1
|
Sanchez-Sierra N, Alonso-Saladrigues A, Perez-Jaume S, Rivera-Perez C, Faura A, Arques L, Isola IM, Torrebadell M, Diaz JLD, Rives S. Platelet Counts Prior to Lymphodepletion Chemotherapy are Associated with Clinical Outcome in Pediatric Patients with Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia After CAR-T19-Cell Therapy. Pediatr Blood Cancer 2025; 72:e31604. [PMID: 39979782 DOI: 10.1002/pbc.31604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Affiliation(s)
- Nazaret Sanchez-Sierra
- Leukemia and Lymphoma Department, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Alonso-Saladrigues
- Leukemia and Lymphoma Department, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Cristina Rivera-Perez
- Hematopoietic Stem Cell Transplant Unit, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Faura
- Leukemia and Lymphoma Department, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Laura Arques
- Leukemia and Lymphoma Department, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Montserrat Torrebadell
- Laboratory of Hematology, Hospital Sant Joan de Déu, Barcelona, Spain
- Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Jose Luis Dapena Diaz
- Leukemia and Lymphoma Department, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Susana Rives
- Leukemia and Lymphoma Department, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
2
|
Shahid S, Prockop SE, Flynn GC, Mauguen A, White CO, Bieler J, McAvoy D, Hosszu K, Cancio MI, Jakubowski AA, Scaradavou A, Boelens JJ, Sauter CS, Perales MA, Giralt SA, Taylor C, Chaudhari J, Wang X, Rivière I, Sadelain M, Brentjens RJ, Kernan NA, O'Reilly RJ, Curran KJ. Allogeneic off-the-shelf CAR T-cell therapy for relapsed or refractory B-cell malignancies. Blood Adv 2025; 9:1644-1657. [PMID: 39908482 PMCID: PMC11995077 DOI: 10.1182/bloodadvances.2024015157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
ABSTRACT Despite clinical benefit with the use of chimeric antigen receptor (CAR) T cells, the need to manufacture patient-specific products limits its clinical utility. To overcome this barrier, we developed an allogeneic "off-the-shelf" CAR T-cell product using Epstein-Barr virus (EBV)-specific T cells (EBV-VSTs) genetically modified with a CD19-specific CAR (19-28z). Patients with relapsed/refractory (R/R) B-cell malignancies were stratified into 3 treatment cohorts: cohort 1 (n = 8; disease recurrence after allogeneic or autologous hematopoietic cell transplantation [HCT]), cohort 2 (n = 6; consolidative therapy after autologous HCT), or cohort 3 (n = 2; consolidative therapy after allogeneic HCT). The primary objective of this trial was to determine the safety of multiple CAR EBV-VST infusions. Most patients (n = 12/16) received multiple doses (overall median, 2.5 [range, 1-3]) with 3 × 106 T cells per kg determined to be the optimal dose enabling multiple treatments per manufactured cell line. Severe cytokine release syndrome or neurotoxicity did not occur after infusion, and no dose-limiting toxicity was observed in the trial. Median follow-up was 48 months (range, 4-135) with 4 deaths due to disease progression. Overall survival of all patients was 81% at 12 months and 75% at 36 months. Postinfusion expansion and persistence were limited, and CAR EBV-VSTs demonstrated a unique T-cell phenotype compared with autologous 19-28z CAR T cells. Our study demonstrates the feasibility and safety of an allogeneic "off-the-shelf" CAR EBV-VST product with favorable outcomes for patients with CD19+ R/R B-cell malignancies. This trial was registered at www.ClinicalTrials.gov as #NCT01430390.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Middle Aged
- Adult
- Male
- Female
- Receptors, Chimeric Antigen/therapeutic use
- Aged
- Antigens, CD19/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transplantation, Homologous
- Hematopoietic Stem Cell Transplantation/methods
- Hematopoietic Stem Cell Transplantation/adverse effects
- Herpesvirus 4, Human
- Leukemia, B-Cell/therapy
- Treatment Outcome
- Lymphoma, B-Cell/therapy
- Lymphoma, B-Cell/immunology
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Antigen, T-Cell/genetics
- Young Adult
Collapse
Affiliation(s)
- Sanam Shahid
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan E. Prockop
- Department of Hematopoietic Stem Cell Transplant, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Georgia C. Flynn
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Audrey Mauguen
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Charlie O. White
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jennifer Bieler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Devin McAvoy
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kinga Hosszu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria I. Cancio
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ann A. Jakubowski
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Jaap Jan Boelens
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Craig S. Sauter
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | | | - Sergio A. Giralt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Clare Taylor
- Department of Pharmacology, Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jagrutiben Chaudhari
- Department of Pharmacology, Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiuyan Wang
- Department of Pharmacology, Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Isabelle Rivière
- Department of Pharmacology, Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michel Sadelain
- Department of Pharmacology, Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Renier J. Brentjens
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Nancy A. Kernan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard J. O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin J. Curran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
3
|
Seferna K, Svaton M, Rennerova A, Skotnicova A, Reznickova L, Valova T, Sedlacek P, Riha P, Formankova R, Keslova P, Sramkova L, Stary J, Zuna J, Kolenova A, Salek C, Trka J, Fronkova E. NGS-MRD negativity in post-HSCT ALL spares unnecessary therapeutic interventions triggered by borderline qPCR results without an increase in relapse risk. Hemasphere 2025; 9:e70124. [PMID: 40201744 PMCID: PMC11978274 DOI: 10.1002/hem3.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/03/2025] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Monitoring of minimal residual disease (MRD) after hematopoietic stem cell transplantation (HSCT) in patients with acute lymphoblastic leukemia (ALL) is vital for timely therapeutic intervention planning. However, interpreting low-positive results from the current standard method, quantitative PCR (qPCR) of immunoglobulin and T-cell receptor gene rearrangements (IG/TR), poses challenges due to the risk of false positivity caused by non-specific amplification. We aimed to improve MRD detection specificity using the next-generation amplicon sequencing (NGS) of IG/TR rearrangements for better relapse prediction. In pediatric and young adult ALL patients undergoing sequential post-HSCT MRD monitoring, we prospectively re-tested positive non-quantifiable qPCR results with NGS-MRD using the EuroClonality-NGS approach. We were able to confirm 13 out of 47 (27.7%) qPCR positive results using the more specific NGS-MRD method. Out of 10 patients with at least one MRD positivity confirmed by NGS, six relapsed (60%) 1-3.7 months after testing. Among 25 patients with all NGS-MRD results negative, two relapses occurred (8%) after 5.1 and 12.1 months. One-year RFS was 40% versus 96% and 3-year OS was 33.3% versus 94.4% for the NGS-positive and NGS-negative groups, respectively. The difference was not attributable to a varying rate of therapeutic interventions. Six patients out of 14 who had immunosuppressive treatment tapered or received donor lymphocyte infusion in response to MRD positivity developed significant graft versus host disease, leading to one fatality. This underscores the importance of enhancing the post-HSCT relapse risk prediction accuracy through NGS-MRD testing to avoid unnecessary interventions.
Collapse
Affiliation(s)
- Krystof Seferna
- CLIP—Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Michael Svaton
- CLIP—Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Andrea Rennerova
- CLIP—Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Aneta Skotnicova
- CLIP—Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Leona Reznickova
- CLIP—Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Tatana Valova
- CLIP—Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Petr Sedlacek
- Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Petr Riha
- Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Renata Formankova
- Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Petra Keslova
- Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Lucie Sramkova
- Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Jan Stary
- Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Jan Zuna
- CLIP—Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Alexandra Kolenova
- Department of Pediatric Hematology and OncologyNational Institute of Children's Diseases and Comenius UniversityBratislavaSlovakia
| | - Cyril Salek
- Institute of Haematology and Blood TransfusionPragueCzechia
- Institute of Clinical and Experimental HaematologyFirst Faculty of Medicine, Charles UniversityPragueCzechia
| | - Jan Trka
- CLIP—Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| | - Eva Fronkova
- CLIP—Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and OncologySecond Faculty of Medicine, Charles University and University Hospital MotolPragueCzechia
| |
Collapse
|
4
|
Short NJ, Aldoss I, DeAngelo DJ, Konopleva M, Leonard J, Logan AC, Park J, Shah B, Stock W, Jabbour E. Clinical use of measurable residual disease in adult ALL: recommendations from a panel of US experts. Blood Adv 2025; 9:1442-1451. [PMID: 39853316 PMCID: PMC11960638 DOI: 10.1182/bloodadvances.2024015441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
ABSTRACT Measurable residual disease (MRD) is a powerful predictor of clinical outcomes in acute lymphoblastic leukemia (ALL). In addition to its clear prognostic importance, MRD information is increasingly used in clinical decision algorithms to guide therapeutic interventions. Although it is well established that achievement of MRD-negative remission is an important end point of ALL therapy, the prognostic and therapeutic implications of MRD in an individual patient are influenced by both disease-related factors (eg, cytomolecular risk) and assay-related factors (eg, sensitivity, specimen source, and timing of assessment), which add complexity to MRD-guided treatment decisions. In this review, we discuss the data supporting the use of MRD assessment in adult ALL and how this information can rationally inform clinical decisions, including selection of patients for MRD-directed therapies or allogeneic hematopoietic stem cell transplantation. We also discuss important interpretative challenges related to novel high sensitivity next-generation sequencing-based MRD assays, which are becoming increasingly used in clinical practice.
Collapse
Affiliation(s)
- Nicholas J. Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Daniel J. DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Marina Konopleva
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Jessica Leonard
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Aaron C. Logan
- Division of Hematology, Blood and Marrow Transplantation, and Cellular Therapy, Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Jae Park
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bijal Shah
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Wendy Stock
- Department of Medicine Section of Hematology-Oncology, University of Chicago, Chicago, IL
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
5
|
van den Berg J, Meloni C, Halter J, Passweg JR, Holbro A. The Changing Role of Allogeneic Stem Cell Transplantation in Adult B-ALL in the Era of CAR T Cell Therapy. Curr Oncol 2025; 32:177. [PMID: 40136381 PMCID: PMC11941108 DOI: 10.3390/curroncol32030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
The treatment of B-cell acute lymphoblastic leukemia (B-ALL) in adults remains a significant therapeutic challenge. While advances in chemotherapy and targeted and immunotherapies have improved overall survival, relapsed or refractory (r/r) adult ALL is associated with poor outcomes. CD19-directed chimeric antigen receptor (CAR) T-cell therapy has emerged as a transformative option, achieving high remission rates even in heavily pretreated patients. However, relapse is common. Allogeneic hematopoietic stem cell transplantation (allo-HCT), a traditional cornerstone of remission consolidation, may improve long-term outcomes but carries risks of transplant-related mortality (TRM) and morbidity. Most evidence for HCT after CAR T therapy comes from retrospective analyses of subgroups from CAR T cell trials, with small sample sizes and inconsistent data on transplant procedures and outcomes. Despite these limitations, consolidative allo-HCT appears to prolong relapse-free survival (RFS). While overall survival (OS) benefits are in question, extended remission duration has been observed. Nonrelapse mortality (including TRM), ranging from 2.4 to 35%, underscores the need for careful patient selection. Emerging real-world data affirm these findings but highlight the importance of individualized decisions based on disease and treatment history. This review examines current evidence on the sequential use of CD19-directed CAR T-cell therapy and allo-HCT in adults with r/r B-ALL.
Collapse
Affiliation(s)
- Jana van den Berg
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland (J.R.P.); (A.H.)
- Innovation Focus Cell Therapies, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Claudia Meloni
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland (J.R.P.); (A.H.)
| | - Jörg Halter
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland (J.R.P.); (A.H.)
| | - Jakob R. Passweg
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland (J.R.P.); (A.H.)
| | - Andreas Holbro
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland (J.R.P.); (A.H.)
- Innovation Focus Cell Therapies, University Hospital Basel, CH-4031 Basel, Switzerland
- Regional Blood Transfusion Service, Swiss Red Cross, CH-4056 Basel, Switzerland
| |
Collapse
|
6
|
Pham-Danis C, Novak AJ, Danis E, McClellan SM, Leach L, Yarnell MC, Ebmeier CC, Tasian SK, Kohler ME. Restoration of LAT activity improves CAR T cell sensitivity and persistence in response to antigen-low acute lymphoblastic leukemia. Cancer Cell 2025; 43:482-502.e9. [PMID: 40068599 PMCID: PMC12002840 DOI: 10.1016/j.ccell.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/11/2024] [Accepted: 02/07/2025] [Indexed: 04/18/2025]
Abstract
Chimeric antigen receptor (CAR) T cells induce responses in patients with relapsed/refractory leukemia; however, long-term efficacy is frequently limited by relapse. The inability to target antigen-low cells is an intrinsic vulnerability of second-generation CAR T cells and underlies most relapses following CD22BBz CAR T cell therapy. Here, we interrogate CD22BBz CAR signaling in response to low antigen and find inefficient phosphorylation of the linker for activation of T cells (LAT) limiting downstream signaling. To overcome this, we designed the adjunctive LAT-activating CAR T cell (ALA-CART) platform, pairing a second-generation CAR with a LAT-CAR incorporating the intracellular domain of LAT. ALA-CART cells demonstrate reduced differentiation during manufacturing and increased LAT phosphorylation, MAPK signaling, and AP-1 activity. ALA-CART cells show improved cytotoxicity, proliferation, persistence, and efficacy against antigen-low leukemias that were refractory to clinically active CD22BBz CAR T cells. Restoration of LAT signaling through the ALA-CART platform represents a promising strategy for overcoming multiple mechanisms of CAR T cell failure.
Collapse
Affiliation(s)
- Catherine Pham-Danis
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda J Novak
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Etienne Danis
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Biostatistics & Bioinformatics Shared Resource, University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Samantha M McClellan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lillie Leach
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael C Yarnell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher C Ebmeier
- Proteomics and Mass Spectrometry Core, Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics & Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Eric Kohler
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Blood and Marrow Transplantation & Cellular Therapy, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Cottrell TR, Lotze MT, Ali A, Bifulco CB, Capitini CM, Chow LQM, Cillo AR, Collyar D, Cope L, Deutsch JS, Dubrovsky G, Gnjatic S, Goh D, Halabi S, Kohanbash G, Maecker HT, Maleki Vareki S, Mullin S, Seliger B, Taube J, Vos W, Yeong J, Anderson KG, Bruno TC, Chiuzan C, Diaz-Padilla I, Garrett-Mayer E, Glitza Oliva IC, Grandi P, Hill EG, Hobbs BP, Najjar YG, Pettit Nassi P, Simons VH, Subudhi SK, Sullivan RJ, Takimoto CH. Society for Immunotherapy of Cancer (SITC) consensus statement on essential biomarkers for immunotherapy clinical protocols. J Immunother Cancer 2025; 13:e010928. [PMID: 40054999 DOI: 10.1136/jitc-2024-010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 03/12/2025] Open
Abstract
Immunotherapy of cancer is now an essential pillar of treatment for patients with many individual tumor types. Novel immune targets and technical advances are driving a rapid exploration of new treatment strategies incorporating immune agents in cancer clinical practice. Immunotherapies perturb a complex system of interactions among genomically unstable tumor cells, diverse cells within the tumor microenvironment including the systemic adaptive and innate immune cells. The drive to develop increasingly effective immunotherapy regimens is tempered by the risk of immune-related adverse events. Evidence-based biomarkers that measure the potential for therapeutic response and/or toxicity are critical to guide optimal patient care and contextualize the results of immunotherapy clinical trials. Responding to the lack of guidance on biomarker testing in early-phase immunotherapy clinical trials, we propose a definition and listing of essential biomarkers recommended for inclusion in all such protocols. These recommendations are based on consensus provided by the Society for Immunotherapy of Cancer (SITC) Clinical Immuno-Oncology Network (SCION) faculty with input from the SITC Pathology and Biomarker Committees and the Journal for ImmunoTherapy of Cancer readership. A consensus-based selection of essential biomarkers was conducted using a Delphi survey of SCION faculty. Regular updates to these recommendations are planned. The inaugural list of essential biomarkers includes complete blood count with differential to generate a neutrophil-to-lymphocyte ratio or systemic immune-inflammation index, serum lactate dehydrogenase and albumin, programmed death-ligand 1 immunohistochemistry, microsatellite stability assessment, and tumor mutational burden. Inclusion of these biomarkers across early-phase immunotherapy clinical trials will capture variation among trials, provide deeper insight into the novel and established therapies, and support improved patient selection and stratification for later-phase clinical trials.
Collapse
Affiliation(s)
- Tricia R Cottrell
- Queen's University Sinclair Cancer Research Institute, Kingston, Ontario, Canada
| | | | - Alaa Ali
- Stem Cell Transplant and Cellular Immunotherapy Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, Washington, DC, USA
| | - Carlo B Bifulco
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Christian M Capitini
- University of Wisconsin School of Medicine and Public Health and Carbone Cancer Center, Madison, Wisconsin, USA
| | | | - Anthony R Cillo
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Collyar
- Patient Advocates In Research (PAIR), Danville, California, USA
| | - Leslie Cope
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Susan Halabi
- Duke School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Gary Kohanbash
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Holden T Maecker
- Stanford University School of Medicine, Stanford, California, USA
| | - Saman Maleki Vareki
- Department of Oncology and Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Sarah Mullin
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Barbara Seliger
- Campus Brandenburg an der Havel, Brandenburg Medical School, Halle, Germany
| | - Janis Taube
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wim Vos
- Radiomics.bio, Liège, Belgium
| | - Joe Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Department of Obstetrics and Gynecology, Beirne B. Carter Center for Immunology Research and the University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Codruta Chiuzan
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | | | | | | | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian P Hobbs
- Dell Medical School, The University of Texas, Austin, Texas, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Sumit K Subudhi
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital, Harvard Medical School, Needham, Massachusetts, USA
| | | |
Collapse
|
8
|
de Oliveira Canedo G, Roddie C, Amrolia PJ. Dual-targeting CAR T cells for B-cell acute lymphoblastic leukemia and B-cell non-Hodgkin lymphoma. Blood Adv 2025; 9:704-721. [PMID: 39631066 PMCID: PMC11869864 DOI: 10.1182/bloodadvances.2024013586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
ABSTRACT Relapse after CD19-directed chimeric antigen receptor (CAR) T-cell therapy remains a major challenge in B-cell acute lymphoblastic leukemia (ALL) and B-cell non-Hodgkin lymphoma (B-NHL). One of the main strategies to avoid CD19-negative relapse has been the development of dual CAR T cells targeting CD19 and an additional target, such as CD22 or CD20. Different methods have been used to achieve this, including coadministration of 2 products targeting 1 single antigen, cotransduction of autologous T cells, use of a bicistronic vector, or the development of bivalent CARs. Phase 1 and 2 trials across all manufacturing strategies have shown this to be a safe approach with equivalent remission rates and initial product expansion. CAR T-cell persistence remains a significant issue, with the majority of relapses being antigen-positive after CAR T-cell infusion. Further, despite adding a second antigen, antigen-negative relapses have not yet been eliminated. This review summarizes the state of the art with dual-targeting CAR T cells for B-cell ALL and B-NHL, the challenges encountered, and possible next steps to overcome them.
Collapse
Affiliation(s)
- Gustavo de Oliveira Canedo
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom
| | - Claire Roddie
- Department of Haematology, University College London Hospitals, London, United Kingdom
| | - Persis J. Amrolia
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
9
|
McNerney KO, Schultz LM. Tisagenlecleucel in practice: Real-world lessons in pediatric and young adult B-ALL. Transplant Cell Ther 2025:S2666-6367(25)01050-4. [PMID: 39993597 DOI: 10.1016/j.jtct.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/12/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025]
Abstract
The global multi-institutional registration trial (ELIANA) of CD19.41BB.zeta chimeric antigen receptor (CAR) T cell therapy forged the path to the first FDA-approved CAR T product, tisagenlecleucel. Since its approval, extensive post-market experience with CAR T cells in children and young adults has amassed, allowing several multi-institutional efforts to leverage real-world data. Real-world data has validated clinical trial findings and provided insights into CAR T-cell use in patient groups not included in early clinical trials, such as children <3 years, patients with active CNS and isolated extramedullary disease, and patients treated in first relapse. Data from multi-centered consortia has also identified cohorts who experienced inferior outcomes post-tisagenlecleucel, informing high-risk groups for whom further treatment optimization is needed, and delineating treatment variables, such as CAR T cell dose and lymphodepleting chemotherapy pharmacokinetics, that impact outcomes. In this early stage of CAR T-cell therapies, real-world experience provides an increasingly rich data reservoir and an invaluable resource to investigate and address clinical gaps for CAR T recipients. This review highlights key insights gained from post-market studies that have informed clinical use of CAR T-cell therapy for children and young adults with B-ALL.
Collapse
Affiliation(s)
- Kevin O McNerney
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital, 875 N Michigan Ave, 14-113, Chicago, IL 60611
| | - Liora M Schultz
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. 725 Welch Rd, MC 5798, Palo Alto, CA 94304.
| |
Collapse
|
10
|
Luo Y, Tan L, Meng C, Gao J, Chen H, Fang R, Wu X. Integrating bulk RNA-seq and scRNA-seq data to explore diverse cell death patterns and develop a programmed cell death-related relapse prediction model in pediatric B-ALL. Sci Rep 2025; 15:5620. [PMID: 39955305 PMCID: PMC11829959 DOI: 10.1038/s41598-025-86148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/08/2025] [Indexed: 02/17/2025] Open
Abstract
Acute B-lymphoblastic leukemia (B-ALL) is a hematologic malignancy with diverse mechanisms of PCD influencing its progression. This study aimed to identify PCD-related biomarkers and develop a predictive model for relapse in pediatric B-ALL patients. Initially, we examined the activity of 16 PCD patterns in B-ALL patients using scRNA-seq. Following this, we employed both univariate and multivariate Cox regression analyses to identify relapse-related PCD patterns and constructed a relapse prediction model comprising seven key PCD-related genes: Bcl-2-interacting killer (BIK), translocator protein (TSPO), BCL2L2, PIP4K2C, mixed-lineage kinase-like (MLKL), STAT2, and WW domain-containing oxidoreductase (WWOX). Based on the optimal cut-off value derived from the cell death index(CDI) model, patients were categorized into high-CDI and low-CDI groups. Additionally, we evaluated the association between CDI scores and immune cell infiltration, tumor microenvironment (TME) characteristics, and drug sensitivity. Nine PCD patterns, encompassing ferroptosis, autophagy, necroptosis, entotic cell death, alkaliptosis, apoptosis, netotic cell death, oxeiptosis, and NETosis, exhibited strong associations with relapse in B-cell acute lymphoblastic leukemia (B-ALL). The CDI model, validated across multiple cohorts, demonstrated substantial predictive power for relapse-free survival (RFS) and was identified as an independent risk factor. This study offers a comprehensive analysis of PCD patterns in pediatric B-ALL, yielding valuable insights into potential novel therapeutic strategies and opportunities for personalized treatment approaches.
Collapse
Affiliation(s)
- Yaxin Luo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Tan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuikai Meng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Gao
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxin Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruihan Fang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Senapati J, Kantarjian H, Habib D, Haddad FG, Jain N, Short NJ, Jabbour E. Frontline immunotherapeutic combination strategies in adult B-cell acute lymphoblastic leukemia: reducing chemotherapy intensity and toxicity and harnessing efficacy. Leuk Lymphoma 2025:1-12. [PMID: 39791458 DOI: 10.1080/10428194.2025.2449582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Using immunotherapeutic agents like inotuzumab ozogamicin (InO), blinatumomab, or chimeric antigen receptor T (CAR T)-cell therapy in frontline adult B-cell acute lymphoblastic leukemia (B-ALL) therapy is promising. These agents are mostly well tolerated and have different toxicity profiles than conventional chemotherapy, enabling their combination with chemotherapy. Additionally, they have often been shown to overcome the traditional adverse ALL risk features. Recently blinatumomab was approved as part of consolidation therapy in MRD negative B-ALL; however, a significant proportion of patients had progressed or relapsed before reaching the timepoint of blinatumomab administration. Including InO/blinatumomab from induction onwards could induce earlier and deeper remissions. Modifications of dosing and administration schedules, as with the fractionated InO schedule with low-intensity chemotherapy, and subcutaneous blinatumomab, appear to reduce the toxicity and improve the anti-ALL efficacy. CAR T-cell therapies like brexucabtagene autoleucel as a consolidation approach have shown positive outcomes. The feasibility of using CAR T-cells to reduce the need for long-drawn maintenance and the need for allogeneic hematopoietic stem cell transplantation (HSCT) are questions of ongoing clinical trials. Newer generation CAR T-cell products like obecabtagene autoleucel appear as effective and safer. Better disease monitoring through next generation sequencing based measurable residual disease analysis could identify patients where treatment intensification including HSCT, or deintensification, is suitable.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diane Habib
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Bartram J, Ancliff P, Vora A. How I treat infant acute lymphoblastic leukemia. Blood 2025; 145:35-42. [PMID: 38905593 DOI: 10.1182/blood.2023023154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Infant acute lymphoblastic leukemia (ALL) is an aggressive malignancy that has historically been associated with a very poor prognosis. Despite large cooperative international trials and incremental increases in intensity of therapy, there has been no significant improvement in outcome over the last 3 decades. Using representative cases, we highlight the key differences between KMT2A-rearranged and KMT2A-germ line infant ALL, and how advances in molecular diagnostics are unpicking KMT2A-germ line genetics and guiding treatment reduction. We focus on KM2TA-rearranged infant B-cell ALL for which the last few years have seen the emergence of novel therapies that both are more effective and less toxic than conventional chemotherapy. Of these, there is promising early data on the efficacy and tolerability of the bispecific T-cell engager monoclonal antibody, blinatumomab, as well as the use of autologous and allogeneic chimeric antigen receptor T-cell therapy. We discuss how we can improve risk stratification and incorporate these new agents to replace the most toxic elements of currently deployed intensive chemotherapy schedules with their associated unacceptable toxicity.
Collapse
Affiliation(s)
- Jack Bartram
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Philip Ancliff
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
13
|
Lamble AJ, Kovach AE, Shah NN. How I treat postimmunotherapy relapsed B-ALL. Blood 2025; 145:64-74. [PMID: 39046821 PMCID: PMC11738038 DOI: 10.1182/blood.2024024517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT Despite significant advancements in single-antigen targeted therapies for B-cell acute lymphoblastic leukemia (B-ALL), nonresponse and relapse persist as major challenges. Antigen escape after blinatumomab or CD19-directed chimeric antigen receptor (CAR) T cells (CD19-CAR), as CD19-negative B-ALL or lineage switch (LS) to acute myeloid leukemia, present diagnostic and treatment complexities. Given the poor outcomes for patients experiencing a postinfusion relapse, particularly those with loss of the target antigen, a strategic approach to diagnosis and treatment is imperative. In this discussion, we outline a systematic approach to managing postimmunotherapy events, categorized by CD19-positive relapse, CD19-negative relapse, and LS. We explore treatment modalities including CD19-CAR reinfusions, humanized CAR constructs, combinatorial strategies, and alternative antigen-targeted therapies, such as blinatumomab and inotuzumab. Challenges in diagnosis, particularly with antigen-escape, are addressed, highlighting the role of next-generation sequencing and multiparameter flow cytometry for myeloid marker monitoring.
Collapse
Affiliation(s)
- Adam J. Lamble
- Department of Pediatric Hematology and Oncology, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Alexandra E. Kovach
- Hematopathology, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Clinical Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
14
|
Shang Q, Wang Y, Lu A, Jia Y, Zuo Y, Zeng H, Zhang L. Impact of pre-infusion disease burden on outcomes in pediatric relapsed/refractory B-cell lymphoblastic leukemia following anti-CD19 CAR T-cell therapy. Leuk Lymphoma 2025; 66:54-63. [PMID: 39378242 DOI: 10.1080/10428194.2024.2406958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T-cell therapies have demonstrated high efficacy in pediatric patients with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). Despite this success, the challenge of post-infusion relapse persists. In our study, we evaluate 116 children with R/R B-ALL who received anti-CD19 CAR T-cell therapy at our center. All patients were included in the response analysis and assessed for survival and toxicity. The CR rate was 98.3%, with 90.5% achieving minimal residual disease negative (MRD)- CR by day 28 (d28). The overall survival (OS) and event-free survival (EFS) were 69.3%±4.5% and 59.0%±4.6%, respectively, with a median follow-up duration of 47.9 months. The patients with pre-infusion MRD ≥ 1% was associated with lower 4-year OS (p = 0.006) and EFS (p = 0.027) comparing to those with MRD < 1%. The incidences of grade ≥ 3 cytokine release syndrome (CRS) and neurotoxicity were21.6 and 5.0%, respectively. Therefore, pre-infusion disease burden is a predictor of long-term outcome following anti-CD19 CAR T-cell therapy for pediatric R/R B-ALL.
Collapse
Affiliation(s)
- Qianwen Shang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yu Wang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Aidong Lu
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yueping Jia
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yingxi Zuo
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Huimin Zeng
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| |
Collapse
|
15
|
Sahai I, Borgman P, Yates B, Rosenzweig S, Rampertaap S, Rankin AW, Shah NN. Incidence of preexisting B-cell aplasia in B-ALL: implications for post-CAR T-cell monitoring. Blood Adv 2024; 8:6329-6333. [PMID: 39454282 DOI: 10.1182/bloodadvances.2024014641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Affiliation(s)
- Isha Sahai
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul Borgman
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sergio Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Shakuntala Rampertaap
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Alexander W Rankin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
[Chinese guidelines on response assessment and minimal residual disease monitoring in multiple myeloma (2024)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:1065-1070. [PMID: 39765346 PMCID: PMC11886694 DOI: 10.3760/cma.j.cn121090-20241111-00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Indexed: 03/09/2025]
Abstract
The application of standardized criteria to evaluate treatment efficacy is crucial for guiding therapeutic decisions, assessing prognosis, and interpreting outcomes in treating multiple myeloma (MM). The unique characteristics of MM make its response assessment more complex compared with other malignancies. It primarily depends on serum and urine M protein levels, combined with the number of plasma cells in the bone marrow and comprehensive imaging findings. Recently, the emergence of novel therapeutics has led to significant improvements in MM outcomes. Minimal residual disease (MRD) detection determines deeper remission states. The clinical significance of MRD monitoring is now widely recognized. The Chinese Society of Clinical Oncology (CSCO) MM Expert Committee and the Hematologic Oncology Committee of the Chinese Anti-Cancer Association (CACA) have gathered relevant experts to develop the guidelines based on these advancements, aiming to provide a comprehensive reference for response assessment in MM.
Collapse
|
17
|
Chang J, Jia YJ, Wang HX, Qi BQ, Cai XJ, Sun Q, Zhu XF, Xiao ZJ, Wang HJ. [Next-generation sequencing-based minimal residual disease detection reveals clonal evolution in pediatric acute B-lymphoblastic leukemia: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:1138-1141. [PMID: 39765357 PMCID: PMC11886703 DOI: 10.3760/cma.j.cn121090-20240527-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Indexed: 03/09/2025]
Abstract
Minimal residual disease (MRD), a crucial biomarker for assessing efficacy and predicting recurrence, refers to residual tumor cells remaining in the body of patients with hematological malignancies who achieved complete remission after treatment. This study aimed to conduct a retrospective analysis of the clinical diagnosis, treatment, and MRD monitoring of a pediatric patient with multiple acute B-lymphocytic leukemia relapses, alongside a review of relevant literature. In this case, Ig rearrangement based on next-generation sequencing (NGS) was more accurate in assessing the MRD level, compared with the traditional method of MRD detection, indicating the risk of earlier relapse and guided interventions in time. Additionally, NGS-MRD detected clonal evolution, providing new ideas to further investigate the intrinsic factors of disease development.
Collapse
Affiliation(s)
- J Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Y J Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - H X Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - B Q Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - X J Cai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Q Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - X F Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Z J Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - H J Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
18
|
Marcoux C, Kebriaei P. Transplant in ALL: who, when, and how? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:93-101. [PMID: 39644076 DOI: 10.1182/hematology.2024000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) remains a cornerstone in the treatment of high-risk acute lymphoblastic leukemia (ALL), yet optimal patient selection is challenging in the era of rapidly changing modern therapy. Refined molecular characterization allows for better risk assessment, sparing low-risk patients from allo-HCT toxicity while identifying those who may benefit from intensified approaches. Measurable residual disease (MRD) has emerged as a powerful predictor of relapse irrespective of treatment strategy, challenging the necessity of transplant in MRD-negative patients. Further, expanded donor options, particularly haploidentical transplantation coupled with reduced intensity conditioning, have extended the applicability of allo-HCT to a broader range of patients. Finally, immunotherapies and targeted treatments are increasingly integrated into both initial and relapsed treatment protocols yielding deep remission and allowing for successful transplant in patients with a history of advanced disease. In this review, we provide an overview of the contemporary role of transplant in adult patients with ALL, focusing on indications for allo-HCT in first remission, optimal sequencing of transplant with novel therapies, and advancements in donor selection and conditioning regimens.
Collapse
Affiliation(s)
- Curtis Marcoux
- Division of Hematology, Dalhousie University, Halifax, Canada
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
19
|
Yao CD, Davis KL. Correlative studies reveal factors contributing to successful CAR-T cell therapies in cancer. Cancer Metastasis Rev 2024; 44:15. [PMID: 39625613 DOI: 10.1007/s10555-024-10232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Cellular and targeted immunotherapies have revolutionized cancer treatments in the last several decades. Successful cellular therapies require both effective and durable cytotoxic activity from the immune cells as well as an accessible and susceptible response from targeted cancer cells. Correlative studies from clinical trials as well as real-world data from FDA-approved therapies have revealed invaluable insights about immune cell factors and cancer cell factors that impact rates of response and relapse to cellular therapies. This review focuses on the flagship cellular therapy of engineered chimeric antigen receptor T-cells (CAR-T cells). Within the CAR-T cell compartment, we discuss discoveries about T-cell phenotype, transcriptome, epigenetics, cytokine signaling, and metabolism that inform the cell manufacturing process to produce the most effective and durable CAR-T cells. Within the cancer cell compartment, we discuss mechanisms of resistance and relapse caused by mutations, alternative splicing, post-transcriptional modifications, and cellular reprogramming. Continued correlative and mechanistic studies are required to help us further optimize cellular therapies in a variety of malignancies.
Collapse
Affiliation(s)
- Catherine D Yao
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kara L Davis
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Ma SB, Lin W, Campbell J, Clerici K, White D, Yeung D, Gorniak M, Fleming S, Fong CY, Agarwal R. Laboratory validation and clinical utility of next-generation sequencing-based IGH/TCR clonality testing for the monitoring of measurable residual disease in acute lymphoblastic leukaemia: real-world experience at Austin Pathology. Pathology 2024; 56:982-992. [PMID: 39025724 DOI: 10.1016/j.pathol.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 04/28/2024] [Indexed: 07/20/2024]
Abstract
Measurable residual disease (MRD) testing is an essential aspect of disease prognostication in acute lymphoblastic leukaemia (ALL) and informs clinical decisions. The depth of MRD clearance is highly relevant and requires assays with sufficient sensitivity. Austin Pathology is one of the few laboratories in Australia currently utilising a fully validated and National Association of Testing Authorities (NATA)-accredited ultrasensitive next-generation sequencing (NGS) platform for MRD monitoring in ALL. This technology is based on the detection of clonal rearrangement of immunoglobulin and T cell receptor genes in leukaemic cells, and is capable of achieving a limit of detection at least one to two logs below that of multiparametric flow cytometry (MFC). In this retrospective analysis, we report a clonotype detection rate of up to 85.7% at diagnosis, and a concordance rate of 78.7% in MRD results between NGS and MFC. Of the discordant samples, nearly all were NGS+/MFC-, highlighting the superior sensitivity of NGS. The enhanced sensitivity is clinically relevant, as discordant MRD results often heralded fulminant relapse, and therefore offer clinicians additional lead time and a window of opportunity to initiate pre-emptive therapy. Notwithstanding a small and heterogeneous cohort, our real-world survival data indicate an intermediate relapse risk for NGS+/MFC- patients. In light of recent approval of Medicare rebatable ALL MRD testing, we discuss how NGS can complement other techniques such as MFC in personalising management strategies. We recommend routine clonality testing by NGS at diagnosis and use a multi-modality approach for subsequent MRD monitoring.
Collapse
Affiliation(s)
- Stephen B Ma
- Austin Pathology, Heidelberg, Vic, Australia; Austin Health, Heidelberg, Vic, Australia.
| | - Wendi Lin
- Austin Pathology, Heidelberg, Vic, Australia
| | | | | | - Deborah White
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - David Yeung
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Shaun Fleming
- Alfred Health, Melbourne, Vic, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, Vic, Australia
| | | | | |
Collapse
|
21
|
Schwartz MS, Muffly LS. Predicting relapse in acute lymphoblastic leukemia. Leuk Lymphoma 2024; 65:1934-1940. [PMID: 39216505 DOI: 10.1080/10428194.2024.2387728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Outcomes in adult and pediatric patients with acute lymphoblastic leukemia (ALL) have improved over successive generations due to rigorously conducted clinical trials and incorporation of novel therapeutic agents. Despite these advances, approximately 20% of high-risk pediatric patients and 50% of adults with ALL will fail to achieve long-term remission with frontline chemotherapy protocols, mostly due to relapse. The ability to predict which patients with ALL are more likely to relapse allows for early intensification of therapy and/or incorporation of novel immunotherapies with the goal of relapse prevention. In this review, we outline the most robust clinical predictors of relapse in ALL with a focus on measurable residual disease (MRD) and genomics. We also discuss application of these prognostic tools in different clinical settings including frontline treatment, pre-/post-allogeneic stem cell transplant, and pre-/post-Chimeric Antigen Receptor T-cell therapy.
Collapse
Affiliation(s)
- Marc S Schwartz
- University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Lori S Muffly
- Division of Blood and Marrow Transplantation & Cellular Therapy, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
22
|
Yan XY, Kang YY, Zhang ZY, Huang P, Yang C, Naranmandura H. Therapeutic approaches targeting oncogenic proteins in myeloid leukemia: challenges and perspectives. Expert Opin Ther Targets 2024; 28:1131-1148. [PMID: 39679536 DOI: 10.1080/14728222.2024.2443577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Leukemia is typically categorized into myeloid leukemia and lymphoblastic leukemia based on the origins of leukemic cells. Myeloid leukemia is a group of clonal malignancies characterized by the presence of increased immature myeloid cells in both the bone marrow and peripheral blood. Of note, the aberrant expression of specific proteins or the generation of fusion proteins due to chromosomal abnormalities are well established drivers in various forms of myeloid leukemia. Therefore, these oncoproteins represent promising targets for drug development. AREAS COVERED In this review, we comprehensively discussed the pathogenesis of typical leukemia oncoproteins and the current landscape of small molecule drugs targeting these oncogenic proteins. Additionally, we elucidated novel strategies, including proteolysis-targeting chimeras (PROTACs), hyperthermia, and genomic editing, which specifically degrade oncogenic proteins in myeloid malignancies. EXPERT OPINION Although small molecule drugs have significantly improved the prognosis of oncoprotein-driven myeloid leukemia patients, drug resistance due to the mutations in oncoproteins is still a great challenge in the clinic. New approaches such as PROTACs, hyperthermia, and genomic editing are considered promising approaches for the treatment of oncoprotein-driven leukemia, especially for drug-resistant mutants.
Collapse
Affiliation(s)
- Xing Yi Yan
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Yuan Kang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Yan Zhang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Kopmar NE, Cassaday RD. Clinical Insights on Brexucabtagene Autoleucel for the Treatment of Patients with Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia. Cancer Manag Res 2024; 16:1587-1596. [PMID: 39559248 PMCID: PMC11571986 DOI: 10.2147/cmar.s379807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024] Open
Abstract
Autologous chimeric antigen receptor-modified T-cell therapy (CAR-T) has revolutionized treatment paradigms across multiple lymphoid malignancies, including relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). The introduction of the CD19-directed CAR-T product brexucabtagene autoleucel (brexu-cel; Tecartus) in October 2021 made this treatment approach available for the first time for adults with R/R B-ALL, a historically challenging clinical entity to treat. In this review, we will discuss the pivotal clinical trial data from the ZUMA-3 study that led to the US Food and Drug Administration (FDA) approval of brexu-cel, including clinical outcomes and key toxicity data (most importantly, the incidence and severity of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome). Additionally, we will compare and contrast these data from the ZUMA-3 study with "real-world" data from examinations of patient outcomes with brexu-cel as an FDA-approved therapy in R/R B-ALL, and discuss practical considerations with brexu-cel use in the clinic, including the role of consolidative allografting for patients post-brexu-cel. We finish by discussing future directions for CAR-T use in R/R B-ALL with the anticipated introduction of a new CD19-directed CAR-T product - obecabtagene autoleucel - in the near future.
Collapse
Affiliation(s)
- Noam E Kopmar
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ryan D Cassaday
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
24
|
Pal S, Firdous SM. Unraveling the role of heavy metals xenobiotics in cancer: a critical review. Discov Oncol 2024; 15:615. [PMID: 39495398 PMCID: PMC11535144 DOI: 10.1007/s12672-024-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer is a multifaceted disease characterized by the gradual accumulation of genetic and epigenetic alterations within cells, leading to uncontrolled cell growth and invasive behavior. The intricate interplay between environmental factors, such as exposure to carcinogens, and the molecular cascades governing cell growth, differentiation, and survival contributes to cancer's development and progression. This review offers a comprehensive overview of key molecular targets and their roles in cancer development. Peroxisome proliferator-activated receptors are implicated in various cancers due to their role in regulating lipid metabolism, inflammation, and cell proliferation. Nuclear factor erythroid 2-related factor 2 protects cells from oxidative damage but can also promote tumor cell survival. Cytochrome P450 1B1 metabolizes exogenous and endogenous substances, and its increased expression is observed in several cancers. The constitutive androstane receptor regulates gene expression, and its dysregulation can lead to liver cancer. Transforming growth factor-beta 2 is involved in the development and progression of various cancers by dysregulating cell proliferation, differentiation, and migration. Chelation treatment has been investigated for removing heavy metals, while genetically altered immune cells show promise in treating specific cancers. Metal-organic frameworks and fibronectin targeting represent new directions in cancer treatment. While some heavy metals, such as arsenic, chromium, nickel, and cadmium, are known to have carcinogenic properties, others, like zinc, Copper, gold, bismuth, and silver, have many uses that highlight their potential as effective cancer control tactics. There are a variety of heavy metal-based technologies that show potential for improving cancer treatment methods, including targeted drug delivery, improved radiation, and diagnostic tools.
Collapse
Affiliation(s)
- Sourav Pal
- Department of Pharmacology, Seacom Pharmacy College, Jaladhulagori, Sankrail, Howrah, West Bengal, 711302, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
25
|
Silbert SK, Scanlon S, Wang HW, Yuan CM, Doverte A, Wellek J, Patel N, Braylan R, Ahlman M, Turkbey EB, Bohling SD, Chisholm KM, Oztek MA, LaLoggia M, Verma A, Shalabi H, Kovach AE, Wood BL, Lamble A, Kirsch I, Leger K, Shah NN. CRLF2-rearranged B-cell ALL with extramedullary lineage switch to AML following CD19-targeted therapy. J Immunother Cancer 2024; 12:e009499. [PMID: 39461880 PMCID: PMC11529463 DOI: 10.1136/jitc-2024-009499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/08/2024] [Indexed: 10/29/2024] Open
Abstract
Lineage switch (LS) refers to the immunophenotypic transformation of one leukemia lineage to another (ie, lymphoid to myeloid) with retention of baseline genetics. This phenomenon was originally observed in infants with B-lymphoblastic leukemia (B-ALL) with KMT2A rearrangements following chemotherapy, but is now increasingly being observed as a form of immune escape following targeted therapies among children and adults with B-ALL with and without KMT2A rearrangements. In this report, we present two cases of adolescents with B-ALL harboring CRLF2 rearrangements (Philadelphia-like phenotype) who developed LS to acute myeloid leukemia following CD19 targeted therapy. To our knowledge, these are the first cases of LS to be reported in patients with CRLF2 rearranged acute lymphoblastic leukemia. In addition to raising awareness that this genetic mutation may associate with lineage plasticity, our cases illustrate the importance of multi-modal disease surveillance in the diagnosis of LS.
Collapse
Affiliation(s)
- Sara K. Silbert
- National Cancer Institute Pediatric Oncology Branch, Bethesda, Maryland, USA
| | - Samantha Scanlon
- Department of Pediatric Hematology & Oncology, University of Washington, Seattle, Washington, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Constance M Yuan
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Alyssa Doverte
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jake Wellek
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Nisha Patel
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Raul Braylan
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Ahlman
- Department of Radiology and Imaging, Medical College of Georgia, Augusta, Georgia, USA
| | - Evrim B Turkbey
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Sandra D Bohling
- Department of Laboratories, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Karen M Chisholm
- Department of Laboratories, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Murat Alp Oztek
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Mike LaLoggia
- Lake Erie College of Osteopathic Medicine, Rochester, New York, USA
| | - Anupam Verma
- National Cancer Institute Pediatric Oncology Branch, Bethesda, Maryland, USA
- Pediatric Hematology/Oncology, Pediatric Specialists of Virginia, Fairfax, Virginia, USA
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA
| | - Haneen Shalabi
- National Cancer Institute Pediatric Oncology Branch, Bethesda, Maryland, USA
| | - Alexandra E Kovach
- Hematopathology, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
- Clinical Pathology, USC Keck School of Medicine, Los Angeles, California, USA
| | - Brent L Wood
- Hematopathology, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Pathology, USC Keck School of Medicine, Los Angeles, California, USA
| | - Adam Lamble
- Department of Pediatric Hematology & Oncology, University of Washington, Seattle, Washington, USA
| | - Ilan Kirsch
- Adaptive Biotechnologies, Seattle, Washington, USA
| | - Kasey Leger
- Department of Pediatric Hematology & Oncology, University of Washington, Seattle, Washington, USA
| | - Nirali N. Shah
- National Cancer Institute Pediatric Oncology Branch, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Short NJ, Kantarjian H, Jabbour E. Advances in the treatment of adults with newly diagnosed B-cell acute lymphoblastic leukemia: the role of frontline immunotherapy-based regimens. Leuk Lymphoma 2024; 65:1405-1417. [PMID: 38850572 DOI: 10.1080/10428194.2024.2364043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Blinatumomab and inotuzumab ozogamicin (INO) are both active in relapsed/refractory B-cell acute lymphoblastic leukemia (ALL) and improve outcomes compared with conventional chemotherapy in this setting. Several prospective clinical trials have explored the use of these agents in adults with newly diagnosed B-cell ALL, with promising outcomes observed in younger and older adults and in both Philadelphia chromosome (Ph)-positive and Ph-negative ALL. These novel regimens result in high rates of deep measurable residual disease (MRD) negativity and may improve survival compared with chemotherapy-only approaches, allowing for less reliance on intensive chemotherapy and allogeneic hematopoietic stem cell transplantation (HSCT). This review discusses novel approaches to integrating INO and/or blinatumomab into frontline ALL regimens, including the potential role of chemotherapy-free regimens in some subgroups. The role of MRD monitoring is also discussed, including how this can inform decisions for consolidative allogeneic HSCT or investigational approaches with CD19 CAR T-cells.
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Choe M, Summers C. The Road More or Less Traveled- Examining the Role of Consolidative Allogeneic Hematopoietic Stem Cell Transplantation After Chimeric Antigen Receptor T Cell Therapy in B-cell ALL. Semin Hematol 2024; 61:314-320. [PMID: 39370355 DOI: 10.1053/j.seminhematol.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Treatment with CD19-targeted chimeric antigen receptor T cell therapy (CD19-CART) has improved salvage rates in children and adults with relapsed and/or refractory B-cell acute lymphoblastic leukemia (ALL). However, not all patients treated with CD19-CAR T cells achieve long-term remission. The role of allogeneic hematopoietic stem cell transplantation as consolidative therapy remains undefined. We aim to review the current literature published to date regarding prognostic markers indicating durable ALL response to CD19-CART and risk factors for relapse after CD19-CART to identify patient cohorts who may benefit from consolidative hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Michelle Choe
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Corinne Summers
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; Seattle Children's Therapeutics, Seattle Children's Research Institute, Seattle, Washington, USA.
| |
Collapse
|
28
|
Jen WY, Jabbour E, Kantarjian HM, Short NJ. SOHO State of the Art Updates and Next Questions | Novel Agents and the Diminishing Role of Allogeneic Stem Cell Transplant in B-Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:565-572. [PMID: 38538495 DOI: 10.1016/j.clml.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 08/27/2024]
Abstract
Outcomes of patients with B-acute lymphoblastic leukemia (B-ALL) have improved remarkably in the past decade. This has largely been due to the development and introduction of novel immunotherapies such as blinatumomab, inotuzumab ozogamicin, chimeric antigen receptor T (CAR-T) cells, highly potent tyrosine kinase inhibitors, and improved risk stratification, including better understanding of high risk genomic subgroups and better methods of measurable residual disease (MRD) detection. Historically, allogeneic stem cell transplant (allo-SCT) has been the consolidative treatment of choice in first complete remission for fit adults with B-ALL. However, allo-SCT is associated with significant treatment-related mortality and morbidity. Current research is directed at the incorporation of novel immunotherapies into frontline regimens to improve depth and durability of responses and ultimately increase cure rates. In this review, we will discuss the emerging role of novel immune-based treated strategies in both the frontline and relapsed/refractory settings. We present our approach to newly diagnosed patients with B-ALL and illustrate how the incorporation of novel agents and use of high-sensitivity MRD assays can abrogate the need for allo-SCT in most patients with B-ALL.
Collapse
Affiliation(s)
- Wei-Ying Jen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030.
| |
Collapse
|
29
|
Aldoss I, Shan H, Yang D, Clark MC, Al Malki M, Aribi A, Agrawal V, Sandhu K, Salhotra A, Pourhassan H, Koller P, Ali H, Artz A, Karras N, Pawlowska AB, Murphy L, Palmer J, Stein A, Marcucci G, Pullarkat V, Nakamura R, Forman SJ. Consolidation with First and Second Allogeneic Transplants in Adults with Relapsed/Refractory B-ALL Following Response to CD19CAR T Cell Therapy. Transplant Cell Ther 2024; 30:788.e1-788.e9. [PMID: 38876428 DOI: 10.1016/j.jtct.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
CD19-targeted chimeric antigen receptor T cell (CAR-T) therapy has led to unprecedented rates of complete remission (CR) in children and adults with relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia (B-ALL), yet the majority of adults relapse after initial response. One proposed method to extend the durability of remission in adults following response to CAR-T therapy is consolidation with allogeneic hematopoietic cell transplantation (alloHCT). Considering the limited published data for the utility of post CAR-T therapy consolidative alloHCT in r/r B-ALL, especially data related to patients receiving a second alloHCT, we sought to describe outcomes of patients with r/r B-ALL at our institution who received their first or second alloHCT following response to CAR-T therapy. We performed a retrospective analysis of adult patients with r/r B-ALL who responded to either investigational or standard of care (SOC) CD19-targeted CAR-T therapy and underwent consolidation with alloHCT while in CR without interim therapy. We identified 45 patients, of whom 26 (58%) and 19 (42%) received their first and second alloHCT as consolidation post CAR-T therapy, respectively. The median age was 31 years (range: 19-67) and 31 (69%) patients were Hispanic. Ph-like was the most common genetic subtype and comprised over half of cases (53%; n = 24). The median number of prior therapies pre-transplant was 5 (range: 2-7), and disease status at the time of alloHCT was CR1, CR2 or ≥CR3 in 7 (16%), 22 (49%) and 16 (35%) patients, respectively. The median time from CAR-T therapy until alloHCT was 93 (range: 42-262) days. The conditioning regimen was radiation-based myeloablative (MAC) in 22 (49%) patients. With a median follow-up of 2.47 years (range: 0.13-6.93), 2-year overall survival (OS), relapse free survival (RFS), cumulative incidence of relapse (CIR) and non-relapse mortality (NRM) were 57.3% (95% CI: 0.432-0.760), 56.2% (95% CI: 0.562-0.745), 23.3% (95% CI: 0.13-0.42), and 20.4% (95% CI: 0.109-0.384), respectively. Two-year OS (52% vs. 68%, P = .641), RFS (54% vs. 59%, P = .820), CIR (33.5% vs. 8.5%, P = .104), and NRM (12.5% vs. 32.2%, P = .120) were not significantly different between patients who underwent their first vs. second transplant, respectively. In univariate analysis, only Ph-like genotype was associated with inferior RFS (P = .03). AlloHCT post CAR-T response is associated with a relatively low early mortality rate and encouraging survival results in high-risk adults with r/r B-ALL, extending to the second alloHCT for fit and eligible patients.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| | - Haoyue Shan
- Department of Computational and Quantitative Sciences, Beckman Research Institute, City of Hope, Duarte, California
| | - Dongyun Yang
- Department of Computational and Quantitative Sciences, Beckman Research Institute, City of Hope, Duarte, California
| | - Mary C Clark
- Department of Clinical and Translational Project Development, City of Hope, Duarte, California
| | - Monzr Al Malki
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Ahmed Aribi
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Vaibhav Agrawal
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Karamjeet Sandhu
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Amandeep Salhotra
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Hoda Pourhassan
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Paul Koller
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Haris Ali
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Andrew Artz
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Nicole Karras
- Department of Pediatrics, City of Hope, Duarte, California
| | | | - Lindsey Murphy
- Department of Pediatrics, City of Hope, Duarte, California
| | - Joycelynne Palmer
- Department of Computational and Quantitative Sciences, Beckman Research Institute, City of Hope, Duarte, California
| | - Anthony Stein
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Vinod Pullarkat
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Ryotaro Nakamura
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Stephen J Forman
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| |
Collapse
|
30
|
Tran V, Salafian K, Michaels K, Jones C, Reed D, Keng M, El Chaer F. MRD in Philadelphia Chromosome-Positive ALL: Methodologies and Clinical Implications. Curr Hematol Malig Rep 2024; 19:186-196. [PMID: 38888822 DOI: 10.1007/s11899-024-00736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE OF REVIEW Measurable residual disease (MRD) is integral in the management of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). This review discusses the current methods used to evaluate MRD as well as the interpretation, significance, and incorporation of MRD in current practice. RECENT FINDINGS New molecular technologies have allowed the detection of MRD to levels as low as 10- 6. The most used techniques to evaluate MRD are multiparametric flow cytometry (MFC), quantitative reverse transcription polymerase chain reaction (RT-qPCR), and high-throughput next-generation sequencing (NGS). Each method varies in terms of advantages, disadvantages, and MRD sensitivity. MRD negativity after induction treatment and after allogeneic hematopoietic cell transplantation (HCT) is an important prognostic marker that has consistently been shown to be associated with improved outcomes. Blinatumomab, a new targeted therapy for Ph + ALL, demonstrates high efficacy in eradicating MRD and improving patient outcomes. In the relapsed/refractory setting, the use of inotuzumab ozogamicin and tisagenlecleucel has shown promise in eradicating MRD. The presence of MRD has become an important predictive measure in Ph + ALL. Current studies evaluate the use of MRD in treatment decisions, especially in expanding therapeutic options for Ph + ALL, including tyrosine kinase inhibitors, targeted antibody therapies, chimeric antigen receptor cell therapy, and HCT.
Collapse
Affiliation(s)
- Valerie Tran
- Division of Hematology and Oncology, Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Kiarash Salafian
- Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Kenan Michaels
- Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Caroline Jones
- Division of Hematology and Oncology, Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Daniel Reed
- Division of Hematology and Oncology, Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Michael Keng
- Division of Hematology and Oncology, Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Firas El Chaer
- Division of Hematology and Oncology, Department of Medicine, The University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Muffly L, Liang EC, Dolan JG, Pulsipher MA. How I use next-generation sequencing-MRD to plan approach and prevent relapse after HCT for children and adults with ALL. Blood 2024; 144:253-261. [PMID: 38728375 PMCID: PMC11302453 DOI: 10.1182/blood.2023023699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Measurable residual disease (MRD) evaluation by multiparameter flow cytometry (MFC) or quantitative polymerase chain reaction methods is an established standard of care for assessing risk of relapse before or after hematopoietic cell transplantation (HCT) for acute lymphoblastic leukemia (ALL). Next-generation sequencing (NGS)-MRD has emerged as a highly effective approach that allows for the detection of lymphoblasts at a level of <1 in 106 nucleated cells, increasing sensitivity of ALL detection by 2 to 3 logs. Early studies have shown superior results compared with MFC and suggest that NGS-MRD may allow for the determination of patients in whom reduced toxicity transplant preparative approaches could be deployed without sacrificing outcomes. Many centers/study groups have implemented immune modulation approaches based on MRD measurements that have resulted in improved outcomes. Challenges remain with NGS-MRD, because it is not commercially available in many countries, and interpretation of results can be complex. Through patient case review, discussion of relevant studies, and detailed expert opinion, we share our approach to NGS-MRD testing before and after HCT in pediatric and adult ALL. Improved pre-HCT risk classification and post-HCT monitoring for relapse in bone marrow and less invasive peripheral blood monitoring by NGS-MRD may lead to alternative approaches to prevent relapse in patients undergoing this challenging procedure.
Collapse
Affiliation(s)
- Lori Muffly
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Emily C. Liang
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - J. Gregory Dolan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Intermountain Primary Children’s Hospital, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| | - Michael A. Pulsipher
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Intermountain Primary Children’s Hospital, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
- Division of Pediatric Hematology and Oncology, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| |
Collapse
|
32
|
Shyr D, Zhang BM, Saini G, Brewer SC. Exploring Pattern of Relapse in Pediatric Patients with Acute Lymphocytic Leukemia and Acute Myeloid Leukemia Undergoing Stem Cell Transplant Using Machine Learning Methods. J Clin Med 2024; 13:4021. [PMID: 39064061 PMCID: PMC11277799 DOI: 10.3390/jcm13144021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Background. Leukemic relapse remains the primary cause of treatment failure and death after allogeneic hematopoietic stem cell transplant. Changes in post-transplant donor chimerism have been identified as a predictor of relapse. A better predictive model of relapse incorporating donor chimerism has the potential to improve leukemia-free survival by allowing earlier initiation of post-transplant treatment on individual patients. We explored the use of machine learning, a suite of analytical methods focusing on pattern recognition, to improve post-transplant relapse prediction. Methods. Using a cohort of 63 pediatric patients with acute lymphocytic leukemia (ALL) and 46 patients with acute myeloid leukemia (AML) who underwent stem cell transplant at a single institution, we built predictive models of leukemic relapse with both pre-transplant and post-transplant patient variables (specifically lineage-specific chimerism) using the random forest classifier. Local Interpretable Model-Agnostic Explanations, an interpretable machine learning tool was used to confirm our random forest classification result. Results. Our analysis showed that a random forest model using these hyperparameter values achieved 85% accuracy, 85% sensitivity, 89% specificity for ALL, while for AML 81% accuracy, 75% sensitivity, and 100% specificity at predicting relapses within 24 months post-HSCT in cross validation. The Local Interpretable Model-Agnostic Explanations tool was able to confirm many variables that the random forest classifier identified as important for the relapse prediction. Conclusions. Machine learning methods can reveal the interaction of different risk factors of post-transplant leukemic relapse and robust predictions can be obtained even with a modest clinical dataset. The random forest classifier distinguished different important predictive factors between ALL and AML in our relapse models, consistent with previous knowledge, lending increased confidence to adopting machine learning prediction to clinical management.
Collapse
Affiliation(s)
- David Shyr
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Section of Stem Cell Transplant, Stanford University, Stanford, CA 94305, USA
| | - Bing M. Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gopin Saini
- Stem Cell and Gene Therapy Clinical Trial Program, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Simon C. Brewer
- Department of Geography, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
33
|
Dreyzin A, Rankin AW, Luciani K, Gavrilova T, Shah NN. Overcoming the challenges of primary resistance and relapse after CAR-T cell therapy. Expert Rev Clin Immunol 2024; 20:745-763. [PMID: 38739466 PMCID: PMC11180598 DOI: 10.1080/1744666x.2024.2349738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION While CAR T-cell therapy has led to remarkable responses in relapsed B-cell hematologic malignancies, only 50% of patients ultimately have a complete, sustained response. Understanding the mechanisms of resistance and relapse after CAR T-cell therapy is crucial to future development and improving outcomes. AREAS COVERED We review reasons for both primary resistance and relapse after CAR T-cell therapies. Reasons for primary failure include CAR T-cell manufacturing problems, suboptimal fitness of autologous T-cells themselves, and intrinsic features of the underlying cancer and tumor microenvironment. Relapse after initial response to CAR T-cell therapy may be antigen-positive, due to CAR T-cell exhaustion or limited persistence, or antigen-negative, due to antigen-modulation on the target cells. Finally, we discuss ongoing efforts to overcome resistance to CAR T-cell therapy with enhanced CAR constructs, manufacturing methods, alternate cell types, combinatorial strategies, and optimization of both pre-infusion conditioning regimens and post-infusion consolidative strategies. EXPERT OPINION There is a continued need for novel approaches to CAR T-cell therapy for both hematologic and solid malignancies to obtain sustained remissions. Opportunities for improvement include development of new targets, optimally combining existing CAR T-cell therapies, and defining the role for adjunctive immune modulators and stem cell transplant in enhancing long-term survival.
Collapse
Affiliation(s)
- Alexandra Dreyzin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Oncology, Children's National Hospital, Washington DC, USA
| | - Alexander W Rankin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katia Luciani
- School of Medicine, University of Limerick, Limerick, Ireland
| | | | - Nirali N Shah
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Abou-el-Enein M. The Fate(s) of CAR T-Cell Therapy: Navigating the Risks of CAR+ T-Cell Malignancy. Blood Cancer Discov 2024; 5:249-257. [PMID: 38713831 PMCID: PMC11215381 DOI: 10.1158/2643-3230.bcd-23-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/09/2024] Open
Abstract
The introduction of chimeric antigen receptor (CAR) T-cell therapy represents a landmark advancement in treating resistant forms of cancer such as leukemia, lymphoma, and myeloma. However, concerns about long-term safety have emerged following an FDA investigation into reports of second primary malignancies (SPM) after CAR-T cell treatment. This review offers a thorough examination of how genetically modified T cells might transform into CAR+ SPM. It explores genetic and molecular pathways leading to T-cell lymphomagenesis, the balance between CAR T-cell persistence, stemness, and oncogenic risk, and the trade-off of T-cell exhaustion, which may limit therapy efficacy but potentially reduce lymphomagenesis risk. Significance: An FDA probe into 22 cases of second primary T-cell malignancies following CAR T-cell therapy stresses the need to investigate their origins. Few may arise from preexisting genetic and epigenetic alterations and those introduced during therapeutic engineering. Technological advances, regulatory oversight, and patient monitoring are essential to mitigate potential risks.
Collapse
Affiliation(s)
- Mohamed Abou-el-Enein
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California and Children’s Hospital of Los Angeles, Los Angeles, California.
- USC/CHLA Cell Therapy Program, University of Southern California and Children’s Hospital of Los Angeles, Los Angeles, California.
| |
Collapse
|
35
|
Marra JD, Galli E, Giammarco S, Metafuni E, Minnella G, Fosso F, Marietti S, Sica S, Sorà F, Chiusolo P. CAR-T from cord blood in a patient with Ph+ acute lymphoblastic leukemia relapsing after hematopoietic stem cell transplantation. Eur J Haematol 2024; 113:127-129. [PMID: 38644613 DOI: 10.1111/ejh.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
While there is intense interest in the production of allogeneic CAR-T cells from umbilical cord units, little is known about the reactivity and persistence of CAR-T cells of umbilical origin. We report the case of a patient at our hematological center with multiple relapsing Ph+ B-ALL, notably a Blinatunomab non-responder, who underwent therapy with Brexucabtagene Autoleucel following relapse on Ponatinib post-allogeneic hematopoietic stem cell transplantation. The patient achieved a rapid CAR-T expansion and durable remission presenting in good clinical conditions 6 months post-CAR-T infusion, without manifestations of graft-versus-host disease. The case report provides insight into the reactivity and persistence of CAR-T cells of umbilical origin, confirming the potential promise of allogeneic umbilical cord-derived CAR-T cells.
Collapse
Affiliation(s)
- John Donald Marra
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eugenio Galli
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Gessica Minnella
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Federica Fosso
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Sara Marietti
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Simona Sica
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Federica Sorà
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Patrizia Chiusolo
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
36
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
37
|
Leroy M, Deramoudt L, Pinturaud M, Demaret J, Alidjinou EK, Nudel M, Cavalieri D, Chahla WA, Odou P, Morschhauser F, Yakoub-Agha I, Simon N, Beauvais D. A second round of anti-CD19 CAR T-cell therapy in diffuse large B-cell lymphoma: when persistence pays off. Leuk Lymphoma 2024; 65:868-871. [PMID: 38440954 DOI: 10.1080/10428194.2024.2325188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/24/2024] [Indexed: 03/06/2024]
Affiliation(s)
- Marie Leroy
- CHU Lille, Institut de Pharmacie, Lille, France
| | - Laure Deramoudt
- CHU Lille, Institut de Pharmacie, Lille, France
- Univ Lille, ULR 7365-GRITA-Groupe de Recherche sur les Formes Injectables et les Technologies Associées, Lille, France
| | - Marine Pinturaud
- CHU Lille, Institut de Pharmacie, Lille, France
- Univ Lille, ULR 7365-GRITA-Groupe de Recherche sur les Formes Injectables et les Technologies Associées, Lille, France
| | - Julie Demaret
- CHU Lille, Institut d'Immunologie, Lille, France
- CHU de Lille, Université de Lille, INSERM Infinite U1285, Lille, France
| | | | | | | | - Wadih Abou Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, Lille University Hospital, Lille, France
| | - Pascal Odou
- CHU Lille, Institut de Pharmacie, Lille, France
- Univ Lille, ULR 7365-GRITA-Groupe de Recherche sur les Formes Injectables et les Technologies Associées, Lille, France
| | - Franck Morschhauser
- Univ Lille, ULR 7365-GRITA-Groupe de Recherche sur les Formes Injectables et les Technologies Associées, Lille, France
- Hematology Department, CHU Lille, Lille, France
| | - Ibrahim Yakoub-Agha
- CHU de Lille, Université de Lille, INSERM Infinite U1285, Lille, France
- Hematology Department, CHU Lille, Lille, France
| | - Nicolas Simon
- CHU Lille, Institut de Pharmacie, Lille, France
- Univ Lille, ULR 7365-GRITA-Groupe de Recherche sur les Formes Injectables et les Technologies Associées, Lille, France
| | - David Beauvais
- Hematology Department, CHU Lille, Lille, France
- Univ Lille, Inserm U1192 - PRISM, Lille, France
| |
Collapse
|
38
|
Wu MH, Valenca-Pereira F, Cendali F, Giddings EL, Pham-Danis C, Yarnell MC, Novak AJ, Brunetti TM, Thompson SB, Henao-Mejia J, Flavell RA, D'Alessandro A, Kohler ME, Rincon M. Deleting the mitochondrial respiration negative regulator MCJ enhances the efficacy of CD8 + T cell adoptive therapies in pre-clinical studies. Nat Commun 2024; 15:4444. [PMID: 38789421 PMCID: PMC11126743 DOI: 10.1038/s41467-024-48653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial respiration is essential for the survival and function of T cells used in adoptive cellular therapies. However, strategies that specifically enhance mitochondrial respiration to promote T cell function remain limited. Here, we investigate methylation-controlled J protein (MCJ), an endogenous negative regulator of mitochondrial complex I expressed in CD8 cells, as a target for improving the efficacy of adoptive T cell therapies. We demonstrate that MCJ inhibits mitochondrial respiration in murine CD8+ CAR-T cells and that deletion of MCJ increases their in vitro and in vivo efficacy against murine B cell leukaemia. Similarly, MCJ deletion in ovalbumin (OVA)-specific CD8+ T cells also increases their efficacy against established OVA-expressing melanoma tumors in vivo. Furthermore, we show for the first time that MCJ is expressed in human CD8 cells and that the level of MCJ expression correlates with the functional activity of CD8+ CAR-T cells. Silencing MCJ expression in human CD8 CAR-T cells increases their mitochondrial metabolism and enhances their anti-tumor activity. Thus, targeting MCJ may represent a potential therapeutic strategy to increase mitochondrial metabolism and improve the efficacy of adoptive T cell therapies.
Collapse
Affiliation(s)
- Meng-Han Wu
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Felipe Valenca-Pereira
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily L Giddings
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Catherine Pham-Danis
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Yarnell
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Amanda J Novak
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Tonya M Brunetti
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Scott B Thompson
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M Eric Kohler
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA.
| | - Mercedes Rincon
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
39
|
Myers RM, Devine K, Li Y, Lawrence S, Leahy AB, Liu H, Vernau L, Callahan C, Baniewicz D, Kadauke S, McGuire R, Wertheim GB, Kulikovskaya I, Gonzalez VE, Fraietta JA, DiNofia AM, Hunger SP, Rheingold SR, Aplenc R, June CH, Grupp SA, Wray L, Maude SL. Reinfusion of CD19 CAR T cells for relapse prevention and treatment in children with acute lymphoblastic leukemia. Blood Adv 2024; 8:2182-2192. [PMID: 38386999 PMCID: PMC11061218 DOI: 10.1182/bloodadvances.2024012885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
ABSTRACT Relapse after CD19-directed chimeric antigen receptor (CAR)-modified T cells remains a substantial challenge. Short CAR T-cell persistence contributes to relapse risk, necessitating novel approaches to prolong durability. CAR T-cell reinfusion (CARTr) represents a potential strategy to reduce the risk of or treat relapsed disease after initial CAR T-cell infusion (CARTi). We conducted a retrospective review of reinfusion of murine (CTL019) or humanized (huCART19) anti-CD19/4-1BB CAR T cells across 3 clinical trials or commercial tisagenlecleucel for relapse prevention (peripheral B-cell recovery [BCR] or marrow hematogones ≤6 months after CARTi), minimal residual disease (MRD) or relapse, or nonresponse to CARTi. The primary endpoint was complete response (CR) at day 28 after CARTr, defined as complete remission with B-cell aplasia. Of 262 primary treatments, 81 were followed by ≥1 reinfusion (investigational CTL019, n = 44; huCART19, n = 26; tisagenlecleucel, n = 11), representing 79 patients. Of 63 reinfusions for relapse prevention, 52% achieved CR (BCR, 15/40 [38%]; hematogones, 18/23 [78%]). Lymphodepletion was associated with response to CARTr for BCR (odds ratio [OR], 33.57; P = .015) but not hematogones (OR, 0.30; P = .291). The cumulative incidence of relapse was 29% at 24 months for CR vs 61% for nonresponse to CARTr (P = .259). For MRD/relapse, CR rate to CARTr was 50% (5/10), but 0/8 for nonresponse to CARTi. Toxicity was generally mild, with the only grade ≥3 cytokine release syndrome (n = 6) or neurotoxicity (n = 1) observed in MRD/relapse treatment. Reinfusion of CTL019/tisagenlecleucel or huCART19 is safe, may reduce relapse risk in a subset of patients, and can reinduce remission in CD19+ relapse.
Collapse
Affiliation(s)
- Regina M. Myers
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kaitlin Devine
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yimei Li
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sophie Lawrence
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Allison Barz Leahy
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hongyan Liu
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lauren Vernau
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Colleen Callahan
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Diane Baniewicz
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Stephan Kadauke
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Regina McGuire
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Gerald B. Wertheim
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Irina Kulikovskaya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vanessa E. Gonzalez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joseph A. Fraietta
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Amanda M. DiNofia
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephen P. Hunger
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Susan R. Rheingold
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard Aplenc
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Carl H. June
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephan A. Grupp
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lisa Wray
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shannon L. Maude
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
40
|
Hadiloo K, Taremi S, Safa SH, Amidifar S, Esmaeilzadeh A. The new era of immunological treatment, last updated and future consideration of CAR T cell-based drugs. Pharmacol Res 2024; 203:107158. [PMID: 38599467 DOI: 10.1016/j.phrs.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Cancer treatment is one of the fundamental challenges in clinical setting, especially in relapsed/refractory malignancies. The novel immunotherapy-based treatments bring new hope in cancer therapy and achieve various treatment successes. One of the distinguished ways of cancer immunotherapy is adoptive cell therapy, which utilizes genetically modified immune cells against cancer cells. Between different methods in ACT, the chimeric antigen receptor T cells have more investigation and introduced a promising way to treat cancer patients. This technology progressed until it introduced six US Food and Drug Administration-approved CAR T cell-based drugs. These drugs act against hematological malignancies appropriately and achieve exciting results, so they have been utilized widely in cell therapy clinics. In this review, we introduce all CAR T cells-approved drugs based on their last data and investigate them from all aspects of pharmacology, side effects, and compressional. Also, the efficacy of drugs, pre- and post-treatment steps, and expected side effects are introduced, and the challenges and new solutions in CAR T cell therapy are in the last speech.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Department of immunology, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Siavash Taremi
- Department of immunology, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Salar Hozhabri Safa
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Sima Amidifar
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran.
| |
Collapse
|
41
|
Gabelli M, Oporto-Espuelas M, Burridge S, Chu J, Farish S, Hedges E, Ware K, Williams L, Young L, Alajangi R, Ancliff P, Bartram J, Bonney D, Chenchara L, Chiesa R, Cugno C, Hodby K, Jalowiec KA, Lazareva A, Lucchini G, Mirci-Danicar OC, Mullanfiroze K, Pavasovic V, Rao A, Rao K, Riley L, Samarasinghe S, Shenton G, Silva J, Vora A, Hough R, Amrolia PJ, Ghorashian S. Maintenance therapy for early loss of B-cell aplasia after anti-CD19 CAR T-cell therapy. Blood Adv 2024; 8:1959-1963. [PMID: 37820111 PMCID: PMC11021820 DOI: 10.1182/bloodadvances.2023011168] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Affiliation(s)
- Maria Gabelli
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
- Pediatric Onco-hematology and Hematopoietic Stem Cell Transplantation, Woman and Child Health Department, University of Padua, Padua, Italy
| | - Macarena Oporto-Espuelas
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Saskia Burridge
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Jan Chu
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Susan Farish
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Emma Hedges
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kirsty Ware
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Lindsey Williams
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Lindsey Young
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Rajesh Alajangi
- Bristol Haematology and Oncology Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Philip Ancliff
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Jack Bartram
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Denise Bonney
- Department of Bone Marrow Transplantation, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Lenka Chenchara
- Division of Pediatric Hematology Oncology, Sidra Medicine, Doha, Qatar
| | - Robert Chiesa
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Chiara Cugno
- Division of Pediatric Hematology Oncology, Sidra Medicine, Doha, Qatar
| | - Katharine Hodby
- Bristol Haematology and Oncology Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | | | - Arina Lazareva
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Giovanna Lucchini
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Oana C. Mirci-Danicar
- Department of Bone Marrow Transplantation, Royal Hospital for Children, Bristol, United Kingdom
| | - Khushnuma Mullanfiroze
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Vesna Pavasovic
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Anupama Rao
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kanchan Rao
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Lynne Riley
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Sujith Samarasinghe
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Geoff Shenton
- Paediatric Oncology and Haematology, Great North Children’s Hospital, Newcastle-upon-Tyne, United Kingdom
| | - Juliana Silva
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Rachael Hough
- Haematology, University College London Hospital, London, United Kingdom
| | - Persis J. Amrolia
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sara Ghorashian
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
- Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
42
|
Oporto Espuelas M, Burridge S, Kirkwood AA, Bonney D, Watts K, Shenton G, Jalowiec KA, O'Reilly MA, Roddie C, Castleton A, Clesham K, Nicholson E, Alajangi R, Prabhu S, George L, Uttenthal B, Gabelli M, Neill L, Besley C, Chaganti S, Wynn RF, Bartram J, Chiesa R, Lucchini G, Pavasovic V, Rao A, Rao K, Silva J, Samarasinghe S, Vora A, Clark P, Cummins M, Marks DI, Amrolia P, Hough R, Ghorashian S. Intention-to-treat outcomes utilising a stringent event definition in children and young people treated with tisagenlecleucel for r/r ALL through a national access scheme. Blood Cancer J 2024; 14:66. [PMID: 38622139 PMCID: PMC11018620 DOI: 10.1038/s41408-024-01038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
CAR T-cell therapy has transformed relapsed/refractory (r/r) B-cell precursor acute lymphoblastic leukaemia (B-ALL) management and outcomes, but following CAR T infusion, interventions are often needed. In a UK multicentre study, we retrospectively evaluated tisagenlecleucel outcomes in all eligible patients, analysing overall survival (OS) and event-free survival (EFS) with standard and stringent definitions, the latter including measurable residual disease (MRD) emergence and further anti-leukaemic therapy. Both intention-to-treat and infused cohorts were considered. We collected data on feasibility of delivery, manufacture, toxicity, cause of therapy failure and followed patients until death from any cause. Of 142 eligible patients, 125 received tisagenlecleucel, 115/125 (92%) achieved complete remission (CR/CRi). Severe cytokine release syndrome and neurotoxicity occurred in 16/123 (13%) and 10/123 (8.1%), procedural mortality was 3/126 (2.4%). The 2-year intent to treat OS and EFS were 65.2% (95%CI 57.2-74.2%) and 46.5% (95%CI 37.6-57.6%), 2-year intent to treat stringent EFS was 35.6% (95%CI 28.1-44.9%). Median OS was not reached. Sixty-two responding patients experienced CAR T failure by the stringent event definition. Post failure, 1-year OS and standard EFS were 61.2% (95%CI 49.3-75.8) and 55.3% (95%CI 43.6-70.2). Investigation of CAR T-cell therapy for B-ALL delivered on a country-wide basis, including following patients beyond therapy failure, provides clinicians with robust outcome measures. Previously, outcomes post CAR T-cell therapy failure were under-reported. Our data show that patients can be successfully salvaged in this context with good short-term survival.
Collapse
Affiliation(s)
- Macarena Oporto Espuelas
- Infection, Immunity and Inflammation, UCL Great Ormond Ormond Street Institute of Child Health, London, UK.
| | - Saskia Burridge
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Amy A Kirkwood
- Cancer Research UK & Cancer Trials Centre, UCL, London, UK
| | - Denise Bonney
- Department of Blood and Bone Marrow Transplant, Royal Manchester Children's Hospital, Manchester, UK
| | - Kelly Watts
- Department of Blood and Bone Marrow Transplant, Royal Manchester Children's Hospital, Manchester, UK
| | - Geoff Shenton
- Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Katarzyna A Jalowiec
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Maeve A O'Reilly
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Claire Roddie
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Anna Castleton
- Department of Haematology, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Katherine Clesham
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Emma Nicholson
- Department of Haematology/Bone Marrow Transplantation, The Royal Marsden NHS Foundation Trust, London, UK
- Institute of Cancer Research, London, UK
| | - Rajesh Alajangi
- Department of Haematology/Bone Marrow Transplant, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Shilpa Prabhu
- Department of Haematology/Bone Marrow Transplant, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Lindsay George
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Ben Uttenthal
- Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Maria Gabelli
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, UK
- Pediatric Onco-hematology and Hematopoietic Stem Cell Transplantation, Woman and Child Health Department, University of Padova, Padua, Italy
| | - Lorna Neill
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Caroline Besley
- Department of Haematology/Bone Marrow Transplant, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Sridhar Chaganti
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Robert F Wynn
- Department of Blood and Bone Marrow Transplant, Royal Manchester Children's Hospital, Manchester, UK
| | - Jack Bartram
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Robert Chiesa
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, UK
| | - Giovanna Lucchini
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, UK
| | - Vesna Pavasovic
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Anupama Rao
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Kanchan Rao
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, UK
| | - Juliana Silva
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, UK
| | | | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | | | | | - David I Marks
- Department of Haematology, University Hospitals Bristol, Bristol, UK
| | - Persis Amrolia
- Infection, Immunity and Inflammation, UCL Great Ormond Ormond Street Institute of Child Health, London, UK
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, UK
| | - Rachael Hough
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sara Ghorashian
- Department of Haematology, Great Ormond Street Hospital, London, UK
- Developmental Biology and Cancer, UCL Great Ormond Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
43
|
Knight E T, Oluwole O, Kitko C. The Implementation of Chimeric Antigen Receptor (CAR) T-cell Therapy in Pediatric Patients: Where Did We Come From, Where Are We Now, and Where are We Going? Clin Hematol Int 2024; 6:96-115. [PMID: 38817691 PMCID: PMC11108586 DOI: 10.46989/001c.94386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 06/01/2024] Open
Abstract
CD19-directed Chimeric Antigen Receptor (CAR) T-cell therapy has revolutionized the treatment of patients with B-cell acute lymphoblastic leukemia (B-ALL). Somewhat uniquely among oncologic clinical trials, early clinical development occurred simultaneously in both children and adults. In subsequent years however, the larger number of adult patients with relapsed/refractory (r/r) malignancies has led to accelerated development of multiple CAR T-cell products that target a variety of malignancies, resulting in six currently FDA-approved for adult patients. By comparison, only a single CAR-T cell therapy is approved by the FDA for pediatric patients: tisagenlecleucel, which is approved for patients ≤ 25 years with refractory B-cell precursor ALL, or B-cell ALL in second or later relapse. Tisagenlecleucel is also under evaluation in pediatric patients with relapsed/refractory B-cell non-Hodgkin lymphoma, but is not yet been approved for this indication. All the other FDA-approved CD19-directed CAR-T cell therapies available for adult patients (axicabtagene ciloleucel, brexucabtagene autoleucel, and lisocabtagene maraleucel) are currently under investigations among children, with preliminary results available in some cases. As the volume and complexity of data continue to grow, so too does the necessity of rapid assimilation and implementation of those data. This is particularly true when considering "atypical" situations, e.g. those arising when patients do not precisely conform to the profile of those included in pivotal clinical trials, or when alternative treatment options (e.g. hematopoietic stem cell transplantation (HSCT) or bispecific T-cell engagers (BITEs)) are also available. We have therefore developed a relevant summary of the currently available literature pertaining to the use of CD19-directed CAR-T cell therapies in pediatric patients, and sought to provide guidance for clinicians seeking additional data about specific clinical situations.
Collapse
Affiliation(s)
| | - Olalekan Oluwole
- Medicine Hematology and Oncology, Vanderbilt University Medical Center
| | | |
Collapse
|
44
|
Agrawal V, Murphy L, Pourhassan H, Pullarkat V, Aldoss I. Optimizing CAR-T cell therapy in adults with B-cell acute lymphoblastic leukemia. Eur J Haematol 2024; 112:236-247. [PMID: 37772976 DOI: 10.1111/ejh.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated unprecedented success in the treatment of various hematologic malignancies including relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). Currently, there are two FDA-approved CD19-directed CAR-T cell products for the treatment of adults with R/R B-ALL. Despite high remission rates following CD19 CAR-T cell therapy in R/R B-ALL, remission durability remains limited in most adult patients, with relapse observed frequently in the absence of additional consolidation therapy. Furthermore, the burden of CAR-T cell toxicity remains significant in adults with R/R B-ALL and further limits the wide utilization of this effective therapy. In this review, we discuss patient and disease factors that are linked to CAR-T cell therapy outcomes in R/R B-ALL and strategies to optimize durability of response to reduce relapse and mitigate toxicity in the adult population. We additionally discuss future approaches being explored to maximize the benefit of CAR-T in adults with B-ALL.
Collapse
Affiliation(s)
- Vaibhav Agrawal
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Lindsey Murphy
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California, USA
| | - Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
45
|
Lin M, Zhao X, Chang Y, Zhao X. Current assessment and management of measurable residual disease in patients with acute lymphoblastic leukemia in the setting of CAR-T-cell therapy. Chin Med J (Engl) 2024; 137:140-151. [PMID: 38148315 PMCID: PMC10798764 DOI: 10.1097/cm9.0000000000002945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 12/28/2023] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR)-modified T-cell therapy has achieved remarkable success in the treatment of acute lymphoblastic leukemia (ALL). Measurable/minimal residual disease (MRD) monitoring plays a significant role in the prognostication and management of patients undergoing CAR-T-cell therapy. Common MRD detection methods include flow cytometry (FCM), polymerase chain reaction (PCR), and next-generation sequencing (NGS), and each method has advantages and limitations. It has been well documented that MRD positivity predicts a poor prognosis and even disease relapse. Thus, how to perform prognostic evaluations, stratify risk based on MRD status, and apply MRD monitoring to guide individual therapeutic decisions have important implications in clinical practice. This review assesses the common and novel MRD assessment methods. In addition, we emphasize the critical role of MRD as a prognostic biomarker and summarize the latest studies regarding MRD-directed combination therapy with CAR-T-cell therapy and allogeneic hematopoietic stem cell transplantation (allo-HSCT), as well as other therapeutic strategies to improve treatment effect. Furthermore, this review discusses current challenges and strategies for MRD detection in the setting of disease relapse after targeted therapy.
Collapse
Affiliation(s)
- Minghao Lin
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiaosu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Yingjun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiangyu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
46
|
Molinos-Quintana Á, Alonso-Saladrigues A, Herrero B, Caballero-Velázquez T, Galán-Gómez V, Panesso M, Torrebadell M, Delgado-Serrano J, Pérez de Soto C, Faura A, González-Martínez B, Castillo-Robleda A, Diaz-de-Heredia C, Pérez-Martínez A, Pérez-Hurtado JM, Rives S, Pérez-Simón JA. Impact of disease burden and late loss of B cell aplasia on the risk of relapse after CD19 chimeric antigen receptor T Cell (Tisagenlecleucel) infusion in pediatric and young adult patients with relapse/refractory acute lymphoblastic leukemia: role of B-cell monitoring. Front Immunol 2024; 14:1280580. [PMID: 38292483 PMCID: PMC10825008 DOI: 10.3389/fimmu.2023.1280580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Loss of B-cell aplasia (BCA) is a well-known marker of functional loss of CD19 CAR-T. Most relapses and loss of BCA occur in the first months after CD19 CAR-T infusion. In addition, high tumor burden (HTB) has shown to have a strong impact on relapse, especially in CD19-negative. However, little is known about the impact of late loss of BCA or the relationship between BCA and pre-infusion tumor burden in patients infused with tisagenlecleucel for relapsed/refractory B-cell acute lymphoblastic leukemia. Therefore, the optimal management of patients with loss of BCA is yet to be defined. Methods We conducted a Spanish, multicentre, retrospective study in patients infused with tisagenlecleucel after marketing authorization. A total of 73 consecutively treated patients were evaluated. Results Prior to infusion, 39 patients had HTB (≥ 5% bone marrow blasts) whereas 34 had a low tumor burden (LTB) (<5% blasts). Complete remission was achieved in 90.4% of patients, of whom 59% relapsed. HTB was associated with inferior outcomes, with a 12-month EFS of 19.3% compared to 67.2% in patients with LTB (p<0.001) with a median follow-up of 13.5 months (95% CI 12.4 - 16.2). In the HTB subgroup relapses were mainly CD19-negative (72%) whereas in the LTB subgroup they were mainly CD19-positive (71%) (p=0.017). In the LTB group, all CD19-positive relapses were preceded by loss of BCA whereas only 57% (4/7) of HTB patients experienced CD19-positive relapse. We found a positive correlation between loss of BCA and CD19-positive relapse (R-squared: 74) which persisted beyond six months post-infusion. We also explored B-cell recovery over time using two different definitions of loss of BCA and found a few discrepancies. Interestingly, transient immature B-cell recovery followed by BCA was observed in two pediatric patients. In conclusion, HTB has an unfavorable impact on EFS and allo-SCT might be considered in all patients with HTB, regardless of BCA. In patients with LTB, loss of BCA preceded all CD19-positive relapses. CD19-positive relapse was also frequent in patients who lost BCA beyond six months post-infusion. Therefore, these patients are still at significant risk for relapse and close MRD monitoring and/or therapeutic interventions should be considered.
Collapse
Affiliation(s)
- Águeda Molinos-Quintana
- Pediatric Unit, Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Anna Alonso-Saladrigues
- CAR T-cell Unit. Leukemia and Lymphoma Department. Pediatric Cancer Center Barcelona (PCCB). Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Blanca Herrero
- Pediatric Hemato-Oncology Department, Peditric University Hospital del Niño Jesús, Madrid, Spain
| | - Teresa Caballero-Velázquez
- Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Víctor Galán-Gómez
- Pediatric Hemato-Oncology Department, University Hospital La Paz, Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Melissa Panesso
- Division of Pediatric Hematology and Oncology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Montserrat Torrebadell
- CAR T-cell Unit. Leukemia and Lymphoma Department. Pediatric Cancer Center Barcelona (PCCB). Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Javier Delgado-Serrano
- Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Concepción Pérez de Soto
- Pediatric Unit, Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Anna Faura
- CAR T-cell Unit. Leukemia and Lymphoma Department. Pediatric Cancer Center Barcelona (PCCB). Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Berta González-Martínez
- Pediatric Hemato-Oncology Department, University Hospital La Paz, Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Castillo-Robleda
- Pediatric Hemato-Oncology Department, Peditric University Hospital del Niño Jesús, Madrid, Spain
| | - Cristina Diaz-de-Heredia
- Division of Pediatric Hematology and Oncology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Antonio Pérez-Martínez
- Pediatric Hemato-Oncology Department, University Hospital La Paz, Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - José María Pérez-Hurtado
- Pediatric Unit, Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Susana Rives
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Barcelona, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red De Enfermedades Raras (CIBERER), Madrid, Spain
| | - José Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
47
|
Testa U, Sica S, Pelosi E, Castelli G, Leone G. CAR-T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia. Mediterr J Hematol Infect Dis 2024; 16:e2024010. [PMID: 38223477 PMCID: PMC10786140 DOI: 10.4084/mjhid.2024.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024] Open
Abstract
Treatment of refractory and relapsed (R/R) B acute lymphoblastic leukemia (B-ALL) is an unmet medical need in both children and adults. Studies carried out in the last two decades have shown that autologous T cells engineered to express a chimeric antigen receptor (CAR-T) represent an effective technique for treating these patients. Antigens expressed on B-cells, such as CD19, CD20, and CD22, represent targets suitable for treating patients with R/R B-ALL. CD19 CAR-T cells induce a high rate (80-90%) of complete remissions in both pediatric and adult R/R B-ALL patients. However, despite this impressive rate of responses, about half of responding patients relapse within 1-2 years after CAR-T cell therapy. Allo-HSCT after CAR-T cell therapy might consolidate the therapeutic efficacy of CAR-T and increase long-term outcomes; however, not all the studies that have adopted allo-HSCT as a consolidative treatment strategy have shown a benefit deriving from transplantation. For B-ALL patients who relapse early after allo-HSCT or those with insufficient T-cell numbers for an autologous approach, using T cells from the original stem cell donor offers the opportunity for the successful generation of CAR-T cells and for an effective therapeutic approach. Finally, recent studies have introduced allogeneic CAR-T cells generated from healthy donors or unmatched, which are opportunely manipulated with gene editing to reduce the risk of immunological incompatibility, with promising therapeutic effects.
Collapse
Affiliation(s)
| | - Simona Sica
- Dipartimento Di Diagnostica per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy. Sezione Di Ematologia
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | | | - Giuseppe Leone
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
48
|
McNerney KO, Moskop A, Winestone LE, Baggott C, Talano JA, Schiff D, Rossoff J, Modi A, Verneris MR, Laetsch TW, Schultz L. Practice Preferences for Consolidative Hematopoietic Stem Cell Transplantation Following Tisagenlecleucel in Children and Young Adults with B Cell Acute Lymphoblastic Leukemia. Transplant Cell Ther 2024; 30:75.e1-75.e11. [PMID: 37816472 DOI: 10.1016/j.jtct.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Treatment with tisagenlecleucel (tisa-cel) achieves excellent complete remission rates in children and young adults with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL), but approximately 50% maintain long-term remission. Consolidative hematopoietic stem cell transplantation (cHSCT) is a potential strategy to reduce relapse risk, but it carries substantial short- and long-term toxicities. Additionally, several strategies for management of B cell recovery (BCR) and next-generation sequencing (NGS) positivity post-tisa-cel exist, without an accepted standard. We hypothesized that practice preferences surrounding cHSCT, as well as management of BCR and NGS positivity, varies across tisa-cel-prescribing physicians and sought to characterize current practice preferences. A survey focusing on preferences regarding the use of cHSCT, management of BCR, and NGS positivity was distributed to physicians who prescribe tisa-cel for children and young adults with B-ALL. Responses were collected from August 2022 to April 2023. Fifty-nine unique responses were collected across 43 institutions. All respondents prescribed tisa-cel for children and young adults. The clinical focus of respondents was HSCT in 71%, followed by leukemia/lymphoma in 24%. For HSCT-naive patients receiving tisa-cel, 57% of respondents indicated they made individualized decisions for cHSCT based on patient factors, whereas 22% indicated they would avoid cHSCT and 21% indicated they would pursue cHSCT when feasible. Certain factors influenced >50% of respondents towards recommending cHSCT (either an increased likelihood of recommending or always recommending), including preinfusion disease burden >25%, primary refractory B-ALL, M3 bone marrow following reinduction for relapse, KMT2A-rearranged B-ALL, history of blinatumomab nonresponse, and HSCT-naive status. Most respondents indicated they would pursue HSCT for HSCT-naive, total body irradiation (TBI) recipients with BCR before 6 months post-tisa-cel or with NGS positivity at 1 or 3 months post-tisa-cel, although there was variability in responses regarding whether to proceed to HSCT directly or provide intervening therapy prior to HSCT. Fewer respondents recommended HSCT for BCR or NGS positivity in patients with a history of HSCT, in noncandidates for TBI, and in patients with trisomy 21. The results of this survey indicate there exists significant practice variability regarding the use of cHSCT, as well as interventions for post-tisa-cel BCR or NGS positivity. These results highlight areas in which ongoing clinical trials could inform more standardized practice.
Collapse
Affiliation(s)
- Kevin O McNerney
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.
| | - Amy Moskop
- Division of HematologyOncologyBlood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Lena E Winestone
- Division of Allergy, Immunology, and BMT, Department of Pediatrics, University of California San Francisco Benioff Children's Hospitals, San Francisco, California; UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Christina Baggott
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Julie-An Talano
- Division of HematologyOncologyBlood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Deborah Schiff
- Department of Pediatric Hematology and Oncology, Rady Children's Hospital, San Diego, California
| | - Jenna Rossoff
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Arunkumar Modi
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Michael R Verneris
- University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado
| | - Theodore W Laetsch
- Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Liora Schultz
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
49
|
Chatterjee G, Dhende P, Raj S, Shetty V, Ghogale S, Deshpande N, Girase K, Patil J, Kalra A, Narula G, Dalvi K, Dhamne C, Moulik NR, Rajpal S, Patkar NV, Banavali S, Gujral S, Subramanian PG, Tembhare PR. 15-color highly sensitive flow cytometry assay for post anti-CD19 targeted therapy (anti-CD19-CAR-T and blinatumomab) measurable residual disease assessment in B-lymphoblastic leukemia/lymphoma: Real-world applicability and challenges. Eur J Haematol 2024; 112:122-136. [PMID: 37706583 DOI: 10.1111/ejh.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES Measurable residual disease (MRD) is the most relevant predictor of disease-free survival in B-cell acute lymphoblastic leukemia (B-ALL). We aimed to establish a highly sensitive flow cytometry (MFC)-based B-ALL-MRD (BMRD) assay for patients receiving anti-CD19 immunotherapy with an alternate gating approach and to document the prevalence and immunophenotype of recurrently occurring low-level mimics and confounding populations. METHODS We standardized a 15-color highly-sensitive BMRD assay with an alternate CD19-free gating approach. The study included 137 MRD samples from 43 relapsed/refractory B-ALL patients considered for anti-CD19 immunotherapy. RESULTS The 15-color BMRD assay with CD22/CD24/CD81/CD33-based gating approach was routinely applicable in 137 BM samples and could achieve a sensitivity of 0.0005%. MRD was detected in 29.9% (41/137) samples with 31.7% (13/41) of them showing <.01% MRD. Recurrently occurring low-level cells that showed immunophenotypic overlap with leukemic B-blasts included: (a) CD19+CD10+CD34+CD22+CD24+CD81+CD123+CD304+ plasmacytoid dendritic cells, (b) CD73bright/CD304bright/CD81bright mesenchymal stromal/stem cells (CD10+) and endothelial cells (CD34+CD24+), (c) CD22dim/CD34+/CD38dim/CD81dim/CD19-/CD10-/CD24- early lymphoid progenitor/precursor type-1 cells (ELP-1) and (d) CD22+/CD34+/CD10heterogeneous/CD38moderate/CD81moderate/CD19-/CD24- stage-0 B-cell precursors or ELP-2 cells. CONCLUSIONS We standardized a highly sensitive 15-color BMRD assay with a non-CD19-based gating strategy for patients receiving anti-CD19 immunotherapy. We also described the immunophenotypes of recurrently occurring low-level populations that can be misinterpreted as MRD in real-world practice.
Collapse
Affiliation(s)
- Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Priyanka Dhende
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Simpy Raj
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Vruksha Shetty
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Sitaram Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Karishma Girase
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Jagruti Patil
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Aastha Kalra
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Gaurav Narula
- Department of Pediatric Oncology, Tata Memorial Center, Mumbai, Mumbai, Maharashtra, India
| | - Kajal Dalvi
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Chetan Dhamne
- Department of Pediatric Oncology, Tata Memorial Center, Mumbai, Mumbai, Maharashtra, India
| | - Nirmalya Roy Moulik
- Department of Pediatric Oncology, Tata Memorial Center, Mumbai, Mumbai, Maharashtra, India
| | - Sweta Rajpal
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Nikhil V Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Shripad Banavali
- Department of Pediatric Oncology, Tata Memorial Center, Mumbai, Mumbai, Maharashtra, India
| | - Sumeet Gujral
- Hematopathology Laboratory, Tata Memorial Center, Mumbai, Mumbai, Maharashtra, India
| | - Papagudi G Subramanian
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Prashant R Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| |
Collapse
|
50
|
Awasthi R, Maier HJ, Zhang J, Lim S. Kymriah® (tisagenlecleucel) - An overview of the clinical development journey of the first approved CAR-T therapy. Hum Vaccin Immunother 2023; 19:2210046. [PMID: 37185251 PMCID: PMC10294746 DOI: 10.1080/21645515.2023.2210046] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
The emergence of cell and gene therapies has dramatically changed the treatment paradigm in oncology and other therapeutic areas. Kymriah® (tisagenlecleucel), a CD19-directed genetically modified autologous T-cell immunotherapy, is currently approved in major markets for the treatment of relapsed/refractory (r/r) pediatric and young adult acute lymphoblastic leukemia, r/r diffuse large B-cell lymphoma, and r/r follicular lymphoma. This article presents a high-level overview of the clinical development journey of tisagenlecleucel, including its efficacy outcomes and safety considerations.
Collapse
Affiliation(s)
- Rakesh Awasthi
- Oncology & Hematology, Novartis Institutes for BioMedical Research, East Hanover, NJ, USA
| | - Harald J. Maier
- Oncology and Hematology, Global Drug Development, Novartis Pharma AG, Basel, Switzerland
| | - Jie Zhang
- Cell & Gene Unit, Novartis Services Inc, East Hanover, NJ, USA
| | - Stephen Lim
- US Medical Affairs, Oncology, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|