1
|
Abad C, Karahoda R, Orbisova A, Kastner P, Heblik D, Kucera R, Portillo R, Staud F. Pathological shifts in tryptophan metabolism in human term placenta exposed to LPS or poly I:C†. Biol Reprod 2024; 110:722-738. [PMID: 38145492 PMCID: PMC11017130 DOI: 10.1093/biolre/ioad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023] Open
Abstract
Maternal immune activation during pregnancy is a risk factor for offspring neuropsychiatric disorders. Among the mechanistic pathways by which maternal inflammation can affect fetal brain development and programming, those involving tryptophan (TRP) metabolism have drawn attention because various TRP metabolites have neuroactive properties. This study evaluates the effect of bacterial (lipopolysaccharides/LPS) and viral (polyinosinic:polycytidylic acid/poly I:C) placental infection on TRP metabolism using an ex vivo model. Human placenta explants were exposed to LPS or poly I:C, and the release of TRP metabolites was analyzed together with the expression of related genes and proteins and the functional activity of key enzymes in TRP metabolism. The rate-limiting enzyme in the serotonin pathway, tryptophan hydroxylase, showed reduced expression and functional activity in explants exposed to LPS or poly I:C. Conversely, the rate-limiting enzyme in the kynurenine pathway, indoleamine dioxygenase, exhibited increased activity, gene, and protein expression, suggesting that placental infection mainly promotes TRP metabolism via the kynurenine (KYN) pathway. Furthermore, we observed that treatment with LPS or poly I:C increased activity in the kynurenine monooxygenase branch of the KYN pathway. We conclude that placental infection impairs TRP homeostasis, resulting in decreased production of serotonin and an imbalance in the ratio between quinolinic acid and kynurenic acid. This disrupted homeostasis may eventually expose the fetus to suboptimal/toxic levels of neuroactive molecules and impair fetal brain development.
Collapse
Affiliation(s)
- Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Anna Orbisova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Petr Kastner
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Daniel Heblik
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ramon Portillo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
3
|
Rosenfeld CS. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development†. Biol Reprod 2021; 102:532-538. [PMID: 31711155 DOI: 10.1093/biolre/ioz204] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
The placenta is a transient organ but essential for the survival of all mammalian species by allowing for the exchanges of gasses, nutrients, and waste between maternal and fetal placenta. In rodents and humans with a hemochorial placenta, fetal placenta cells are susceptible to pharmaceutical agents and other compounds, as they are bathed directly in maternal blood. The placenta of mice and humans produce high concentrations of serotonin (5-HT) that can induce autocrine and paracrine effects within this organ. Placental 5-HT is the primary source of this neurotransmitter for fetal brain development. Increasing number of pregnant women at risk of depression are being treated with selective serotonin-reuptake inhibitors (SSRIs) that bind to serotonin transporters (SERT), which prevents 5-HT binding and cellular internalization, allowing for accumulation of extracellular 5-HT available to bind to 5-HT(2A) receptor (5-HT(2A)R). In vitro and in vivo findings with SSRI or pharmacological blockage of the 5-HT(2A)R reveal disruptions of 5-HT signaling within the placenta can affect cell proliferation, division, and invasion. In SERT knockout mice, numerous apoptotic trophoblast cells are observed, as well as extensive pathological changes within the junctional zone. Collective data suggest a fine equilibrium in 5-HT signaling is essential for maintaining normal placental structure and function. Deficiencies in placental 5-HT may also result in neurobehavioral abnormalities. Evidence supporting 5-HT production and signaling within the placenta will be reviewed. We will consider whether placental hyposerotonemia or hyperserotonemia results in similar pathophysiological changes in the placenta and other organs. Lastly, open ended questions and future directions will be explored.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO USA.,Biomedical Sciences, University of Missouri, Columbia, MO USA.,MU Informatics Institute, University of Missouri, Columbia, MO USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO USA.,Genetics Area Program, University of Missouri, Columbia, MO USA
| |
Collapse
|
4
|
Gumusoglu S, Scroggins S, Vignato J, Santillan D, Santillan M. The Serotonin-Immune Axis in Preeclampsia. Curr Hypertens Rep 2021; 23:37. [PMID: 34351543 DOI: 10.1007/s11906-021-01155-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW To review the literature and detail the potential immune mechanisms by which hyperserotonemia may drive pro-inflammation in preeclampsia and to provide insights into potential avenues for therapeutic discovery. RECENT FINDINGS Preeclampsia is a severe hypertensive complication of pregnancy associated with significant maternal and fetal risk. Though it lacks any effective treatment aside from delivery of the fetus and placenta, recent work suggests that targeting serotonin systems may be one effective therapeutic avenue. Serotonin dysregulation underlies multiple domains of physiologic dysfunction in preeclampsia, including vascular hyporeactivity and excess platelet aggregation. Broadly, serotonin is increased across maternal and placental domains, driven by decreased catabolism and increased availability of tryptophan precursor. Pro-inflammation, another hallmark of the disease, may drive hyperserotonemia in preeclampsia. Interactions between immunologic dysfunction and hyperserotonemia in preeclampsia depend on multiple mechanisms, which we discuss in the present review. These include altered immune cell, kynurenine pathway metabolism, and aberrant cytokine production mechanisms, which we detail. Future work may leverage animal and in vitro models to reveal serotonin targets in the context of preeclampsia's immune biology, and ultimately to mitigate vascular and platelet dysfunction in the disease. Hyperserotonemia in preeclampsia drives pro-inflammation via metabolic, immune cell, and cytokine-based mechanisms. These immune mechanisms may be targeted to treat vascular and platelet endophenotypes in preeclampsia.
Collapse
Affiliation(s)
- Serena Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| | - Sabrina Scroggins
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Julie Vignato
- University of Iowa College of Nursing, Iowa City, Iowa, USA
| | - Donna Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mark Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Differential Serotonin Uptake Mechanisms at the Human Maternal-Fetal Interface. Int J Mol Sci 2021; 22:ijms22157807. [PMID: 34360573 PMCID: PMC8346107 DOI: 10.3390/ijms22157807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/30/2022] Open
Abstract
Serotonin (5-HT) plays an extensive role during pregnancy in regulating both the placental physiology and embryonic/fetal development. The uptake of 5-HT into cells is central to the control of local concentrations of 5-HT near its molecular targets. Here, we investigated the mechanisms of 5-HT uptake into human primary placental cells and cord blood platelets, all isolated immediately after birth. Trophoblasts and cord blood platelets showed 5-HT uptake with similar Michaelis constant (Km) values (~0.6 μM), typical of the high-affinity serotonin transporter (SERT). The uptake of 5-HT into trophoblasts was efficiently inhibited by various SERT-targeting drugs. In contrast, the uptake of 5-HT into feto-placental endothelial cells was not inhibited by a SERT blocker and showed a Km value (~782 μM) in the low-affinity range. Consistent with this, SERT mRNAs were abundant in term trophoblasts but sparse in feto-placental endothelial cells, whereas the opposite was found for the low-affinity plasma membrane monoamine transporter (PMAT) mRNAs. Organic cation transporter (OCT) 1, 2, and 3 mRNAs were absent or sparse in both cell types. In summary, the results demonstrate, for the first time, the presence of functional 5-HT uptake systems in feto-placental endothelial cells and fetal platelets, cells that are in direct contact with fetal blood plasma. The data also highlight the sensitivity to various psychotropic drugs of 5-HT transport into trophoblasts facing the maternal blood. The multiple, high-, and low-affinity systems present for the cellular uptake of 5-HT underscore the importance of 5-HT homeostasis at the maternal-fetal interface.
Collapse
|
6
|
Karahoda R, Horackova H, Kastner P, Matthios A, Cerveny L, Kucera R, Kacerovsky M, Duintjer Tebbens J, Bonnin A, Abad C, Staud F. Serotonin homeostasis in the materno-foetal interface at term: Role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol (Oxf) 2020; 229:e13478. [PMID: 32311818 DOI: 10.1111/apha.13478] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
AIM Serotonin is crucial for proper foetal development, and the placenta has been described as a 'donor' of serotonin for the embryo/foetus. However, in later stages of gestation the foetus produces its own serotonin from maternally-derived tryptophan and placental supply is no longer needed. We propose a novel model of serotonin homeostasis in the term placenta with special focus on the protective role of organic cation transporter 3 (OCT3/SLC22A3). METHODS Dually perfused rat term placenta was employed to quantify serotonin/tryptophan transport and metabolism. Placental membrane vesicles isolated from human term placenta were used to characterize serotonin transporters on both sides of the syncytiotrophoblast. RESULTS We obtained the first evidence that serotonin is massively taken up from the foetal circulation by OCT3. This uptake is concentration-dependent and inhibitable by OCT3 blockers of endogenous (glucocorticoids) or exogenous (pharmaceuticals) origin. Population analyses in rat placenta revealed that foetal sex influences placental extraction of serotonin from foetal circulation. Negligible foetal serotonin levels were detected in maternal-to-foetal serotonin/tryptophan transport and metabolic studies. CONCLUSION We demonstrate that OCT3, localized on the foetus-facing membrane of syncytiotrophoblast, is an essential component of foeto-placental homeostasis of serotonin. Together with serotonin degrading enzyme, monoamine oxidase-A, this offers a protective mechanism against local vasoconstriction effects of serotonin in the placenta. However, this system may be compromised by OCT3 inhibitory molecules, such as glucocorticoids or antidepressants. Our findings open new avenues to explore previously unsuspected/unexplained complications during pregnancy including prenatal glucocorticoid excess and pharmacotherapeutic risks of treating pregnant women with OCT3 inhibitors.
Collapse
Affiliation(s)
- Rona Karahoda
- Faculty of Pharmacy in Hradec Kralove Department of Pharmacology and Toxicology Charles University Hradec Kralove Czech Republic
| | - Hana Horackova
- Faculty of Pharmacy in Hradec Kralove Department of Pharmacology and Toxicology Charles University Hradec Kralove Czech Republic
| | - Petr Kastner
- Faculty of Pharmacy in Hradec Kralove Department of Pharmaceutical Chemistry and Pharmaceutical Analysis Charles University Hradec Kralove Czech Republic
| | - Andreas Matthios
- Faculty of Pharmacy in Hradec Kralove Department of Biophysics and Physical Chemistry Charles University Hradec Kralove Czech Republic
| | - Lukas Cerveny
- Faculty of Pharmacy in Hradec Kralove Department of Pharmacology and Toxicology Charles University Hradec Kralove Czech Republic
| | - Radim Kucera
- Faculty of Pharmacy in Hradec Kralove Department of Pharmaceutical Chemistry and Pharmaceutical Analysis Charles University Hradec Kralove Czech Republic
| | - Marian Kacerovsky
- Department of Gynecology and Obstetrics University Hospital in Hradec Kralove Hradec Kralove Czech Republic
| | - Jurjen Duintjer Tebbens
- Faculty of Pharmacy in Hradec Kralove Department of Biophysics and Physical Chemistry Charles University Hradec Kralove Czech Republic
| | - Alexandre Bonnin
- Department of Physiology and Neuroscience University of Southern California Los Angeles CA USA
| | - Cilia Abad
- Faculty of Pharmacy in Hradec Kralove Department of Pharmacology and Toxicology Charles University Hradec Kralove Czech Republic
| | - Frantisek Staud
- Faculty of Pharmacy in Hradec Kralove Department of Pharmacology and Toxicology Charles University Hradec Kralove Czech Republic
| |
Collapse
|
7
|
Brivio P, Sbrini G, Peeva P, Todiras M, Bader M, Alenina N, Calabrese F. TPH2 Deficiency Influences Neuroplastic Mechanisms and Alters the Response to an Acute Stress in a Sex Specific Manner. Front Mol Neurosci 2018; 11:389. [PMID: 30425618 PMCID: PMC6218558 DOI: 10.3389/fnmol.2018.00389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/04/2018] [Indexed: 01/13/2023] Open
Abstract
Dysregulations of the central serotoninergic system have been implicated in several psychopathologies, characterized by different susceptibility between males and females. We took advantage of tryptophan hydroxylase 2 (TPH2) deficient rats, lacking serotonin specifically in the brain, to investigate whether a vulnerable genotype can be associated with alterations of neuronal plasticity from the early stage of maturation of the brain until adulthood. We found a significant increase, in both gene and protein expression, of the neurotrophin brain-derived neurotrophic factor (BDNF), in the prefrontal cortex (PFC) of adult TPH2-deficient (TPH2−/−) male and female rats in comparison to wild type (TPH2+/+) counterparts. Interestingly, a development-specific pattern was observed during early postnatal life: whereas the increase in Bdnf expression, mainly driven by the modulation of Bdnf isoform IV was clearly visible after weaning at postnatal day (pnd) 30 in both sexes of TPH2−/− in comparison to TPH2+/+ rats, at early stages (pnd1 and pnd10) Bdnf expression levels did not differ between the genotypes, or even were downregulated in male TPH2−/− animals at pnd10. Moreover, to establish if hyposerotonergia may influence the response to a challenging situation, we exposed adult rats to an acute stress. Although the pattern of corticosterone release was similar between the genotypes, neuronal activation in response to stress, quantified by the expression of the immediate early genes activity regulated cytoskeleton associated protein (Arc) and Fos Proto-Oncogene (cFos), was blunted in both sexes of animals lacking brain serotonin. Interestingly, although upregulation of Bdnf mRNA levels after stress was observed in both genotypes, it was less pronounced in TPH2−/− in comparison to TPH2+/+ rats. In summary, our results demonstrated that serotonin deficiency affects neuroplastic mechanisms following a specific temporal pattern and influences the response to an acute stress.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Polina Peeva
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Mihail Todiras
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Michael Bader
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Charite-University Medicine, Berlin, Germany
| | - Natalia Alenina
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Kliman HJ, Quaratella SB, Setaro AC, Siegman EC, Subha ZT, Tal R, Milano KM, Steck TL. Pathway of Maternal Serotonin to the Human Embryo and Fetus. Endocrinology 2018; 159:1609-1629. [PMID: 29381782 DOI: 10.1210/en.2017-03025] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] is essential to intrauterine development, but its source is debated. We used immunocytochemistry to gauge 5-HT, its biosynthetic enzyme tryptophan hydroxylase 1 (TPH1); an importer (serotonin transporter, 5-HTT/SERT/SLC6A); other transporters [P-glycoprotein 1 (P-gp/ABCB1), OCT3/SLC22A3, and gap junction connexin-43]; and the 5-HT degradative enzyme monoamine oxidase A (MAOA) in sections of placentas. In humans, 5-HT was faintly stained only in first-trimester trophoblasts, whereas TPH1 was not seen at any stage. SERT was expressed in syncytiotrophoblasts and, more strongly, in cytotrophoblasts. MAOA was prominent in syncytiotrophoblasts, OCT3 and gap junctions were stained in cytotrophoblasts, and P-gp was present at the apical surfaces of both epithelia. 5-HT added to cultured placental explants accumulated in the trophoblast epithelium and reached the villus core vessels. Trophoblast uptake was blocked by the SERT inhibitor escitalopram. Inhibition of gap junctions with heptanol prevented the accumulation of 5-HT in cytotrophoblasts, whereas blocking OCT3 with decynium-22 and P-gp with mitotane led to its accumulation in cytotrophoblasts. Reducing 5-HT destruction by inhibiting MAOA with clorgyline increased the accumulation of 5-HT throughout the villus. In the mouse fetus, intravascular platelets stained prominently for 5-HT at day 13.5, whereas the placenta and yolk sac endoderm were both negative. TPH1 was not detected, but SERT was prominent in these mouse tissues. We conclude that serotonin is conveyed from the maternal blood stream through syncytiotrophoblasts, cytotrophoblasts and the villus core to the fetus through a physiological pathway that involves at least SERT, gap junctions, P-gp, OCT3, and MAOA.
Collapse
Affiliation(s)
- Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | | - Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Kristin M Milano
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| |
Collapse
|
9
|
Reduced placental vascular reactivity to 5-hydroxytryptamine in pre-eclampsia and the status of 5HT2A receptors. Vascul Pharmacol 2011; 55:157-62. [DOI: 10.1016/j.vph.2011.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/05/2011] [Accepted: 07/15/2011] [Indexed: 11/18/2022]
|
10
|
Ganapathy V. Drugs of abuse and human placenta. Life Sci 2010; 88:926-30. [PMID: 20932493 DOI: 10.1016/j.lfs.2010.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/01/2010] [Accepted: 08/28/2010] [Indexed: 12/30/2022]
Abstract
Drugs of abuse such as cocaine and amphetamines, when used by pregnant women, exert deleterious effects on the fetus. These drugs produce their effects through inhibition of the serotonin transporter, norepinephrine transporter, and dopamine transporter. The inhibition can occur in the pregnant mother as well as in the fetus. These events contribute to the detrimental effects of these drugs on the fetus. However, the role of placenta, which serves as the link between the pregnant mother and the fetus, in the process remains understudied. It has been assumed that the placenta did not play any direct role in the process except that it allowed the passage of these drugs from maternal circulation into fetal circulation. This was before the discovery that the placenta expresses two of the three monoamine transporters. The serotonin transporter and the norepinephrine transporter are expressed on the maternal-facing side of the syncytiotrophoblast, thus exposed to the inhibitory actions of cocaine and amphetamines if present in maternal blood. Inhibition of these transporters in the placenta could lead to elevation of serotonin and norepinephrine in the intervillous space that may cause uterine contraction and vasoconstriction, resulting in premature delivery, decreased placental blood flow, and intrauterine growth retardation. Thus, the placenta is actually a direct target for these abusable drugs. Since the placental serotonin transporter and norepinephrine transporter are also inhibited by many antidepressants, therapeutic use of these drugs in pregnant women may have similar detrimental effects on placental function and fetal growth and development.
Collapse
Affiliation(s)
- Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
11
|
Trowbridge S, Narboux-Nême N, Gaspar P. Genetic models of serotonin (5-HT) depletion: what do they tell us about the developmental role of 5-HT? Anat Rec (Hoboken) 2010; 294:1615-23. [PMID: 20818612 DOI: 10.1002/ar.21248] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022]
Abstract
A large number of hyposerotonergic genetic models have been generated over the past few years. Serotonin (5-HT) depletion has been obtained via targeting of genes involved in 5-HT synthesis (Tph1 and Tph2), specification and determination of the 5-HT phenotype during development (GATA3, Pet1, and Lmx1b), and 5-HT storage or clearance (Vmat2 and SERT). Here we review these various models from a developmental perspective, beginning with a description of the sources of 5-HT during development. We then summarize the neurological and behavioral alterations that have been observed in the genetic hyposerotonergic models. Although these models appear to have normal brain development and do not exhibit any gross morphological defects, problems in somatic growth and physiological functions have been observed. Abnormal adult behavior is also seen, although whether it results from depletion of 5-HT during development or functional 5-HT deficiencies in adult life remains unclear. Evidence from these hyposerotonergic models suggests that the developing brain may not need 5-HT for the establishment of general organization and structure. However, central 5-HT appears to be necessary for postnatal body growth, maturation of respiratory and vegetative control, and possibly for the development of normal adult behavior.
Collapse
|
12
|
Role of monoamine oxidases in the exaggerated 5-hydroxytryptamine-induced tension development of human isolated preeclamptic umbilical artery. Eur J Pharmacol 2009; 605:129-37. [PMID: 19248248 DOI: 10.1016/j.ejphar.2008.12.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the role(s) of monoamine oxidases (MAOs) on the altered 5-hydroxytryptamine (5-HT, serotonin)-induced tension development of the isolated umbilical artery of preeclamptic pregnancy of Chinese women. An enhanced 5-HT-induced tension development of the umbilical artery of preeclamptic pregnancy was observed when compared with that of normal pregnancy. The enhanced component of 5-HT-induced tension development was eradicated by clorgyline (a MAO-A inhibitor). Blockade of eNOS (endothelial isoform nitric oxide synthase) (N(omega)-nitro-L-arginine methyl ester), 5-HT transporter (citalopram), 5-HT receptor subtypes (5HT2B, SB 204741; 5-HT2C, RS 102221; 5-HT7, SB 269970), and endothelium denudation of the umbilical artery of normal pregnancy mimicked the enhanced 5-HT-induced tension development as observed in the preeclamptic tissues. In contrast, no apparent changes in 5-HT-induced tension development of the umbilical artery of preeclamptic pregnancy were observed with the same pharmacological manipulations. A decreased protein expression levels of MAO-A and eNOS (no iNOS and MAO-B expression was detected) and no change in caveolin-1 and 5-HT transporter expression were demonstrated in the umbilical artery (endothelium intact) lysate of preeclamptic pregnancy, compared to that of the umbilical artery of normal pregnancy. Thus, in the umbilical artery of preeclamptic pregnancy, a decrease of MAO-A and eNOS protein expression levels are probably associated with, or responsible for, the exaggerated 5-HT-induced tension development.
Collapse
|
13
|
Sivasubramaniam SD, Finch CC, Billett MA, Baker PN, Billett EE. Monoamine oxidase expression and activity in human placentae from pre-eclamptic and normotensive pregnancies. Placenta 2002; 23:163-71. [PMID: 11945082 DOI: 10.1053/plac.2001.0770] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A feature of pre-eclampsia is that circulating levels of maternal serotonin (5-hydroxytryptamine) are elevated and placental monoamine oxidase-A (MAO-A) activity, the major factor in the regulation of serotonin levels in pregnancy, is reduced. It is not known whether this is due to a reduced MAO-A protein content or a reduced catalytic turnover of the serotonin by MAO-A; this question has been addressed in the present work. Term placentae from normotensive and pre-eclamptic women were analysed for MAO-A specific mRNA expression (by semi-quantitative RT-PCR), MAO-A protein (by immunohistochemistry and quantitative ELISA, using a MAO-A specific monoclonal antibody), together with MAO activity (using [(3)H] labelled 5-hydroxytryptamine as substrate). Immunohistochemical analysis of placentae from both normotensive and pre-eclamptic women demonstrated that MAO-A protein is located in the cytoplasm of the placental syncytiotrophoblast layer, consistent with a mitochondrial location; no MAO-A protein was found in the nucleus. No MAO-B protein was detected in this placental layer, despite the presence of MAO-B mRNA. The results indicate that both total protein/g fresh weight and MAO-A protein/g fresh weight were approximately 40 per cent lower in pre-eclamptic than in normotensive placentae, but that there was no statistical difference in the expression of MAO-A mRNA in relation to GAPDH or actin mRNA or in MAO-A protein/mg total protein. However, MAO-A activity/g fresh weight was significantly reduced in pre-eclamptic placentae, in agreement with previous findings. This was found to be due to a 60 per cent reduction (P< 0.05) in the catalytic turnover (activity/molecule) of the enzyme. This study has therefore clearly shown that the expression of placental MAO-A specific mRNA and MAO-A protein are not specifically affected in pre-eclampsia, but that the catalytic efficiency of the expressed MAO-A enzyme in pre-eclamptic placentae is greatly reduced.
Collapse
Affiliation(s)
- S D Sivasubramaniam
- Department of Life Sciences, The Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | | | | | | | | |
Collapse
|