1
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
2
|
Strong E, Mervis CB, Tam E, Morris CA, Klein-Tasman BP, Velleman SL, Osborne LR. DNA methylation profiles in individuals with rare, atypical 7q11.23 CNVs correlate with GTF2I and GTF2IRD1 copy number. NPJ Genom Med 2023; 8:25. [PMID: 37709781 PMCID: PMC10502022 DOI: 10.1038/s41525-023-00368-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Williams-Beuren syndrome (WBS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders caused by deletion and duplication of a 1.5 Mb region that includes at least five genes with a known role in epigenetic regulation. We have shown that CNV of this chromosome segment causes dose-dependent, genome-wide changes in DNA methylation, but the specific genes driving these changes are unknown. We measured genome-wide whole blood DNA methylation in six participants with atypical CNV of 7q11.23 (three with deletions and three with duplications) using the Illumina HumanMethylation450k array and compared their profiles with those from groups of individuals with classic WBS or classic Dup7 and with typically developing (TD) controls. Across the top 1000 most variable positions we found that only the atypical rearrangements that changed the copy number of GTF2IRD1 and/or GTF2I (coding for the TFII-IRD1 and TFII-I proteins) clustered with their respective syndromic cohorts. This finding was supported by results from hierarchical clustering across a selection of differentially methylated CpGs, in addition to pyrosequencing validation. These findings suggest that CNV of the GTF2I genes at the telomeric end of the 7q11.23 interval is a key contributor to the large changes in DNA methylation that are seen in blood DNA from our WBS and Dup7 cohorts, compared to TD controls. Our findings suggest that members of the TFII-I protein family are involved in epigenetic processes that alter DNA methylation on a genome-wide level.
Collapse
Affiliation(s)
- Emma Strong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Carolyn B Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Elaine Tam
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colleen A Morris
- Department of Pediatrics, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Shelley L Velleman
- Department of Communication Sciences and Disorders, University of Vermont, Burlington, VT, USA
| | - Lucy R Osborne
- Departments of Medicine and Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Zhou J, Kong YS, Vincent KM, Dieters‐Castator D, Bukhari AB, Glubrecht D, Liu R, Quilty D, Findlay SD, Huang X, Xu Z, Yang RZ, Zhang L, Tang E, Lajoie G, Eisenstat DD, Gamper AM, Fahlman R, Godbout R, Postovit L, Fu Y. RNA cytosine methyltransferase NSUN5 promotes protein synthesis and tumorigenic phenotypes in glioblastoma. Mol Oncol 2023; 17:1763-1783. [PMID: 37057706 PMCID: PMC10483612 DOI: 10.1002/1878-0261.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. The standard treatment achieves a median overall survival for GBM patients of only 15 months. Hence, novel therapies based on an increased understanding of the mechanistic underpinnings of GBM are desperately needed. In this study, we show that elevated expression of 28S rRNA (cytosine-C(5))-methyltransferase NSUN5, which methylates cytosine 3782 of 28S rRNA in GBM cells, is strongly associated with the poor survival of GBM patients. Moreover, we demonstrate that overexpression of NSUN5 increases protein synthesis in GBM cells. NSUN5 knockdown decreased protein synthesis, cell proliferation, sphere formation, migration, and resistance to temozolomide in GBM cell lines. NSUN5 knockdown also decreased the number and size of GBM neurospheres in vitro. As a corollary, mice harboring U251 tumors wherein NSUN5 was knocked down survived longer than mice harboring control tumors. Taken together, our results suggest that NSUN5 plays a protumorigenic role in GBM by enabling the enhanced protein synthesis requisite for tumor progression. Accordingly, NSUN5 may be a hitherto unappreciated target for the treatment of GBM.
Collapse
Affiliation(s)
- Jiesi Zhou
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yan Shu Kong
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Krista M. Vincent
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | | | - Amirali B. Bukhari
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Darryl Glubrecht
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Rong‐Zong Liu
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Douglas Quilty
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonONCanada
| | - Scott D. Findlay
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Xiaowei Huang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Zhihua Xu
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Rui Zhe Yang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Lanyue Zhang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Emily Tang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Gilles Lajoie
- Department of BiochemistryWestern UniversityLondonONCanada
| | - David D. Eisenstat
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
| | - Armin M. Gamper
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Richard Fahlman
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Roseline Godbout
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Lynne‐Marie Postovit
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonONCanada
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
4
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
5
|
Chen AY, Owens MC, Liu KF. Coordination of RNA modifications in the brain and beyond. Mol Psychiatry 2023; 28:2737-2749. [PMID: 37138184 DOI: 10.1038/s41380-023-02083-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Gene expression regulation is a critical process throughout the body, especially in the nervous system. One mechanism by which biological systems regulate gene expression is via enzyme-mediated RNA modifications, also known as epitranscriptomic regulation. RNA modifications, which have been found on nearly all RNA species across all domains of life, are chemically diverse covalent modifications of RNA nucleotides and represent a robust and rapid mechanism for the regulation of gene expression. Although numerous studies have been conducted regarding the impact that single modifications in single RNA molecules have on gene expression, emerging evidence highlights potential crosstalk between and coordination of modifications across RNA species. These potential coordination axes of RNA modifications have emerged as a new direction in the field of epitranscriptomic research. In this review, we will highlight several examples of gene regulation via RNA modification in the nervous system, followed by a summary of the current state of the field of RNA modification coordination axes. In doing so, we aim to inspire the field to gain a deeper understanding of the roles of RNA modifications and coordination of these modifications in the nervous system.
Collapse
Affiliation(s)
- Anthony Yulin Chen
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, 19081, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Xia X, Wang Y, Zheng JC. Internal m7G methylation: A novel epitranscriptomic contributor in brain development and diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:295-308. [PMID: 36726408 PMCID: PMC9883147 DOI: 10.1016/j.omtn.2023.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, N7-methylguanosine (m7G) methylation, originally considered as messenger RNA (mRNA) 5' caps modifications, has been identified at defined internal positions within multiple types of RNAs, including transfer RNAs, ribosomal RNAs, miRNA, and mRNAs. Scientists have put substantial efforts to discover m7G methyltransferases and methylated sites in RNAs to unveil the essential roles of m7G modifications in the regulation of gene expression and determine the association of m7G dysregulation in various diseases, including neurological disorders. Here, we review recent findings regarding the distribution, abundance, biogenesis, modifiers, and functions of m7G modifications. We also provide an up-to-date summary of m7G detection and profile mapping techniques, databases for validated and predicted m7G RNA sites, and web servers for m7G methylation prediction. Furthermore, we discuss the pathological roles of METTL1/WDR-driven m7G methylation in neurological disorders. Last, we outline a roadmap for future directions and trends of m7G modification research, particularly in the central nervous system.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Corresponding author: Xiaohuan Xia, Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200065, China.
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital affiliated to Tongji University School of Medicine, Shanghai 201613, China
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Corresponding author: Jialin C. Zheng, Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
7
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
8
|
Abstract
As one of the prevalent posttranscriptional modifications of RNA, N7-methylguanosine (m7G) plays essential roles in RNA processing, metabolism, and function, mainly regulated by the methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) complex. Emerging evidence suggests that the METTL1/WDR4 complex promoted or inhibited the processes of many tumors, including head and neck, lung, liver, colon, bladder cancer, and teratoma, dependent on close m7G methylation modification of tRNA or microRNA (miRNA). Therefore, METTL1 and m7G modification can be used as biomarkers or potential intervention targets, providing new possibilities for early diagnosis and treatment of tumors. This review will mainly focus on the mechanisms of METTL1/WDR4 via m7G in tumorigenesis and the corresponding detection methods.
Collapse
Affiliation(s)
- Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Aili Gao
- Guangzhou Institution of Dermatology, Guangzhou, Guangdong 510095, P.R. China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P. R. China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
9
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
10
|
Zhou J, Zheng Y, Liang G, Xu X, Liu J, Chen S, Ge T, Wen P, Zhang Y, Liu X, Zhuang J, Wu Y, Chen J. Atypical deletion of Williams-Beuren syndrome reveals the mechanism of neurodevelopmental disorders. BMC Med Genomics 2022; 15:79. [PMID: 35379245 PMCID: PMC8981662 DOI: 10.1186/s12920-022-01227-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Genes associated with specific neurocognitive phenotypes in Williams–Beuren syndrome are still controversially discussed. This study identified nine patients with atypical deletions out of 111 patients with Williams–Beuren syndrome; these deletions included seven smaller deletions and two larger deletions. One patient had normal neurodevelopment with a deletion of genes on the distal side of the Williams–Beuren syndrome chromosomal region, including GTF2I and GTF2IRD1. However, another patient retained these genes but showed neurodevelopmental abnormalities. By comparing the genotypes and phenotypes of patients with typical and atypical deletions and previous reports in the literature, we hypothesize that the BAZ1B, FZD9, and STX1A genes may play an important role in the neurodevelopment of patients with WBS.
Collapse
Affiliation(s)
- Jianrong Zhou
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying Zheng
- Department of Nutrition, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guiying Liang
- Department of Physical Therapy and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoli Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
| | - Jian Liu
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shaoxian Chen
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tongkai Ge
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pengju Wen
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Zhang
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People's Hospital and Cardiovascular Institute, Guangzhou, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Department of Physical Therapy and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Jimei Chen
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
11
|
Black JJ, Johnson AW. Release of the ribosome biogenesis factor Bud23 from small subunit precursors in yeast. RNA (NEW YORK, N.Y.) 2022; 28:371-389. [PMID: 34934010 PMCID: PMC8848936 DOI: 10.1261/rna.079025.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The two subunits of the eukaryotic ribosome are produced through quasi-independent pathways involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. One of the earliest intermediates of the small subunit (SSU or 40S) is the SSU processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors could induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S.
Collapse
Affiliation(s)
- Joshua J Black
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
12
|
Abstract
Cellular RNAs in all three kingdoms of life are modified with diverse chemical modifications. These chemical modifications expand the topological repertoire of RNAs, and fine-tune their functions. Ribosomal RNA in yeast contains more than 100 chemically modified residues in the functionally crucial and evolutionary conserved regions. The chemical modifications in the rRNA are of three types-methylation of the ribose sugars at the C2-positionAbstract (Nm), isomerization of uridines to pseudouridines (Ψ), and base modifications such as (methylation (mN), acetylation (acN), and aminocarboxypropylation (acpN)). The modifications profile of the yeast rRNA has been recently completed, providing an excellent platform to analyze the function of these modifications in RNA metabolism and in cellular physiology. Remarkably, majority of the rRNA modifications and the enzymatic machineries discovered in yeast are highly conserved in eukaryotes including humans. Mutations in factors involved in rRNA modification are linked to several rare severe human diseases (e.g., X-linked Dyskeratosis congenita, the Bowen-Conradi syndrome and the William-Beuren disease). In this chapter, we summarize all rRNA modifications and the corresponding enzymatic machineries of the budding yeast.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ, USA.
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences, J.W. Goethe University, Frankfurt/M., Germany.
| |
Collapse
|
13
|
Wang DO. Epitranscriptomic regulation of cognitive development and decline. Semin Cell Dev Biol 2021; 129:3-13. [PMID: 34857470 DOI: 10.1016/j.semcdb.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Functional genomics and systems biology have opened new doors to previously inaccessible genomic information and holistic approaches to study complex networks of genes and proteins in the central nervous system. The advances are revolutionizing our understanding of the genetic underpinning of cognitive development and decline by facilitating identifications of novel molecular regulators and physiological pathways underlying brain function, and by associating polymorphism and mutations to cognitive dysfunction and neurological diseases. However, our current understanding of these complex gene regulatory mechanisms has yet lacked sufficient mechanistic resolution for further translational breakthroughs. Here we review recent findings from the burgeoning field of epitranscriptomics in association of cognitive functions with a special focus on the epitranscritomic regulation in subcellular locations such as chromosome, synapse, and mitochondria. Although there are important gaps in knowledge, current evidence is suggesting that this layer of RNA regulation may be of particular interest for the spatiotemporally coordinated regulation of gene networks in developing and maintaining brain function that underlie cognitive changes.
Collapse
Affiliation(s)
- Dan Ohtan Wang
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Yoshida Hon-machi, Kyoto 606-8501, Japan.
| |
Collapse
|
14
|
Garcia BCB, Horie M, Kojima S, Makino A, Tomonaga K. BUD23-TRMT112 interacts with the L protein of Borna disease virus and mediates the chromosomal tethering of viral ribonucleoproteins. Microbiol Immunol 2021; 65:492-504. [PMID: 34324219 DOI: 10.1111/1348-0421.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 11/28/2022]
Abstract
Persistent intranuclear infection is an uncommon infection strategy among RNA viruses. However, Borna disease virus 1 (BoDV-1), a nonsegmented, negative-strand RNA virus, maintains viral infection in the cell nucleus by forming structured aggregates of viral ribonucleoproteins (vRNPs), and by tethering these vRNPs onto the host chromosomes. To better understand the nuclear infection strategy of BoDV-1, we determined the host protein interactors of the BoDV-1 large (L) protein. By proximity-dependent biotinylation, we identified several nuclear host proteins interacting with BoDV-1 L, one of which is TRMT112, a partner of several RNA methyltransferases (MTase). TRMT112 binds with BoDV-1 L at the RNA-dependent RNA polymerase domain, together with BUD23, an 18S rRNA MTase and 40S ribosomal maturation factor. We then discovered that BUD23-TRMT112 mediates the chromosomal tethering of BoDV-1 vRNPs, and that the MTase activity is necessary in the tethering process. These findings provide us a better understanding on how nuclear host proteins assist the chromosomal tethering of BoDV-1, as well as new prospects of host-viral interactions for intranuclear infection strategy of orthobornaviruses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bea Clarise B Garcia
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences (inFRONT), Kyoto University, Kyoto.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto
| | - Masayuki Horie
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences (inFRONT), Kyoto University, Kyoto.,Hakubi Center for Advanced Research, Kyoto University, Kyoto
| | - Shohei Kojima
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences (inFRONT), Kyoto University, Kyoto
| | - Akiko Makino
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences (inFRONT), Kyoto University, Kyoto.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences (inFRONT), Kyoto University, Kyoto.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Niego A, Benítez-Burraco A. Autism and Williams syndrome: Dissimilar socio-cognitive profiles with similar patterns of abnormal gene expression in the blood. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 25:464-489. [PMID: 33143449 DOI: 10.1177/1362361320965074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
LAY ABSTRACT Autism spectrum disorders and Williams syndrome are complex cognitive conditions exhibiting quite opposite features in the social domain: whereas people with autism spectrum disorders are mostly hyposocial, subjects with Williams syndrome are usually reported as hypersocial. At the same time, autism spectrum disorders and Williams syndrome share some common underlying behavioral and cognitive deficits. It is not clear, however, which genes account for the attested differences (and similarities) in the socio-cognitive domain. In this article, we adopted a comparative molecular approach and looked for genes that might be differentially (or similarly) regulated in the blood of people with these conditions. We found a significant overlap between genes dysregulated in the blood of patients compared to neurotypical controls, with most of them being upregulated or, in some cases, downregulated. Still, genes with similar expression trends can exhibit quantitative differences between conditions, with most of them being more dysregulated in Williams syndrome than in autism spectrum disorders. Differentially expressed genes are involved in aspects of brain development and function (particularly dendritogenesis) and are expressed in brain areas (particularly the cerebellum, the thalamus, and the striatum) of relevance for the autism spectrum disorder and the Williams syndrome etiopathogenesis. Overall, these genes emerge as promising candidates for the similarities and differences between the autism spectrum disorder and the Williams syndrome socio-cognitive profiles.
Collapse
|
16
|
Chi Y, Liang Z, Guo Y, Chen D, Lu L, Lin J, Qiu S, Wang X, Qiu E, Lin F, Chen J, Luo S, Zheng D, Xu X. WBSCR22 confers cell survival and predicts poor prognosis in glioma. Brain Res Bull 2020; 161:1-12. [PMID: 32380188 DOI: 10.1016/j.brainresbull.2020.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Human WBSCR22 is involved in cancer proliferation, invasion and metastasis; however, its function in glioma remains unexplored. In our research, we aimed to investigate the role of WBSCR22 in the development of glioma and its possible molecular mechanisms. Using bioinformatic analysis of public datasets, we determined that WBSCR22 overexpression in glioma specimens was correlated with an unfavorable patient prognosis. Our results revealed that WBSCR22 was highly expressed in glioma cell lines. The loss of WBSCR22 inhibited the growth, invasion and migration of glioma cells, while WBSCR22 overexpression produced the opposite effects. Moreover, we found that WBSCR22 downregulation reduced the phosphorylation of Akt and GSK3β and decreased the levels of β-catenin and CyclinD1 in glioma cells. The opposite effects were observed when WBSCR22 was overexpressed. Additionally, we verified with a dual-luciferase reporter assay that WBSCR22 was a direct target of miR-146b-5p. Furthermore, overexpression of miR-146b-5p suppressed WBSCR22 mRNA and protein expression. Notably, the restoration of WBSCR22 expression remarkably reversed the effects of miR-146b-5p overexpression on cell survival, apoptosis and the cell cycle in glioma cells. Collectively, our findings revealed a tumor-promoting role for WBSCR22 in glioma cells, thus providing molecular evidence for WBSCR22 as a novel therapeutic target in glioma.
Collapse
Affiliation(s)
- Yajie Chi
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Zi Liang
- Department of Neurosurgery, Lian Jiang People's Hospital, Zhanjiang 524400, Guangdong, China
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Daliang Chen
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Lenian Lu
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Jiye Lin
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Shengcong Qiu
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Xiang Wang
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Erning Qiu
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Famu Lin
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Jianmin Chen
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Shi Luo
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Dahai Zheng
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China.
| | - Xiaobing Xu
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China.
| |
Collapse
|
17
|
Mariasina SS, Chang CF, Petrova OA, Efimov SV, Klochkov VV, Kechko OI, Mitkevich VA, Sergiev PV, Dontsova OA, Polshakov VI. Williams-Beuren syndrome-related methyltransferase WBSCR27: cofactor binding and cleavage. FEBS J 2020; 287:5375-5393. [PMID: 32255258 DOI: 10.1111/febs.15320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/20/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
Abstract
Williams-Beuren syndrome, characterized by numerous physiological and mental problems, is caused by the heterozygous deletion of chromosome region 7q11.23, which results in the disappearance of 26 protein-coding genes. Protein WBSCR27 is a product of one of these genes whose biological function has not yet been established and for which structural information has been absent until now. Using NMR, we investigated the structural and functional properties of murine WBSCR27. For protein in the apo form and in a complex with S-(5'-adenosyl)-l-homocysteine (SAH), a complete NMR resonance assignment has been obtained and the secondary structure has been determined. This information allows us to attribute WBSCR27 to Class I methyltransferases. The interaction of WBSCR27 with the cofactor S-(5'-adenosyl)-l-methionine (SAM) and its metabolic products - SAH, 5'-deoxy-5'-methylthioadenosine (MTA) and 5'-deoxyadenosine (5'dAdo) - was studied by NMR and isothermal titration calorimetry. SAH binds WBSCR27 much tighter than SAM, leaving open the question of cofactor turnover in the methylation reaction. One possible answer to this question is the presence of weak but detectable nucleosidase activity for WBSCR27. We found that the enzyme catalyses the cleavage of the adenine moiety from SAH, MTA and 5'dAdo, similar to the action of bacterial SAH/MTA nucleosidases. We also found that the binding of SAM or SAH causes a significant change in the structure of WBSCR27 and in the conformational mobility of the protein fragments, which can be attributed to the substrate recognition site. This indicates that the binding of the cofactor modulates the folding of the substrate-recognizing region of the enzyme.
Collapse
Affiliation(s)
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Sergey V Efimov
- NMR Laboratory, Institute of Physics, Kazan Federal University, Russia
| | | | - Olga I Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Petr V Sergiev
- M.V. Lomonosov Moscow State University, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga A Dontsova
- M.V. Lomonosov Moscow State University, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
18
|
Heissenberger C, Liendl L, Nagelreiter F, Gonskikh Y, Yang G, Stelzer EM, Krammer TL, Micutkova L, Vogt S, Kreil DP, Sekot G, Siena E, Poser I, Harreither E, Linder A, Ehret V, Helbich TH, Grillari-Voglauer R, Jansen-Dürr P, Koš M, Polacek N, Grillari J, Schosserer M. Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res 2019; 47:11807-11825. [PMID: 31722427 PMCID: PMC7145617 DOI: 10.1093/nar/gkz1043] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
Modifications of ribosomal RNA expand the nucleotide repertoire and thereby contribute to ribosome heterogeneity and translational regulation of gene expression. One particular m5C modification of 25S ribosomal RNA, which is introduced by Rcm1p, was previously shown to modulate stress responses and lifespan in yeast and other small organisms. Here, we report that NSUN5 is the functional orthologue of Rcm1p, introducing m5C3782 into human and m5C3438 into mouse 28S ribosomal RNA. Haploinsufficiency of the NSUN5 gene in fibroblasts from William Beuren syndrome patients causes partial loss of this modification. The N-terminal domain of NSUN5 is required for targeting to nucleoli, while two evolutionary highly conserved cysteines mediate catalysis. Phenotypic consequences of NSUN5 deficiency in mammalian cells include decreased proliferation and size, which can be attributed to a reduction in total protein synthesis by altered ribosomes. Strikingly, Nsun5 knockout in mice causes decreased body weight and lean mass without alterations in food intake, as well as a trend towards reduced protein synthesis in several tissues. Together, our findings emphasize the importance of single RNA modifications for ribosome function and normal cellular and organismal physiology.
Collapse
Affiliation(s)
- Clemens Heissenberger
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Lisa Liendl
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Fabian Nagelreiter
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Yulia Gonskikh
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Guohuan Yang
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Elena M Stelzer
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Teresa L Krammer
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Lucia Micutkova
- Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Vogt
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - David P Kreil
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Gerhard Sekot
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Emilio Siena
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Ina Poser
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Eva Harreither
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Angela Linder
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Viktoria Ehret
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Preclinical Imaging Laboratory, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Preclinical Imaging Laboratory, Medical University of Vienna, 1090 Vienna, Austria
| | - Regina Grillari-Voglauer
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Koš
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Johannes Grillari
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, 1190 Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| |
Collapse
|
19
|
Nürenberg-Goloub E, Tampé R. Ribosome recycling in mRNA translation, quality control, and homeostasis. Biol Chem 2019; 401:47-61. [DOI: 10.1515/hsz-2019-0279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Abstract
Protein biosynthesis is a conserved process, essential for life. Ongoing research for four decades has revealed the structural basis and mechanistic details of most protein biosynthesis steps. Numerous pathways and their regulation have recently been added to the translation system describing protein quality control and messenger ribonucleic acid (mRNA) surveillance, ribosome-associated protein folding and post-translational modification as well as human disorders associated with mRNA and ribosome homeostasis. Thus, translation constitutes a key regulatory process placing the ribosome as a central hub at the crossover of numerous cellular pathways. Here, we describe the role of ribosome recycling by ATP-binding cassette sub-family E member 1 (ABCE1) as a crucial regulatory step controlling the biogenesis of functional proteins and the degradation of aberrant nascent chains in quality control processes.
Collapse
Affiliation(s)
- Elina Nürenberg-Goloub
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt/Main , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt/Main , Germany
| |
Collapse
|
20
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
21
|
Emerging Role of Eukaryote Ribosomes in Translational Control. Int J Mol Sci 2019; 20:ijms20051226. [PMID: 30862090 PMCID: PMC6429320 DOI: 10.3390/ijms20051226] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Translation is one of the final steps that regulate gene expression. The ribosome is the effector of translation through to its role in mRNA decoding and protein synthesis. Many mechanisms have been extensively described accounting for translational regulation. However it emerged only recently that ribosomes themselves could contribute to this regulation. Indeed, though it is well-known that the translational efficiency of the cell is linked to ribosome abundance, studies recently demonstrated that the composition of the ribosome could alter translation of specific mRNAs. Evidences suggest that according to the status, environment, development, or pathological conditions, cells produce different populations of ribosomes which differ in their ribosomal protein and/or RNA composition. Those observations gave rise to the concept of "specialized ribosomes", which proposes that a unique ribosome composition determines the translational activity of this ribosome. The current review will present how technological advances have participated in the emergence of this concept, and to which extent the literature sustains this concept today.
Collapse
|
22
|
Bohnsack KE, Höbartner C, Bohnsack MT. Eukaryotic 5-methylcytosine (m⁵C) RNA Methyltransferases: Mechanisms, Cellular Functions, and Links to Disease. Genes (Basel) 2019; 10:genes10020102. [PMID: 30704115 PMCID: PMC6409601 DOI: 10.3390/genes10020102] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/04/2023] Open
Abstract
5-methylcytosine (m⁵C) is an abundant RNA modification that's presence is reported in a wide variety of RNA species, including cytoplasmic and mitochondrial ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), as well as messenger RNAs (mRNAs), enhancer RNAs (eRNAs) and a number of non-coding RNAs. In eukaryotes, C5 methylation of RNA cytosines is catalyzed by enzymes of the NOL1/NOP2/SUN domain (NSUN) family, as well as the DNA methyltransferase homologue DNMT2. In recent years, substrate RNAs and modification target nucleotides for each of these methyltransferases have been identified, and structural and biochemical analyses have provided the first insights into how each of these enzymes achieves target specificity. Functional characterizations of these proteins and the modifications they install have revealed important roles in diverse aspects of both mitochondrial and nuclear gene expression. Importantly, this knowledge has enabled a better understanding of the molecular basis of a number of diseases caused by mutations in the genes encoding m⁵C methyltransferases or changes in the expression level of these enzymes.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Justus-von-Liebig-Weg 11, 37077 Germany.
| |
Collapse
|
23
|
Lyu G, Zong L, Zhang C, Huang X, Xie W, Fang J, Guan Y, Zhang L, Ni T, Gu J, Tao W. Metastasis-related methyltransferase 1 (Merm1) represses the methyltransferase activity of Dnmt3a and facilitates RNA polymerase I transcriptional elongation. J Mol Cell Biol 2019; 11:78-90. [PMID: 30535232 DOI: 10.1093/jmcb/mjy023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Stimulatory regulators for DNA methyltransferase activity, such as Dnmt3L and some Dnmt3b isoforms, affect DNA methylation patterns, thereby maintaining gene body methylation and maternal methylation imprinting, as well as the methylation landscape of pluripotent cells. Here we show that metastasis-related methyltransferase 1 (Merm1), a protein deleted in individuals with Williams-Beuren syndrome, acts as a repressive regulator of Dnmt3a. Merm1 interacts with Dnmt3a and represses its methyltransferase activity with the requirement of the binding motif for S-adenosyl-L-methionine. Functional analysis of gene regulation revealed that Merm1 is capable of maintaining hypomethylated rRNA gene bodies and co-localizes with RNA polymerase I in the nucleolus. Dnmt3a recruits Merm1, and in return, Merm1 ensures the binding of Dnmt3a to hypomethylated gene bodies. Such interplay between Dnmt3a and Merm1 facilitates transcriptional elongation by RNA polymerase I. Our findings reveal a repressive factor for Dnmt3a and uncover a molecular mechanism underlying transcriptional elongation of rRNA genes.
Collapse
Affiliation(s)
- Guoliang Lyu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Le Zong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chao Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xiaoke Huang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Wenbing Xie
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Junnan Fang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yiting Guan
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Lijun Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Ting Ni
- State Key Laboratory of Genetics Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai0, China
| | - Jun Gu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
24
|
García-Vílchez R, Sevilla A, Blanco S. Post-transcriptional regulation by cytosine-5 methylation of RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:240-252. [PMID: 30593929 DOI: 10.1016/j.bbagrm.2018.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 02/02/2023]
Abstract
The recent advent of high-throughput sequencing technologies coupled with RNA modifications detection methods has allowed the detection of RNA modifications at single nucleotide resolution giving a more comprehensive landscape of post-transcriptional gene regulation pathways. In this review, we focus on the occurrence of 5-methylcytosine (m5C) in the transcriptome. We summarise the main findings of the molecular role in post-transcriptional regulation that governs m5C deposition in RNAs. Functionally, m5C deposition can regulate several cellular and physiological processes including development, differentiation and survival to stress stimuli. Despite many aspects concerning m5C deposition in RNA, such as position or sequence context and the fact that many readers and erasers still remain elusive, the overall recent findings indicate that RNA cytosine methylation is a powerful mechanism to post-transcriptionally regulate physiological processes. In addition, mutations in RNA cytosine-5 methyltransferases are associated to pathological processes ranging from neurological syndromes to cancer.
Collapse
Affiliation(s)
| | - Ana Sevilla
- Physiology, Cellular Biology and Immunology Department - Biology Faculty. University of Barcelona, Avda. Diagonal 643, 08028 Barcelona. Spain
| | - Sandra Blanco
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain..
| |
Collapse
|
25
|
Vasilieva EN, Laptev IG, Sergiev PV, Dontsova OA. The Common Partner of Several Methyltransferases Modifying the Components of The Eukaryotic Translation Apparatus. Mol Biol 2018. [DOI: 10.1134/s0026893318060171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Mariasina SS, Petrova OA, Osterman IA, Sergeeva OV, Efimov SV, Klochkov VV, Sergiev PV, Dontsova OA, Huang TH, Chang CF, Polshakov VI. NMR assignments of the WBSCR27 protein related to Williams-Beuren syndrome. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:303-308. [PMID: 29868988 DOI: 10.1007/s12104-018-9827-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Williams-Beuren syndrome is a genetic disorder characterized by physiological and mental abnormalities, and is caused by hemizygous deletion of several genes in chromosome 7. One of the removed genes encodes the WBSCR27 protein. Bioinformatic analysis of the sequence of WBSCR27 indicates that it belongs to the family of SAM-dependent methyltransferases. However, exact cellular functions of this protein or phenotypic consequences of its deficiency are still unknown. Here we report nearly complete 1H, 15N, and 13C chemical shifts assignments of the 26 kDa WBSCR27 protein from Mus musculus in complex with the cofactor S-adenosyl-L-methionine (SAM). Analysis of the assigned chemical shifts allowed us to characterize the protein's secondary structure and backbone dynamics. The topology of the protein's fold confirms the assumption that the WBSCR27 protein belongs to the family of class I methyltransferases.
Collapse
Affiliation(s)
- Sofia S Mariasina
- Faculty of Fundamental Medicine, Center for Magnetic Tomography and Spectroscopy, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Olga A Petrova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Ilya A Osterman
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga V Sergeeva
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sergey V Efimov
- NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan, Russia, 420008
| | - Vladimir V Klochkov
- NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan, Russia, 420008
| | - Petr V Sergiev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga A Dontsova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Tai-Huang Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, Republic of China.
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Center for Magnetic Tomography and Spectroscopy, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
| |
Collapse
|
27
|
Boriack-Sjodin PA, Ribich S, Copeland RA. RNA-modifying proteins as anticancer drug targets. Nat Rev Drug Discov 2018; 17:435-453. [PMID: 29773918 DOI: 10.1038/nrd.2018.71] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
All major biological macromolecules (DNA, RNA, proteins and lipids) undergo enzyme-catalysed covalent modifications that impact their structure, function and stability. A variety of covalent modifications of RNA have been identified and demonstrated to affect RNA stability and translation to proteins; these mechanisms of translational control have been termed epitranscriptomics. Emerging data suggest that some epitranscriptomic mechanisms are altered in human cancers as well as other human diseases. In this Review, we examine the current understanding of RNA modifications with a focus on mRNA methylation, highlight their possible roles in specific cancer indications and discuss the emerging potential of RNA-modifying proteins as therapeutic targets.
Collapse
|
28
|
Jonkhout N, Tran J, Smith MA, Schonrock N, Mattick JS, Novoa EM. The RNA modification landscape in human disease. RNA (NEW YORK, N.Y.) 2017; 23:1754-1769. [PMID: 28855326 PMCID: PMC5688997 DOI: 10.1261/rna.063503.117] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
RNA modifications have been historically considered as fine-tuning chemo-structural features of infrastructural RNAs, such as rRNAs, tRNAs, and snoRNAs. This view has changed dramatically in recent years, to a large extent as a result of systematic efforts to map and quantify various RNA modifications in a transcriptome-wide manner, revealing that RNA modifications are reversible, dynamically regulated, far more widespread than originally thought, and involved in major biological processes, including cell differentiation, sex determination, and stress responses. Here we summarize the state of knowledge and provide a catalog of RNA modifications and their links to neurological disorders, cancers, and other diseases. With the advent of direct RNA-sequencing technologies, we expect that this catalog will help prioritize those RNA modifications for transcriptome-wide maps.
Collapse
Affiliation(s)
- Nicky Jonkhout
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
| | - Julia Tran
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
| | - Martin A Smith
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
| | - Nicole Schonrock
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- Genome.One, Darlinghurst, 2010 NSW, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
| | - Eva Maria Novoa
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
29
|
WBSCR22 confers oxaliplatin resistance in human colorectal cancer. Sci Rep 2017; 7:15443. [PMID: 29133897 PMCID: PMC5684350 DOI: 10.1038/s41598-017-15749-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022] Open
Abstract
Human WBSCR22 gene is involved in tumor metastasis, cell growth and invasion, however, its role in chemosensitivity to antitumor agents remains unknown. In this study, we analyzed the TCGA cohort and found the expression of WBSCR22 was significantly elevated in human colorectal cancer (CRC) tissue. WBSCR22 could be served as an independent risk predictor for overall survival (OS), and up-regulated WBSCR22 could predict unfavorable OS for CRC patients. Knockdown of WBSCR22 significantly sensitized CRC cells to oxaliplatin in vitro and in vivo, while overexpression of WBSCR22 led to cellular resistance to oxaliplatin treatment. Although WBSCR22 knockdown did not change cell cycle, it increased the oxaliplatin-induced cellular apoptosis. WBSCR22 knockdown augmented the oxaliplatin-induced intracellular reactive oxygen species (ROS) production and ROS-induced 8-oxoguanine (8-oxoG) oxidative lesion accumulation, likely sensitizing oxaliplatin treatment. These results demonstrate that WBSCR22 is involved in CRC resistance to oxaliplatin, suggesting WBSCR22 may represent a novel oxaliplatin resistance biomarker as well as a potentail target for CRC therapeutics.
Collapse
|
30
|
Serikawa T, Spanos C, von Hacht A, Budisa N, Rappsilber J, Kurreck J. Comprehensive identification of proteins binding to RNA G-quadruplex motifs in the 5' UTR of tumor-associated mRNAs. Biochimie 2017; 144:169-184. [PMID: 29129743 DOI: 10.1016/j.biochi.2017.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
G-quadruplex structures in the 5' UTR of mRNAs are widely considered to suppress translation without affecting transcription. The current study describes the comprehensive analysis of proteins binding to four different G-quadruplex motifs located in mRNAs of the cancer-related genes Bcl-2, NRAS, MMP16, and ARPC2. Following metabolic labeling (Stable Isotope Labeling with Amino acids in Cell culture, SILAC) of proteins in the human cell line HEK293, G-quadruplex binding proteins were enriched by pull-down assays and identified by LC-orbitrap mass spectrometry. We found different patterns of interactions for the G-quadruplex motifs under investigation. While the G-quadruplexes in the mRNAs of NRAS and MMP16 specifically interacted with a small number of proteins, the Bcl-2 and ARPC2 G-quadruplexes exhibited a broad range of proteinaceous interaction partners with 99 and 82 candidate proteins identified in at least two replicates, respectively. The use of a control composed of samples from all G-quadruplex-forming sequences and their mutated controls ensured that the identified proteins are specific for RNA G-quadruplex structures and are not general RNA-binding proteins. Independent validation experiments based on pull-down assays and Western blotting confirmed the MS data. Among the interaction partners were many proteins known to bind to RNA, including multiple heterogenous nuclear ribonucleoproteins (hnRNPs). Several of the candidate proteins are likely to reflect stalling of the ribosome by RNA G-quadruplex structures. Interestingly, additional proteins were identified that have not previously been described to interact with RNA. Gene ontology analysis of the candidate proteins revealed that many interaction partners are known to be tumor related. The majority of the identified RNA G-quadruplex interacting proteins are thought to be involved in post-transcriptional processes, particularly in splicing. These findings indicate that protein-G-quadruplex interactions are not only important for the fine-tuning of translation but are also relevant to the regulation of mRNA maturation and may play an important role in tumor biology. Proteomic data are available via ProteomeXchange with identifier PXD005761.
Collapse
Affiliation(s)
- Tatsuo Serikawa
- Department of Applied Biochemistry, Institute of Biotechnology, TIB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Annekathrin von Hacht
- Department of Applied Biochemistry, Institute of Biotechnology, TIB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Nediljko Budisa
- Department of Biocatalysis, Institute of Chemistry, L 1, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623, Berlin, Germany
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Department of Bioanalytics, Institute of Biotechnology, TIB 4/4-3, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, TIB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| |
Collapse
|
31
|
Bourgeois G, Létoquart J, van Tran N, Graille M. Trm112, a Protein Activator of Methyltransferases Modifying Actors of the Eukaryotic Translational Apparatus. Biomolecules 2017; 7:biom7010007. [PMID: 28134793 PMCID: PMC5372719 DOI: 10.3390/biom7010007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional and post-translational modifications are very important for the control and optimal efficiency of messenger RNA (mRNA) translation. Among these, methylation is the most widespread modification, as it is found in all domains of life. These methyl groups can be grafted either on nucleic acids (transfer RNA (tRNA), ribosomal RNA (rRNA), mRNA, etc.) or on protein translation factors. This review focuses on Trm112, a small protein interacting with and activating at least four different eukaryotic methyltransferase (MTase) enzymes modifying factors involved in translation. The Trm112-Trm9 and Trm112-Trm11 complexes modify tRNAs, while the Trm112-Mtq2 complex targets translation termination factor eRF1, which is a tRNA mimic. The last complex formed between Trm112 and Bud23 proteins modifies 18S rRNA and participates in the 40S biogenesis pathway. In this review, we present the functions of these eukaryotic Trm112-MTase complexes, the molecular bases responsible for complex formation and substrate recognition, as well as their implications in human diseases. Moreover, as Trm112 orthologs are found in bacterial and archaeal genomes, the conservation of this Trm112 network beyond eukaryotic organisms is also discussed.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| | - Juliette Létoquart
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
- De Duve Institute, Université Catholique de Louvain, avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Nhan van Tran
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| |
Collapse
|
32
|
Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DLJ, Bohnsack MT. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 2016; 14:1138-1152. [PMID: 27911188 PMCID: PMC5699541 DOI: 10.1080/15476286.2016.1259781] [Citation(s) in RCA: 438] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
rRNAs are extensively modified during their transcription and subsequent maturation in the nucleolus, nucleus and cytoplasm. RNA modifications, which are installed either by snoRNA-guided or by stand-alone enzymes, generally stabilize the structure of the ribosome. However, they also cluster at functionally important sites of the ribosome, such as the peptidyltransferase center and the decoding site, where they facilitate efficient and accurate protein synthesis. The recent identification of sites of substoichiometric 2'-O-methylation and pseudouridylation has overturned the notion that all rRNA modifications are constitutively present on ribosomes, highlighting nucleotide modifications as an important source of ribosomal heterogeneity. While the mechanisms regulating partial modification and the functions of specialized ribosomes are largely unknown, changes in the rRNA modification pattern have been observed in response to environmental changes, during development, and in disease. This suggests that rRNA modifications may contribute to the translational control of gene expression.
Collapse
Affiliation(s)
- Katherine E Sloan
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Ahmed S Warda
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Sunny Sharma
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Karl-Dieter Entian
- c Institute for Molecular Biosciences, Goethe University , Frankfurt am Main , Germany
| | - Denis L J Lafontaine
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Markus T Bohnsack
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany.,d Göttingen Centre for Molecular Biosciences, Georg-August-University , Göttingen , Germany
| |
Collapse
|
33
|
Hussein IR, Magbooli A, Huwait E, Chaudhary A, Bader R, Gari M, Ashgan F, Alquaiti M, Abuzenadah A, AlQahtani M. Genome wide array-CGH and qPCR analysis for the identification of genome defects in Williams' syndrome patients in Saudi Arabia. Mol Cytogenet 2016; 9:65. [PMID: 27525043 PMCID: PMC4981984 DOI: 10.1186/s13039-016-0266-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/19/2016] [Indexed: 11/27/2022] Open
Abstract
Background Williams-Beuren Syndrome (WBS) is a rare neurodevelopmental disorder characterized by dysmorphic features, cardiovascular defects, cognitive deficits and developmental delay. WBS is caused by a segmental aneuploidy of chromosome 7 due to heterozygous deletion of contiguous genes at the long arm of chromosome 7q11.23. We aimed to apply array-CGH technique for the detection of copy number variants in suspected WBS patients and to determine the size of the deleted segment at chromosome 7q11.23 in correlation with the phenotype. The study included 24 patients referred to the CEGMR with the provisional diagnosis of WBS and 8 parents. The patients were subjected to conventional Cytogenetic (G-banding) analysis, Molecular Cytogenetic (Fluorescent In-Situ Hybridization), array-based Comparative Genomic Hybridization (array-CGH) and quantitative Real time PCR (qPCR) Techniques. Results No deletions were detected by Karyotyping, however, one patient showed unbalanced translocation between chromosome 18 and 19, the karyotype was 45,XX, der(19) t(18;19)(q11.1;p13.3)-18. FISH technique could detect microdeletion in chromosome 7q11.23 in 10/24 patients. Array-CGH and qPCR confirmed the deletion in all samples, and could detect duplication of 7q11.23 in three patients and two parents. Furthermore, the size of the deletion could be detected accurately by both array-CGH and qPCR techniques. Three patients not showing the 7q11.23 deletion were diagnosed by array-CGH to have deletion in chr9p13.1-p11.2, chr18p11.32-p11.21 and chr1p36.13. Conclusion Both FISH and array-CGH are reliable methods for the diagnosis of WBS; however, array-CGH has the advantage of detection of genome deletions/ duplications that cannot otherwise be detected by conventional cytogenetic techniques. Array-CGH and qPCR are useful for detection of deletion sizes and prediction of the interrupted genes and their impact on the disease phenotype. Further investigations are needed for studying the impact of deletion sizes and function of the deleted genes on chromosome 7q11.23. Trial registration ISRCTN ISRCTN73824458. MOCY-D-16-00041R1. Registered 28 September 2014. Retrospectively registered.
Collapse
Affiliation(s)
- I R Hussein
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia
| | - A Magbooli
- Diagnostic Genomic Medicine Unit (DGMU), King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - E Huwait
- Faculty of Science, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - A Chaudhary
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia.,Faculty of Medical Sciences, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - R Bader
- Pediatric Cardiology Department, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - M Gari
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia.,Faculty of Medical Sciences, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - F Ashgan
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia
| | - M Alquaiti
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia
| | - A Abuzenadah
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia.,Faculty of Medical Sciences, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| | - M AlQahtani
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589 KSA Saudi Arabia.,Diagnostic Genomic Medicine Unit (DGMU), King Abdulaziz University, Jeddah, KSA Saudi Arabia.,Faculty of Medical Sciences, King Abdulaziz University, Jeddah, KSA Saudi Arabia
| |
Collapse
|
34
|
Sharma S, Lafontaine DLJ. 'View From A Bridge': A New Perspective on Eukaryotic rRNA Base Modification. Trends Biochem Sci 2016; 40:560-575. [PMID: 26410597 DOI: 10.1016/j.tibs.2015.07.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/23/2023]
Abstract
Eukaryotic rRNA are modified frequently, although the diversity of modifications is low: in yeast rRNA, there are only 12 different types out of a possible natural repertoire exceeding 112. All nine rRNA base methyltransferases (MTases) and one acetyltransferase have recently been identified in budding yeast, and several instances of crosstalk between rRNA, tRNA, and mRNA modifications are emerging. Although the machinery has largely been identified, the functions of most rRNA modifications remain to be established. Remarkably, a eukaryote-specific bridge, comprising a single ribosomal protein (RP) from the large subunit (LSU), contacts four rRNA base modifications across the ribosomal subunit interface, potentially probing for their presence. We hypothesize in this article that long-range allosteric communication involving rRNA modifications is taking place between the two subunits during translation or, perhaps, the late stages of ribosome assembly.
Collapse
Affiliation(s)
- Sunny Sharma
- RNA Molecular Biology, FRS/FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, FRS/FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium; Center for Microscopy and Molecular Imaging, BioPark campus, B-6041 Charleroi-Gosselies, Belgium.
| |
Collapse
|
35
|
Shafik A, Schumann U, Evers M, Sibbritt T, Preiss T. The emerging epitranscriptomics of long noncoding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:59-70. [PMID: 26541084 DOI: 10.1016/j.bbagrm.2015.10.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/15/2015] [Accepted: 10/28/2015] [Indexed: 01/08/2023]
Abstract
The pervasive transcription of genomes into long noncoding RNAs has been amply demonstrated in recent years and garnered much attention. Similarly, emerging 'epitranscriptomics' research has shown that chemically modified nucleosides, thought to be largely the domain of tRNAs and other infrastructural RNAs, are far more widespread and can exert unexpected influence on RNA utilization. Both areas are characterized by the often-ephemeral nature of the subject matter in that few individual examples have been fully assessed for their molecular or cellular function, and effects might often be subtle and cumulative. Here we review available information at the intersection of these two exciting areas of biology, by focusing on four RNA modifications that have been mapped transcriptome-wide: 5-methylcytidine, N6-methyladenosine, pseudouridine as well as adenosine to inosine (A-to-I) editing, and their incidence and function in long noncoding RNAs. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Andrew Shafik
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Building 131 Garran Road, Acton, Canberra, Australian Capital Territory 2601, Australia.
| | - Ulrike Schumann
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Building 131 Garran Road, Acton, Canberra, Australian Capital Territory 2601, Australia.
| | - Maurits Evers
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Building 131 Garran Road, Acton, Canberra, Australian Capital Territory 2601, Australia.
| | - Tennille Sibbritt
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Building 131 Garran Road, Acton, Canberra, Australian Capital Territory 2601, Australia.
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Building 131 Garran Road, Acton, Canberra, Australian Capital Territory 2601, Australia; Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst (Sydney), New South Wales 2010, Australia.
| |
Collapse
|
36
|
Sung YJ, Basson J, Cheng N, Nguyen KDH, Nandakumar P, Hunt SC, Arnett DK, Dávila-Román VG, Rao DC, Chakravarti A. The role of rare variants in systolic blood pressure: analysis of ExomeChip data in HyperGEN African Americans. Hum Hered 2015; 79:20-7. [PMID: 25765051 DOI: 10.1159/000375373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/20/2015] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases are among the most significant health problems in the United States today, with their major risk factor, hypertension, disproportionately affecting African Americans (AAs). Although GWAS have identified dozens of common variants associated with blood pressure (BP) and hypertension in European Americans, these variants collectively explain <2.5% of BP variance, and most of the genetic variants remain yet to be identified. Here, we report the results from rare-variant analysis of systolic BP using 94,595 rare and low-frequency variants (minor allele frequency, MAF, <5%) from the Illumina exome array genotyped in 2,045 HyperGEN AAs. In addition to single-variant analysis, 4 gene-level association tests were used for analysis: burden and family-based SKAT tests using MAF cutoffs of 1 and 5%. The gene-based methods often provided lower p values than the single-variant approach. Some consistency was observed across these 4 gene-based analysis options. While neither the gene-based analyses nor the single-variant analysis produced genome-wide significant results, the top signals, which had supporting evidence from multiple gene-based methods, were of borderline significance. Though additional molecular validations are required, 6 of the 16 most promising genes are biologically plausible with physiological connections to BP regulation.
Collapse
|
37
|
Haag S, Warda AS, Kretschmer J, Günnigmann MA, Höbartner C, Bohnsack MT. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA (NEW YORK, N.Y.) 2015; 21:1532-43. [PMID: 26160102 PMCID: PMC4536315 DOI: 10.1261/rna.051524.115] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/01/2015] [Indexed: 05/04/2023]
Abstract
Many cellular RNAs require modification of specific residues for their biogenesis, structure, and function. 5-methylcytosine (m(5)C) is a common chemical modification in DNA and RNA but in contrast to the DNA modifying enzymes, only little is known about the methyltransferases that establish m(5)C modifications in RNA. The putative RNA methyltransferase NSUN6 belongs to the family of Nol1/Nop2/SUN domain (NSUN) proteins, but so far its cellular function has remained unknown. To reveal the target spectrum of human NSUN6, we applied UV crosslinking and analysis of cDNA (CRAC) as well as chemical crosslinking with 5-azacytidine. We found that human NSUN6 is associated with tRNAs and acts as a tRNA methyltransferase. Furthermore, we uncovered tRNA(Cys) and tRNA(Thr) as RNA substrates of NSUN6 and identified the cytosine C72 at the 3' end of the tRNA acceptor stem as the target nucleoside. Interestingly, target recognition in vitro depends on the presence of the 3'-CCA tail. Together with the finding that NSUN6 localizes to the cytoplasm and largely colocalizes with marker proteins for the Golgi apparatus and pericentriolar matrix, our data suggest that NSUN6 modifies tRNAs in a late step in their biogenesis.
Collapse
Affiliation(s)
- Sara Haag
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Ahmed S Warda
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Jens Kretschmer
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Manuel A Günnigmann
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Claudia Höbartner
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, 37077 Göttingen, Germany
| | - Markus T Bohnsack
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
38
|
Khoddami V, Yerra A, Cairns BR. Experimental Approaches for Target Profiling of RNA Cytosine Methyltransferases. Methods Enzymol 2015; 560:273-96. [PMID: 26253975 DOI: 10.1016/bs.mie.2015.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA cytosine methyltransferases (m(5)C-RMTs) constitute an important class of RNA-modifying enzymes, methylating specific cytosines within particular RNA targets in both coding and noncoding RNAs. Almost all organisms express at least one m(5)C-RMT, and vertebrates often express different types or variants of m(5)C-RMTs in different cell types. Deletion or mutation of particular m(5)C-RMTs is connected to severe pathological manifestations ranging from developmental defects to infertility and mental retardation. Some m(5)C-RMTs show spatiotemporal patterns of expression and activity requiring careful experimental design for their analysis in order to capture their context-dependent targets. An essential step for understanding the functions of both the enzymes and the modified cytosines is defining the one-to-one connection between particular m(5)C-RMTs and their target cytosines. Recent technological and methodological advances have provided researchers with new tools to comprehensively explore RNA cytosine methylation and methyltransferases. Here, we describe three complementary approaches applicable for both discovery and validation of candidate target sites of specific m(5)C-RMTs.
Collapse
Affiliation(s)
- Vahid Khoddami
- HHMI, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA; Current address: Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Archana Yerra
- HHMI, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Bradley R Cairns
- HHMI, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| |
Collapse
|
39
|
Abstract
Cells have developed molecular machineries, which can chemically modify DNA and RNA nucleosides. One particular and chemically simple modification, (cytosine-5) methylation (m(5)C), has been detected both in RNA and DNA suggesting universal use of m(5)C for the function of these nucleotide polymers. m(5)C can be reproducibly mapped to abundant noncoding RNAs (transfer RNA, tRNA and ribosomal RNA, rRNA), and recently, also nonabundant RNAs (including mRNAs) have been reported to carry this modification. Quantification of m(5)C content in total RNA preparations indicates that a limited number of RNAs carry this modification and suggests specific functions for (cytosine-5) RNA methylation. What exactly is the biological function of m(5)C in RNA? Before attempting to address this question, m(5)C needs to be mapped specifically and reproducibly, preferably on a transcriptome-wide scale. To facilitate the detection of m(5)C in its sequence context, RNA bisulfite sequencing (RNA-BisSeq) has been developed. This method relies on the efficient chemical deamination of nonmethylated cytosine, which can be read out as single nucleotide polymorphism (nonmethylated cytosine as thymine vs. methylated cytosine as cytosine), when differentially comparing cDNA libraries to reference sequences after DNA sequencing. Here, the basic protocol of RNA-BisSeq, its current applications and limitations are described.
Collapse
Affiliation(s)
- Matthias Schaefer
- Vienna Biocenter, Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Universität Wien, Vienna, Austria.
| |
Collapse
|
40
|
Amorim CEG, Daub JT, Salzano FM, Foll M, Excoffier L. Detection of convergent genome-wide signals of adaptation to tropical forests in humans. PLoS One 2015; 10:e0121557. [PMID: 25849546 PMCID: PMC4388690 DOI: 10.1371/journal.pone.0121557] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
Tropical forests are believed to be very harsh environments for human life. It is unclear whether human beings would have ever subsisted in those environments without external resources. It is therefore possible that humans have developed recent biological adaptations in response to specific selective pressures to cope with this challenge. To understand such biological adaptations we analyzed genome-wide SNP data under a Bayesian statistics framework, looking for outlier markers with an overly large extent of differentiation between populations living in a tropical forest, as compared to genetically related populations living outside the forest in Africa and the Americas. The most significant positive selection signals were found in genes related to lipid metabolism, the immune system, body development, and RNA Polymerase III transcription initiation. The results are discussed in the light of putative tropical forest selective pressures, namely food scarcity, high prevalence of pathogens, difficulty to move, and inefficient thermoregulation. Agreement between our results and previous studies on the pygmy phenotype, a putative prototype of forest adaptation, were found, suggesting that a few genetic regions previously described as associated with short stature may be evolving under similar positive selection in Africa and the Americas. In general, convergent evolution was less pervasive than local adaptation in one single continent, suggesting that Africans and Amerindians may have followed different routes to adapt to similar environmental selective pressures.
Collapse
Affiliation(s)
- Carlos Eduardo G. Amorim
- Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Distrito Federal, Brazil
| | - Josephine T. Daub
- Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Francisco M. Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Matthieu Foll
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- School of Life Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, France
| | - Laurent Excoffier
- Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
41
|
Zorbas C, Nicolas E, Wacheul L, Huvelle E, Heurgué-Hamard V, Lafontaine DLJ. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Mol Biol Cell 2015; 26:2080-95. [PMID: 25851604 PMCID: PMC4472018 DOI: 10.1091/mbc.e15-02-0073] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/02/2015] [Indexed: 01/07/2023] Open
Abstract
An evolutionarily conserved quality control in ribosome biogenesis reveals that two human rRNA base methyltransferases associated with cell differentiation and cancer but, surprisingly, not their RNA-modifying activity are required for small ribosomal subunit biogenesis. At the heart of the ribosome lie rRNAs, whose catalytic function in translation is subtly modulated by posttranscriptional modifications. In the small ribosomal subunit of budding yeast, on the 18S rRNA, two adjacent adenosines (A1781/A1782) are N6-dimethylated by Dim1 near the decoding site, and one guanosine (G1575) is N7-methylated by Bud23-Trm112 at a ridge between the P- and E-site tRNAs. Here we establish human DIMT1L and WBSCR22-TRMT112 as the functional homologues of yeast Dim1 and Bud23-Trm112. We report that these enzymes are required for distinct pre-rRNA processing reactions leading to synthesis of 18S rRNA, and we demonstrate that in human cells, as in budding yeast, ribosome biogenesis requires the presence of the modification enzyme rather than its RNA-modifying catalytic activity. We conclude that a quality control mechanism has been conserved from yeast to human by which binding of a methyltransferase to nascent pre-rRNAs is a prerequisite to processing, so that all cleaved RNAs are committed to faithful modification. We further report that 18S rRNA dimethylation is nuclear in human cells, in contrast to yeast, where it is cytoplasmic. Yeast and human ribosome biogenesis thus have both conserved and distinctive features.
Collapse
Affiliation(s)
- Christiane Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Emilien Nicolas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Emmeline Huvelle
- Centre National de la Recherche Scientifique FRE3630, Institut de Biologie Physico-Chimique, Paris F-75005, France
| | - Valérie Heurgué-Hamard
- Centre National de la Recherche Scientifique FRE3630, Institut de Biologie Physico-Chimique, Paris F-75005, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
42
|
Haas BW, Smith AK. Oxytocin, vasopressin, and Williams syndrome: epigenetic effects on abnormal social behavior. Front Genet 2015; 6:28. [PMID: 25741359 PMCID: PMC4330921 DOI: 10.3389/fgene.2015.00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/20/2015] [Indexed: 11/13/2022] Open
Abstract
Williams syndrome (WS) is a condition caused by a deletion of ∼26-28 genes on chromosome 7q11.23 often characterized by abnormal social behavior and disrupted oxytocin (OT) and vasopressin (AVP) functioning. The observation that individuals with WS exhibit OT and AVP dysregulation is compelling. There is currently a lack of evidence that any of the genes typically deleted in WS have any direct effect on either OT or AVP. In this perspective article, we present a novel epigenetic model describing how DNA methylation may impact the expression of key genes within the OT and AVP systems, which may ultimately influence the social behavior observed in WS. We draw support from data pooled from a prior empirical research study (Henrichsen et al., 2011), demonstrating that OXTR is overexpressed in WS. These preliminary findings may create new opportunities to target the OT and AVP systems with the specific goal of improving outcomes in WS and other psychiatric conditions.
Collapse
Affiliation(s)
- Brian W Haas
- Department of Psychology, University of Georgia , Athens, GA, USA ; Interdisciplinary Neuroscience Graduate Program, University of Georgia , Athens, GA, USA
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University , Atlanta, GA, USA
| |
Collapse
|
43
|
Haag S, Kretschmer J, Bohnsack MT. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. RNA (NEW YORK, N.Y.) 2015; 21:180-7. [PMID: 25525153 PMCID: PMC4338346 DOI: 10.1261/rna.047910.114] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/11/2014] [Indexed: 05/10/2023]
Abstract
Ribosomal (r)RNAs are extensively modified during ribosome synthesis and their modification is required for the fidelity and efficiency of translation. Besides numerous small nucleolar RNA-guided 2'-O methylations and pseudouridinylations, a number of individual RNA methyltransferases are involved in rRNA modification. WBSCR22/Merm1, which is affected in Williams-Beuren syndrome and has been implicated in tumorigenesis and metastasis formation, was recently shown to be involved in ribosome synthesis, but its molecular functions have remained elusive. Here we show that depletion of WBSCR22 leads to nuclear accumulation of 3'-extended 18SE pre-rRNA intermediates resulting in impaired 18S rRNA maturation. We map the 3' ends of the 18SE pre-rRNA intermediates accumulating after depletion of WBSCR22 and in control cells using 3'-RACE and deep sequencing. Furthermore, we demonstrate that WBSCR22 is required for N(7)-methylation of G1639 in human 18S rRNA in vivo. Interestingly, the catalytic activity of WBSCR22 is not required for 18S pre-rRNA processing, suggesting that the key role of WBSCR22 in 40S subunit biogenesis is independent of its function as an RNA methyltransferase.
Collapse
Affiliation(s)
- Sara Haag
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Jens Kretschmer
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
44
|
Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun 2015; 6:6158. [PMID: 25635753 PMCID: PMC4317494 DOI: 10.1038/ncomms7158] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Several pathways modulating longevity and stress resistance converge on translation by targeting ribosomal proteins or initiation factors, but whether this involves modifications of ribosomal RNA is unclear. Here, we show that reduced levels of the conserved RNA methyltransferase NSUN5 increase the lifespan and stress resistance in yeast, worms and flies. Rcm1, the yeast homologue of NSUN5, methylates C2278 within a conserved region of 25S rRNA. Loss of Rcm1 alters the structural conformation of the ribosome in close proximity to C2278, as well as translational fidelity, and favours recruitment of a distinct subset of oxidative stress-responsive mRNAs into polysomes. Thus, rather than merely being a static molecular machine executing translation, the ribosome exhibits functional diversity by modification of just a single rRNA nucleotide, resulting in an alteration of organismal physiological behaviour, and linking rRNA-mediated translational regulation to modulation of lifespan, and differential stress response. Cellular pathways modulating longevity and stress resistance are known to affect protein translation. Here the authors show that the RNA methyltransferase, Nsun5, or its yeast homologue Rcm1, regulates lifespan of three different model organisms by modifying ribosomal RNA at a specific cytosine residue.
Collapse
|
45
|
Létoquart J, Huvelle E, Wacheul L, Bourgeois G, Zorbas C, Graille M, Heurgué-Hamard V, Lafontaine DLJ. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes. Proc Natl Acad Sci U S A 2014; 111:E5518-26. [PMID: 25489090 PMCID: PMC4280632 DOI: 10.1073/pnas.1413089111] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N(7)-methylguanosine (m(7)G) introduced at position 1575 on 18S rRNA by Bud23-Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23-Trm112 in the apo and S-adenosyl-L-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23-Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23-Trm112 binds precursor ribosomes at an early nucleolar stage, m(7)G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23-Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23-Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction.
Collapse
Affiliation(s)
- Juliette Létoquart
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Emmeline Huvelle
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris F-75005, France
| | - Ludivine Wacheul
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and
| | - Gabrielle Bourgeois
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Christiane Zorbas
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and
| | - Marc Graille
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France;
| | - Valérie Heurgué-Hamard
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris F-75005, France;
| | - Denis L J Lafontaine
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and RNA Molecular Biology, Fonds de la Recherche Scientifique, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
46
|
Blanco S, Frye M. Role of RNA methyltransferases in tissue renewal and pathology. Curr Opin Cell Biol 2014; 31:1-7. [PMID: 25014650 PMCID: PMC4238901 DOI: 10.1016/j.ceb.2014.06.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Abstract
Over the last five decades more than 100 types of RNA modifications have been identified in organism of all kingdoms of life, yet their function and biological relevance remain largely elusive. The recent development of transcriptome-wide techniques to detect RNA modifications such as N(6)-methyladenosine (m(6)A) and 5-methylcytidine (m(5)C) has not only created a new field of research 'the epitranscriptome' but also featured essential regulatory roles of RNA methylation in a wide range of fundamental cellular processes. Here, we discuss the current knowledge of m(6)A and m(5)C RNA methylation pathways and summarize how they impact normal tissues and contribute to human disease.
Collapse
Affiliation(s)
- Sandra Blanco
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Michaela Frye
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom.
| |
Collapse
|
47
|
Yan D, Zheng X, Tu L, Jia J, Li Q, Cheng L, Wang X. Knockdown of Merm1/Wbscr22 attenuates sensitivity of H460 non-small cell lung cancer cells to SN-38 and 5-FU without alteration to p53 expression levels. Mol Med Rep 2014; 11:295-302. [PMID: 25352209 DOI: 10.3892/mmr.2014.2764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 07/21/2014] [Indexed: 11/06/2022] Open
Abstract
Merm1/Wbscr22 is a novel metastasis promoter that has been shown to be involved in tumor metastasis, viability and apoptosis. To the best of our knowledge, there are currently no studies suggesting the possible correlation between the expression of Merm1/Wbscr22 in tumor cells and chemosensitivity to antitumor agents. In the present study, two human non-small cell lung cancer cell lines, H1299 and H460, were used to investigate whether Merm1/Wbscr22 affects chemosensitivity to antitumor agents, including cisplatin (CDDP), doxorubicin (ADM), paclitaxel (PTX), mitomycin (MMC), 7-Ethyl-10-hydroxycamptothecin (SN-38; the active metabolite of camptothecin) and 5-fluorouracil (5-FU). Merm1/Wbscr22 knockdown cell lines (H1299-shRNA and H460-shRNA) and negative control cell lines (H1299-NC and H460-NC) were established by stable transfection, and the efficiency of Merm1/Wbscr22 knockdown was confirmed by western blotting, immunofluorescence microscopy and quantitative polymerase chain reaction. The results demonstrated that shRNA-mediated knockdown of Merm1/Wbscr22 did not affect cell proliferation in vitro and in vivo. The H460 cells harboring wild type p53 were markedly more sensitive to all six antitumor agents as compared with the p53-null H1299 cells. Downregulation of Merm1/Wbscr22 did not affect H1299 sensitivity to any of the six antitumor agents, whereas attenuated H460 sensitivity to SN-38 and 5-FU, without significant alteration in p53 at both mRNA and protein levels, was identified. The reduced H460 sensitivity to SN-38 was further confirmed in vivo. SN-38 demonstrated significant tumor growth inhibitory activity in both H460 and H460‑NC tumor xenograft models, but only marginally suppressed the H460-shRNA xenograft tumor growth. Furthermore, CDDP (4, 10, 15 µg/ml)-resistant human non-small lung cancer cells A549 (A549-CDDPr-4, 10, 15) expressed significant amounts of Merm1/Wbscr22 protein, as compared with the parental A549 cells. In conclusion, shRNA-mediated knockdown of Merm1/Wbscr22 attenuates H460 sensitivity to SN-38 and 5-FU, suggesting Merm1/Wbscr22 is involved in chemosensitivity to SN-38 and 5-FU in H460 cells. No direct correlation between the p53 expression level and altered chemosensitivity was identified.
Collapse
Affiliation(s)
- Dongmei Yan
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Xiaoliang Zheng
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Linglan Tu
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Jing Jia
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Qin Li
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Liyan Cheng
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Xiaoju Wang
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
48
|
Sondalle SB, Baserga SJ. Human diseases of the SSU processome. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:758-64. [PMID: 24240090 PMCID: PMC4058823 DOI: 10.1016/j.bbadis.2013.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022]
Abstract
Ribosomes are the cellular machines responsible for protein synthesis. Ribosome biogenesis, the production of ribosomes, is a complex process involving pre-ribosomal RNA (rRNA) cleavages and modifications as well as ribosomal protein assembly around the rRNAs to create the functional ribosome. The small subunit (SSU) processome is a large ribonucleoprotein (RNP) in eukaryotes required for the assembly of the SSU of the ribosome as well as for the maturation of the 18S rRNA. Despite the fundamental nature of the SSU processome to the survival of any eukaryotic cell, mutations in SSU processome components have been implicated in human diseases. Three SSU processome components and their related human diseases will be explored in this review: hUTP4/Cirhin, implicated in North American Indian childhood cirrhosis (NAIC); UTP14, implicated in infertility, ovarian cancer, and scleroderma; and EMG1, implicated in Bowen-Conradi syndrome (BCS). Diseases with suggestive, though inconclusive, evidence for the involvement of the SSU processome in their pathogenesis are also discussed, including a novel putative ribosomopathy. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Samuel B Sondalle
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
49
|
Stefanska B, Cheishvili D, Suderman M, Arakelian A, Huang J, Hallett M, Han ZG, Al-Mahtab M, Akbar SMF, Khan WA, Raqib R, Tanvir I, Khan HA, Rabbani SA, Szyf M. Genome-wide study of hypomethylated and induced genes in patients with liver cancer unravels novel anticancer targets. Clin Cancer Res 2014; 20:3118-32. [PMID: 24763612 DOI: 10.1158/1078-0432.ccr-13-0283] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We utilized whole-genome mapping of promoters that are activated by DNA hypomethylation in hepatocellular carcinoma (HCC) clinical samples to shortlist novel targets for anticancer therapeutics. We provide a proof of principle of this approach by testing six genes short-listed in our screen for their essential role in cancer growth and invasiveness. EXPERIMENTAL DESIGN We used siRNA- or shRNA-mediated depletion to determine whether inhibition of these genes would reduce human tumor xenograft growth in mice as well as cell viability, anchorage-independent growth, invasive capacities, and state of activity of nodal signaling pathways in liver, breast, and bladder cancer cell lines. RESULTS Depletion of EXOSC4, RNMT, SENP6, WBSCR22, RASAL2, and NENF effectively and specifically inhibits cancer cell growth and cell invasive capacities in different types of cancer, but, remarkably, there is no effect on normal cell growth, suggesting a ubiquitous causal role for these genes in driving cancer growth and metastasis. Depletion of RASAL2 and NENF in vitro reduces their growth as explants in vivo in mice. RASAL2 and NENF depletion interferes with AKT, WNT, and MAPK signaling pathways as well as regulation of epigenetic proteins that were previously demonstrated to drive cancer growth and metastasis. CONCLUSION Our results prove that genes that are hypomethylated and induced in tumors are candidate targets for anticancer therapeutics in multiple cancer cell types. Because these genes are particularly activated in cancer, they constitute a group of targets for specific pharmacologic inhibitors of cancer and cancer metastasis. Clin Cancer Res; 20(12); 3118-32. ©2014 AACR.
Collapse
Affiliation(s)
- Barbara Stefanska
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, PakistanAuthors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - David Cheishvili
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Matthew Suderman
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Ani Arakelian
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Jian Huang
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Michael Hallett
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Ze-Guang Han
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Mamun Al-Mahtab
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Sheikh Mohammad Fazle Akbar
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Wasif Ali Khan
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Rubhana Raqib
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Imrana Tanvir
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Haseeb Ahmed Khan
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Shafaat A Rabbani
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Moshe Szyf
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, PakistanAuthors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| |
Collapse
|
50
|
Jangani M, Poolman TM, Matthews L, Yang N, Farrow SN, Berry A, Hanley N, Williamson AJK, Whetton AD, Donn R, Ray DW. The methyltransferase WBSCR22/Merm1 enhances glucocorticoid receptor function and is regulated in lung inflammation and cancer. J Biol Chem 2014; 289:8931-46. [PMID: 24488492 PMCID: PMC3979408 DOI: 10.1074/jbc.m113.540906] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glucocorticoids (GC) regulate cell fate and immune function. We identified the metastasis-promoting methyltransferase, metastasis-related methyltransferase 1 (WBSCR22/Merm1) as a novel glucocorticoid receptor (GR) regulator relevant to human disease. Merm1 binds the GR co-activator GRIP1 but not GR. Loss of Merm1 impaired both GR transactivation and transrepression by reducing GR recruitment to its binding sites. This was accompanied by loss of GR-dependent H3K4Me3 at a well characterized promoter. Inflammation promotes GC resistance, in part through the actions of TNFα and IFNγ. These cytokines suppressed Merm1 protein expression by driving ubiquitination of two conserved lysine residues. Restoration of Merm1 expression rescued GR transactivation. Cytokine suppression of Merm1 and of GR function was also seen in human lung explants. In addition, striking loss of Merm1 protein was observed in both inflammatory and neoplastic human lung pathologies. In conclusion, Merm1 is a novel regulator of chromatin structure affecting GR recruitment and function, contributing to loss of GC sensitivity in inflammation, with suppressed expression in pulmonary disease.
Collapse
Affiliation(s)
- Maryam Jangani
- From the Centre in Endocrinology and Diabetes, Institute of Human Development, and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|