1
|
Levian B, Hou Y, Tang X, Bainvoll L, Zheng K, Badarinarayana V, Aghamohammadzadeh S, Chen M. Novel readthrough agent suppresses nonsense mutations and restores functional type VII collagen and laminin 332 in epidermolysis bullosa. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102334. [PMID: 39391765 PMCID: PMC11465179 DOI: 10.1016/j.omtn.2024.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) and junctional epidermolysis bullosa (JEB) are lethal blistering skin disorders resulting from mutations in genes coding for type VII collagen (COL7A1) and laminin 332 (LAMA3, LAMB3, or LAMC2), respectively. In RDEB, 25% of patients harbor nonsense mutations causing premature termination codons (PTCs). In JEB, a majority of mutations in LAMB3 are nonsense mutations (80%). ELX-02, an aminoglycoside analog, has demonstrated superior PTC readthrough activity and lower toxicity compared to gentamicin in various genetic disorders. This study investigated the ability of ELX-02 to suppress PTCs and promote the expression of C7 and laminin 332 in primary RDEB keratinocytes/fibroblasts and primary JEB keratinocytes harboring nonsense mutations. ELX-02 induced a dose-dependent production of C7 or laminin β3 that surpassed the results achieved with gentamicin. ELX-02 reversed RDEB and JEB cellular hypermotility and improved poor cell-substratum adhesion in JEB cells. Importantly, ELX-02-induced C7 and laminin 332 localized to the dermal-epidermal junction. This is the first study demonstrating that ELX-02 can induce PTC readthrough and restore functional C7 and laminin 332 in RDEB and JEB caused by nonsense mutations. Therefore, ELX-02 may offer a novel and safe therapy for RDEB, JEB, and other inherited skin diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Brandon Levian
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yingping Hou
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Tang
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Liat Bainvoll
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kate Zheng
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | - Mei Chen
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
3
|
Karri S, Cornu D, Serot C, Biri L, Hatton A, Dréanot E, Rullaud C, Pranke I, Sermet-Gaudelus I, Hinzpeter A, Bidou L, Namy O. TLN468 changes the pattern of tRNA used to read through premature termination codons in CFTR. J Cyst Fibros 2024:S1569-1993(24)00802-6. [PMID: 39098506 DOI: 10.1016/j.jcf.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Nonsense mutations account for 12 % of cystic fibrosis (CF) cases. The presence of a premature termination codon (PTC) leads to gene inactivation, which can be countered by the use of drugs stimulating PTC readthrough, restoring production of the full-length protein. We recently identified a new readthrough inducer, TLN468, more efficient than gentamicin. We measured the readthrough induced by these two drugs with different cystic fibrosis transmembrane conductance regulator (CFTR) PTCs. We then determined the amino acids inserted at the S1196X, G542X, W846X and E1417X PTCs of CFTR during readthrough induced by gentamicin or TLN468. TLN468 significantly promoted the incorporation of one specific amino acid, whereas gentamicin did not greatly modify the proportions of the various amino acids incorporated relative to basal conditions. The function of the engineered missense CFTR channels corresponding to these four PTCs was assessed with and without potentiator. For the recoded CFTR, except for E1417Q and G542W, the PTC readthrough induced by TLN468 allowed the expression of CFTR variants that were correctly processed and had significant activity that was enhanced by CFTR modulators. These results suggest that it would be relevant to assess the therapeutic benefit of TLN468 PTC suppression in combination with CFTR modulators in preclinical assays.
Collapse
Affiliation(s)
- Sabrina Karri
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - David Cornu
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Claudia Serot
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Lynda Biri
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, Université Paris Cité, Paris, F-75015, France
| | - Aurélie Hatton
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, Université Paris Cité, Paris, F-75015, France
| | - Elise Dréanot
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, Université Paris Cité, Paris, F-75015, France
| | - Camille Rullaud
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Iwona Pranke
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, Université Paris Cité, Paris, F-75015, France
| | - Isabelle Sermet-Gaudelus
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, Université Paris Cité, Paris, F-75015, France
| | - Alexandre Hinzpeter
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, Université Paris Cité, Paris, F-75015, France
| | - Laure Bidou
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, 91198, France; Sorbonne Université, 4 Place Jussieu, Paris, 75005, France
| | - Olivier Namy
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, 91198, France.
| |
Collapse
|
4
|
Xu C, Zhang L, Zhou Y, Du H, Qi J, Tan F, Peng L, Gu X, Li N, Sun Q, Zhang Z, Lu Y, Qian X, Tong B, Sun J, Chai R, Shi Y. Pcolce2 overexpression promotes supporting cell reprogramming in the neonatal mouse cochlea. Cell Prolif 2024; 57:e13633. [PMID: 38528645 PMCID: PMC11294419 DOI: 10.1111/cpr.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Hair cell (HC) damage is a leading cause of sensorineural hearing loss, and in mammals supporting cells (SCs) are unable to divide and regenerate HCs after birth spontaneously. Procollagen C-endopeptidase enhancer 2 (Pcolce2), which encodes a glycoprotein that acts as a functional procollagen C protease enhancer, was screened as a candidate regulator of SC plasticity in our previous study. In the current study, we used adeno-associated virus (AAV)-ie (a newly developed adeno-associated virus that targets SCs) to overexpress Pcolce2 in SCs. AAV-Pcolce2 facilitated SC re-entry into the cell cycle both in cultured cochlear organoids and in the postnatal cochlea. In the neomycin-damaged model, regenerated HCs were detected after overexpression of Pcolce2, and these were derived from SCs that had re-entered the cell cycle. These findings reveal that Pcolce2 may serve as a therapeutic target for the regeneration of HCs to treat hearing loss.
Collapse
Affiliation(s)
- Changling Xu
- Health Management Center, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical SciencesChengduSichuanChina
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Haoliang Du
- Department of Otolaryngology‐Head and Neck SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline LaboratoryNanjingChina
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Department of Neurology, Aerospace Center Hospital, School of Life ScienceBeijing Institute of TechnologyBeijingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Li Peng
- Otovia Therapeutics IncSuzhouChina
| | - Xingliang Gu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Ziyu Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Xiaoyun Qian
- Department of Otolaryngology‐Head and Neck SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline LaboratoryNanjingChina
| | - Busheng Tong
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Jiaqiang Sun
- Department of Otolaryngology‐Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Department of Neurology, Aerospace Center Hospital, School of Life ScienceBeijing Institute of TechnologyBeijingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Yi Shi
- Health Management Center, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical SciencesChengduSichuanChina
| |
Collapse
|
5
|
Thornton SK, Hoare DJ, Yates AM, Willis KR, Scutt P, Kitterick PT, Dixit A, Jayasinghe DS. UK and US risk factors for hearing loss in neonatal intensive care unit infants. PLoS One 2024; 19:e0291847. [PMID: 39047012 PMCID: PMC11268654 DOI: 10.1371/journal.pone.0291847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/21/2024] [Indexed: 07/27/2024] Open
Abstract
IMPORTANCE Early detection and intervention of hearing loss may mitigate negative effects on children's development. Children who were admitted to the neonatal intensive care unit (NICU) as babies are particularly susceptible to hearing loss and risk factors are vital for surveillance. DESIGN, SETTING AND PARTICIPANTS This single-centre retrospective cohort study included data from 142 inborn infants who had been admitted to the NICU in a tertiary regional referral centre. Data were recorded for 71 infants with confirmed permanent congenital hearing loss hearing loss. To determine impact of NICU admission independently of prematurity, babies were individually matched with 71 inborn infants on gestational age, birthweight, and sex. MAIN OUTCOMES AND MEASURES Neonatal indicators were recorded for all children with permanent congenital hearing loss. Presence of UK and US risk factors for hearing loss were collected on the neonatal population with hearing loss and for the matched controls. RESULTS A fifth (21%) of babies with hearing loss had one or more UK risk factors whereas most (86%) had at least one US risk factor. False positives would be evident if US factors were used whereas the matched controls had no UK risk factors. Ten babies who at birth had no UK or US risk factors did not have any significant neonatal indicators identified in their records, one was ventilated for one day and two had a genetic anomaly. CONCLUSIONS AND RELEVANCE Current risk factors for hearing loss we identified for follow-up in this high-risk group are highly specific for congenital hearing loss. UK risk factors were highly specific for hearing loss but not sensitive and conversely, US risk factors are sensitive but not specific so false positives would be recorded. A national study of neonatal indicators could provide the utility to test which combinations of risk factors provide high sensitivity without losing specificity.
Collapse
Affiliation(s)
- Sally K. Thornton
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Derek J. Hoare
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Alice M. Yates
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Karen R. Willis
- The Children’s Audiology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Polly Scutt
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Padraig T. Kitterick
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Abhijit Dixit
- Clinical Genetics, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Dulip S. Jayasinghe
- Neonatal Intensive Care Unit, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
6
|
Xu L, Li X, Yang X, Zhao Y, Niu J, Jiang S, Ma J, Zhang X. Identification and Characterization of a Novel Prophage Lysin against Streptococcus dysgalactiae. Molecules 2024; 29:3411. [PMID: 39064988 PMCID: PMC11279900 DOI: 10.3390/molecules29143411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Streptococcus dysgalactiae infection can cause bovine mastitis and lead to huge economic losses for the dairy industry. The abuse of antibiotics has resulted in growing drug resistance of S. dysgalactiae, which causes hard-to-treat infections. Bacteriophage lysin, as a novel antibacterial agent, has great potential for application against drug-resistant gram-positive bacteria. However, few studies have been conducted on the prophage lysin of S. dysgalactiae. In this study, we mined a novel prophage lysin, named Lys1644, from a clinical S. dysgalactiae isolate by genome sequencing and bioinformatic analysis. Lys1644 was expressed and purified, and the lytic activity, antibacterial spectrum, optimal pH and temperature, lytic activity in milk in vitro, and synergistic bacteriostasis with antibiotics were assessed. The Lys1644 prophage lysin showed high bacteriolysis activity specifically on S. dysgalactiae, which resulted in CFU 100-fold reduction in milk. Moreover, Lys1644 maintained high activity over a wide pH range (pH 5-10) and a wide temperature range (4-42 °C). Synergistic bacteriostatic experiments showed that the combination of low-dose Lys1644 (50 μg/mL) with a subinhibitory concentration of aminoglycoside antibiotics (kanamycin or spectinomycin) can completely inhibit bacterial growth, suggesting that the combination of Lys1644 and antibiotics could be an effective therapeutic strategy against S. dysgalactiae infection.
Collapse
Affiliation(s)
- Linan Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.X.)
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| | - Xingshuai Li
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| | - Xiangpeng Yang
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| | - Yuzhong Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.X.)
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| | - Jianrui Niu
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.X.)
| | - Junfei Ma
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| | - Xinglin Zhang
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| |
Collapse
|
7
|
Leichtle A, Lupatsii M, Graspeuntner S, Jeschke S, Penxová Z, Kurabi A, Ryan AF, Rupp J, Pries R, Bruchhage KL. Anti-inflammatory response to 1,8-Cineol and associated microbial communities in Otitis media patients. Sci Rep 2024; 14:16362. [PMID: 39014066 PMCID: PMC11252366 DOI: 10.1038/s41598-024-67498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
Chronic Otitis Media (COM) is defined as long term inflammation and colonization with pathogenic bacteria due to a defect or retraction of the tympanic membrane. Surgical interventions are often augmented by antibiotic resistance development and therefore, off-label treatment using the natural drug 1,8-Cineol was carried out. All COM patients underwent antibiotic therapy and middle ear surgery and developed antibiotic resistances. Microbiological investigations from the auditory canal and stool samples were performed in correlation with the clinical course. Therapy of COM patients with 1,8-Cineol revealed a clear reduction of inflammatory microbes P. aeruginosa and Proteus mirabilis in ear samples as well as intestinal Prevotella copri, which was associated with an improved clinical outcome in certain individuals. The present off-label study revealed manifold anti-inflammatory effects of the natural monoterpene 1,8-Cineol in Otitis media patients. A better understanding of the underlying mechanisms will improve the current treatment options and possible forms of application of this natural drug.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Mariia Lupatsii
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Stephanie Jeschke
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Zuzana Penxová
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Arwa Kurabi
- Department of Surgery/ Otolaryngology, University of California San Diego, La Jolla, USA
| | - Allen Frederic Ryan
- Department of Surgery/ Otolaryngology, University of California San Diego, La Jolla, USA
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | | |
Collapse
|
8
|
Maraslioglu-Sperber A, Blanc F, Heller S, Benkafadar N. Hyperosmotic sisomicin infusion: a mouse model for hearing loss. Sci Rep 2024; 14:15903. [PMID: 38987330 PMCID: PMC11237112 DOI: 10.1038/s41598-024-66635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Losing either type of cochlear sensory hair cells leads to hearing impairment. Inner hair cells act as primary mechanoelectrical transducers, while outer hair cells enhance sound-induced vibrations within the organ of Corti. Established inner ear damage models, such as systemic administration of ototoxic aminoglycosides, yield inconsistent and variable hair cell death in mice. Overcoming this limitation, we developed a method involving surgical delivery of a hyperosmotic sisomicin solution into the posterior semicircular canal of adult mice. This procedure induced rapid and synchronous apoptotic demise of outer hair cells within 14 h, leading to irreversible hearing loss. The combination of sisomicin and hyperosmotic stress caused consistent and synergistic ototoxic damage. Inner hair cells remained until three days post-treatment, after which deterioration in structure and number was observed, culminating in a complete hair cell loss by day seven. This robust animal model provides a valuable tool for otoregenerative research, facilitating single-cell and omics-based studies toward exploring preclinical therapeutic strategies.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fabian Blanc
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head & Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nesrine Benkafadar
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Maraslioglu-Sperber A, Blanc F, Heller S. Murine cochlear damage models in the context of hair cell regeneration research. Hear Res 2024; 447:109021. [PMID: 38703432 DOI: 10.1016/j.heares.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fabian Blanc
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology - Head & Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Chen LC, Chen HH, Chan MH. Calcium channel inhibitor and extracellular calcium improve aminoglycoside-induced hair cell loss in zebrafish. Arch Toxicol 2024; 98:1827-1842. [PMID: 38563869 DOI: 10.1007/s00204-024-03720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 μM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 μM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 μM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 μM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.
Collapse
Affiliation(s)
- Liao-Chen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.
- Animal Behavior Core, National Health Research Institutes, Miaoli, Taiwan.
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
11
|
Liu DH, Ma J. Recent Advances in Dearomative Partial Reduction of Benzenoid Arenes. Angew Chem Int Ed Engl 2024; 63:e202402819. [PMID: 38480464 DOI: 10.1002/anie.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Dearomative partial reduction is an extraordinary approach for transforming benzenoid arenes and has been well-known for many decades, as exemplified by the dehydrogenation of Birch reduction and the hydroarylation of Crich addition. Despite its remarkable importance in synthesis, this field has experienced slow progress over the last half-century. However, a revival has been observed with the recent introduction of electrochemical and photochemical methods. In this Minireview, we summarize the recent advancements in dearomative partial reduction of benzenoid arenes, including dihydrogenation, hydroalkylation, arylation, alkenylation, amination, borylation and others. Further, the intriguing utilization of dearomative partial reduction in the synthesis of natural products is also emphasized. It is anticipated that this Minireview will stimulate further progress in arene dearomative transformations.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
12
|
Nitta Y, Kurioka T, Mogi S, Sano H, Yamashita T. Suppression of the TGF-β signaling exacerbates degeneration of auditory neurons in kanamycin-induced ototoxicity in mice. Sci Rep 2024; 14:10910. [PMID: 38740884 PMCID: PMC11091189 DOI: 10.1038/s41598-024-61630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Transforming growth factor-β (TGF-β) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-β signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-β receptor inhibitor (TGF-βRI) onto the round window membrane. Results showed significant TGF-β receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-βRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-β expression after KM-FS ototoxicity, TGF-βRI treatment resulted in a significant decrease in TGF-β signaling. Regarding auditory function, TGF-βRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-βRI treatment. These results imply that inhibition of TGF-β signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.
Collapse
Affiliation(s)
- Yoshihiro Nitta
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Takaomi Kurioka
- Department of Otorhinolaryngology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Sachiyo Mogi
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hajime Sano
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
13
|
Liu Z, Zhang H, Hong G, Bi X, Hu J, Zhang T, An Y, Guo N, Dong F, Xiao Y, Li W, Zhao X, Chu B, Guo S, Zhang X, Chai R, Fu X. Inhibition of Gpx4-mediated ferroptosis alleviates cisplatin-induced hearing loss in C57BL/6 mice. Mol Ther 2024; 32:1387-1406. [PMID: 38414247 PMCID: PMC11081921 DOI: 10.1016/j.ymthe.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.
Collapse
MESH Headings
- Animals
- Cisplatin/adverse effects
- Ferroptosis/drug effects
- Ferroptosis/genetics
- Mice
- Hearing Loss/chemically induced
- Hearing Loss/genetics
- Hearing Loss/metabolism
- Mice, Knockout
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Mice, Inbred C57BL
- Disease Models, Animal
- Receptors, Transferrin/metabolism
- Receptors, Transferrin/genetics
- Reactive Oxygen Species/metabolism
- Lipid Peroxidation/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Ototoxicity/etiology
- Ototoxicity/metabolism
- Antineoplastic Agents/adverse effects
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Ziyi Liu
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hanbing Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong 250012, China
| | - Guodong Hong
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiuli Bi
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jun Hu
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tiancheng Zhang
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yachun An
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Na Guo
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fengyue Dong
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Yu Xiao
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Li
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaoxu Zhao
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250102, China
| | - Siwei Guo
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaohan Zhang
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Renjie Chai
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Southeast University Shenzhen Research Institute, Shenzhen, Guangdong 518063, China.
| | - Xiaolong Fu
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
14
|
Teraoka M, Hato N, Inufusa H, You F. Role of Oxidative Stress in Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4146. [PMID: 38673731 PMCID: PMC11050000 DOI: 10.3390/ijms25084146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing is essential for communication, and its loss can cause a serious disruption to one's social life. Hearing loss is also recognized as a major risk factor for dementia; therefore, addressing hearing loss is a pressing global issue. Sensorineural hearing loss, the predominant type of hearing loss, is mainly due to damage to the inner ear along with a variety of pathologies including ischemia, noise, trauma, aging, and ototoxic drugs. In addition to genetic factors, oxidative stress has been identified as a common mechanism underlying several cochlear pathologies. The cochlea, which plays a major role in auditory function, requires high-energy metabolism and is, therefore, highly susceptible to oxidative stress, particularly in the mitochondria. Based on these pathological findings, the potential of antioxidants for the treatment of hearing loss has been demonstrated in several animal studies. However, results from human studies are insufficient, and future clinical trials are required. This review discusses the relationship between sensorineural hearing loss and reactive oxidative species (ROS), with particular emphasis on age-related hearing loss, noise-induced hearing loss, and ischemia-reperfusion injury. Based on these mechanisms, the current status and future perspectives of ROS-targeted therapy for sensorineural hearing loss are described.
Collapse
Affiliation(s)
- Masato Teraoka
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Naohito Hato
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| | - Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| |
Collapse
|
15
|
Maraslioglu-Sperber A, Blanc F, Heller S, Benkafadar N. Hyperosmotic Sisomicin Infusion: A Mouse Model for Hearing Loss. RESEARCH SQUARE 2024:rs.3.rs-4096027. [PMID: 38645253 PMCID: PMC11030510 DOI: 10.21203/rs.3.rs-4096027/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Hearing impairment arises from the loss of either type of cochlear sensory hair cells. Inner hair cells act as primary sound transducers, while outer hair cells enhance sound-induced vibrations within the organ of Corti. Established models, such as systemic administration of ototoxic aminoglycosides, yield inconsistent and variable hair cell death in mice. Overcoming this limitation, we developed a method involving surgical delivery of a hyperosmotic sisomicin solution into the posterior semicircular canal of adult mice. This procedure induced rapid and synchronous apoptotic demise of outer hair cells within 14 hours, leading to irreversible hearing loss. The combination of sisomicin and hyperosmotic stress caused consistent and synergistic ototoxic damage. Inner hair cells remained intact until three days post-treatment, after which deterioration in structure and number was observed, culminating in cell loss by day seven. This robust animal model provides a valuable tool for otoregenerative research, facilitating single-cell and omics-based studies toward exploring preclinical therapeutic strategies.
Collapse
|
16
|
Peerbhay N, Munsamy DR, Dlamini HP, Langa F, Paken J. The use of tele-audiology in ototoxicity monitoring: A scoping review. J Telemed Telecare 2024; 30:475-496. [PMID: 34989631 DOI: 10.1177/1357633x211068277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Due to the growing burden of disease in South Africa, encompassing conditions such as tuberculosis, human immunodeficiency virus, and cancer, the holistic management of affected patients incorporating ototoxicity monitoring is a necessity. However, ototoxicity monitoring in developing countries may be limited due to a lack of resources and inadequate healthcare facilities. Subsequently, the use of tele-audiology may be a revolutionary technique with the potential to provide audiology services to under-served populations with limited access. METHODS The study aimed to describe the use of tele-audiology services in ototoxicity monitoring through a scoping review of English peer-reviewed articles from June 2009 to June 2020. Seventeen articles were purposively selected from the following databases: PubMed, Science Direct, Taylor and Francis Online, WorldCat, and Google Scholar. Data was extracted as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses diagram and results were analyzed using deductive thematic analysis. RESULTS AND DISCUSSION While a minority of the studies indicated that the cost of implementation and network connectivity within a South African context pose as barriers, most researchers reported that tele-audiology provides a reliable, time-efficient, cost-effective, and easily accessible alternative for ototoxicity monitoring. Hardware including the WAHTS, KUDUwave, and OtoID, along with software such as the TabSINT, Otocalc, uHear, and the hearTest, have proven to be useful for ototoxicity monitoring. A need for further investigations regarding the feasibility of tele-audiology implementation in South Africa is evident. Despite this, it provides audiologists with an opportunity to offer contact-less services during COVID-19, thus, confirming its versatility as an augmentative method for ototoxicity monitoring.
Collapse
Affiliation(s)
- Nazeera Peerbhay
- Discipline of Audiology, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Danielle R Munsamy
- Discipline of Audiology, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Hombisa P Dlamini
- Discipline of Audiology, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Fisokuhle Langa
- Discipline of Audiology, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Jessica Paken
- Discipline of Audiology, School of Health Sciences, University of KwaZulu-Natal, South Africa
| |
Collapse
|
17
|
Coffin AB, Dale E, Molano O, Pederson A, Costa EK, Chen J. Age-related changes in the zebrafish and killifish inner ear and lateral line. Sci Rep 2024; 14:6670. [PMID: 38509148 PMCID: PMC10954678 DOI: 10.1038/s41598-024-57182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Age-related hearing loss (ARHL) is a debilitating disorder for millions worldwide. While there are multiple underlying causes of ARHL, one common factor is loss of sensory hair cells. In mammals, new hair cells are not produced postnatally and do not regenerate after damage, leading to permanent hearing impairment. By contrast, fish produce hair cells throughout life and robustly regenerate these cells after toxic insult. Despite these regenerative abilities, zebrafish show features of ARHL. Here, we show that aged zebrafish of both sexes exhibited significant hair cell loss and decreased cell proliferation in all inner ear epithelia (saccule, lagena, utricle). Ears from aged zebrafish had increased expression of pro-inflammatory genes and significantly more macrophages than ears from young adult animals. Aged zebrafish also had fewer lateral line hair cells and less cell proliferation than young animals, although lateral line hair cells still robustly regenerated following damage. Unlike zebrafish, African turquoise killifish (an emerging aging model) only showed hair cell loss in the saccule of aged males, but both sexes exhibit age-related changes in the lateral line. Our work demonstrates that zebrafish exhibit key features of auditory aging, including hair cell loss and increased inflammation. Further, our finding that aged zebrafish have fewer lateral line hair cells yet retain regenerative capacity, suggests a decoupling of homeostatic hair cell addition from regeneration following acute trauma. Finally, zebrafish and killifish show species-specific strategies for lateral line homeostasis that may inform further comparative research on aging in mechanosensory systems.
Collapse
Affiliation(s)
- Allison B Coffin
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA.
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, Vancouver, WA, 98686, USA.
| | - Emily Dale
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Neuroimmunology Research, Mayo Clinic, Rochester, MN, 55902, USA
| | - Olivia Molano
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Neuroscience Graduate Program, Brown University, Providence, RI, 02912, USA
| | - Alexandra Pederson
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Emma K Costa
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jingxun Chen
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
19
|
Cirqueira F, Figueirêdo LPD, Malafaia G, Rocha TL. Zebrafish neuromast sensory system: Is it an emerging target to assess environmental pollution impacts? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123400. [PMID: 38272167 DOI: 10.1016/j.envpol.2024.123400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Environmental pollution poses risks to ecosystems. Among these risks, one finds neurotoxicity and damage to the lateral line structures of fish, such as the neuromast and its hair cells. Zebrafish (Danio rerio) is recommended as model species to be used in ecotoxicological studies and environmental biomonitoring programs aimed at assessing several biomarkers, such as ototoxicity. However, little is known about the history of and knowledge gaps on zebrafish ototoxicity. Thus, the aim of the current study is to review data available in the scientific literature about using zebrafish as animal model to assess neuromast toxicity. It must be done by analyzing the history and publication category, world production, experimental design, developmental stages, chemical classes, neuromasts and hair cell visualization methods, and zebrafish strains. Based on the results, number, survival and fluorescence intensity of neuromasts, and their hair cells, were the parameters oftentimes used to assess ototoxicity in zebrafish. The wild AB strain was the most used one, and it was followed by Tübingen and transgenic strains with GFP markers. DASPEI was the fluorescent dye most often applied as method to visualize neuromasts, and it was followed by Yo-Pro-1 and GFP transgenic lines. Antibiotics, antitumorals, metals, nanoparticles and plant extracts were the most frequent classes of chemicals used in the analyzed studies. Overall, pollutants can harm zebrafish's mechanosensory system, as well as affect their behavior and survival. Results have shown that zebrafish is a suitable model system to assess ototoxicity induced by environmental pollution.
Collapse
Affiliation(s)
- Felipe Cirqueira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Livia Pitombeira de Figueirêdo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
20
|
Farhat M, Khayi S, Berrada J, Mouahid M, Ameur N, El-Adawy H, Fellahi S. Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era. Antibiotics (Basel) 2023; 13:23. [PMID: 38247582 PMCID: PMC10812584 DOI: 10.3390/antibiotics13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) has two distinct biovars, Pullorum and Gallinarum. They are bacterial pathogens that exhibit host specificity for poultry and aquatic birds, causing severe systemic diseases known as fowl typhoid (FT) and Pullorum disease (PD), respectively. The virulence mechanisms of biovars Gallinarum and Pullorum are multifactorial, involving a variety of genes and pathways that contribute to their pathogenicity. In addition, these serovars have developed resistance to various antimicrobial agents, leading to the emergence of multidrug-resistant strains. Due to their economic and public health significance, rapid and accurate diagnosis is crucial for effective control and prevention of these diseases. Conventional methods, such as bacterial culture and serological tests, have been used for screening and diagnosis. However, molecular-based methods are becoming increasingly important due to their rapidity, high sensitivity, and specificity, opening new horizons for the development of innovative approaches to control FT and PD. The aim of this review is to highlight the current state of knowledge on biovars Gallinarum and Pullorum, emphasizing the importance of continued research into their pathogenesis, drug resistance and diagnosis to better understand and control these pathogens in poultry farms.
Collapse
Affiliation(s)
- Mouad Farhat
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | - Slimane Khayi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Avenue Ennasr, Rabat Principale, BP 415, Rabat 10090, Morocco;
| | - Jaouad Berrada
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | | | - Najia Ameur
- Department of Food Microbiology and Hygiene, National Institute of Hygiene. Av. Ibn Batouta, 27, BP 769, Rabat 10000, Morocco;
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 35516, Egypt
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| |
Collapse
|
21
|
Tieu S, Charchoglyan A, Paulsen L, Wagter-Lesperance LC, Shandilya UK, Bridle BW, Mallard BA, Karrow NA. N-Acetylcysteine and Its Immunomodulatory Properties in Humans and Domesticated Animals. Antioxidants (Basel) 2023; 12:1867. [PMID: 37891946 PMCID: PMC10604897 DOI: 10.3390/antiox12101867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
N-acetylcysteine (NAC), an acetylated derivative of the amino acid L-cysteine, has been widely used as a mucolytic agent and antidote for acetaminophen overdose since the 1960s and the 1980s, respectively. NAC possesses antioxidant, cytoprotective, anti-inflammatory, antimicrobial, and mucolytic properties, making it a promising therapeutic agent for a wide range of diseases in both humans and domesticated animals. Oxidative stress and inflammation play a major role in the onset and progression of all these diseases. NAC's primary role is to replenish glutathione (GSH) stores, the master antioxidant in all tissues; however, it can also reduce levels of pro-inflammatory tumor necrosis factor-alpha (TNF-∝) and interleukins (IL-6 and IL-1β), inhibit the formation of microbial biofilms and destroy biofilms, and break down disulfide bonds between mucin molecules. Many experimental studies have been conducted on the use of NAC to address a wide range of pathological conditions; however, its effectiveness in clinical trials remains limited and studies often have conflicting results. The purpose of this review is to provide a concise overview of promising NAC usages for the treatment of different human and domestic animal disorders.
Collapse
Affiliation(s)
- Sophie Tieu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.T.); (U.K.S.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauryn Paulsen
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
| | - Lauri C. Wagter-Lesperance
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.T.); (U.K.S.)
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.P.); (L.C.W.-L.); (B.W.B.); (B.A.M.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.T.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| |
Collapse
|
22
|
Rivetti S, Romano A, Mastrangelo S, Attinà G, Maurizi P, Ruggiero A. Aminoglycosides-Related Ototoxicity: Mechanisms, Risk Factors, and Prevention in Pediatric Patients. Pharmaceuticals (Basel) 2023; 16:1353. [PMID: 37895824 PMCID: PMC10610175 DOI: 10.3390/ph16101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aminoglycosides are broad-spectrum antibiotics largely used in children, but they have potential toxic side effects, including ototoxicity. Ototoxicity from aminoglycosides is permanent and is a consequence of its action on the inner ear cells via multiple mechanisms. Both uncontrollable risk factors and controllable risk factors are involved in the pathogenesis of aminoglycoside-related ototoxicity and, because of the irreversibility of ototoxicity, an important undertaking for preventing ototoxicity includes antibiotic stewardship to limit the use of aminoglycosides. Aminoglycosides are fundamental in the treatment of numerous infectious conditions at neonatal and pediatric age. In childhood, normal auditory function ensures adequate neurocognitive and social development. Hearing damage from aminoglycosides can therefore strongly affect the normal growth of the child. This review describes the molecular mechanisms of aminoglycoside-related ototoxicity and analyzes the risk factors and the potential otoprotective strategies in pediatric patients.
Collapse
Affiliation(s)
- Serena Rivetti
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
23
|
Jiang M, Li X, Xie CL, Chen P, Luo W, Lin CX, Wang Q, Shu DM, Luo CL, Qu H, Ji J. Fructose-enabled killing of antibiotic-resistant Salmonella enteritidis by gentamicin: Insight from reprogramming metabolomics. Int J Antimicrob Agents 2023; 62:106907. [PMID: 37385564 DOI: 10.1016/j.ijantimicag.2023.106907] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Salmonella enterica is a food-borne pathogen that poses a severe threat to both poultry production and human health. Antibiotics are critical for the initial treatment of bacterial infections. However, the overuse and misuse of antibiotics results in the rapid evolution of antibiotic-resistant bacteria, and the discovery and development of new antibiotics are declining. Therefore, understanding antibiotic resistance mechanisms and developing novel control measures are essential. In the present study, GC-MS-based metabolomics analysis was performed to determine the metabolic profile of gentamicin sensitive (SE-S) and resistant (SE-R) S. enterica. Fructose was identified as a crucial biomarker. Further analysis demonstrated a global depressed central carbon metabolism and energy metabolism in SE-R. The decrease in the pyruvate cycle reduces the production of NADH and ATP, causing a decrease in membrane potential, which contributes to gentamicin resistance. Exogenous fructose potentiated the effectiveness of gentamicin in killing SE-R by promoting the pyruvate cycle, NADH, ATP and membrane potential, thereby increasing gentamicin intake. Further, fructose plus gentamicin improved the survival rate of chicken infected with gentamicin-resistant Salmonella in vivo. Given that metabolite structures are conserved across species, fructose identified from bacteria could be used as a biomarker for breeding disease-resistant phenotypes in chicken. Therefore, a novel strategy is proposed for fighting against antibiotic-resistant S. enterica, including exploring molecules suppressed by antibiotics and providing a new approach to find pathogen targets for disease resistance in chicken breeding.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China; The Third Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xia Li
- The Third Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Lin Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Peng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chu-Xiao Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiao Wang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ding-Ming Shu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cheng-Long Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Qu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
24
|
Lund D, Coertze RD, Parras-Moltó M, Berglund F, Flach CF, Johnning A, Larsson DGJ, Kristiansson E. Extensive screening reveals previously undiscovered aminoglycoside resistance genes in human pathogens. Commun Biol 2023; 6:812. [PMID: 37537271 PMCID: PMC10400643 DOI: 10.1038/s42003-023-05174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
Antibiotic resistance is a growing threat to human health, caused in part by pathogens accumulating antibiotic resistance genes (ARGs) through horizontal gene transfer. New ARGs are typically not recognized until they have become widely disseminated, which limits our ability to reduce their spread. In this study, we use large-scale computational screening of bacterial genomes to identify previously undiscovered mobile ARGs in pathogens. From ~1 million genomes, we predict 1,071,815 genes encoding 34,053 unique aminoglycoside-modifying enzymes (AMEs). These cluster into 7,612 families (<70% amino acid identity) of which 88 are previously described. Fifty new AME families are associated with mobile genetic elements and pathogenic hosts. From these, 24 of 28 experimentally tested AMEs confer resistance to aminoglycoside(s) in Escherichia coli, with 17 providing resistance above clinical breakpoints. This study greatly expands the range of clinically relevant aminoglycoside resistance determinants and demonstrates that computational methods enable early discovery of potentially emerging ARGs.
Collapse
Affiliation(s)
- David Lund
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Roelof Dirk Coertze
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcos Parras-Moltó
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johnning
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Systems and Data Analysis, Fraunhofer-Chalmers Centre, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
25
|
Alonso SM, Ayerve NA, Roca CM, Touma GC, de Dios JCDP, Gómez HS, Ruíz SSC, Caletrío ÁB. Use of Skull Vibration-Induced Nystagmus in the Follow-up of Patients With Ménière Disease Treated With Intratympanic Gentamicin. Clin Exp Otorhinolaryngol 2023; 16:236-243. [PMID: 37402470 PMCID: PMC10471906 DOI: 10.21053/ceo.2023.00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/27/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVES Ménière disease (MD) is an idiopathic disorder that affects hearing and inner ear balance. Intratympanic gentamicin (ITG) is recognized as an effective treatment for uncontrolled MD characterized by persistent vertigo attacks despite therapy. The video head impulse test (vHIT) and skull vibration-induced nystagmus (SVIN) are validated. METHODS for evaluating vestibular function. A progressive linear relationship has been identified between the slow-phase velocity (SPV) of SVIN determined using a 100-Hz skull vibrator and the gain difference (healthy ear/affected ear) measured by vHIT. The aim of this study was to ascertain whether the SPV of SVIN was associated with the recovery of vestibular function following ITG treatment. Consequently, we sought to determine whether SVIN could predict the onset of new vertigo attacks in patients with MD who were treated with ITG. METHODS A prospective longitudinal case-control study was conducted. Several variables were recorded post-ITG and throughout the follow-up period, followed by statistical analyses. Two groups were compared: patients who experienced vertigo attacks 6 months after ITG and those who did not. RESULTS The sample comprised 88 patients diagnosed with MD who underwent ITG treatment. Of the 18 patients who experienced recurring vertigo attacks, 15 demonstrated gain recovery in the affected ear. However, all 18 patients exhibited a decrease in the SPV of SVIN. CONCLUSION The SPV of SVIN may be more sensitive than vHIT in identifying the recovery of vestibular function following ITG administration. To our knowledge, this is the first study to illustrate the link between a reduction in SPV and the likelihood of vertigo episodes in patients with MD who have been treated with ITG.
Collapse
Affiliation(s)
- Susana Marcos Alonso
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Nicole Almeida Ayerve
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Chiara Monopoli Roca
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Guillermo Coronel Touma
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Juan Carlos del Pozo de Dios
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Hortensia Sánchez Gómez
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Santiago Santa Cruz Ruíz
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Ángel Batuecas Caletrío
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
26
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
27
|
Kempfle JS, Jung DH. Experimental drugs for the prevention or treatment of sensorineural hearing loss. Expert Opin Investig Drugs 2023; 32:643-654. [PMID: 37598357 DOI: 10.1080/13543784.2023.2242253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Sensorineural hearing loss results in irreversible loss of inner ear hair cells and spiral ganglion neurons. Reduced sound detection and speech discrimination can span all ages, and sensorineural hearing rehabilitation is limited to amplification with hearing aids or cochlear implants. Recent insights into experimental drug treatments for inner ear regeneration and otoprotection have paved the way for clinical trials in order to restore a more physiological hearing experience. Paired with the development of innovative minimally invasive approaches for drug delivery to the inner ear, new, emerging treatments for hearing protection and restoration are within reach. AREAS COVERED This expert opinion provides an overview of the latest experimental drug therapies to protect from and to restore sensorineural hearing loss. EXPERT OPINION The degree and type of cellular damage to the cochlea, the responsiveness of remaining, endogenous cells to regenerative treatments, and the duration of drug availability within cochlear fluids will determine the success of hearing protection or restoration.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, UMass Memorial Medical Center, Worcester, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Anbiaee G, Feizpour R, Khoshbin Z, Ramezani M, Alibolandi M, Taghdisi SM, Abnous K. A simple tag-free fluorometric aptasensing assay for sensitive detection of kanamycin. Anal Biochem 2023; 672:115183. [PMID: 37169123 DOI: 10.1016/j.ab.2023.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
A novel label-free and enzyme-free fluorescence aptasensing assay that uses Sybr Green I (SGI) as the signal indicator for the kanamycin determination was designed. An aptamer-complementary strand (Apt/CP) conjugate was formed, which provided the intercalation sites for SGI and, therefore, a considerable fluorescent signal. The introduction of the target led to the separation of Apt from CP due to the high affinity of Apt toward kanamycin. Hence, the suitable intercalation gaps reduced, which resulted in a decrease in the generated fluorescent signal. Under optimized conditions, a broad linear concentration range from 0.05 μM to 20 μM and a limit of detection of 11.76 nM were obtained, confirming the ability of the fabricated aptasensor for sensitive and specific kanamycin detection in real samples such as milk and human serum. The aptasensing method has the potential to be extensively employed in the food industry and veterinary science due to its simplicity, sensitivity, user-friendly, and capability of on-site detection of kanamycin.
Collapse
Affiliation(s)
- Ghasem Anbiaee
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rozita Feizpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Recoding of Nonsense Mutation as a Pharmacological Strategy. Biomedicines 2023; 11:biomedicines11030659. [PMID: 36979640 PMCID: PMC10044939 DOI: 10.3390/biomedicines11030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Approximately 11% of genetic human diseases are caused by nonsense mutations that introduce a premature termination codon (PTC) into the coding sequence. The PTC results in the production of a potentially harmful shortened polypeptide and activation of a nonsense-mediated decay (NMD) pathway. The NMD pathway reduces the burden of unproductive protein synthesis by lowering the level of PTC mRNA. There is an endogenous rescue mechanism that produces a full-length protein from a PTC mRNA. Nonsense suppression therapies aim to increase readthrough, suppress NMD, or are a combination of both strategies. Therefore, treatment with translational readthrough-inducing drugs (TRIDs) and NMD inhibitors may increase the effectiveness of PTC suppression. Here we discuss the mechanism of PTC readthrough and the development of novel approaches to PTC suppression. We also discuss the toxicity and bioavailability of therapeutics used to stimulate PTC readthrough.
Collapse
|
30
|
Oral Administration of TrkB Agonist, 7, 8-Dihydroxyflavone Regenerates Hair Cells and Restores Function after Gentamicin-Induced Vestibular Injury in Guinea Pig. Pharmaceutics 2023; 15:pharmaceutics15020493. [PMID: 36839815 PMCID: PMC9966733 DOI: 10.3390/pharmaceutics15020493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The causes of vestibular dysfunction include the loss of hair cells (HCs), synapses beneath the HCs, and nerve fibers. 7, 8-dihydroxyflavone (DHF) mimics the physiological functions of brain-derived neurotrophic factor. We investigated the effects of the orally-administered DHF in the guinea pig crista ampullaris after gentamicin (GM)-induced injury. Twenty animals treated with GM received daily administration of DHF or saline for 14 or 28 days (DHF (+) or DHF (-) group; N = 5, each). At 14 days after GM treatment, almost all of the HCs had disappeared in both groups. At 28 days, the HCs number in DHF (+) and DHF (-) groups was 74% and 49%, respectively, compared to GM-untreated control. In the ampullary nerves, neurofilament 200 positive rate in the DHF (+) group was 91% at 28 days, which was significantly higher than 42% in DHF (-). On day 28, the synaptic connections observed between C-terminal-binding protein 2-positive and postsynaptic density protein-95-positive puncta were restored, and caloric response was significantly improved in DHF (+) group (canal paresis: 57.4% in DHF (+) and 100% in DHF (-)). Taken together, the oral administration of DHF may be a novel therapeutic approach for treating vestibular dysfunction in humans.
Collapse
|
31
|
O'Sullivan JDB, Bullen A, Mann ZF. Mitochondrial form and function in hair cells. Hear Res 2023; 428:108660. [PMID: 36525891 DOI: 10.1016/j.heares.2022.108660] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hair cells (HCs) are specialised sensory receptors residing in the neurosensory epithelia of inner ear sense organs. The precise morphological and physiological properties of HCs allow us to perceive sound and interact with the world around us. Mitochondria play a significant role in normal HC function and are also intricately involved in HC death. They generate ATP essential for sustaining the activity of ion pumps, Ca2+ transporters and the integrity of the stereociliary bundle during transduction as well as regulating cytosolic calcium homoeostasis during synaptic transmission. Advances in imaging techniques have allowed us to study mitochondrial populations throughout the HC, and how they interact with other organelles. These analyses have identified distinct mitochondrial populations between the apical and basolateral portions of the HC, in which mitochondrial morphology appears determined by the physiological processes in the different cellular compartments. Studies in HCs across species show that ototoxic agents, ageing and noise damage directly impact mitochondrial structure and function resulting in HC death. Deciphering the molecular mechanisms underlying this mitochondrial sensitivity, and how their morphology relates to their function during HC death, requires that we first understand this relationship in the context of normal HC function.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K
| | - Anwen Bullen
- UCL Ear Institute, University College London, London WC1×8EE, U.K.
| | - Zoë F Mann
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K.
| |
Collapse
|
32
|
Lee NJ, Kang W, Kwon Y, Oh JW, Jung H, Seo M, Seol Y, Wi JB, Ban YH, Yoon YJ, Park JW. Chemo-enzymatic Synthesis of Pseudo-trisaccharide Aminoglycoside Antibiotics with Enhanced Nonsense Read-through Inducer Activity. ChemMedChem 2023; 18:e202200497. [PMID: 36259357 DOI: 10.1002/cmdc.202200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Indexed: 01/24/2023]
Abstract
Aminoglycosides (AGs) are broad-spectrum antibiotics used to treat bacterial infections. Over the last two decades, studies have reported the potential of AGs in the treatment of genetic disorders caused by nonsense mutations, owing to their ability to induce the ribosomes to read through these mutations and produce a full-length protein. However, the principal limitation in the clinical application of AGs arises from their high toxicity, including nephrotoxicity and ototoxicity. In this study, five novel pseudo-trisaccharide analogs were synthesized by chemo-enzymatic synthesis by acid hydrolysis of commercially available AGs, followed by an enzymatic reaction using recombinant substrate-flexible KanM2 glycosyltransferase. The relationships between their structures and biological activities, including the antibacterial, nephrotoxic, and nonsense readthrough inducer (NRI) activities, were investigated. The absence of 1-N-acylation, 3',4'-dideoxygenation, and post-glycosyl transfer modifications on the third sugar moiety of AGs diminishes their antibacterial activities. The 3',4'-dihydroxy and 6'-hydroxy moieties regulate the in vitro nephrotoxicity of AGs in mammalian cell lines. The 3',4'-dihydroxy and 6'-methyl scaffolds are indispensable for the ex vivo NRI activity of AGs. Based on the alleviated in vitro antibacterial properties and nephrotoxicity, and the highest ex vivo NRI activity among the five compounds, a kanamycin analog (6'-methyl-3''-deamino-3''-hydroxykanamycin C) was selected as a novel AG hit for further studies on human genetic disorders caused by premature transcriptional termination.
Collapse
Affiliation(s)
- Na Joon Lee
- Department of Integrated Biomedical and Life Sciences, Korea University, 02841, Seoul (Republic of, Korea
| | - Woongshin Kang
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Sciences, Korea University, 02841, Seoul (Republic of, Korea
| | - Younghae Kwon
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Sciences, Korea University, 02841, Seoul (Republic of, Korea
| | - Jae Wook Oh
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Sciences, Korea University, 02841, Seoul (Republic of, Korea
| | - Hogwuan Jung
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Sciences, Korea University, 02841, Seoul (Republic of, Korea
| | - Minsuk Seo
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Sciences, Korea University, 02841, Seoul (Republic of, Korea
| | - Yurin Seol
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Sciences, Korea University, 02841, Seoul (Republic of, Korea
| | - Jae Bok Wi
- Department of Integrated Biomedical and Life Sciences, Korea University, 02841, Seoul (Republic of, Korea
| | - Yeon Hee Ban
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 08826, Seoul (Republic of, Korea
| | - Yeo Joon Yoon
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 08826, Seoul (Republic of, Korea
| | - Je Won Park
- Department of Integrated Biomedical and Life Sciences, Korea University, 02841, Seoul (Republic of, Korea.,School of Biosystems and Biomedical Sciences, Korea University, 02841, Seoul (Republic of, Korea
| |
Collapse
|
33
|
Chaudhari R, Singh K, Kodgire P. Biochemical and molecular mechanisms of antibiotic resistance in Salmonella spp. Res Microbiol 2023; 174:103985. [PMID: 35944794 DOI: 10.1016/j.resmic.2022.103985] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023]
Abstract
Salmonella is a diverse Gram-negative bacterium that represents the major disease burden worldwide. According to WHO, Salmonella is one of the fourth global causes of diarrhoeal disease. Antibiotic resistance is a worldwide health concern, and Salmonella spp. is one of the microorganisms that can evade the toxicity of antimicrobials via antibiotic resistance. This review aims to deliver in-depth knowledge of the molecular mechanisms and the underlying biochemical alterations perceived in antibiotic resistance in Salmonella. This information will help understand and mitigate the impact of antibiotic-resistant bacteria on humans and contribute to the state-of-the-art research developing newer and more potent antibiotics.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Kanika Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
34
|
Barrallo-Gimeno A, Llorens J. Hair cell toxicology: With the help of a little fish. Front Cell Dev Biol 2022; 10:1085225. [PMID: 36582469 PMCID: PMC9793777 DOI: 10.3389/fcell.2022.1085225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Hearing or balance loss are disabling conditions that have a serious impact in those suffering them, especially when they appear in children. Their ultimate cause is frequently the loss of function of mechanosensory hair cells in the inner ear. Hair cells can be damaged by environmental insults, like noise or chemical agents, known as ototoxins. Two of the most common ototoxins are life-saving medications: cisplatin against solid tumors, and aminoglycoside antibiotics to treat infections. However, due to their localization inside the temporal bone, hair cells are difficult to study in mammals. As an alternative animal model, zebrafish larvae have hair cells similar to those in mammals, some of which are located in a fish specific organ on the surface of the skin, the lateral line. This makes them easy to observe in vivo and readily accessible for ototoxins or otoprotective substances. These features have made possible advances in the study of the mechanisms mediating ototoxicity or identifying new potential ototoxins. Most importantly, the small size of the zebrafish larvae has allowed screening thousands of molecules searching for otoprotective agents in a scale that would be highly impractical in rodent models. The positive hits found can then start the long road to reach clinical settings to prevent hearing or balance loss.
Collapse
Affiliation(s)
- Alejandro Barrallo-Gimeno
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Jordi Llorens
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
35
|
Tao L, Segil N. CDK2 regulates aminoglycoside-induced hair cell death through modulating c-Jun activity: Inhibiting CDK2 to preserve hearing. Front Mol Neurosci 2022; 15:1013383. [PMID: 36311033 PMCID: PMC9606710 DOI: 10.3389/fnmol.2022.1013383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Sensory hair cell death caused by the ototoxic side effects of many clinically used drugs leads to permanent sensorineural hearing loss in patients. Aminoglycoside antibiotics are widely used and well-known for their ototoxicity, but the molecular mechanisms of aminoglycoside-induced hair cell death are not well understood. This creates challenges in our attempts to alleviate or prevent such adverse side effects. Here, we report a regulatory role of CDK2 in aminoglycoside-induced hair cell death. Utilizing organotypic cultures of cochleae from neonatal mice, we show that blocking CDK2 activity by either pharmaceutical inhibition or by Cdk2 gene knockout protects hair cells against the ototoxicity of gentamicin—one of the most commonly used aminoglycoside antibiotics—by interfering with intrinsic programmed cell death processes. Specifically, we show that CDK2 inhibition delays the collapse of mitochondria and the activation of a caspase cascade. Furthermore, at the molecular level, inhibition of CDK2 activity influences proapoptotic JNK signaling by reducing the protein level of c-Jun and suppressing the gentamicin-induced upregulation of c-Jun target genes Jun and Bim. Our in vivo studies reveal that Cdk2 gene knockout animals are significantly less sensitive to gentamicin ototoxicity compared to wild-type littermates. Altogether, our work ascertains the non-cell cycle role of CDK2 in regulating aminoglycoside-induced hair cell apoptosis and sheds lights on new potential strategies for hearing protection against ototoxicity.
Collapse
Affiliation(s)
- Litao Tao
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Litao Tao,
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
36
|
Structural Changes in the Human Stria Vascularis Induced by Aminoglycosides and Loop Diuretics. Hear Res 2022; 426:108626. [DOI: 10.1016/j.heares.2022.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022]
|
37
|
Fang P, Xiao P, Tan F, Mo Y, Chen H, Klümper U, Berendonk TU, Yang J. Biogeographical Patterns of Bacterial Communities and Their Antibiotic Resistomes in the Inland Waters of Southeast China. Microbiol Spectr 2022; 10:e0040622. [PMID: 35735994 PMCID: PMC9430403 DOI: 10.1128/spectrum.00406-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/27/2022] [Indexed: 12/05/2022] Open
Abstract
Freshwater ecosystems are important sources of drinking water and provide natural settings for the proliferation and dissemination of bacteria and antibiotic resistance genes (ARGs). However, the biogeographical patterns of ARGs in natural freshwaters and their relationships with the bacterial community at large scales are largely understudied. This is of specific importance because data on ARGs in environments with low anthropogenic impact is still very limited. We characterized the biogeographical patterns of bacterial communities and their ARG profiles in 24 reservoirs across southeast China using 16S rRNA gene high-throughput sequencing and high-throughput-quantitative PCR, respectively. We found that the composition of both bacterial communities and ARG profiles exhibited a significant distance-decay pattern. However, ARG profiles displayed larger differences among different water bodies than bacterial communities, and the relationship between bacterial communities and ARG profiles was weak. The biogeographical patterns of bacterial communities were simultaneously driven by stochastic and deterministic processes, while ARG profiles were not explained by stochastic processes, indicating a decoupling of bacterial community composition and ARG profiles in inland waters under relatively low-human-impact at a large scale. Overall, this study provides an overview of the biogeographical patterns and driving mechanisms of bacterial community and ARG profiles and could offer guidance and reference for the control of ARGs in drinking water sources. IMPORTANCE Antibiotic resistance has been a serious global threat to environmental and human health. The "One Health" concept further emphasizes the importance of monitoring the large-scale dissemination of ARGs. However, knowledge about the geographical patterns and driving mechanisms of bacterial communities and ARGs in natural freshwater environments is limited. This study uncovered the distinct biogeographical patterns of bacterial communities and ARG profiles in inland waters of southeast China under low-anthropogenic impact at a large scale. This study improved our understanding of ARG distribution in inland waters with emphasis on drinking water supply reservoirs, therefore providing the much-needed baseline information for future monitoring and risk assessment of ARGs in drinking water resources.
Collapse
Affiliation(s)
- Peiju Fang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Hydrobiology, Technical University of Dresden, Dresden, Germany
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Fengjiao Tan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Uli Klümper
- Institute of Hydrobiology, Technical University of Dresden, Dresden, Germany
| | - Thomas U. Berendonk
- Institute of Hydrobiology, Technical University of Dresden, Dresden, Germany
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| |
Collapse
|
38
|
2-Guanidino-quinazoline promotes the readthrough of nonsense mutations underlying human genetic diseases. Proc Natl Acad Sci U S A 2022; 119:e2122004119. [PMID: 35994666 PMCID: PMC9436315 DOI: 10.1073/pnas.2122004119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Nonsense mutations account for approximately 11% of all described gene lesions causing human inherited diseases. This premature termination codon (PTC) leads to the premature arrest of translation that generates a truncated peptide and the degradation of the corresponding mRNA through the nonsense-mediated mRNA decay (NMD) pathway. The possibility of restoring the protein expression by promoting PTC readthrough using drugs appears to be an important therapeutic strategy. Unfortunately, this strategy is limited by the small number of molecules known to promote PTC readthrough without affecting normal translation termination. In this work, we identify a new molecule, TLN468, that promotes a high level of PTC readthrough without a detectable effect on normal stop codons. Premature termination codons (PTCs) account for 10 to 20% of genetic diseases in humans. The gene inactivation resulting from PTCs can be counteracted by the use of drugs stimulating PTC readthrough, thereby restoring production of the full-length protein. However, a greater chemical variety of readthrough inducers is required to broaden the medical applications of this therapeutic strategy. In this study, we developed a reporter cell line and performed high-throughput screening (HTS) to identify potential readthrough inducers. After three successive assays, we isolated 2-guanidino-quinazoline (TLN468). We assessed the clinical potential of this drug as a potent readthrough inducer on the 40 PTCs most frequently responsible for Duchenne muscular dystrophy (DMD). We found that TLN468 was more efficient than gentamicin, and acted on a broader range of sequences, without inducing the readthrough of normal stop codons (TC).
Collapse
|
39
|
Bellairs JA, Redila VA, Wu P, Tong L, Webster A, Simon JA, Rubel EW, Raible DW. An in vivo Biomarker to Characterize Ototoxic Compounds and Novel Protective Therapeutics. Front Mol Neurosci 2022; 15:944846. [PMID: 35923755 PMCID: PMC9342690 DOI: 10.3389/fnmol.2022.944846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
There are no approved therapeutics for the prevention of hearing loss and vestibular dysfunction from drugs like aminoglycoside antibiotics. While the mechanisms underlying aminoglycoside ototoxicity remain unresolved, there is considerable evidence that aminoglycosides enter inner ear mechanosensory hair cells through the mechanoelectrical transduction (MET) channel. Inhibition of MET-dependent uptake with small molecules or modified aminoglycosides is a promising otoprotective strategy. To better characterize mammalian ototoxicity and aid in the translation of emerging therapeutics, a biomarker is needed. In the present study we propose that neonatal mice systemically injected with the aminoglycosides G418 conjugated to Texas Red (G418-TR) can be used as a histologic biomarker to characterize in vivo aminoglycoside toxicity. We demonstrate that postnatal day 5 mice, like older mice with functional hearing, show uptake and retention of G418-TR in cochlear hair cells following systemic injection. When we compare G418-TR uptake in other tissues, we find that kidney proximal tubule cells show similar retention. Using ORC-13661, an investigational hearing protection drug, we demonstrate in vivo inhibition of aminoglycoside uptake in mammalian hair cells. This work establishes how systemically administered fluorescently labeled ototoxins in the neonatal mouse can reveal important details about ototoxic drugs and protective therapeutics.
Collapse
Affiliation(s)
- Joseph A. Bellairs
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
| | - Van A. Redila
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Ling Tong
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Alyssa Webster
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Julian A. Simon
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Edwin W. Rubel
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
40
|
Identification of Target Proteins Involved in Cochlear Hair Cell Progenitor Cytotoxicity following Gentamicin Exposure. J Clin Med 2022; 11:jcm11144072. [PMID: 35887836 PMCID: PMC9319054 DOI: 10.3390/jcm11144072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Given the non-labile, terminal differentiation of inner-ear sensory cells, preserving their function is critical since sensory cell damage results in irreversible hearing loss. Gentamicin-induced cytotoxicity is one of the major causes of sensory cell damage and consequent sensorineural hearing loss. However, the precise molecular mechanisms and target proteins involved in ototoxicity are still unknown. The objective of the present study was to identify target proteins involved in gentamicin-induced cytotoxicity to better characterize the molecular pathways involved in sensory cell damage following ototoxic drug administration using House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). We identified several unique proteins involved in gentamicin-induced cytotoxicity, expression of which were further confirmed using confocal microscopy. Further investigation of these pathways can inform the design and discovery of novel treatment modalities to prevent sensory cell damage and preserve their function.
Collapse
|
41
|
Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules 2022; 27:molecules27144436. [PMID: 35889311 PMCID: PMC9319608 DOI: 10.3390/molecules27144436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The first traces of Tetracycline (TE) were detected in human skeletons from Sudan and Egypt, finding that it may be related to the diet of the time, the use of some dyes, and the use of soils loaded with microorganisms, such as Streptomyces spp., among other microorganisms capable of producing antibiotics. However, most people only recognise authors dating between 1904 and 1940, such as Ehrlich, Domagk, and Fleming. Antibiotics are the therapeutic option for countless infections treatment; unfortunately, they are the second most common group of drugs in wastewaters worldwide due to failures in industrial waste treatments (pharmaceutics, hospitals, senior residences) and their irrational use in humans and animals. The main antibiotics problem lies in delivered and non-prescribed human use, use in livestock as growth promoters, and crop cultivation as biocides (regulated activities that have not complied in some places). This practice has led to the toxicity of the environment as antibiotics generate eutrophication, water pollution, nutrient imbalance, and press antibiotic resistance. In addition, the removal of antibiotics is not a required process in global wastewater treatment standards. This review aims to raise awareness of the negative impact of antibiotics as residues and physical, chemical, and biological treatments for their degradation. We discuss the high cost of physical and chemical treatments, the risk of using chemicals that worsen the situation, and the fact that each antibiotic class can be transformed differently with each of these treatments and generate new compounds that could be more toxic than the original ones; also, we discuss the use of enzymes for antibiotic degradation, with emphasis on laccases.
Collapse
|
42
|
Sargsyan L, Swisher AR, Hetrick AP, Li H. Effects of Combined Gentamicin and Furosemide Treatment on Cochlear Macrophages. Int J Mol Sci 2022; 23:ijms23137343. [PMID: 35806348 PMCID: PMC9266920 DOI: 10.3390/ijms23137343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Combining aminoglycosides and loop diuretics often serves as an effective ototoxic approach to deafen experimental animals. The treatment results in rapid hair cell loss with extended macrophage presence in the cochlea, creating a sterile inflammatory environment. Although the early recruitment of macrophages is typically neuroprotective, the delay in the resolution of macrophage activity can be a complication if the damaged cochlea is used as a model to study subsequent therapeutic strategies. Here, we applied a high dose combination of systemic gentamicin and furosemide in C57 BL/6 and CBA/CaJ mice and studied the ototoxic consequences in the cochlea, including hair cell survival, ribbon synaptic integrity, and macrophage activation up to 15-day posttreatment. The activity of macrophages in the basilar membrane was correlated to the severity of cochlear damage, particularly the hair cell damage. Comparatively, C57 BL/6 cochleae were more vulnerable to the ototoxic challenge with escalated macrophage activation. In addition, the ribbon synaptic deterioration was disproportionately limited when compared to the degree of outer hair cell loss in CBA/CaJ mice. The innate and differential otoprotection in CBA/CaJ mice appears to be associated with the rapid activation of cochlear macrophages and a certain level of synaptogenesis after the combined gentamicin and furosemide treatment.
Collapse
Affiliation(s)
- Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Austin R. Swisher
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Alisa P. Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
- Correspondence: or ; Tel.: +1-(909)-825-7084 (ext. 2816); Fax: +1-(909)-796-4508
| |
Collapse
|
43
|
Hearing loss drug discovery and medicinal chemistry: Current status, challenges, and opportunities. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:1-91. [PMID: 35753714 DOI: 10.1016/bs.pmch.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hearing loss is a severe high unmet need condition affecting more than 1.5 billion people globally. There are no licensed medicines for the prevention, treatment or restoration of hearing. Prosthetic devices, such as hearing aids and cochlear implants, do not restore natural hearing and users struggle with speech in the presence of background noise. Hearing loss drug discovery is immature, and small molecule approaches include repurposing existing drugs, combination therapeutics, late-stage discovery optimisation of known chemotypes for identified molecular targets of interest, phenotypic tissue screening and high-throughput cell-based screening. Hearing loss drug discovery requires the integration of specialist therapeutic area biology and otology clinical expertise. Small molecule drug discovery projects in the global clinical portfolio for hearing loss are here collated and reviewed. An overview is provided of human hearing, inner ear anatomy, inner ear delivery, types of hearing loss and hearing measurement. Small molecule experimental drugs in clinical development for hearing loss are reviewed, including their underpinning biology, discovery strategy and activities, medicinal chemistry, calculated physicochemical properties, pharmacokinetics and clinical trial status. SwissADME BOILED-Egg permeability modelling is applied to the molecules reviewed, and these results are considered. Non-small molecule hearing loss assets in clinical development are briefly noted in this review. Future opportunities in hearing loss drug discovery for human genomics and targeted protein degradation are highlighted.
Collapse
|
44
|
Liu SS, Yang R. Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Front Neurosci 2022; 16:867453. [PMID: 35685768 PMCID: PMC9170894 DOI: 10.3389/fnins.2022.867453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Most therapies for treating sensorineural hearing loss are challenged by the delivery across multiple tissue barriers to the hard-to-access anatomical location of the inner ear. In this review, we will provide a recent update on various pharmacotherapy, gene therapy, and cell therapy approaches used in clinical and preclinical studies for the treatment of sensorineural hearing loss and approaches taken to overcome the drug delivery barriers in the ear. Small-molecule drugs for pharmacotherapy can be delivered via systemic or local delivery, where the blood-labyrinth barrier hinders the former and tissue barriers including the tympanic membrane, the round window membrane, and/or the oval window hinder the latter. Meanwhile, gene and cell therapies often require targeted delivery to the cochlea, which is currently achieved via intra-cochlear or intra-labyrinthine injection. To improve the stability of the biomacromolecules during treatment, e.g., RNAs, DNAs, proteins, additional packing vehicles are often required. To address the diverse range of biological barriers involved in inner ear drug delivery, each class of therapy and the intended therapeutic cargoes will be discussed in this review, in the context of delivery routes commonly used, delivery vehicles if required (e.g., viral and non-viral nanocarriers), and other strategies to improve drug permeation and sustained release (e.g., hydrogel, nanocarriers, permeation enhancers, and microfluidic systems). Overall, this review aims to capture the important advancements and key steps in the development of inner ear therapies and delivery strategies over the past two decades for the treatment and prophylaxis of sensorineural hearing loss.
Collapse
Affiliation(s)
- Sophie S. Liu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Rong Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
45
|
Gill G, Blakley BW. Does N-acetylcysteine Improve Established Hearing Loss in Guinea Pigs? OTO Open 2022; 6:2473974X221100545. [PMID: 35602237 PMCID: PMC9118440 DOI: 10.1177/2473974x221100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To assess whether multiple injections of a powerful antioxidant can improve established sensorineural hearing loss in guinea pigs. Study Design Animal study. Setting Animal science laboratory, University of Manitoba. Methods A total of 16 guinea pigs were used in our study: 8 underwent unilateral intracochlear neomycin injection, and 8 underwent unilateral saline to serve as controls. After a period of 3 weeks for hearing loss to stabilize, 4 guinea pigs from each group received weekly intraperitoneal injections of N-acetylcysteine (NAC) for 4 weeks. Click auditory brainstem response (ABR) testing was conducted at baseline, weekly after the start of NAC injections, and after the last injection. Pure tone ABR tests were conducted prior to intracochlear injections and at completion of the study. Results Click ABR thresholds were significantly worse in ears treated with neomycin (P < .001), as expected, but not significantly different when treated with NAC (P = .664). Thresholds for pure tone ABR were also not statistically different in neomycin-treated ears with or without NAC (P > .99). Conclusions The aggressive antioxidant therapy performed in this study was not successful in improving established hearing loss via an antioxidant regimen that is known to change the oxidation-reduction potential in the cochlea.
Collapse
Affiliation(s)
- Gia Gill
- Department of Otolaryngology–Head and Neck Surgery, University of Manitoba, Winnipeg, Canada
| | - Brian W. Blakley
- Department of Otolaryngology–Head and Neck Surgery, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
46
|
Kim J, Hemachandran S, Cheng AG, Ricci AJ. Identifying targets to prevent aminoglycoside ototoxicity. Mol Cell Neurosci 2022; 120:103722. [PMID: 35341941 PMCID: PMC9177639 DOI: 10.1016/j.mcn.2022.103722] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
Aminoglycosides are potent antibiotics that are commonly prescribed worldwide. Their use carries significant risks of ototoxicity by directly causing inner ear hair cell degeneration. Despite their ototoxic side effects, there are currently no approved antidotes. Here we review recent advances in our understanding of aminoglycoside ototoxicity, mechanisms of drug transport, and promising sites for intervention to prevent ototoxicity.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sriram Hemachandran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Liu B, Su Y, Wu S, Shen J. Local Photothermal/Photodynamic Synergistic Antibacterial Therapy Based on Two-dimensional BP@CQDs Triggered by Single NIR Light Source. Photodiagnosis Photodyn Ther 2022; 39:102905. [DOI: 10.1016/j.pdpdt.2022.102905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
|
48
|
Xu B, Li J, Chen X, Kou M. Puerarin attenuates cisplatin-induced apoptosis of hair cells through the mitochondrial apoptotic pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119208. [PMID: 35032475 DOI: 10.1016/j.bbamcr.2021.119208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Puerarin, one of the main components of Pueraria lobata, has been reported to possess a wide range of pharmacological activities, including anti-inflammatory, antioxidative and anti-apoptotic effects. However, the role of puerarin in ototoxic drug-induced hair cell injury has not been well characterized. This study explored whether puerarin protects against cisplatin-induced hair cell damage and its potential mechanisms. The viability of puerarin-treated HEI-OC1 cells was assessed by CCK8 assay. Reactive oxygen species (ROS) was estimated with flow cytometric analysis using Cellrox Green fluorescent probe. Apoptosis-related protein levels were detected by western blot analysis. Immunostaining of the organ of Corti was performed to determine mice cochlear hair cell survival. Our results showed that puerarin improved cell viability and suppressed apoptosis in the cisplatin-damaged HEI-OC1 cells and cochlear hair cells. Mechanistic studies revealed that puerarin attenuated mitochondrial apoptosis pathway by regulating apoptotic related proteins, such as Bax and cleaved caspase-3, and attenuated ROS accumulation after cisplatin damage. Moreover, puerarin was involved in regulating the Akt pathway in HEI-OC1 cells in response to cisplatin. Our results demonstrated that puerarin administration decreased the sensitivity to apoptosis dependent on the mitochondrial apoptotic pathway by reducing ROS generation, which could be used as a new protective agent against cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Bingqiang Xu
- Department of Radiology, Shaanxi Provincial People's Hospital, No.256, You Yi West Street, Xi'an 710068, PR China
| | - Juedan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, PR China; Department of General Dentistry and Emergency Room, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, PR China
| | - Xiaolong Chen
- Department of Radiology, Shaanxi Provincial People's Hospital, No.256, You Yi West Street, Xi'an 710068, PR China
| | - Mingqing Kou
- Department of Radiology, Shaanxi Provincial People's Hospital, No.256, You Yi West Street, Xi'an 710068, PR China.
| |
Collapse
|
49
|
Mekdara PJ, Tirmizi S, Schwalbe MAB, Tytell ED. Comparison of Aminoglycoside Antibiotics and Cobalt Chloride for Ablation of the Lateral Line System in Giant Danios. Integr Org Biol 2022; 4:obac012. [PMID: 35359665 PMCID: PMC8964175 DOI: 10.1093/iob/obac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synopsis
The mechanoreceptive lateral line system in fish is composed of neuromasts containing hair cells, which can be temporarily ablated by aminoglycoside antibiotics and heavy metal ions. These chemicals have been used for some time in studies exploring the functional role of the lateral line system in many fish species. However, little information on the relative effectiveness and rate of action of these chemicals for ablation is available. In particular, aminoglycoside antibiotics are thought to affect canal neuromasts, which sit in bony or trunk canals, differently from superficial neuromasts, which sit directly on the skin. This assumed ablation pattern has not been fully quantified for commonly used lateral line ablation agents. This study provides a detailed characterization of the effects of two aminoglycoside antibiotics, streptomycin sulfate and neomycin sulfate, and a heavy metal salt, cobalt (II) chloride hexahydrate (CoCl2), on the ablation of hair cells in canal and superficial neuromasts in the giant danio (Devario aequipinnatus) lateral line system, as a model for adult teleost fishes. We also quantified the regeneration of hair cells after ablation using CoCl2 and gentamycin sulfate to verify the time course to full recovery, and whether the ablation method affects the recovery time. Using a fluorescence stain, 4-Di-2-ASP, we verified the effectiveness of each chemical by counting the number of fluorescing canal and superficial neuromasts present throughout the time course of ablation and regeneration of hair cells. We found that streptomycin and neomycin were comparably effective at ablating all neuromasts in less than 12 h using a 250 μM dosage and in less than 8 h using a 500 μM dosage. The 500 μM dosage of either streptomycin or neomycin can ablate hair cells in superficial neuromasts within 2–4 h, while leaving those in canal neuromasts mostly intact. CoCl2 (0.1 mM) worked the fastest, ablating all of the hair cells in less than 6 h. Complete regeneration of the neuromasts in the lateral line system took 7 days regardless of chemicals used to ablate the hair cells. This study adds to the growing knowledge in hearing research about how effective specific chemicals are at ablating hair cells in the acoustic system of vertebrates.
Collapse
Affiliation(s)
- P J Mekdara
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35, 2B-1004, Bethesda, MD 20892, USA
| | - S Tirmizi
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - M A B Schwalbe
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
- Department of Biology, Lake Forest College, 555 N Sheridan Road, Lake Forest, IL 60045, USA
| | - E D Tytell
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| |
Collapse
|
50
|
Laccase-Catalyzed Derivatization of Aminoglycoside Antibiotics and Glucosamine. Microorganisms 2022; 10:microorganisms10030626. [PMID: 35336201 PMCID: PMC8955303 DOI: 10.3390/microorganisms10030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
The increasing demand for new and effective antibiotics requires intelligent strategies to obtain a wide range of potential candidates. Laccase-catalyzed reactions have been successfully applied to synthesize new β-lactam antibiotics and other antibiotics. In this work, laccases from three different origins were used to produce new aminoglycoside antibiotics. Kanamycin, tobramycin and gentamicin were coupled with the laccase substrate 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide. The products were isolated, structurally characterized and tested in vitro for antibacterial activity against various strains of Staphylococci, including multidrug-resistant strains. The cytotoxicity of these products was tested using FL cells. The coupling products showed comparable and, in some cases, better antibacterial activity than the parent antibiotics in the agar diffusion assay, and they were not cytotoxic. The products protected mice against infection with Staphylococcus aureus, which was lethal to the control animals. The results underline the great potential of laccases in obtaining new biologically active compounds, in this case new antibiotic candidates from the class of aminoglycosides.
Collapse
|