schnell,
| |
Collapse
|
12
|
Akter Z, Salamat N, Ali MY, Zhang L. The promise of targeting heme and mitochondrial respiration in normalizing tumor microenvironment and potentiating immunotherapy. Front Oncol 2023; 12:1072739. [PMID: 36686754 PMCID: PMC9851275 DOI: 10.3389/fonc.2022.1072739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Cancer immunotherapy shows durable treatment responses and therapeutic benefits compared to other cancer treatment modalities, but many cancer patients display primary and acquired resistance to immunotherapeutics. Immunosuppressive tumor microenvironment (TME) is a major barrier to cancer immunotherapy. Notably, cancer cells depend on high mitochondrial bioenergetics accompanied with the supply of heme for their growth, proliferation, progression, and metastasis. This excessive mitochondrial respiration increases tumor cells oxygen consumption, which triggers hypoxia and irregular blood vessels formation in various regions of TME, resulting in an immunosuppressive TME, evasion of anti-tumor immunity, and resistance to immunotherapeutic agents. In this review, we discuss the role of heme, heme catabolism, and mitochondrial respiration on mediating immunosuppressive TME by promoting hypoxia, angiogenesis, and leaky tumor vasculature. Moreover, we discuss the therapeutic prospects of targeting heme and mitochondrial respiration in alleviating tumor hypoxia, normalizing tumor vasculature, and TME to restore anti-tumor immunity and resensitize cancer cells to immunotherapy.
Collapse
|
13
|
Abstract
Historically, cancer research and therapy have focused on malignant cells and their tumor microenvironment. However, the vascular, lymphatic and nervous systems establish long-range communication between the tumor and the host. This communication is mediated by metabolites generated by the host or the gut microbiota, as well by systemic neuroendocrine, pro-inflammatory and immune circuitries-all of which dictate the trajectory of malignant disease through molecularly defined biological mechanisms. Moreover, aging, co-morbidities and co-medications have a major impact on the development, progression and therapeutic response of patients with cancer. In this Perspective, we advocate for a whole-body 'ecological' exploration of malignant disease. We surmise that accumulating knowledge on the intricate relationship between the host and the tumor will shape rational strategies for systemic, bodywide interventions that will eventually improve tumor control, as well as quality of life, in patients with cancer.
Collapse
|
14
|
Crump LS, Kines KT, Richer JK, Lyons TR. Breast cancers co-opt normal mechanisms of tolerance to promote immune evasion and metastasis. Am J Physiol Cell Physiol 2022; 323:C1475-C1495. [PMID: 36189970 PMCID: PMC9662806 DOI: 10.1152/ajpcell.00189.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Normal developmental processes, such as those seen during embryonic development and postpartum mammary gland involution, can be reactivated by cancer cells to promote immune suppression, tumor growth, and metastatic spread. In mammalian embryos, paternal-derived antigens are at risk of being recognized as foreign by the maternal immune system. Suppression of the maternal immune response toward the fetus, which is mediated in part by the trophoblast, is critical to ensure embryonic survival and development. The postpartum mammary microenvironment also exhibits immunosuppressive mechanisms accompanying the massive cell death and tissue remodeling that occurs during mammary gland involution. These normal immunosuppressive mechanisms are paralleled during malignant transformation, where tumors can develop neoantigens that may be recognized as foreign by the immune system. To circumvent this, tumors can dedifferentiate and co-opt immune-suppressive mechanisms normally utilized during fetal tolerance and postpartum mammary involution. In this review, we discuss those similarities and how they can inform our understanding of cancer progression and metastasis.
Collapse
Affiliation(s)
- Lyndsey S Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
15
|
Zhang G. Regulatory T-cells-related signature for identifying a prognostic subtype of hepatocellular carcinoma with an exhausted tumor microenvironment. Front Immunol 2022; 13:975762. [PMID: 36189226 PMCID: PMC9521506 DOI: 10.3389/fimmu.2022.975762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T-Cells (Tregs) are important in the progression of hepatocellular cancer (HCC). The goal of this work was to look into Tregs-related genes and develop a Tregs-related prognostic model. We used the weighted gene co-expression network analysis (WGCNA) to look for Tregs-related genes in the TCGA, ICGC, and GSE14520 cohorts and then used the non-negative matrix factorization (NMF) algorithm to find Tregs-related subpopulations. The LASSO-Cox regression approach was used to determine Tregs-related genes, which were then condensed into a risk score. A total of 153 overlapping genes among the three cohorts were considered Tregs-related genes. Based on these genes, two Tregs-associated clusters that varied in both prognostic and biological characteristics were identified. When compared with Cluster 1, Cluster 2 was a TME-exhausted HCC subpopulation with substantial immune cell infiltration but a poor prognosis. Five Tregs-related genes including HMOX1, MMP9, CTSC, SDC3, and TNFRSF11B were finally used to construct a prognostic model, which could accurately predict the prognosis of HCC patients in the three datasets. Patients in the high-risk scores group with bad survival outcomes were replete with immune/inflammatory responses, but exhausted T cells and elevated PD-1 and PD-L1 expression. The results of qRT-PCR and immunohistochemical staining (IHC) analysis in clinical tissue samples confirmed the above findings. Moreover, the signature also accurately predicted anti-PD-L1 antibody responses in the IMvigor210 dataset. Finally, HMOX1, MMP9, and TNFRSF11B were expressed differently in Hep3B and Huh7 cells after being treated with a PD1/PD-L1 inhibitor. In conclusion, our study uncovered a Tregs-related prognostic model that could identify TME- exhausted subpopulations and revealed that PD1/PD-L1 inhibitors could alter the expression levels of HMOX1, MMP9, and TNFRSF11B in Hep3B and Huh7 cells, which might help us better understand Tregs infiltration and develop personalized immunotherapy treatments for HCC patients.
Collapse
|
16
|
HO-1 Limits the Efficacy of Vemurafenib/PLX4032 in BRAF V600E Mutated Melanoma Cells Adapted to Physiological Normoxia or Hypoxia. Antioxidants (Basel) 2022; 11:antiox11061171. [PMID: 35740068 PMCID: PMC9219655 DOI: 10.3390/antiox11061171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Induction of heme oxygenase 1 (HO-1) favors immune-escape in BRAFV600 melanoma cells treated with Vemurafenib/PLX4032 under standard cell culture conditions. However, the oxygen tension under standard culture conditions (~18 kPa O2) is significantly higher than the physiological oxygen levels encountered in vivo. In addition, cancer cells in vivo are often modified by hypoxia. In this study, MeOV-1 primary melanoma cells bearing the BRAFV600E mutation, were adapted to either 5 kPa O2 (physiological normoxia) or 1 kPa O2 (hypoxia) and then exposed to 10 μM PLX4032. PLX4032 abolished ERK phosphorylation, reduced Bach1 expression and increased HO-1 levels independent of pericellular O2 tension. Moreover, cell viability was significantly reduced further in cells exposed to PLX4032 plus Tin mesoporphyrin IX, a HO-1 inhibitor. Notably, our findings provide the first evidence that HO-1 inhibition in combination with PLX4032 under physiological oxygen tension and hypoxia restores and increases the expression of the NK ligands ULBP3 and B7H6 compared to cells exposed to PLX4032 alone. Interestingly, although silencing NRF2 prevented PLX4032 induction of HO-1, other NRF2 targeted genes were unaffected, highlighting a pivotal role of HO-1 in melanoma resistance and immune escape. The present findings may enhance translation and highlight the potential of the HO-1 inhibitors in the therapy of BRAFV600 melanomas.
Collapse
|
17
|
Immunometabolic Markers in a Small Patient Cohort Undergoing Immunotherapy. Biomolecules 2022; 12:biom12050716. [PMID: 35625643 PMCID: PMC9139165 DOI: 10.3390/biom12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Although the discovery of immune checkpoints was hailed as a major breakthrough in cancer therapy, generating a sufficient response to immunotherapy is still limited. Thus, the objective of this exploratory, hypothesis-generating study was to identify potentially novel peripheral biomarkers and discuss the possible predictive relevance of combining scarcely investigated metabolic and hormonal markers with immune subsets. Sixteen markers that differed significantly between responders and non-responders were identified. In a further step, the correlation with progression-free survival (PFS) and false discovery correction (Benjamini and Hochberg) revealed potential predictive roles for the immune subset absolute lymphocyte count (rs = 0.51; p = 0.0224 *), absolute basophil count (rs = 0.43; p = 0.04 *), PD-1+ monocytes (rs = −0.49; p = 0.04 *), hemoglobin (rs = 0.44; p = 0.04 *), metabolic markers LDL (rs = 0.53; p = 0.0224 *), free androgen index (rs = 0.57; p = 0.0224 *) and CRP (rs = −0.46; p = 0.0352 *). The absolute lymphocyte count, LDL and free androgen index were the most significant individual markers, and combining the immune subsets with the metabolic markers into a biomarker ratio enhanced correlation with PFS (rs = −0.74; p ≤ 0.0001 ****). In summary, in addition to well-established markers, we identified PD-1+ monocytes and the free androgen index as potentially novel peripheral markers in the context of immunotherapy. Furthermore, the combination of immune subsets with metabolic and hormonal markers may have the potential to enhance the power of future predictive scores and should, therefore, be investigated further in larger trials.
Collapse
|
18
|
Deng CF, Zhu N, Zhao TJ, Li HF, Gu J, Liao DF, Qin L. Involvement of LDL and ox-LDL in Cancer Development and Its Therapeutical Potential. Front Oncol 2022; 12:803473. [PMID: 35251975 PMCID: PMC8889620 DOI: 10.3389/fonc.2022.803473] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/12/2022] [Indexed: 01/17/2023] Open
Abstract
Lipid metabolism disorder is related to an increased risk of tumorigenesis and is involved in the rapid growth of cancer cells as well as the formation of metastatic lesions. Epidemiological studies have demonstrated that low-density lipoprotein (LDL) and oxidized low-density lipoprotein (ox-LDL) are closely associated with breast cancer, colorectal cancer, pancreatic cancer, and other malignancies, suggesting that LDL and ox-LDL play important roles during the occurrence and development of cancers. LDL can deliver cholesterol into cancer cells after binding to LDL receptor (LDLR). Activation of PI3K/Akt/mTOR signaling pathway induces transcription of the sterol regulatory element-binding proteins (SREBPs), which subsequently promotes cholesterol uptake and synthesis to meet the demand of cancer cells. Ox-LDL binds to the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and cluster of differentiation 36 (CD36) to induce mutations, resulting in inflammation, cell proliferation, and metastasis of cancer. Classic lipid-lowering drugs, statins, have been shown to reduce LDL levels in certain types of cancer. As LDL and ox-LDL play complicated roles in cancers, the potential therapeutic effect of targeting lipid metabolism in cancer therapy warrants more investigation.
Collapse
Affiliation(s)
- Chang-Feng Deng
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Li Qin,
| |
Collapse
|
19
|
Williams MM, Hafeez SA, Christenson JL, O’Neill KI, Hammond NG, Richer JK. Reversing an Oncogenic Epithelial-to-Mesenchymal Transition Program in Breast Cancer Reveals Actionable Immune Suppressive Pathways. Pharmaceuticals (Basel) 2021; 14:ph14111122. [PMID: 34832904 PMCID: PMC8622696 DOI: 10.3390/ph14111122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Approval of checkpoint inhibitors for treatment of metastatic triple negative breast cancer (mTNBC) has opened the door for the use of immunotherapies against this disease. However, not all patients with mTNBC respond to current immunotherapy approaches such as checkpoint inhibitors. Recent evidence demonstrates that TNBC metastases are more immune suppressed than primary tumors, suggesting that combination or additional immunotherapy strategies may be required to activate an anti-tumor immune attack at metastatic sites. To identify other immune suppressive mechanisms utilized by mTNBC, our group and others manipulated oncogenic epithelial-to-mesenchymal transition (EMT) programs in TNBC models to reveal differences between this breast cancer subtype and its more epithelial counterpart. This review will discuss how EMT modulation revealed several mechanisms, including tumor cell metabolism, cytokine milieu and secretion of additional immune modulators, by which mTNBC cells may suppress both the innate and adaptive anti-tumor immune responses. Many of these pathways/proteins are under preclinical or clinical investigation as therapeutic targets in mTNBC and other advanced cancers to enhance their response to chemotherapy and/or checkpoint inhibitors.
Collapse
|
20
|
Farag KI, Makkouk A, Norian LA. Re-Evaluating the Effects of Obesity on Cancer Immunotherapy Outcomes in Renal Cancer: What Do We Really Know? Front Immunol 2021; 12:668494. [PMID: 34421889 PMCID: PMC8374888 DOI: 10.3389/fimmu.2021.668494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity has reached global epidemic proportions and its effects on interactions between the immune system and malignancies, particularly as related to cancer immunotherapy outcomes, have come under increasing scrutiny. Although the vast majority of pre-clinical murine studies suggest that host obesity should have detrimental effects on anti-tumor immunity and cancer immunotherapy outcomes, the opposite has been found in multiple retrospective human studies. As a result, acceptance of the "obesity paradox" paradigm, wherein obesity increases cancer risk but then improves patient outcomes, has become widespread. However, results to the contrary do exist and the biological mechanisms that promote beneficial obesity-associated outcomes remain unclear. Here, we highlight discrepancies in the literature regarding the obesity paradox for cancer immunotherapy outcomes, with a particular focus on renal cancer. We also discuss multiple factors that may impact research findings and warrant renewed research attention in future studies. We propose that specific cancer patient populations may be affected in fundamentally different ways by host obesity, leading to divergent effects on anti-tumor immunity and/or immunotherapy outcomes. Continued, thoughtful analysis of this critical issue is therefore needed to permit a more nuanced understanding of the complex effects of host obesity on cancer immunotherapy outcomes in patients with renal cancer or other malignancies.
Collapse
Affiliation(s)
- Kristine I Farag
- Science and Technology Honors Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amani Makkouk
- Department of Pharmacology, Adicet Bio, Menlo Park, CA, United States
| | - Lyse A Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Kuehm LM, Khojandi N, Piening A, Klevorn LE, Geraud SC, McLaughlin NR, Griffett K, Burris TP, Pyles KD, Nelson AM, Preuss ML, Bockerstett KA, Donlin MJ, McCommis KS, DiPaolo RJ, Teague RM. Fructose Promotes Cytoprotection in Melanoma Tumors and Resistance to Immunotherapy. Cancer Immunol Res 2021; 9:227-238. [PMID: 33023966 PMCID: PMC7864871 DOI: 10.1158/2326-6066.cir-20-0396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/03/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Checkpoint blockade immunotherapy relies on the empowerment of the immune system to fight cancer. Why some patients fail to achieve durable clinical responses is not well understood, but unique individual factors such as diet, obesity, and related metabolic syndrome could play a role. The link between obesity and patient outcomes remains controversial and has been mired by conflicting reports and limited mechanistic insight. We addressed this in a C57BL/6 mouse model of diet-induced obesity using a Western diet high in both fats and sugars. Obese mice bearing B16 melanoma or MC38 carcinoma tumors had impaired immune responses to immunotherapy and a reduced capacity to control tumor progression. Unexpectedly, these compromised therapeutic outcomes were independent of body mass and, instead, were directly attributed to dietary fructose. Melanoma tumors in mice on the high-fructose diet were resistant to immunotherapy and showed increased expression of the cytoprotective enzyme heme oxygenase-1 (HO-1). This increase in HO-1 protein was recapitulated in human A375 melanoma cells exposed to fructose in culture. Induced expression of HO-1 shielded tumor cells from immune-mediated killing and was critical for resistance to checkpoint blockade immunotherapy, which could be overcome in vivo using a small-molecule inhibitor of HO-1. This study reveals dietary fructose as a driver of tumor immune evasion, identifying HO-1 expression as a mechanism of resistance and a promising molecular target for combination cancer immunotherapy.See article by Khojandi et al., p. 214.
Collapse
Affiliation(s)
- Lindsey M Kuehm
- Saint Louis University School of Medicine, Molecular Microbiology and Immunology, St. Louis, Missouri
| | - Niloufar Khojandi
- Saint Louis University School of Medicine, Molecular Microbiology and Immunology, St. Louis, Missouri
| | - Alexander Piening
- Saint Louis University School of Medicine, Molecular Microbiology and Immunology, St. Louis, Missouri
| | - Lauryn E Klevorn
- Saint Louis University School of Medicine, Molecular Microbiology and Immunology, St. Louis, Missouri
| | - Simone C Geraud
- Saint Louis University School of Medicine, Molecular Microbiology and Immunology, St. Louis, Missouri
| | - Nicole R McLaughlin
- Saint Louis University School of Medicine, Molecular Microbiology and Immunology, St. Louis, Missouri
| | - Kristine Griffett
- Saint Louis University School of Medicine, Pharmacological and Physiological Sciences, St. Louis, Missouri
| | - Thomas P Burris
- Saint Louis University School of Medicine, Pharmacological and Physiological Sciences, St. Louis, Missouri
| | - Kelly D Pyles
- Saint Louis University School of Medicine, Biochemistry and Molecular Biology, St. Louis, Missouri
| | - Afton M Nelson
- Webster University, Department of Biological Sciences, St. Louis, Missouri
| | - Mary L Preuss
- Webster University, Department of Biological Sciences, St. Louis, Missouri
| | - Kevin A Bockerstett
- Saint Louis University School of Medicine, Molecular Microbiology and Immunology, St. Louis, Missouri
| | - Maureen J Donlin
- Saint Louis University School of Medicine, Biochemistry and Molecular Biology, St. Louis, Missouri
| | - Kyle S McCommis
- Saint Louis University School of Medicine, Biochemistry and Molecular Biology, St. Louis, Missouri
| | - Richard J DiPaolo
- Saint Louis University School of Medicine, Molecular Microbiology and Immunology, St. Louis, Missouri
- Alvin J. Siteman NCI Comprehensive Cancer Center, St. Louis, Missouri
| | - Ryan M Teague
- Saint Louis University School of Medicine, Molecular Microbiology and Immunology, St. Louis, Missouri.
- Alvin J. Siteman NCI Comprehensive Cancer Center, St. Louis, Missouri
| |
Collapse
|