1
|
Franzen V, Gruber NA, Klußmann S, Schoster A, May A. Effect of repetitive transcranial magnetic stimulation on trigeminal-mediated headshaking in 17 horses. J Vet Intern Med 2024; 38:2758-2765. [PMID: 39264234 PMCID: PMC11423477 DOI: 10.1111/jvim.17194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Trigeminal-mediated headshaking is a neuropathic facial pain condition in horses. No treatment has been entirely successful. Repetitive transcranial magnetic stimulation (rTMS) is used in human medicine as a treatment for various neuropathic pain conditions, and good results have been achieved in cases of trigeminal neuralgia. OBJECTIVES Apply rTMS to horses with trigeminal-mediated headshaking (TMHS) and to evaluate tolerability, application of the setting, and success rate. ANIMALS Seventeen horses with nonseasonal signs of TMHS. METHODS Other underlying causes of headshaking were ruled out. The rTMS was performed under standing sedation on 5 consecutive days applying 3 sets of 500 stimulations each, with a stimulation strength of 5 Hz. Horses were evaluated on Day 1 (t0) and Day 5 (t1) of the treatment and 2 (t2) and 4 weeks (t3) afterwards using a special scoring system. RESULTS The rTMS was well tolerated. Headshaking signs during exercise were decreased by 70% (Day 5; t1). Four weeks after rTMS, signs were still decreased (mean reduction of 50%) during exercise. Improvement of mean resting and exercise scores was significant (P < .05) and effect sizes between pretreatment and all time points after treatment (t1, t2, t3) were large (>±0.8). CONCLUSIONS AND CLINICAL IMPORTANCE Repetitive transcranial magnetic stimulation may be a promising treatment for neuropathic pain and headshaking in affected horses. Pain-free periods after treatment differ individually, and repeated treatment may be necessary. More studies should be performed to determine ideal settings for horses.
Collapse
Affiliation(s)
- Vanessa Franzen
- Equine HospitalLudwig Maximilians University MunichMunichGermany
| | | | - Sven Klußmann
- Equine HospitalLudwig Maximilians University MunichMunichGermany
| | | | - Anna May
- Equine HospitalLudwig Maximilians University MunichMunichGermany
| |
Collapse
|
2
|
Hayashi D, Yamazaki R, Matsuda Y, Igarashi S, Taruishi N, Kodaka F, Shigeta M, Kito S. Association between Stimulation-Site Pain and Clinical Improvement during Repetitive Transcranial Magnetic Stimulation for Patients with Major Depressive Disorders: A Prospective Observational Study at Two Sites. Neuropsychobiology 2024:1-8. [PMID: 38889691 DOI: 10.1159/000538971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION The clinical efficacy of repetitive transcranial magnetic stimulation (rTMS) for treatment-resistant depression (TRD) in Japan has not been adequately investigated. Furthermore, the relationship between stimulation-site pain and the antidepressant effects of rTMS has not been thoroughly examined. Therefore, this study aimed to clarify (1) the real-world efficacy and safety of rTMS for TRD in Japan and (2) the relationship between stimulation-site pain and clinical improvement of depressive symptoms. METHODS We conducted a retrospective observational study involving 50 right-handed patients with TRD. All patients received high-frequency rTMS for up to 6 weeks. Depressive symptoms were assessed using the Montgomery-Åsberg depression rating scale (MADRS). Pain at the stimulation site was reported by the patients using a visual analog scale (VAS) after each session. Remission and response rates at 3 and 6 weeks were calculated based on the MADRS scores. The correlation between changes in the MADRS and VAS scores was examined. RESULTS Remission and response rates were 36% and 46%, respectively, at the end of 3 weeks, and 60% and 70%, respectively, at 6 weeks. At the end of the treatment, there was significant correlation between the reduction of MADRS and VAS scores (r = 0.42, p = 0.003). CONCLUSION This study demonstrates the clinical efficacy of rTMS in Japan and the correlation between its antidepressant effects and stimulation-site pain.
Collapse
Affiliation(s)
- Daisuke Hayashi
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ryuichi Yamazaki
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Matsuda
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Shun Igarashi
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Nanase Taruishi
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Fumitoshi Kodaka
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Shigeta
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinsuke Kito
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Kong Q, Li T, Reddy S, Hodges S, Kong J. Brain stimulation targets for chronic pain: Insights from meta-analysis, functional connectivity and literature review. Neurotherapeutics 2024; 21:e00297. [PMID: 38237403 PMCID: PMC10903102 DOI: 10.1016/j.neurot.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 02/16/2024] Open
Abstract
Noninvasive brain stimulation (NIBS) techniques have demonstrated their potential for chronic pain management, yet their efficacy exhibits variability across studies. Refining stimulation targets and exploring additional targets offer a possible solution to this challenge. This study aimed to identify potential brain surface targets for NIBS in treating chronic pain disorders by integrating literature review, neuroimaging meta-analysis, and functional connectivity analysis on 90 chronic low back pain patients. Our results showed that the primary motor cortex (M1) (C3/C4, 10-20 EEG system) and prefrontal cortex (F3/F4/Fz) were the most used brain stimulation targets for chronic pain treatment according to the literature review. The bilateral precentral gyrus (M1), supplementary motor area, Rolandic operculum, and temporoparietal junction, were all identified as common potential NIBS targets through both a meta-analysis sourced from Neurosynth and functional connectivity analysis. This study presents a comprehensive summary of the current literature and refines the existing NIBS targets through a combination of imaging meta-analysis and functional connectivity analysis for chronic pain conditions. The derived coordinates (with integration of the international electroencephalography (EEG) 10/20 electrode placement system) within the above brain regions may further facilitate the localization of these targets for NIBS application. Our findings may have the potential to expand NIBS target selection beyond current clinical trials and improve chronic pain treatment.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tingting Li
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sveta Reddy
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
4
|
Dugan C, Parlatescu I, Popescu BO, Pop CS, Marin M, Dinculescu A, Nistorescu AI, Vizitiu C, Varlas VN. Applications for oral research in microgravity - lessons learned from burning mouth syndrome and ageing studies. J Med Life 2023; 16:381-386. [PMID: 37168310 PMCID: PMC10165527 DOI: 10.25122/jml-2022-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 05/13/2023] Open
Abstract
The negative consequences of microgravity for the human body are central aspects of space travel that raise health problems. Altered functions of the same systems and treatment options are common points of spaceflight physiology, age-related diseases, and oral medicine. This work emphasizes the convergence of knowledge between pathophysiological changes brought on by aging, physiological reactions to microgravity exposure, and non-pharmacological and non-invasive treatment methods that can be used in spaceflight. Sarcopenia, peripheral nerves alterations, neuromotor plaque in the masticatory muscles, lingual, labial, and buccal weakness, nociplastic pain in oral mucosal diseases, and microgravity, as well as soft tissue changes and pathologies related to chewing and swallowing, corticomotor neuroplasticity of tongue, and swallowing biomechanics, are of particular interest to us. Neurologic disease and other pathologies such as recovery from post-stroke dysphagia, nociplastic pain in glossodynia, sleep bruxism, and obstructive sleep apnea have been studied and, in some cases, successfully treated with non-invasive direct and transcranial magnetic stimulation (TMS) methods in recent decades. An interdisciplinary team from medical specialties, engineering, and biophysics propose an exploratory study based on the parallelism of ageing and space physiology, along with experiment scenarios considering TMS and non-invasive direct methods.
Collapse
Affiliation(s)
- Cosmin Dugan
- Internal Medicine Department, Bucharest University Emergency Hospital, Bucharest, Romania
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ioanina Parlatescu
- Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Corresponding Author: Ioanina Parlatescu, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. E-mail:
| | - Bogdan Ovidiu Popescu
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Corina Silvia Pop
- Internal Medicine Department, Bucharest University Emergency Hospital, Bucharest, Romania
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihaela Marin
- Space Applications for Health and Safety Laboratory, Institute of Space Science, Magurele, Romania
| | - Adrian Dinculescu
- Space Applications for Health and Safety Laboratory, Institute of Space Science, Magurele, Romania
| | - Alexandru Ion Nistorescu
- Space Applications for Health and Safety Laboratory, Institute of Space Science, Magurele, Romania
| | - Cristian Vizitiu
- Space Applications for Health and Safety Laboratory, Institute of Space Science, Magurele, Romania
- Department of Automatics and Information Technology, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, Brasov, Romania
| | - Valentin Nicolae Varlas
- Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynaecology, Clinical Hospital of Obstetrics and Gynecology Filantropia, Bucharest, Romania
| |
Collapse
|
5
|
Zang Y, Zhang Y, Lai X, Yang Y, Guo J, Gu S, Zhu Y. Evidence Mapping Based on Systematic Reviews of Repetitive Transcranial Magnetic Stimulation on the Motor Cortex for Neuropathic Pain. Front Hum Neurosci 2022; 15:743846. [PMID: 35250506 PMCID: PMC8889530 DOI: 10.3389/fnhum.2021.743846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVE There is vast published literature proposing repetitive transcranial magnetic stimulation (rTMS) technology on the motor cortex (M1) for the treatment of neuropathic pain (NP). Systematic reviews (SRs) focus on a specific problem and do not provide a comprehensive overview of a research area. This study aimed to summarize and analyze the evidence of rTMS on the M1 for NP treatment through a new synthesis method called evidence mapping. METHODS Searches were conducted in PubMed, EMBASE, Epistemonikos, and The Cochrane Library to identify the studies that summarized the effectiveness of rTMS for NP. The study type was restricted to SRs with or without meta-analysis. All literature published before January 23, 2021, was included. Two reviewers independently screened the literature, assessed the methodological quality, and extracted the data. The methodological quality of the included SRs was assessed by using the A Measurement Tool to Assess Systematic Reviews (AMSTAR-2). Data were extracted following a defined population, intervention, comparison, and outcome (PICO) framework from primary studies that included SRs. The same PICO was categorized into PICOs according to interventions [frequency, number of sessions (short: 1-5 sessions, medium: 5-10 sessions, and long: >10 sessions)] and compared. The evidence map was presented in tables and a bubble plot. RESULTS A total of 38 SRs met the eligibility criteria. After duplicate primary studies were removed, these reviews included 70 primary studies that met the scope of evidence mapping. According to the AMSTAR-2 assessment, the quality of the included SRs was critically low. Of these studies, 34 SRs scored "critically low" in terms of methodological quality, 2 SR scored "low," 1 SR scored "moderate," and 1 SR scored "high." CONCLUSION Evidence mapping is a useful methodology to provide a comprehensive and reliable overview of studies on rTMS for NP. Evidence mapping also shows that further investigations are necessary to highlight the optimal stimulation protocols and standardize all parameters to fill the evidence gaps of rTMS. Given that the methodological quality of most included SRs was "critically low," further investigations are advised to improve the methodological quality and the reporting process of SRs.
Collapse
Affiliation(s)
- Yaning Zang
- Department of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yongni Zhang
- School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Xigui Lai
- Department of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yujie Yang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences Limited, Hong Kong, Hong Kong SAR, China
| | - Jiabao Guo
- Department of Rehabilitation Medicine, The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Gu
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Yi Zhu
- Department of Musculoskeletal Pain Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Hammad AB, Elsharkawy RE, Abdel Azim GS. Repetitive transcranial magnetic stimulation as a prophylactic treatment in migraine. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-020-00254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Clinical applications of transcranial magnetic stimulation (TMS) have shown promising results in the treatment of headache disorders, with migraine being one of the most encountered.
Objective
To assess the role of low-frequency repetitive transcranial magnetic stimulation as a preventive treatment of migraine (with and without aura) and correlate the results with the serum level of the inflammatory biomarker (neurokinin A).
Methods
Forty patients, with age ranging from 15 to 55 years, diagnosed with migraine (30 migraine without aura and 10 with aura) and 20 apparently healthy individuals, who were age and sex matched with the patient group, were included in this study.
A low-frequency (1 Hz) rTMS protocol was applied for all patients for five consecutive days interictally. Assessment of pain intensity using visual analogue scale and frequency and duration of attacks as well as number of pills taken by patients as an abortive treatment according to the Basic Diagnostic Headache Diary for 4 weeks before and 4 weeks after TMS sessions was done. In addition, the Migraine Disability Assessment scale (MIDAS) was applied to assess the severity and degree of disability caused by migraine.
Measurement of neurokinin A serum level was done by using ELISA for all patients before and after TMS and for control group once.
Results
There was a significant reduction in pain intensity, frequency and duration of migraine attacks, migraine disability scores, and number of pills taken as abortive treatment for attacks after rTMS (P < 0.001). Also, serum level of neurokinin A in the patients was significantly reduced after rTMS (P < 0.001).
Conclusion
Low-frequency rTMS is an effective prophylactic treatment for migraine with and without aura.
Collapse
|
7
|
Mori N, Hosomi K, Nishi A, Dong D, Yanagisawa T, Khoo HM, Tani N, Oshino S, Saitoh Y, Kishima H. Difference in Analgesic Effects of Repetitive Transcranial Magnetic Stimulation According to the Site of Pain. Front Hum Neurosci 2021; 15:786225. [PMID: 34899224 PMCID: PMC8662379 DOI: 10.3389/fnhum.2021.786225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023] Open
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex for neuropathic pain has been shown to be effective, according to systematic reviews and therapeutic guidelines. However, our large, rigorous, investigator-initiated, registration-directed clinical trial failed to show a positive primary outcome, and its subgroup analysis suggested that the analgesic effect varied according to the site of pain. The aim of this study was to investigate the differences in analgesic effects of rTMS for neuropathic pain between different pain sites by reviewing our previous clinical trials. We included three clinical trials in this mini meta-analysis: a multicenter randomized controlled trial at seven hospitals (N = 64), an investigator-initiated registration-directed clinical trial at three hospitals (N = 142), and an exploratory clinical trial examining different stimulation parameters (N = 22). The primary efficacy endpoint (change in pain scale) was extracted for each patient group with pain in the face, upper limb, or lower limb, and a meta-analysis of the efficacy of active rTMS against sham stimulation was performed. Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated for pain change using a random-effects model. The analgesic effect of rTMS for upper limb pain was favorable (SMD = -0.45, 95% CI: -0.77 to -0.13). In contrast, rTMS did not produce significant pain relief on lower limb pain (SMD = 0.04, 95% CI: -0.33 to 0.41) or face (SMD = -0.24, 95% CI: -1.59 to 1.12). In conclusion, these findings suggest that rTMS provides analgesic effects in patients with neuropathic pain in the upper limb, but not in the lower limb or face, under the conditions of previous clinical trials. Owing to the main limitation of small number of studies included, many aspects should be clarified by further research and high-quality studies in these patients.
Collapse
Affiliation(s)
- Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan,*Correspondence: Koichi Hosomi,
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Dong Dong
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan,Osaka University Institute for Advanced Co-Creation Studies, Suita, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan,Tokuyukai Rehabilitation Clinic, Toyonaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
8
|
Jiang X, Yan W, Wan R, Lin Y, Zhu X, Song G, Zheng K, Wang Y, Wang X. Effects of repetitive transcranial magnetic stimulation on neuropathic pain: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 132:130-141. [PMID: 34826512 DOI: 10.1016/j.neubiorev.2021.11.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Neuropathic pain (NP) is a chronic pain condition caused by lesion or disease of the somatosensory nervous system. Repetitive transcranial magnetic stimulation (rTMS) is a neuroregulatory tool that uses pulsed magnetic fields to modulate the cerebral cortex. This review aimed to ascertain the therapeutic effect of rTMS on NP and potential factors regulating the therapeutic effect of rTMS. Database search included Web of Science, Embase, Pubmed, and Cochrane Library from inception to July 2021. Eligible studies included randomized controlled studies of the analgesic effects of rTMS in patients with NP. Thirty-eight studies were included. Random effect analysis showed effect sizes of -0.66 (95 % CI, -0.87 to -0.46), indicating that real rTMS was better than sham condition in reducing pain (P < 0.001). This comprehensive review indicated that stimulation frequency, intervention site, and location of lesion were important factors affecting the therapeutic effect. The findings of this study may guide clinical decisions and future research.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wangwang Yan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruihan Wan
- Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Kangyong Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China.
| |
Collapse
|
9
|
Yu K, Niu X, He B. Neuromodulation Management of Chronic Neuropathic Pain in The Central Nervous system. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908999. [PMID: 34335132 PMCID: PMC8323399 DOI: 10.1002/adfm.201908999] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Neuromodulation is becoming one of the clinical tools for treating chronic neuropathic pain by transmitting controlled physical energy to the pre-identified neural targets in the central nervous system. Its nature of drug-free, non-addictive and improved targeting have attracted increasing attention among neuroscience research and clinical practices. This article provides a brief overview of the neuropathic pain and pharmacological routines for treatment, summarizes both the invasive and non-invasive neuromodulation modalities for pain management, and highlights an emerging brain stimulation technology, transcranial focused ultrasound (tFUS) with a focus on ultrasound transducer devices and the achieved neuromodulation effects and applications on pain management. Practical considerations of spatial guidance for tFUS are discussed for clinical applications. The safety of transcranial ultrasound neuromodulation and its future prospectives on pain management are also discussed.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University
| |
Collapse
|
10
|
Gatzinsky K, Bergh C, Liljegren A, Silander H, Samuelsson J, Svanberg T, Samuelsson O. Repetitive transcranial magnetic stimulation of the primary motor cortex in management of chronic neuropathic pain: a systematic review. Scand J Pain 2020; 21:8-21. [PMID: 32892189 DOI: 10.1515/sjpain-2020-0054] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) with frequencies 5-20 Hz is an expanding non-invasive treatment for chronic neuropathic pain (NP). Outcome data, however, show considerable inhomogeneity with concern to the levels of effect due to the great diversity of treated conditions. The aim of this review was to survey the literature regarding the efficacy and safety of M1 rTMS, and the accuracy to predict a positive response to epidural motor cortex stimulation (MCS) which is supposed to give a more longstanding pain relief. METHODS A systematic literature search was conducted up to June 2019 in accordance with the PRISMA guidelines. We used the PICO Model to define two specific clinical questions: (1) Does rTMS of M1 relieve NP better than sham treatment? (2) Can the response to rTMS be used to predict the effect of epidural MCS? After article selection, data extraction, and study quality assessment, the certainty of evidence of treatment effect was defined using the GRADE system. RESULTS Data on 5-20 Hz (high-frequency) rTMS vs. sham was extracted from 24 blinded randomised controlled trials which were of varying quality, investigated highly heterogeneous pain conditions, and used excessively variable stimulation parameters. The difference in pain relief between active and sham stimulation was statistically significant in 9 of 11 studies using single-session rTMS, and in 9 of 13 studies using multiple sessions. Baseline data could be extracted from 6 single and 12 multiple session trials with a weighted mean pain reduction induced by active rTMS, compared to baseline, of -19% for single sessions, -32% for multiple sessions with follow-up <30 days, and -24% for multiple sessions with follow-up ≥30 days after the last stimulation session. For single sessions the weighted mean difference in pain reduction between active rTMS and sham was 15 percentage points, for multiple sessions the difference was 22 percentage points for follow-ups <30 days, and 15 percentage points for follow-ups ≥30 days. Four studies reported data that could be used to evaluate the accuracy of rTMS to predict response to MCS, showing a specificity of 60-100%, and a positive predictive value of 75-100%. No serious adverse events were reported. CONCLUSIONS rTMS targeting M1 can result in significant reduction of chronic NP which, however, is transient and shows a great heterogeneity between studies; very low certainty of evidence for single sessions and low for multiple sessions. Multiple sessions of rTMS can maintain a more longstanding effect. rTMS seems to be a fairly good predictor of a positive response to epidural MCS and may be used to select patients for implantation of permanent epidural electrodes. More studies are needed to manifest the use of rTMS for this purpose. Pain relief outcomes in a longer perspective, and outcome variables other than pain reduction need to be addressed more consistently in future studies to consolidate the applicability of rTMS in routine clinical practice.
Collapse
Affiliation(s)
- Kliment Gatzinsky
- Department of Neurosurgery, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | - Ann Liljegren
- HTA-centrum of Region Västra Götaland, Göteborg, Sweden
| | - Hans Silander
- Department of Neurosurgery, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Jennifer Samuelsson
- Department of Neurosurgery, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | |
Collapse
|
11
|
Yang S, Chang MC. Effect of Repetitive Transcranial Magnetic Stimulation on Pain Management: A Systematic Narrative Review. Front Neurol 2020; 11:114. [PMID: 32132973 PMCID: PMC7040236 DOI: 10.3389/fneur.2020.00114] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Recently, clinicians have been using repetitive transcranial magnetic stimulation (rTMS) for treating various pain conditions. This systematic narrative review aimed to examine the use and efficacy of rTMS for controlling various pain conditions. A PubMed search was conducted for articles that were published until June 7, 2019 and used rTMS for pain alleviation. The key search phrase for identifying potentially relevant articles was (repetitive transcranial magnetic stimulation AND pain). The following inclusion criteria were applied for article selection: (1) patients with pain, (2) rTMS was applied for pain management, and (3) follow-up evaluations were performed after rTMS stimulation to assess the reduction in pain. Review articles were excluded. Overall, 1,030 potentially relevant articles were identified. After reading the titles and abstracts and assessing eligibility based on the full-text articles, 106 publications were finally included in our analysis. Overall, our findings suggested that rTMS is beneficial for treating neuropathic pain of various origins, such as central pain, pain from peripheral nerve disorders, fibromyalgia, and migraine. Although data on the use of rTMS for orofacial pain, including trigeminal neuralgia, phantom pain, low back pain, myofascial pain syndrome, pelvic pain, and complex regional pain syndrome, were promising, there was insufficient evidence to determine the efficacy of rTMS for treating these conditions. Therefore, further studies are needed to validate the effects of rTMS on pain relief in these conditions. Overall, this review will help guide clinicians in making informed decisions regarding whether rTMS is an appropriate option for managing various pain conditions.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Woman's University Seoul Hospital, Ewha Woman's University School of Medicine, Seoul, South Korea
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
12
|
Lenoir C, Algoet M, Mouraux A. Deep continuous theta burst stimulation of the operculo-insular cortex selectively affects Aδ-fibre heat pain. J Physiol 2018; 596:4767-4787. [PMID: 30085357 PMCID: PMC6166055 DOI: 10.1113/jp276359] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Deep continuous theta burst stimulation (cTBS) of the right operculo-insular cortex delivered with a double cone coil selectively impairs the ability to perceive thermonociceptive input conveyed by Aδ-fibre thermonociceptors without concomitantly affecting the ability to perceive innocuous warm, cold or vibrotactile sensations. Unlike deep cTBS, superficial cTBS of the right operculum delivered with a figure-of-eight coil does not affect the ability to perceive thermonociceptive input conveyed by Aδ-fibre thermonociceptors. The effect of deep operculo-insular cTBS on the perception of Aδ-fibre input was present at both the contralateral and the ipsilateral hand. The magnitude of the increase in Aδ-heat detection threshold induced by the deep cTBS was significantly correlated with the intensity of the cTBS pulses. Deep cTBS delivered over the operculo-insular cortex is associated with a risk of transcranial magnetic stimulation-induced seizure. ABSTRACT Previous studies have suggested a pivotal role of the insular cortex in nociception and pain perception. Using a double-cone coil designed for deep transcranial magnetic stimulation, our objective was to assess (1) whether continuous theta burst stimulation (cTBS) of the operculo-insular cortex affects differentially the perception of different types of thermal and mechanical somatosensory inputs, (2) whether the induced after-effects are lateralized relative to the stimulated hemisphere, and (3) whether the after-effects are due to neuromodulation of the insula or neuromodulation of the more superficial opercular cortex. Seventeen participants took part in two experiments. In Experiment 1, thresholds and perceived intensity of Aδ- and C-fibre heat pain elicited by laser stimulation, non-painful cool sensations elicited by contact cold stimulation and mechanical vibrotactile sensations were assessed at the left hand before, immediately after and 20 min after deep cTBS delivered over the right operculo-insular cortex. In Experiment 2, Aδ-fibre heat pain and vibrotactile sensations elicited by stimulating the contralateral and ipsilateral hands were evaluated before and after deep cTBS or superficial cTBS delivered using a flat figure-of-eight coil. Only the threshold to detect Aδ-fibre heat pain was significantly increased 20 min after deep cTBS. This effect was present at both hands. No effect was observed after superficial cTBS. Neuromodulation of the operculo-insular cortex using deep cTBS induces a bilateral reduction of the ability to perceive Aδ-fibre heat pain, without concomitantly affecting the ability to perceive innocuous warm, cold or vibrotactile sensations.
Collapse
Affiliation(s)
- Cédric Lenoir
- Institute of Neuroscience (IONS) Université catholique de Louvain (UCL)BrusselsBelgium
| | - Maxime Algoet
- Institute of Neuroscience (IONS) Université catholique de Louvain (UCL)BrusselsBelgium
| | - André Mouraux
- Institute of Neuroscience (IONS) Université catholique de Louvain (UCL)BrusselsBelgium
| |
Collapse
|
13
|
Effects of Repetitive Transcranial Magnetic Stimulation on Astrocytes Proliferation and nNOS Expression in Neuropathic Pain Rats. Curr Med Sci 2018; 38:482-490. [DOI: 10.1007/s11596-018-1904-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 04/20/2018] [Indexed: 10/28/2022]
|
14
|
Abstract
BACKGROUND This is an updated version of the original Cochrane Review published in 2010, Issue 9, and last updated in 2014, Issue 4. Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES), transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS) and reduced impedance non-invasive cortical electrostimulation (RINCE). OBJECTIVES To evaluate the efficacy of non-invasive cortical stimulation techniques in the treatment of chronic pain. SEARCH METHODS For this update we searched CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO, LILACS and clinical trials registers from July 2013 to October 2017. SELECTION CRITERIA Randomised and quasi-randomised studies of rTMS, CES, tDCS, RINCE and tRNS if they employed a sham stimulation control group, recruited patients over the age of 18 years with pain of three months' duration or more, and measured pain as an outcome. Outcomes of interest were pain intensity measured using visual analogue scales or numerical rating scales, disability, quality of life and adverse events. DATA COLLECTION AND ANALYSIS Two review authors independently extracted and verified data. Where possible we entered data into meta-analyses, excluding studies judged as high risk of bias. We used the GRADE system to assess the quality of evidence for core comparisons, and created three 'Summary of findings' tables. MAIN RESULTS We included an additional 38 trials (involving 1225 randomised participants) in this update, making a total of 94 trials in the review (involving 2983 randomised participants). This update included a total of 42 rTMS studies, 11 CES, 36 tDCS, two RINCE and two tRNS. One study evaluated both rTMS and tDCS. We judged only four studies as low risk of bias across all key criteria. Using the GRADE criteria we judged the quality of evidence for each outcome, and for all comparisons as low or very low; in large part this was due to issues of blinding and of precision.rTMSMeta-analysis of rTMS studies versus sham for pain intensity at short-term follow-up (0 to < 1 week postintervention), (27 studies, involving 655 participants), demonstrated a small effect with heterogeneity (standardised mean difference (SMD) -0.22, 95% confidence interval (CI) -0.29 to -0.16, low-quality evidence). This equates to a 7% (95% CI 5% to 9%) reduction in pain, or a 0.40 (95% CI 0.53 to 0.32) point reduction on a 0 to 10 pain intensity scale, which does not meet the minimum clinically important difference threshold of 15% or greater. Pre-specified subgroup analyses did not find a difference between low-frequency stimulation (low-quality evidence) and rTMS applied to the prefrontal cortex compared to sham for reducing pain intensity at short-term follow-up (very low-quality evidence). High-frequency stimulation of the motor cortex in single-dose studies was associated with a small short-term reduction in pain intensity at short-term follow-up (low-quality evidence, pooled n = 249, SMD -0.38 95% CI -0.49 to -0.27). This equates to a 12% (95% CI 9% to 16%) reduction in pain, or a 0.77 (95% CI 0.55 to 0.99) point change on a 0 to 10 pain intensity scale, which does not achieve the minimum clinically important difference threshold of 15% or greater. The results from multiple-dose studies were heterogeneous and there was no evidence of an effect in this subgroup (very low-quality evidence). We did not find evidence that rTMS improved disability. Meta-analysis of studies of rTMS versus sham for quality of life (measured using the Fibromyalgia Impact Questionnaire (FIQ) at short-term follow-up demonstrated a positive effect (MD -10.80 95% CI -15.04 to -6.55, low-quality evidence).CESFor CES (five studies, 270 participants) we found no evidence of a difference between active stimulation and sham (SMD -0.24, 95% CI -0.48 to 0.01, low-quality evidence) for pain intensity. We found no evidence relating to the effectiveness of CES on disability. One study (36 participants) of CES versus sham for quality of life (measured using the FIQ) at short-term follow-up demonstrated a positive effect (MD -25.05 95% CI -37.82 to -12.28, very low-quality evidence).tDCSAnalysis of tDCS studies (27 studies, 747 participants) showed heterogeneity and a difference between active and sham stimulation (SMD -0.43 95% CI -0.63 to -0.22, very low-quality evidence) for pain intensity. This equates to a reduction of 0.82 (95% CI 0.42 to 1.2) points, or a percentage change of 17% (95% CI 9% to 25%) of the control group outcome. This point estimate meets our threshold for a minimum clinically important difference, though the lower confidence interval is substantially below that threshold. We found evidence of small study bias in the tDCS analyses. We did not find evidence that tDCS improved disability. Meta-analysis of studies of tDCS versus sham for quality of life (measured using different scales across studies) at short-term follow-up demonstrated a positive effect (SMD 0.66 95% CI 0.21 to 1.11, low-quality evidence).Adverse eventsAll forms of non-invasive brain stimulation and sham stimulation appear to be frequently associated with minor or transient side effects and there were two reported incidences of seizure, both related to the active rTMS intervention in the included studies. However many studies did not adequately report adverse events. AUTHORS' CONCLUSIONS There is very low-quality evidence that single doses of high-frequency rTMS of the motor cortex and tDCS may have short-term effects on chronic pain and quality of life but multiple sources of bias exist that may have influenced the observed effects. We did not find evidence that low-frequency rTMS, rTMS applied to the dorsolateral prefrontal cortex and CES are effective for reducing pain intensity in chronic pain. The broad conclusions of this review have not changed substantially for this update. There remains a need for substantially larger, rigorously designed studies, particularly of longer courses of stimulation. Future evidence may substantially impact upon the presented results.
Collapse
Affiliation(s)
- Neil E O'Connell
- Brunel University LondonHealth Economics Research Group, Institute of Environment, Health and Societies, Department of Clinical SciencesKingston LaneUxbridgeMiddlesexUKUB8 3PH
| | - Louise Marston
- University College LondonResearch Department of Primary Care & Population HealthRoyal Free Campus, Rowland HillLondonUKNW3 2PF
| | - Sally Spencer
- Edge Hill UniversityPostgraduate Medical InstituteSt Helens RoadOrmskirkLancashireUKL39 4QP
| | - Lorraine H DeSouza
- Brunel University LondonDepartment of Clinical Sciences/Health Ageing Research Group, Institute of Environment, Health and SocietiesKingston LaneUxbridgeMiddlesexUKUB8 3PH
| | - Benedict M Wand
- The University of Notre Dame Australia FremantleSchool of Physiotherapy19 Mouat Street (PO Box 1225)PerthWest AustraliaAustralia6959
| | | |
Collapse
|
15
|
Lawson McLean A, Frank S, Zafar N, Waschke A, Kalff R, Reichart R. Time course of the response to navigated repetitive transcranial magnetic stimulation at 10 Hz in chronic neuropathic pain. Neurol Res 2018; 40:564-572. [DOI: 10.1080/01616412.2018.1453636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Aaron Lawson McLean
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Susanne Frank
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Noman Zafar
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
- Department of Neurosurgery, Krankenhaus Dresden-Friedrichstadt, Dresden, Germany
| | - Albrecht Waschke
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Rolf Kalff
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Rupert Reichart
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
16
|
O'Connell NE, Marston L, Spencer S, DeSouza LH, Wand BM. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev 2018; 3:CD008208. [PMID: 29547226 PMCID: PMC7039253 DOI: 10.1002/14651858.cd008208.pub4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND This is an updated version of the original Cochrane Review published in 2010, Issue 9, and last updated in 2014, Issue 4. Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES), transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS) and reduced impedance non-invasive cortical electrostimulation (RINCE). OBJECTIVES To evaluate the efficacy of non-invasive cortical stimulation techniques in the treatment of chronic pain. SEARCH METHODS For this update we searched CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO, LILACS and clinical trials registers from July 2013 to October 2017. SELECTION CRITERIA Randomised and quasi-randomised studies of rTMS, CES, tDCS, RINCE and tRNS if they employed a sham stimulation control group, recruited patients over the age of 18 years with pain of three months' duration or more, and measured pain as an outcome. Outcomes of interest were pain intensity measured using visual analogue scales or numerical rating scales, disability, quality of life and adverse events. DATA COLLECTION AND ANALYSIS Two review authors independently extracted and verified data. Where possible we entered data into meta-analyses, excluding studies judged as high risk of bias. We used the GRADE system to assess the quality of evidence for core comparisons, and created three 'Summary of findings' tables. MAIN RESULTS We included an additional 38 trials (involving 1225 randomised participants) in this update, making a total of 94 trials in the review (involving 2983 randomised participants). This update included a total of 42 rTMS studies, 11 CES, 36 tDCS, two RINCE and two tRNS. One study evaluated both rTMS and tDCS. We judged only four studies as low risk of bias across all key criteria. Using the GRADE criteria we judged the quality of evidence for each outcome, and for all comparisons as low or very low; in large part this was due to issues of blinding and of precision.rTMSMeta-analysis of rTMS studies versus sham for pain intensity at short-term follow-up (0 to < 1 week postintervention), (27 studies, involving 655 participants), demonstrated a small effect with heterogeneity (standardised mean difference (SMD) -0.22, 95% confidence interval (CI) -0.29 to -0.16, low-quality evidence). This equates to a 7% (95% CI 5% to 9%) reduction in pain, or a 0.40 (95% CI 0.53 to 0.32) point reduction on a 0 to 10 pain intensity scale, which does not meet the minimum clinically important difference threshold of 15% or greater. Pre-specified subgroup analyses did not find a difference between low-frequency stimulation (low-quality evidence) and rTMS applied to the prefrontal cortex compared to sham for reducing pain intensity at short-term follow-up (very low-quality evidence). High-frequency stimulation of the motor cortex in single-dose studies was associated with a small short-term reduction in pain intensity at short-term follow-up (low-quality evidence, pooled n = 249, SMD -0.38 95% CI -0.49 to -0.27). This equates to a 12% (95% CI 9% to 16%) reduction in pain, or a 0.77 (95% CI 0.55 to 0.99) point change on a 0 to 10 pain intensity scale, which does not achieve the minimum clinically important difference threshold of 15% or greater. The results from multiple-dose studies were heterogeneous and there was no evidence of an effect in this subgroup (very low-quality evidence). We did not find evidence that rTMS improved disability. Meta-analysis of studies of rTMS versus sham for quality of life (measured using the Fibromyalgia Impact Questionnaire (FIQ) at short-term follow-up demonstrated a positive effect (MD -10.80 95% CI -15.04 to -6.55, low-quality evidence).CESFor CES (five studies, 270 participants) we found no evidence of a difference between active stimulation and sham (SMD -0.24, 95% CI -0.48 to 0.01, low-quality evidence) for pain intensity. We found no evidence relating to the effectiveness of CES on disability. One study (36 participants) of CES versus sham for quality of life (measured using the FIQ) at short-term follow-up demonstrated a positive effect (MD -25.05 95% CI -37.82 to -12.28, very low-quality evidence).tDCSAnalysis of tDCS studies (27 studies, 747 participants) showed heterogeneity and a difference between active and sham stimulation (SMD -0.43 95% CI -0.63 to -0.22, very low-quality evidence) for pain intensity. This equates to a reduction of 0.82 (95% CI 0.42 to 1.2) points, or a percentage change of 17% (95% CI 9% to 25%) of the control group outcome. This point estimate meets our threshold for a minimum clinically important difference, though the lower confidence interval is substantially below that threshold. We found evidence of small study bias in the tDCS analyses. We did not find evidence that tDCS improved disability. Meta-analysis of studies of tDCS versus sham for quality of life (measured using different scales across studies) at short-term follow-up demonstrated a positive effect (SMD 0.66 95% CI 0.21 to 1.11, low-quality evidence).Adverse eventsAll forms of non-invasive brain stimulation and sham stimulation appear to be frequently associated with minor or transient side effects and there were two reported incidences of seizure, both related to the active rTMS intervention in the included studies. However many studies did not adequately report adverse events. AUTHORS' CONCLUSIONS There is very low-quality evidence that single doses of high-frequency rTMS of the motor cortex and tDCS may have short-term effects on chronic pain and quality of life but multiple sources of bias exist that may have influenced the observed effects. We did not find evidence that low-frequency rTMS, rTMS applied to the dorsolateral prefrontal cortex and CES are effective for reducing pain intensity in chronic pain. The broad conclusions of this review have not changed substantially for this update. There remains a need for substantially larger, rigorously designed studies, particularly of longer courses of stimulation. Future evidence may substantially impact upon the presented results.
Collapse
Affiliation(s)
- Neil E O'Connell
- Brunel UniversityDepartment of Clinical Sciences/Health Economics Research Group, Institute of Environment, Health and SocietiesKingston LaneUxbridgeUKUB8 3PH
| | - Louise Marston
- University College LondonResearch Department of Primary Care & Population HealthRoyal Free Campus, Rowland HillLondonUKNW3 2PF
| | - Sally Spencer
- Edge Hill UniversityPostgraduate Medical InstituteSt Helens RoadOrmskirkUKL39 4QP
| | - Lorraine H DeSouza
- Brunel University LondonDepartment of Clinical Sciences/Health Ageing Research Group, Institute of Environment, Health and SocietiesKingston LaneUxbridgeUKUB8 3PH
| | - Benedict M Wand
- The University of Notre Dame AustraliaSchool of Physiotherapy19 Mouat Street (PO Box 1225)FremantleAustralia6959
| |
Collapse
|
17
|
Cortical neurostimulation for neuropathic pain: state of the art and perspectives. Pain 2016; 157 Suppl 1:S81-S89. [PMID: 26785160 DOI: 10.1097/j.pain.0000000000000401] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The treatment of neuropathic pain by neuromodulation is an objective for more than 40 years in modern clinical practice. With respect to spinal cord and deep brain structures, the cerebral cortex is the most recently evaluated target of invasive neuromodulation therapy for pain. In the early 90s, the first successes of invasive epidural motor cortex stimulation (EMCS) were published. A few years later was developed repetitive transcranial magnetic stimulation (rTMS), a noninvasive stimulation technique. Then, electrical transcranial stimulation returned valid and is currently in full development, with transcranial direct current stimulation (tDCS). Regarding transcranial approaches, the main studied and validated target was still the motor cortex, but other cortical targets are under investigation. The mechanisms of action of these techniques share similarities, especially between EMCS and rTMS, but they also have differences that could justify specific indications and applications. It is therefore important to know the principles and to assess the merit of these techniques on the basis of a rigorous assessment of the results, to avoid fad. Various types of chronic neuropathic pain syndromes can be significantly relieved by EMCS or repeated daily sessions of high-frequency (5-20 Hz) rTMS or anodal tDCS over weeks, at least when pain is lateralized and stimulation is applied to the motor cortex contralateral to pain side. However, cortical stimulation therapy remains to be optimized, especially by improving EMCS electrode design, rTMS targeting, or tDCS montage, to reduce the rate of nonresponders, who do not experience clinically relevant effects of these techniques.
Collapse
|
18
|
Ambriz-Tututi M, Alvarado-Reynoso B, Drucker-Colín R. Analgesic effect of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic low back pain. Bioelectromagnetics 2016; 37:527-535. [DOI: 10.1002/bem.22001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/06/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Mónica Ambriz-Tututi
- Hospital General Ajusco Medio “Dra. Obdulia Rodriguez Rodriguez”; Unidad de Trastornos de Movimiento y Sueño; Ciudad de México Mexico
| | - Beatriz Alvarado-Reynoso
- Hospital General Ajusco Medio “Dra. Obdulia Rodriguez Rodriguez”; Unidad de Trastornos de Movimiento y Sueño; Ciudad de México Mexico
| | - René Drucker-Colín
- Departamento de Neuropatología Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; Ciudad de México Mexico
| |
Collapse
|
19
|
Modulation of human visceral sensitivity by noninvasive magnetoelectrical neural stimulation in health and irritable bowel syndrome. Pain 2016; 156:1348-1356. [PMID: 25867123 DOI: 10.1097/j.pain.0000000000000187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Visceral pain is a particularly difficult symptom to manage in patients with irritable bowel syndrome (IBS). Our aim was to examine whether noninvasive neurostimulation applied to the motor cortex or lumbosacral region can modulate human visceral sensation. Sixteen healthy adult volunteers and 10 patients with IBS were evaluated. Single-pulse lumbosacral magnetic stimulation (LSMS) or transcranial magnetic stimulation (TMS) was used to assess spinal root and cortical excitability as well as the effect of neurostimulation on anorectal sensation and pain, which were provoked by a local electrical stimulus. Initially, healthy volunteers received 6 stimulation paradigms in a randomised order (3 repetitive LSMS [1 Hz, 10 Hz, and sham]) and 3 repetitive TMS (1 Hz, 10 Hz, and sham) to investigate the effects on neural function and visceral sensation over 1 hour. The most effective cortical and spinal interventions were then applied in patients with IBS. Only 1-Hz rLSMS altered healthy anal motor excitability, increasing spinal (58 ± 12.3 vs 38.5 ± 5.7 μV, P = 0.04) but not cortical responses. Both 1-Hz rLSMS and 10-Hz repetitive transcranial magnetic stimulation increased healthy rectal pain thresholds for up to an hour after intervention (P < 0.05). When applied to patients with IBS, rectal pain thresholds were increased across all time points after both 1-Hz rLSMS and 10-Hz repetitive transcranial magnetic stimulation (P < 0.05) compared with sham. The application of magnetoelectric stimuli to the cortical and lumbosacral areas modulates visceral sensation in healthy subjects and patients with IBS. This proof-of-concept study provides supportive evidence for neurostimulation in managing functional gastrointestinal disorders.
Collapse
|
20
|
Onesti E, Gori MC, Frasca V, Inghilleri M. Transcranial magnetic stimulation as a new tool to control pain perception. World J Anesthesiol 2016; 5:15-27. [DOI: 10.5313/wja.v5.i1.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/07/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
Treatment for chronic pain is frequently unsuccessful or characterized by side-effects. The high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been suggested in the management of refractory chronic pain. Various studies have shown that HF-rTMS sessions of long-duration applied at primary motor cortex induce pain relief through mechanisms of plastic changes. Efficacy of rTMS mostly depends on stimulation parameters, but this aspect requires better characterization. A rationale to target other cortical areas exists. Current data are promising, but a careful analysis of stimulation settings and maintenance treatment design are need.
Collapse
|
21
|
Pommier B, Créac'h C, Beauvieux V, Nuti C, Vassal F, Peyron R. Robot-guided neuronavigated rTMS as an alternative therapy for central (neuropathic) pain: Clinical experience and long-term follow-up. Eur J Pain 2016; 20:907-16. [DOI: 10.1002/ejp.815] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 01/24/2023]
Affiliation(s)
- B. Pommier
- Service de Neurochirurgie, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Inserm U1028; Université Claude Bernard Lyon1; France
- CRNL; Université Jean Monnet; Saint-Etienne France
| | - C. Créac'h
- Service de Neurologie, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Centre Stéphanois de la douleur, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Inserm U1028; Université Claude Bernard Lyon1; France
- CRNL; Université Jean Monnet; Saint-Etienne France
| | - V. Beauvieux
- Centre Stéphanois de la douleur, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
| | - C. Nuti
- Service de Neurochirurgie, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Inserm U1028; Université Claude Bernard Lyon1; France
- CRNL; Université Jean Monnet; Saint-Etienne France
| | - F. Vassal
- Service de Neurochirurgie, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
| | - R. Peyron
- Service de Neurologie, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Centre Stéphanois de la douleur, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Inserm U1028; Université Claude Bernard Lyon1; France
- CRNL; Université Jean Monnet; Saint-Etienne France
| |
Collapse
|
22
|
Woodbury A, Soong SN, Fishman D, García PS. Complementary and alternative medicine therapies for the anesthesiologist and pain practitioner: a narrative review. Can J Anaesth 2015; 63:69-85. [DOI: 10.1007/s12630-015-0506-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/23/2015] [Accepted: 10/02/2015] [Indexed: 01/22/2023] Open
|
23
|
Chervyakov AV, Poydasheva AG, Korzhova JE, Suponeva NA, Chernikova LA, Piradov MA. Repetitive transcranial magnetic stimulation in neurology and psychiatry. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:7-18. [DOI: 10.17116/jnevro20151151127-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Galhardoni R, Correia GS, Araujo H, Yeng LT, Fernandes DT, Kaziyama HH, Marcolin MA, Bouhassira D, Teixeira MJ, de Andrade DC. Repetitive transcranial magnetic stimulation in chronic pain: a review of the literature. Arch Phys Med Rehabil 2014; 96:S156-72. [PMID: 25437106 DOI: 10.1016/j.apmr.2014.11.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To review the literature on the analgesic effects of repetitive transcranial magnetic stimulation (rTMS) in chronic pain according to different pain syndromes and stimulation parameters. DATA SOURCES Publications on rTMS and chronic pain were searched in PubMed and Google Scholar using the following key words: chronic pain, analgesia, transcranial magnetic stimulation, neuropathic pain, fibromyalgia, and complex regional pain syndrome. STUDY SELECTION This review only included double-blind, controlled studies with >10 participants in each arm that were published from 1996 to 2014 and written in English. Studies with relevant information for the understanding of the effects of rTMS were also cited. DATA EXTRACTION The following data were retained: type of pain syndrome, type of study, coil type, target, stimulation intensity, frequency, number of pulses, orientation of induced current, number of session, and a brief summary of intervention outcomes. DATA SYNTHESIS A total of 33 randomized trials were found. Many studies reported significant pain relief by rTMS, especially high-frequency stimulation over the primary motor cortex performed in consecutive treatment sessions. Pain relief was frequently >30% compared with control treatment. Neuropathic pain, fibromyalgia, and complex regional pain syndrome were the pain syndromes more frequently studied. However, among all published studies, only a few performed repetitive sessions of rTMS. CONCLUSIONS rTMS has potential utility in the management of chronic pain; however, studies using maintenance sessions of rTMS and assessing the effects of rTMS on the different aspects of chronic pain are needed to provide a more solid basis for its clinical application for pain relief.
Collapse
Affiliation(s)
- Ricardo Galhardoni
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Guilherme S Correia
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Haniel Araujo
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Lin T Yeng
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Diego T Fernandes
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Helena H Kaziyama
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Marco A Marcolin
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Didier Bouhassira
- INSERM U-987, CHU Ambroise Paré, APHP, Boulogne-Billancourt, France; University of Versailles-Saint-Quentin, Versailles, France
| | - Manoel Jacobsen Teixeira
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil; Pain Center, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil; Pain Center, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil.
| |
Collapse
|
25
|
Khedr EM, Kotb HI, Mostafa MG, Mohamad MF, Amr SA, Ahmed MA, Karim AA, Kamal SMM. Repetitive transcranial magnetic stimulation in neuropathic pain secondary to malignancy: a randomized clinical trial. Eur J Pain 2014; 19:519-27. [PMID: 25142867 DOI: 10.1002/ejp.576] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Significant analgesic effects of repetitive transcranial magnetic stimulation (rTMS) have been found in several studies of patients with chronic pain of various origins, but never for malignancy. The objective of this study was to assess the efficacy of 10 sessions of rTMS over the primary motor cortex (M1) in patients suffering from malignant neuropathic pain. METHODS Thirty-four patients were randomly allocated into one of two groups to receive real (20 Hz, 10 s, 10 trains with 80% intensity) or sham rTMS daily for 10 consecutive days. Patients were evaluated using a verbal descriptor scale (VDS), a visual analogue scale (VAS), Leeds assessment of neuropathic symptoms and signs (LANSS) and Hamilton rating scale for depression (HAM-D) at baseline, after the first, fifth and 10th treatment sessions, and then 15 days and 1 month after treatment. RESULTS There were no significant differences between real and sham groups in the duration of illness or pain rating scores at the baseline. A significant 'Time × Group' interaction was recorded indicating that real and sham rTMS had different effects on the VDS, VAS, LANSS and HAM-D scales. Post-hoc testing showed that the group of patients treated with real rTMS had greater improvement in all scales that persisted up to 15 days, but were not present 1 month later. Significant positive correlations between the percentage of pain reduction and HAM-D after the 10th session and 15 days later were recorded. CONCLUSION The results demonstrate that 10 rTMS sessions over the M1 can induce short-term pain relief in malignant neuropathic pain.
Collapse
Affiliation(s)
- E M Khedr
- Department of Neurology, Assiut University Hospital, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Current data suggest that transcranial magnetic stimulation (TMS) has the potential to be an effective and complimentary treatment modality for patients with chronic neuropathic pain syndromes. The success of TMS for pain relief depends on the parameters of the stimulation delivered, the location of neural target, and duration of treatment. TMS can be used to excite or inhibit underlying neural tissue that depends on long-term potentiation and long-term depression, respectively. Long-term randomized controlled studies are warranted to establish the efficacy of repetitive TMS in patients with various chronic pain syndromes.
Collapse
Affiliation(s)
- Nicole A Young
- Department of Neuroscience, Center of Neuromodulation, Wexner Medical Center, The Ohio State University, 480 Medical Center Drive, Columbus, OH 43210, USA
| | - Mayur Sharma
- Department of Neurosurgery, Center of Neuromodulation, Wexner Medical Center, The Ohio State University, 480 Medical Center Drive, Columbus, OH 43210, USA
| | - Milind Deogaonkar
- Department of Neurosurgery, Center of Neuromodulation, Wexner Medical Center, The Ohio State University, 480 Medical Center Drive, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Choi YH, Jung SJ, Lee CH, Lee SU. Additional effects of transcranial direct-current stimulation and trigger-point injection for treatment of myofascial pain syndrome: a pilot study with randomized, single-blinded trial. J Altern Complement Med 2014; 20:698-704. [PMID: 25083759 DOI: 10.1089/acm.2013.0243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic pain caused by myofascial pain syndrome (MPS) results in generalized and debilitating conditions. Trigger-point injection (TPI) is the mainstay of MPS management to reduce acute and localized pain. Other adjunctive intervention to modulate the central pain pathway might be helpful if they are combined with TPI. Transcranial direct-current stimulation (tDCS), which is a form of neurostimulation, has been reported to be safe and effective in treating chronic pain by changing cortical excitability. OBJECTIVES To determine whether there is an additional effect of tDCS and TPI to reduce pain in patients with MPS. PATIENTS Twenty-one patients with newly diagnosed MPS of shoulder girdle muscles. INTERVENTIONS Patients were randomly assigned into 1 of 3 groups (2 active and 1 sham stimulation groups) and received TPI. Immediately after TPI, tDCS (2 mA for 20 minutes on 5 consecutive days) was administered. For the active stimulation groups, tDCS was applied over 2 different locations (primary motor cortex and dorsolateral prefrontal cortex [DLPFC]). OUTCOME MEASURES Visual analogue scale (VAS), Pain Threshold Test, and short form of the McGill Pain Questionnaire were measured before and immediately after stimulation for 5 consecutive days. RESULTS The mean VAS values were decreased in all three groups after 5 days. There was a significant change between before and after stimulation only in the DLPFC group. The significant change in the mean VAS value was shown from after the second stimulation session (p=0.031), and this remained significant until the last stimulation session (p=0.027). CONCLUSION This study suggests that tDCS over DLPFC may have additional effects with TPI to reduce pain in patients with MPS. tDCS over DLPFC can be used to reverse central pain pathway by modulating cortical plasticity.
Collapse
Affiliation(s)
- Yoon-Hee Choi
- 1 Department of Rehabilitation Medicine, Seoul National University Hospital , Seoul, South Korea
| | | | | | | |
Collapse
|
28
|
Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014; 125:2150-2206. [PMID: 25034472 DOI: 10.1016/j.clinph.2014.05.021] [Citation(s) in RCA: 1287] [Impact Index Per Article: 128.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
A group of European experts was commissioned to establish guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) from evidence published up until March 2014, regarding pain, movement disorders, stroke, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC). A Level B recommendation (probable efficacy) is proposed for the antidepressant effect of low-frequency (LF) rTMS of the right DLPFC, HF-rTMS of the left DLPFC for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how to optimize rTMS protocols and techniques to give them relevance in routine clinical practice. In addition, professionals carrying out rTMS protocols should undergo rigorous training to ensure the quality of the technical realization, guarantee the proper care of patients, and maximize the chances of success. Under these conditions, the therapeutic use of rTMS should be able to develop in the coming years.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France.
| | - Nathalie André-Obadia
- Neurophysiology and Epilepsy Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France; Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France
| | - Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Samar S Ayache
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roberto M Cantello
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | | | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Portugal
| | - Dirk De Ridder
- Brai(2)n, Tinnitus Research Initiative Clinic Antwerp, Belgium; Department of Neurosurgery, University Hospital Antwerp, Belgium
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Hospital, Lille, France; ULCO, Lille-Nord de France University, Lille, France
| | - Vincenzo Di Lazzaro
- Department of Neurosciences, Institute of Neurology, Campus Bio-Medico University, Rome, Italy
| | - Saša R Filipović
- Department of Neurophysiology, Institute for Medical Research, University of Belgrade, Beograd, Serbia
| | - Friedhelm C Hummel
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Thomas Nyffeler
- Perception and Eye Movement Laboratory, Department of Neurology, University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Emmanuel Poulet
- Department of Emergency Psychiatry, CHU Lyon, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France; EAM 4615, Lyon-1 University, Bron, France
| | - Simone Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy; Institute of Neurology, Catholic University, Rome, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | | | - Hartwig R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Charlotte J Stagg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Josep Valls-Sole
- EMG Unit, Neurology Service, Hospital Clinic, Department of Medicine, University of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Luis Garcia-Larrea
- Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France; Pain Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
29
|
O'Connell NE, Wand BM, Marston L, Spencer S, Desouza LH. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev 2014:CD008208. [PMID: 24729198 DOI: 10.1002/14651858.cd008208.pub3] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND This is an updated version of the original Cochrane review published in 2010, Issue 9. Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES), transcranial direct current stimulation (tDCS) and reduced impedance non-invasive cortical electrostimulation (RINCE). OBJECTIVES To evaluate the efficacy of non-invasive brain stimulation techniques in chronic pain. SEARCH METHODS We searched CENTRAL (2013, Issue 6), MEDLINE, EMBASE, CINAHL, PsycINFO, LILACS and clinical trials registers. The original search for the review was run in November 2009 and searched all databases from their inception. To identify studies for inclusion in this update we searched from 2009 to July 2013. SELECTION CRITERIA Randomised and quasi-randomised studies of rTMS, CES, tDCS or RINCE if they employed a sham stimulation control group, recruited patients over the age of 18 with pain of three months duration or more and measured pain as a primary outcome. DATA COLLECTION AND ANALYSIS Two authors independently extracted and verified data. Where possible we entered data into meta-analyses. We excluded studies judged as being at high risk of bias from the analysis. We used the GRADE system to summarise the quality of evidence for core comparisons. MAIN RESULTS We included an additional 23 trials (involving 773 participants randomised) in this update, making a total of 56 trials in the review (involving 1710 participants randomised). This update included a total of 30 rTMS studies, 11 CES, 14 tDCS and one study of RINCE(the original review included 19 rTMS, eight CES and six tDCS studies). We judged only three studies as being at low risk of bias across all criteria.Meta-analysis of studies of rTMS (involving 528 participants) demonstrated significant heterogeneity. Pre-specified subgroup analyses suggest that low-frequency stimulation is ineffective (low-quality evidence) and that rTMS applied to the dorsolateral prefrontal cortex is ineffective (very low-quality evidence). We found a short-term effect on pain of active high-frequency stimulation of the motor cortex in single-dose studies (low-quality evidence, standardised mean difference (SMD) 0.39 (95% confidence interval (CI) -0.27 to -0.51 P < 0.01)). This equates to a 12% (95% CI 8% to 15%) reduction in pain, which does not exceed the pre-established criteria for a minimal clinically important difference (≥ 15%). Evidence for multiple-dose studies was heterogenous but did not demonstrate a significant effect (very low-quality evidence).For CES (six studies, 270 participants) no statistically significant difference was found between active stimulation and sham (low-quality evidence).Analysis of tDCS studies (11 studies, 193 people) demonstrated significant heterogeneity and did not find a significant difference between active and sham stimulation (very low-quality evidence). Pre-specified subgroup analysis of tDCS applied to the motor cortex (n = 183) did not demonstrate a statistically significant effect and this lack of effect was consistent for subgroups of single or multiple-dose studies.One small study (n = 91) at unclear risk of bias suggested a positive effect of RINCE over sham stimulation on pain (very low-quality evidence).Non-invasive brain stimulation appears to be frequently associated with minor and transient side effects, though there were two reported incidences of seizure related to active rTMS in the included studies. AUTHORS' CONCLUSIONS Single doses of high-frequency rTMS of the motor cortex may have small short-term effects on chronic pain. It is likely that multiple sources of bias may exaggerate this observed effect. The effects do not meet the predetermined threshold of minimal clinical significance and multiple-dose studies do not consistently demonstrate effectiveness. The available evidence suggests that low-frequency rTMS, rTMS applied to the pre-frontal cortex, CES and tDCS are not effective in the treatment of chronic pain. While the broad conclusions for rTMS and CES have not changed substantially, the addition of this new evidence and the application of the GRADE system has modified some of our interpretation and the conclusion regarding the effectiveness of tDCS has changed. We recommend that previous readers should re-read this update. There is a need for larger, rigorously designed studies, particularly of longer courses of stimulation. It is likely that future evidence may substantially impact upon the presented results.
Collapse
Affiliation(s)
- Neil E O'Connell
- Centre for Research in Rehabilitation, School of Health Sciences and Social Care, Brunel University, Kingston Lane, Uxbridge, Middlesex, UK, UB8 3PH
| | | | | | | | | |
Collapse
|
30
|
Tekin A, Özdil E, Güleken MD, İlişer R, Bakım B, Öncü J, Çevik M, Kuran B. Efficacy of High Frequency [10 Hz] Repetitive Transcranial Magnetic Stimulation of the Primary Motor Cortex in Patients with Fibromyalgia Syndrome: A Randomized, Double Blind, Sham-Controlled Trial. ACTA ACUST UNITED AC 2014. [DOI: 10.3109/10582452.2014.883042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Transcranial Magnetic Stimulation (TMS) Clinical Applications: Therapeutics. TRANSCRANIAL MAGNETIC STIMULATION 2014. [DOI: 10.1007/978-1-4939-0879-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Seada YI, Nofel R, Sayed HM. Comparison between Trans-Cranial Electromagnetic Stimulation and Low-Level Laser on Modulation of Trigeminal Neuralgia. J Phys Ther Sci 2013; 25:911-4. [PMID: 24259883 PMCID: PMC3820224 DOI: 10.1589/jpts.25.911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/28/2013] [Indexed: 11/24/2022] Open
Abstract
[Purpose] To determine which of the transcranial electromagnetic stimulation or low level laser therapy is more effective in the treatment of trigeminal neuralgia of multiple sclerosis patients. [Methods] Thirty multiple sclerosis patients of both sexes participated in this study. The age of the subjects ranged from 40 to 60 years and their mean age was (56.4-6.6). Participants were randomly selected from Dental and Neurology Outpatient Clinics at King Khalid Hospital, Najran University, Saudi Arabia. Patients were randomly divided into two equal groups of 15. The Laser group received a low level laser therapy, 830 nm wavelength, 10 Hz and 15 min duration, while the Electromagnetic group received repetitive transcranial electromagnetic stimulation at a frequency of 10 Hz, intensity of 50 mA and duration of 20 minutes. Patients were assessed pre and post treatment for degree of pain using a numerical rating scale, maximal oral mouth opening using a digital calibrated caliper, masseter muscle tension using a tensiometer and a compound action potentials of masseter and temporalis muscles. [Results] There were significant improvements after treatment in both groups, with a significant difference between the Electromagnetic and Laser groups, in favor of the Electromagnetic group. [Conclusion] Repetitive transcranial electromagnetic stimulation at 10 Hz, 50 mA, and 20 minutes duration is more effective than low level laser therapy at reducing trigeminal pain, increasing maximum oral mouth opening, masseter and temporalis muscle tension in multiple sclerosis patients.
Collapse
Affiliation(s)
- Yasser Ibrahim Seada
- Department of Physical Therapy for Neuromuscular Disorders
and its Surgery, Faculty of Physical Therapy, Cairo University
| | - Reda Nofel
- Department of Oral and Maxillofacial Surgery, Faculty of
Dentistry, Al Azhar University
| | - Hayam Mahmoud Sayed
- Department of Physical Therapy for Neuromuscular Disorders
and its Surgery, Faculty of Physical Therapy, Cairo University
| |
Collapse
|
33
|
Li CT, Su TP, Hsieh JC, Ho ST. Efficacy and practical issues of repetitive transcranial magnetic stimulation on chronic medically unexplained symptoms of pain. ACTA ACUST UNITED AC 2013; 51:81-7. [DOI: 10.1016/j.aat.2013.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/01/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
|
34
|
Hosomi K, Shimokawa T, Ikoma K, Nakamura Y, Sugiyama K, Ugawa Y, Uozumi T, Yamamoto T, Saitoh Y. Daily repetitive transcranial magnetic stimulation of primary motor cortex for neuropathic pain: a randomized, multicenter, double-blind, crossover, sham-controlled trial. Pain 2013; 154:1065-72. [PMID: 23623156 DOI: 10.1016/j.pain.2013.03.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
There is little evidence for multisession repetitive transcranial magnetic stimulation (rTMS) on pain relief in patients with neuropathic pain (NP), although single-session rTMS was suggested to provide transient pain relief in NP patients. We aimed to assess the efficacy and safety of 10 daily rTMS in NP patients. We conducted a randomized, double-blind, sham-controlled, crossover study at 7 centers. Seventy NP patients were randomly assigned to 2 groups. A series of 10 daily 5-Hz rTMS (500 pulses/session) of primary motor cortex (M1) or sham stimulation was applied to each patient with a follow-up of 17days. The primary outcome was short-term pain relief assessed using a visual analogue scale (VAS). The secondary outcomes were short-term change in the short form of the McGill pain questionnaire (SF-MPQ), cumulative changes in the following scores (VAS, SF-MPQ, the Patient Global Impression of Change scale [PGIC], and the Beck Depression Inventory [BDI]), and the incidence of adverse events. Analysis was by intention to treat. This trial is registered with the University hospital Medical Information Network Clinical Trials Registry. Sixty-four NP patients were included in the intention-to-treat analysis. The real rTMS, compared with the sham, showed significant short-term improvements in VAS and SF-MPQ scores without a carry-over effect. PGIC scores were significantly better in real rTMS compared with sham during the period with daily rTMS. There were no significant cumulative improvements in VAS, SF-MPQ, and BDI. No serious adverse events were observed. Our findings demonstrate that daily high-frequency rTMS of M1 is tolerable and transiently provides modest pain relief in NP patients.
Collapse
Affiliation(s)
- Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Office for University-Industry Collaboration, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Invasive stimulation of the motor (precentral) cortex using surgically implanted epidural electrodes is indicated for the treatment of neuropathic pain that is refractory to medical treatment. Controlled trials have demonstrated the efficacy of epidural motor cortex stimulation (MCS), but MCS outcome remains variable and validated criteria for selecting good candidates for implantation are lacking. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive approach that could be used as a preoperative tool to predict MCS outcome and also could serve as a therapeutic procedure in itself to treat pain disorders. This requires repeated rTMS sessions and a maintenance protocol. Other studies have also demonstrated the efficacy of transcranial direct current stimulation (tDCS) in relieving chronic pain syndromes. The most studied target is the precentral cortex, but other targets, such as the prefrontal and parietal cortices, could be of interest. The analgesic effects of cortical stimulation relate to the activation of various circuits modulating neural activities in remote structures, such as the thalamus, limbic cortex, insula, or descending inhibitory controls. In addition to the treatment of refractory neuropathic pain by epidural MCS, new developments of this type of strategy are ongoing, for other types of pain syndrome and stimulation techniques.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Faculty of Medicine, Université Paris Est Créteil and Service de Physiologie, Explorations Fonctionnelles, Hôpital Henri Mondor, Créteil, France.
| |
Collapse
|
36
|
Treister R, Lang M, Klein MM, Oaklander AL. Non-invasive Transcranial Magnetic Stimulation (TMS) of the Motor Cortex for Neuropathic Pain-At the Tipping Point? Rambam Maimonides Med J 2013; 4:e0023. [PMID: 24228166 PMCID: PMC3820296 DOI: 10.5041/rmmj.10130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The term "neuropathic pain" (NP) refers to chronic pain caused by illnesses or injuries that damage peripheral or central pain-sensing neural pathways to cause them to fire inappropriately and signal pain without cause. Neuropathic pain is common, complicating diabetes, shingles, HIV, and cancer. Medications are often ineffective or cause various adverse effects, so better approaches are needed. Half a century ago, electrical stimulation of specific brain regions (neuromodulation) was demonstrated to relieve refractory NP without distant effects, but the need for surgical electrode implantation limited use of deep brain stimulation. Next, electrodes applied to the dura outside the brain's surface to stimulate the motor cortex were shown to relieve NP less invasively. Now, electromagnetic induction permits cortical neurons to be stimulated entirely non-invasively using transcranial magnetic stimulation (TMS). Repeated sessions of many TMS pulses (rTMS) can trigger neuronal plasticity to produce long-lasting therapeutic benefit. Repeated TMS already has US and European regulatory approval for treating refractory depression, and multiple small studies report efficacy for neuropathic pain. Recent improvements include "frameless stereotactic" neuronavigation systems, in which patients' head MRIs allow TMS to be applied to precise underlying cortical targets, minimizing variability between sessions and patients, which may enhance efficacy. Transcranial magnetic stimulation appears poised for the larger trials necessary for regulatory approval of a NP indication. Since few clinicians are familiar with TMS, we review its theoretical basis and historical development, summarize the neuropathic pain trial results, and identify issues to resolve before large-scale clinical trials.
Collapse
Affiliation(s)
- Roi Treister
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Daily left prefrontal transcranial magnetic stimulation (TMS) for several weeks was first proposed as an acute treatment for depression in the early 1990s, and was Food and Drug Administration (FDA) approved in 2008. In the past year, several important studies have been published that extend our understanding of this novel treatment approach. RECENT FINDINGS The first round of multisite clinical trials with TMS addressed whether prefrontal rTMS has efficacy and were conducted in carefully selected depressed patients who were antidepressant medication free. Several more recent studies assess the clinical effectiveness of TMS and report that about 35-40% of real-world patients who are commonly taking adjunctive antidepressants reach remission with a modest side effect profile. There are also new studies examining the durability of the TMS-induced antidepressant effect. Fifty-eight percent of TMS remitters remain remitted at 3-month follow-up. SUMMARY These recent studies suggest that daily left prefrontal TMS over several weeks as a treatment for depression not only appears to have efficacy in rigorous randomized controlled trials, but is effective in real-world settings, with remission in 30-40% of patients. The TMS antidepressant effect, once achieved, appears to be as durable as with other antidepressant medications or interventions. Much more research is needed, particularly with issues such as the TMS coil location, stimulation intensity and frequency, and dosing strategy.
Collapse
|
38
|
Plow EB, Pascual-Leone A, Machado A. Brain stimulation in the treatment of chronic neuropathic and non-cancerous pain. THE JOURNAL OF PAIN 2012; 13:411-24. [PMID: 22484179 DOI: 10.1016/j.jpain.2012.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/27/2011] [Accepted: 02/02/2012] [Indexed: 01/16/2023]
Abstract
UNLABELLED Chronic neuropathic pain is one of the most prevalent and debilitating disorders. Conventional medical management, however, remains frustrating for both patients and clinicians owing to poor specificity of pharmacotherapy, delayed onset of analgesia and extensive side effects. Neuromodulation presents as a promising alternative, or at least an adjunct, as it is more specific in inducing analgesia without associated risks of pharmacotherapy. Here, we discuss common clinical and investigational methods of neuromodulation. Compared to clinical spinal cord stimulation (SCS), investigational techniques of cerebral neuromodulation, both invasive (deep brain stimulation [DBS] and motor cortical stimulation [MCS]) and noninvasive (repetitive transcranial magnetic stimulation [rTMS] and transcranial direct current stimulation [tDCS]), may be more advantageous. By adaptively targeting the multidimensional experience of pain, subtended by integrative pain circuitry in the brain, including somatosensory and thalamocortical, limbic and cognitive, cerebral methods may modulate the sensory-discriminative, affective-emotional and evaluative-cognitive spheres of the pain neuromatrix. Despite promise, the current state of results alludes to the possibility that cerebral neuromodulation has thus far not been effective in producing analgesia as intended in patients with chronic pain disorders. These techniques, thus, remain investigational and off-label. We discuss issues implicated in inadequate efficacy, variability of responsiveness, and poor retention of benefit, while recommending design and conceptual refinements for future trials of cerebral neuromodulation in management of chronic neuropathic pain. PERSPECTIVE This critical review focuses on factors contributing to poor therapeutic utility of invasive and noninvasive brain stimulation in the treatment of chronic neuropathic and pain of noncancerous origin. Through key clinical trial design and conceptual refinements, retention and consistency of response may be improved, potentially facilitating the widespread clinical applicability of such approaches.
Collapse
Affiliation(s)
- Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
39
|
Lefaucheur JP, André-Obadia N, Poulet E, Devanne H, Haffen E, Londero A, Cretin B, Leroi AM, Radtchenko A, Saba G, Thai-Van H, Litré CF, Vercueil L, Bouhassira D, Ayache SS, Farhat WH, Zouari HG, Mylius V, Nicolier M, Garcia-Larrea L. [French guidelines on the use of repetitive transcranial magnetic stimulation (rTMS): safety and therapeutic indications]. Neurophysiol Clin 2011; 41:221-95. [PMID: 22153574 DOI: 10.1016/j.neucli.2011.10.062] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 12/31/2022] Open
Abstract
During the past decade, a large amount of work on transcranial magnetic stimulation (TMS) has been performed, including the development of new paradigms of stimulation, the integration of imaging data, and the coupling of TMS techniques with electroencephalography or neuroimaging. These accumulating data being difficult to synthesize, several French scientific societies commissioned a group of experts to conduct a comprehensive review of the literature on TMS. This text contains all the consensual findings of the expert group on the mechanisms of action, safety rules and indications of TMS, including repetitive TMS (rTMS). TMS sessions have been conducted in thousands of healthy subjects or patients with various neurological or psychiatric diseases, allowing a better assessment of risks associated with this technique. The number of reported side effects is extremely low, the most serious complication being the occurrence of seizures. In most reported seizures, the stimulation parameters did not follow the previously published recommendations (Wassermann, 1998) [430] and rTMS was associated to medication that could lower the seizure threshold. Recommendations on the safe use of TMS / rTMS were recently updated (Rossi et al., 2009) [348], establishing new limits for stimulation parameters and fixing the contraindications. The recommendations we propose regarding safety are largely based on this previous report with some modifications. By contrast, the issue of therapeutic indications of rTMS has never been addressed before, the present work being the first attempt of a synthesis and expert consensus on this topic. The use of TMS/rTMS is discussed in the context of chronic pain, movement disorders, stroke, epilepsy, tinnitus and psychiatric disorders. There is already a sufficient level of evidence of published data to retain a therapeutic indication of rTMS in clinical practice (grade A) in chronic neuropathic pain, major depressive episodes, and auditory hallucinations. The number of therapeutic indications of rTMS is expected to increase in coming years, in parallel with the optimisation of stimulation parameters.
Collapse
Affiliation(s)
- J-P Lefaucheur
- EA 4391, faculté de médecine, université Paris-Est-Créteil, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
A randomized, controlled investigation of motor cortex transcranial magnetic stimulation (TMS) effects on quantitative sensory measures in healthy adults: evaluation of TMS device parameters. Clin J Pain 2011; 27:486-94. [PMID: 21415720 DOI: 10.1097/ajp.0b013e31820d2733] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES There is emerging evidence that transcranial magnetic stimulation (TMS) can produce analgesic effects in clinical samples and in healthy adults undergoing experimentally induced pain; and the field of minimally invasive brain stimulation for the management of pain is expanding rapidly. Although motor cortex is the most widely used cortical target for TMS in the management of neuropathic pain, few studies have systematically investigated the analgesic effects of a full range of device parameters to provide initial hints about what stimulation intensities and frequencies are most helpful (or even potentially harmful) to patients. Further, there is considerable inconsistency between studies with respect to laboratory pain measurement procedures, TMS treatment parameters, sophistication of the sham methods, and sample sizes. METHODS This study used a sham-controlled, within-subject, cross-over design to examine the effects of 5 different TMS treatment parameters across several quantitative sensory measures in a sample of healthy adult volunteers. Sixty-five participants underwent quantitative sensory testing procedures pre and post-40-minutes of real and sham motor cortex TMS. TMS was delivered at 1 Hz 80% resting motor threshold (rMT), 1 Hz 100% rMT, 10 Hz 80% rMT, 10 Hz 100% rMT, or 50 Hz triplets at 90% of active motor threshold (intermittent theta-burst). RESULTS The mean painfulness rating of real TMS stimulation itself was 3.0 (SE=0.36) out of 10 and was significantly greater than zero [t(64)=8.17, P<0.0001]. The sham TMS methods used permitted matching between real and sham TMS-induced scalp sensations and participants were successfully blinded to condition (real versus sham). Findings suggest that the effects of motor cortex TMS on quantitative sensory tests in healthy adults vary across different treatment parameters with the smallest observed effect for intermittent theta-burst stimulation (Cohen's d=0.03) and the largest for 10 Hz 100% rMT (d=0.34). DISCUSSION Overall, TMS was associated with statistically significant effects on warm and cool sensory thresholds, cold pain thresholds, suprathreshold stimulus unpleasantness ratings, and wind-up pain. With respect to device parameter effects, higher frequency stimulation seems to be associated with the most analgesic and antisensitivity effects with the exception of intermittent theta-burst stimulation. The present findings support several clinical research findings suggesting that higher TMS frequencies tend to be associated with the most clinical benefit in patients with chronic pain.
Collapse
|
41
|
Muller PA, Pascual-Leone A, Rotenberg A. Safety and tolerability of repetitive transcranial magnetic stimulation in patients with pathologic positive sensory phenomena: a review of literature. Brain Stimul 2011; 5:320-329.e27. [PMID: 22322098 DOI: 10.1016/j.brs.2011.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is emerging as a valuable therapeutic and diagnostic tool. rTMS appears particularly promising for disorders characterized by positive sensory phenomena that are attributable to alterations in sensory cortical excitability. Among these are tinnitus, auditory and visual hallucinations, and pain syndromes. OBJECTIVE Despite studies addressing rTMS efficacy in suppression of positive sensory symptoms, the safety of stimulation of potentially hyperexcitable cortex has not been fully addressed. We performed a systematic literature review and metaanalysis to describe the rTMS safety profile in these disorders. METHODS Using the PubMed database, we performed an English-language literature search from January 1985 to April 2011 to review all pertinent publications. Per study, we noted and listed pertinent details. From these data we also calculated a crude per-subject risk for each adverse event. RESULTS One hundred six publications (n = 1815) were identified with patients undergoing rTMS for pathologic positive sensory phenomena. Adverse events associated with rTMS were generally mild and occurred in 16.7% of subjects. Seizure was the most serious adverse event, and occurred in three patients with a 0.16% crude per-subject risk. The second most severe adverse event involved aggravation of sensory phenomena, occurring in 1.54%. CONCLUSIONS The published data suggest rTMS for the treatment or diagnosis of pathologic positive sensory phenomena appears to be a relatively safe and well-tolerated procedure. However, published data are lacking in systematic reporting of adverse events, and safety risks of rTMS in these patient populations will have to be addressed in future prospective trials.
Collapse
Affiliation(s)
- Paul A Muller
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Institut Guttmann de Neurorehabilitació, Universitat Autónoma, Barcelona, Spain
| | - Alexander Rotenberg
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, Massachusetts; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
42
|
Sharova EV, Gavrilov VM, Schekutiev GA, Sokolovskaja IE, Anzimirov VL, Korotaeva MV. Cerebral responses of healthy humans to rhythmic transcranial magnetic stimulation of different intensities. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s0362119710060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Borckardt JJ, Walker J, Branham RK, Rydin-Gray S, Hunter C, Beeson H, Reeves ST, Madan A, Sackeim H, George MS. Development and evaluation of a portable sham transcranial magnetic stimulation system. Brain Stimul 2010; 1:52-9. [PMID: 19424444 DOI: 10.1016/j.brs.2007.09.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a relatively noninvasive brain stimulation technology that can focally stimulate the human cortex. One significant limitation of much of the TMS research to date concerns the nature of the placebo or sham conditions used. When TMS pulses are delivered repetitively (especially prefrontal TMS), it is often experienced as painful. Most sham TMS techniques produce identical sounds to active TMS, but they do not cause much, if any, scalp or facial sensation or discomfort. This is a serious problem when investigators are attempting to evaluate the effects of TMS by using traditional sham techniques because of unintended systematic differences between real and sham TMS groups (ie, confounds). As long as traditional approaches to sham TMS are used, the validity of the inferences regarding the efficacy of TMS will be limited. Although some other sophisticated systems have been developed to address these concerns, they tend to be expensive and lack portability. Portability will likely become more and more important as TMS applications expand into different clinical areas (eg, TMS in the postanesthesia care unit after surgery). METHODS This study describes a portable electrical TMS sham system (eSham system) modeled after the James Long System that was designed to produce similar scalp sensations as real TMS. Preliminary results are presented on 9 healthy adults who received both real and eSham 10 Hz repetitive TMS (rTMS) (at 80%, 100%, and 120% of resting motor threshold) over the prefrontal cortex and rated the sensation quality (pain, tingling, sharpness, piercing, electric, tugging, pinching), tolerability, and location. RESULTS Real TMS and eSham TMS were rated similarly across all seven sensory dimensions examined. Real and eSham TMS were also rated similarly with respect to tolerability and perceived location of the TMS-induced sensations. CONCLUSIONS The eSham system may be a simple, affordable, and portable approach to providing convincing sham TMS for future clinical trials. This study provides preliminary evidence supporting the use of the eSham system. Future larger-scale studies are warranted.
Collapse
Affiliation(s)
- Jeffrey J Borckardt
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
O'Connell NE, Wand BM, Marston L, Spencer S, Desouza LH. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev 2010:CD008208. [PMID: 20824873 DOI: 10.1002/14651858.cd008208.pub2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES) and transcranial direct current stimulation (tDCS). OBJECTIVES To evaluate the efficacy of non-invasive brain stimulation techniques in chronic pain. SEARCH STRATEGY We searched CENTRAL, MEDLINE, EMBASE, CINAHL, PsycINFO, LILACS, the Cochrane PaPaS Group Trials Register and clinical trials registers. SELECTION CRITERIA Randomised and quasi-randomised studies of rTMS, CES or tDCS if they employed a sham stimulation control group, recruited patients over the age of 18 with pain of three months duration or more and measured pain as a primary outcome. DATA COLLECTION AND ANALYSIS Two authors independently extracted and verified data. Where possible we entered data into meta-analyses. We excluded studies judged as being at high risk of bias from the analysis. MAIN RESULTS We included 33 trials in the review (involving 937 people)(19 rTMS, eight CES and six tDCS). Only one study was judged as being at low risk of bias.Studies of rTMS (involving 368 participants ) demonstrated significant heterogeneity. Pre-specified subgroup analyses suggest that low-frequency stimulation is ineffective. A short-term effect on pain of active high-frequency stimulation of the motor cortex in single-dose studies was suggested (standardised mean difference (SMD) -0.40, 95% confidence interval (CI) -0.26 to -0.54, P < 0.00001). This equates to a 15% (95% CI 10% to 20%) reduction in pain which does not clearly exceed the pre-established criteria for a minimally clinically important difference (> 15%).For CES (four studies, 133 participants) no statistically significant difference was found between active stimulation and sham. Analysis of tDCS studies (five studies, 83 people) demonstrated significant heterogeneity and did not find a significant difference between active and sham stimulation. Pre-specified subgroup analysis of tDCS applied to the motor cortex suggested superiority of active stimulation over sham (SMD -0.59, 95% CI -1.10 to -0.08).Non-invasive brain stimulation appears to be associated with minor and transient side effects. AUTHORS' CONCLUSIONS Single doses of high-frequency rTMS of the motor cortex may have small short-term effects on chronic pain. The effects do not clearly exceed the predetermined threshold of minimal clinical significance. Low-frequency rTMS is not effective in the treatment of chronic pain. There is insufficient evidence from which to draw firm conclusions regarding the efficacy of CES or tDCS. The available evidence suggests that tDCS applied to the motor cortex may have short-term effects on chronic pain and that CES may be ineffective. There is a need for further, rigorously designed studies of all types of stimulation.
Collapse
Affiliation(s)
- Neil E O'Connell
- Centre for Research in Rehabilitation, School of Health Sciences and Social Care, Brunel University, Kingston Lane, Uxbridge, Middlesex, UK, UB8 3PH
| | | | | | | | | |
Collapse
|
45
|
Antal A, Terney D, Kühnl S, Paulus W. Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition. J Pain Symptom Manage 2010; 39:890-903. [PMID: 20471549 DOI: 10.1016/j.jpainsymman.2009.09.023] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 09/14/2009] [Accepted: 10/16/2009] [Indexed: 11/21/2022]
Abstract
CONTEXT Consecutive sessions of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) may be a suitable therapy to treat chronic pain, as it can modulate neural activities in the stimulated and interconnected regions. OBJECTIVES The present study investigated the analgesic effect of five consecutive days of anodal/sham tDCS using subjective (visual analog scale [VAS]) and objective (cortical excitability measured by transcranial magnetic stimulation [TMS]) measurements. METHODS Patients with therapy-resistant chronic pain syndromes (trigeminal neuralgia, poststroke pain syndrome, back pain, fibromyalgia) participated. As this clinical trial was an exploratory study, statistical analyses implemented exploratory methods. Twelve patients, who underwent both anodal and sham tDCS, were analyzed using a crossover design. An additional nine patients had only anodal or sham stimulation. tDCS was applied over the hand area of the M1 for 20 minutes, at 1mA for five consecutive days, using a randomized, double-blind design. Pain was assessed daily using a VAS rating for one month before, during, and one month post-stimulation. M1 excitability was determined using paired-pulse TMS. RESULTS Anodal tDCS led to a greater improvement in VAS ratings than sham tDCS, evident even three to four weeks post-treatment. Decreased intracortical inhibition was demonstrated after anodal stimulation, indicating changes in cortico-cortical excitability. No patient experienced severe adverse effects; seven patients suffered from light headache after anodal and six after sham stimulation. CONCLUSION Results confirm that five daily sessions of tDCS over the hand area of the M1 can produce long-lasting pain relief in patients with chronic pain.
Collapse
Affiliation(s)
- Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
46
|
Picarelli H, Teixeira MJ, de Andrade DC, Myczkowski ML, Luvisotto TB, Yeng LT, Fonoff ET, Pridmore S, Marcolin MA. Repetitive transcranial magnetic stimulation is efficacious as an add-on to pharmacological therapy in complex regional pain syndrome (CRPS) type I. THE JOURNAL OF PAIN 2010; 11:1203-10. [PMID: 20430702 DOI: 10.1016/j.jpain.2010.02.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/25/2010] [Accepted: 02/17/2010] [Indexed: 02/07/2023]
Abstract
UNLABELLED Single-session repetitive transcranial magnetic stimulation (rTMS) of the motor cortex (M1) is effective in the treatment of chronic pain patients, but the analgesic effect of repeated sessions is still unknown. We evaluated the effects of rTMS in patients with refractory pain due to complex regional pain syndrome (CRPS) type I. Twenty-three patients presenting CRPS type I of 1 upper limb were treated with the best medical treatment (analgesics and adjuvant medications, physical therapy) plus 10 daily sessions of either real (r-) or sham (s-) 10 Hz rTMS to the motor cortex (M1). Patients were assessed daily and after 1 week and 3 months after the last session using the Visual Analogical Scale (VAS), the McGill Pain Questionnaire (MPQ), the Health Survey-36 (SF-36), and the Hamilton Depression (HDRS). During treatment there was a significant reduction in the VAS scores favoring the r-rTMS group, mean reduction of 4.65 cm (50.9%) against 2.18 cm (24.7%) in the s-rTMS group. The highest reduction occurred at the tenth session and correlated to improvement in the affective and emotional subscores of the MPQ and SF-36. Real rTMS to the M1 produced analgesic effects and positive changes in affective aspects of pain in CRPS patients during the period of stimulation. PERSPECTIVE This study shows an efficacy of repetitive sessions of high-frequency rTMS as an add-on therapy to refractory CRPS type I patients. It had a positive effect in different aspects of pain (sensory-discriminative and emotional-affective). It opens the perspective for the clinical use of this technique.
Collapse
Affiliation(s)
- Helder Picarelli
- Clinic of Pain, Department of Neurology, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Non-invasive transcranial direct current stimulation for the study and treatment of neuropathic pain. Methods Mol Biol 2010; 617:505-15. [PMID: 20336445 DOI: 10.1007/978-1-60327-323-7_37] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decade, radiological neuroimaging techniques have enhanced the study of mechanisms involved in the development and maintenance of neuropathic pain. Recent findings suggest that neuropathic pain in certain pain syndromes (e.g., complex regional pain syndrome/reflex sympathic dystrophy, phantom-limb pain) is associated with a functional reorganization and hyperexitability of the somatosensory and motor cortex. Studies showing that the reversal of cortical reorganization in patients with spontaneous or provoked pain is accompanied by pain relief stimulated the search for novel alternatives how to modulate the cortical excitability as a strategy to relieve pain. Recently, non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) were proposed as suitable methods for modulation of cortical excitability. Both techniques (TMS and tDCS) have been clinically investigated in healthy volunteers as well as in patients with various clinical pathologies and variety of pain syndromes. Although there is less evidence on tDCS as compared with TMS, the findings on tDCS in patients with pain are promising, showing an analgesic effect of tDCS, and observations up to date justify the use of tDCS for the treatment of pain in selected patient populations. tDCS has been shown to be very safe if utilized within the current protocols. In addition, tDCS has been proven to be easy to apply, portable and not expensive, which further enhances great clinical potential of this technique.
Collapse
|
49
|
Borckardt JJ, Smith AR, Reeves ST, Madan A, Shelley N, Branham R, Nahas Z, George MS. A pilot study investigating the effects of fast left prefrontal rTMS on chronic neuropathic pain. PAIN MEDICINE 2009; 10:840-9. [PMID: 19594842 DOI: 10.1111/j.1526-4637.2009.00657.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Stimulating the human cortex using transcranial magnetic stimulation (TMS) temporarily reduces clinical and experimental pain; however, it is unclear which cortical targets are the most effective. The motor cortex has been a popular target for managing neuropathic pain, while the prefrontal cortex has been investigated for an array of nociceptive pain conditions. It is unclear whether the motor cortex is the only effective cortical target for managing neuropathic pain, and no published studies to date have investigated the effects of prefrontal stimulation on neuropathic pain. DESIGN This preliminary pilot trial employed a sham-controlled, within-subject, crossover design to evaluate clinical pain as well as laboratory pain thresholds among four patients with chronic neuropathic pain. Each participant underwent three real and three sham 20-minute sessions of 10 Hz left prefrontal repetitive TMS. Daily pain diaries were collected for 3 weeks before and after each treatment phase along with a battery of self-report pain and mood questionnaires. RESULTS Time-series analysis at the individual patient level indicated that real TMS was associated with significant improvements in average daily pain in 3 of the 4 participants. These effects were independent of changes in mood in two of the participants. At the group level, a decrease of 19% in daily pain on average, pain at its worst, and pain at its least was observed while controlling for changes in mood, activity level and sleep. The effects of real TMS were significantly greater than sham. Real TMS was associated with increases in thermal and mechanical pain thresholds, whereas sham was not. No statistically significant effects were observed across the questionnaire data. CONCLUSIONS The prefrontal cortex may be an important TMS cortical target for managing certain types of pain, including certain neuropathic pain syndromes.
Collapse
Affiliation(s)
- Jeffrey J Borckardt
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
rTMS for suppressing neuropathic pain: a meta-analysis. THE JOURNAL OF PAIN 2009; 10:1205-16. [PMID: 19464959 DOI: 10.1016/j.jpain.2009.03.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 01/21/2009] [Indexed: 12/31/2022]
Abstract
UNLABELLED This pooled individual data (PID)-based meta-analysis collectively assessed the analgesic effect of repetitive transcranial magnetic stimulation (rTMS) on various neuropathic pain states based on their neuroanatomical hierarchy. Available randomized controlled trials (RCTs) were screened. PID was coded for age, gender, pain neuroanatomical origins, pain duration, and treatment parameters analyses. Coded pain neuroanatomical origins consist of peripheral nerve (PN); nerve root (NR); spinal cord (SC); trigeminal nerve or ganglion (TGN); and post-stroke supraspinal related pain (PSP). Raw data of 149 patients were extracted from 5 (1 parallel, 4 cross-over) selected (from 235 articles) RCTs. A significant (P < .001) overall analgesic effect (mean percent difference in pain visual analog scale (VAS) score reduction with 95% confidence interval) was detected with greater reduction in VAS with rTMS in comparison to sham. Including the parallel study (Khedr et al), the TGN subgroup was found to have the greatest analgesic effect (28.8%), followed by PSP (16.7%), SC (14.7%), NR (10.0%), and PN (1.5%). The results were similar when we excluded the parallel study with the greatest analgesic effect observed in TGN (33.0%), followed by SC (14.7%), PSP (10.5%), NR (10.0%), and PN (1.5%). In addition, multiple (vs single, P = .003) sessions and lower (>1 and < or =10 Hz) treatment frequency range (vs >10 Hz) appears to generate better analgesic outcome. In short, rTMS appears to be more effective in suppressing centrally than peripherally originated neuropathic pain states. PERSPECTIVE This is the first PID-based meta-analysis to assess the differential analgesic effect of rTMS on neuropathic pain based on the neuroanatomical origins of the pain pathophysiology and treatment parameters. The derived information serves as a useful resource in regards to treatment parameters and patient population selection for future rTMS-pain studies.
Collapse
|