1
|
Kim W, Jang JH, Zhong X, Seo H, Surh YJ. 15-Deoxy-△ 12,14-Prostaglandin J 2 Promotes Resolution of Experimentally Induced Colitis. Front Immunol 2021; 12:615803. [PMID: 33633749 PMCID: PMC7901909 DOI: 10.3389/fimmu.2021.615803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Uncontrolled macrophage functions cause failure to resolve gut inflammation and has been implicated in the pathogenesis of inflammatory bowel disease (IBD). 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of endogenous lipid mediators formed from arachidonic acid during the inflammatory process, has been reported to terminate inflammation. However, the pro-resolving effect of 15d-PGJ2 on intestinal inflammation and underlying molecular mechanisms remain largely unknown. In the present study, we examined the effects of 15d-PGJ2 on the resolution of dextran sulfate sodium (DSS)-induced murine colitis that mimics human IBD. Pharmacologic inhibition of prostaglandin D synthase (PGDS) responsible for the synthesis of 15d-PGJ2 hampered resolution of inflammation in the colonic mucosa of mice treated with DSS. Notably, intraperitoneal injection of 15d-PGJ2 accelerated the resolution of experimentally induced colitis. 15d-PGJ2 treatment reduced the number of neutrophils and M1 macrophages, while it increased the proportion of M2 macrophages. Moreover, 15d-PGJ2 treated mice exhibited the significantly reduced proportion of macrophages expressing the pro-inflammatory cytokine, IL-6 with concomitant suppression of STAT3 phosphorylation in the colonic mucosa of mice administered 2.5% DSS in drinking water. Taken together, these findings clearly indicate that 15d-PGJ2, endogenously generated from arachidonic acid by cyclooxygenase-2 and PGDS activities in inflamed tissue, promotes resolution of intestinal colitis.
Collapse
Affiliation(s)
- Wonki Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jeong-Hoon Jang
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Xiancai Zhong
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyungseok Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Vergelli C, Schepetkin IA, Ciciani G, Cilibrizzi A, Crocetti L, Giovannoni MP, Guerrini G, Iacovone A, Kirpotina LN, Ye RD, Quinn MT. Synthesis of Five- and Six-Membered N-Phenylacetamido Substituted Heterocycles as Formyl Peptide Receptor Agonists. Drug Dev Res 2016; 78:49-62. [PMID: 27859446 DOI: 10.1002/ddr.21370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022]
Abstract
Preclinical Research Formyl peptide receptors (FPRs) are G-protein-coupled receptors that play an important role in the regulation of inflammatory process and cellular dysfunction. In humans, three different isoforms are expressed (FPR1, FPR2, and FPR3). FPR2 appears to be directly involved in the resolution of inflammation, an active process carried out by specific pro-resolving mediators that modulate specific receptors. Previously, we identified 2-arylacetamido pyridazin-3(2H)-ones as FPR1- or FPR2-selective agonists, as well as a large number of mixed-agonists for the three isoforms. Here, we report a new series of 2-arylacetamido pyridazinones substituted at position 5 and their development as FPR agonists. We also synthesized a new series of 2-oxothiazolones bearing a 4-bromophenylacetamido fragment, which was fundamental for activity in the pyridazinone series. The compounds of most interest were 4a, a potent, mixed FPR agonist recognized by all three isotypes (FPR1 EC50 = 19 nM, FPR2 EC50 = 43 nM, FPR3 EC50 = 40 nM), and 4b, which had potent activity and a preference for FPR2 (EC50 = 13 nM). These novel compounds may represent valuable tools for studying FPR activation and signaling. Drug Dev Res 78 : 49-62, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudia Vergelli
- Department of NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto, Fiorentino, 50019, Italy
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| | - Giovanna Ciciani
- Department of NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto, Fiorentino, 50019, Italy
| | - Agostino Cilibrizzi
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Letizia Crocetti
- Department of NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto, Fiorentino, 50019, Italy
| | - Maria Paola Giovannoni
- Department of NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto, Fiorentino, 50019, Italy
| | - Gabriella Guerrini
- Department of NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto, Fiorentino, 50019, Italy
| | - Antonella Iacovone
- Department of NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto, Fiorentino, 50019, Italy
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| | - Richard D Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
3
|
Abstract
The resolution of inflammation (RoI), once believed to be a passive process, has lately been shown to be an active and delicately orchestrated process. During the resolution phase of acute inflammation, novel mediators, including lipoxins and resolvins, which are members of the specialized pro-resolving mediators of inflammation, are produced. FPR2/ALXR, a receptor modulated by some of these lipids as well as by peptides (e.g., annexin A1), has been shown to be one of the receptors involved in the RoI. The aim of this perspective is to present the concept of the RoI from a medicinal chemistry point of view and to highlight the effort of the research community to discover and develop anti-inflammatory/pro-resolution small molecules to orchestrate inflammation by activation of FPR2/ALXR.
Collapse
Affiliation(s)
- Olivier Corminboeuf
- Actelion Pharmaceuticals Ltd. , Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | | |
Collapse
|
4
|
Broxmeyer HE, Pelus LM. Inhibition of DPP4/CD26 and dmPGE₂ treatment enhances engraftment of mouse bone marrow hematopoietic stem cells. Blood Cells Mol Dis 2014; 53:34-8. [PMID: 24602918 DOI: 10.1016/j.bcmd.2014.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/25/2022]
Abstract
Enhancing the engraftment of hematopoietic stem cells (HSC) is especially important when times to engraftment are prolonged due either to limiting numbers of HSC in the donor graft or to intrinsic slower engrafting time of the tissue sources of HSC. Both inhibition of dipeptidylpeptidase (DPP) 4/CD26 and treatment of cells with 16,16 dimethyl prostaglandin E2 (dmPGE2) have been shown to enhance hematopoietic stem cell engraftment in murine transplantation models and have been evaluated in clinical settings for their influence on engraftment of cord blood cells, a tissue source of HSC known to manifest an extended time to engraftment of donor cells compared to that of bone marrow (BM) and mobilized peripheral blood for hematopoietic cell transplantation (HCT). Herein, we present new experimental data, using a CD45(+) head-to-head congenic model of donor mouse BM cells for engraftment of lethally irradiated mice, demonstrating that similar levels of enhanced engraftment are detected by pulsing donor BM cells with diprotin A, a DPP4 inhibitor, or with dmPGE2 prior to infusion, or by pretreating recipient mice with sitagliptin, also a DPP4 inhibitor, by oral gavage. Moreover, the combined effects of pretreating the donor BM cells with dmPGE2 in context of pretreating the recipient mice with sitagliptin after the administration of a lethal dose of radiation resulted in significantly enhanced competitively repopulating HCT compared to either treatment alone. This information is highly relevant to the goal of enhancing engraftment in human clinical HCT.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.
| | - Louis M Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.
| |
Collapse
|
5
|
Kazani S, Planaguma A, Ono E, Bonini M, Zahid M, Marigowda G, Wechsler ME, Levy BD, Israel E. Exhaled breath condensate eicosanoid levels associate with asthma and its severity. J Allergy Clin Immunol 2013; 132:547-553. [PMID: 23608729 DOI: 10.1016/j.jaci.2013.01.058] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND The relationship between anti-inflammatory lipoxins and proinflammatory leukotrienes might be important in the pathobiology and severity of asthma. OBJECTIVE We sought to investigate whether exhaled breath condensate (EBC) lipoxin and leukotriene measurements can noninvasively characterize the asthmatic diathesis and its severity. METHODS We measured lipoxin A4 (LXA4) and leukotriene B4 (LTB4) levels in EBC collected from patients with asthma of different severities and from healthy control subjects. RESULTS EBC LXA4 and LTB4 levels are increased in asthmatic patients compared with those seen in healthy control subjects (LXA4: 31.40 vs 2.41 pg/mL EBC, respectively [P < .001]; LTB4: 45.62 vs 3.82 pg/mL EBC, respectively [P < .001]). Although levels of both eicosanoids are increased in asthmatic patients, the LXA4/LTB4 ratio decreases with increasing asthma severity. It is 41% lower in patients with severe versus moderate asthma (0.52 vs 0.88, P = .034). EBC LXA4 levels correlate with the degree of airflow obstruction measured by using FEV1 (r = 0.28, P = .018). An LXA4 cutoff value of 7 pg/mL EBC provides 90% sensitivity and 92% specificity for the diagnosis of asthma (area under the curve, 0.96; P < .001). An LTB4 cutoff value of 11 pg/mL EBC provides 100% sensitivity and 100% specificity for the diagnosis of asthma (area under the curve, 1; P < .001). CONCLUSIONS Proresolving and proinflammatory eicosanoids are generated in the airways of all asthmatic patients. The proportion of proresolving compounds decreases with asthma severity. These findings support the role for EBC eicosanoid measurements in the noninvasive diagnosis of asthma and suggest that proresolving eicosanoid pathways are dysregulated in patients with severe asthma.
Collapse
Affiliation(s)
- Shamsah Kazani
- Pulmonary and Critical Care Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.
| | - Anna Planaguma
- Pulmonary and Critical Care Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Emiko Ono
- Pulmonary and Critical Care Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Matteo Bonini
- Pulmonary and Critical Care Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Muhammad Zahid
- Pulmonary and Critical Care Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Gautham Marigowda
- Pulmonary and Critical Care Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Michael E Wechsler
- Pulmonary and Critical Care Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Bruce D Levy
- Pulmonary and Critical Care Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Elliot Israel
- Pulmonary and Critical Care Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
6
|
Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, Watanebe T, Sakabe S, Daidoji T, Nakamura S, Kadowaki A, Ohto T, Nakanishi H, Taguchi R, Nakaya T, Murakami M, Yoneda Y, Arai H, Kawaoka Y, Penninger JM, Arita M, Imai Y. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 2013; 153:112-25. [PMID: 23477864 DOI: 10.1016/j.cell.2013.02.027] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 12/08/2012] [Accepted: 02/13/2013] [Indexed: 12/23/2022]
Abstract
Influenza A viruses are a major cause of mortality. Given the potential for future lethal pandemics, effective drugs are needed for the treatment of severe influenza such as that caused by H5N1 viruses. Using mediator lipidomics and bioactive lipid screen, we report that the omega-3 polyunsaturated fatty acid (PUFA)-derived lipid mediator protectin D1 (PD1) markedly attenuated influenza virus replication via RNA export machinery. Production of PD1 was suppressed during severe influenza and PD1 levels inversely correlated with the pathogenicity of H5N1 viruses. Suppression of PD1 was genetically mapped to 12/15-lipoxygenase activity. Importantly, PD1 treatment improved the survival and pathology of severe influenza in mice, even under conditions where known antiviral drugs fail to protect from death. These results identify the endogenous lipid mediator PD1 as an innate suppressor of influenza virus replication that protects against lethal influenza virus infection.
Collapse
Affiliation(s)
- Masayuki Morita
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J, Hilgarth RS, Kundu K, Murthy N, Kusters D, Reutelingsperger C, Perretti M, Parkos CA, Neish AS, Nusrat A. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 2012; 123:443-54. [PMID: 23241962 DOI: 10.1172/jci65831] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/18/2012] [Indexed: 01/05/2023] Open
Abstract
N-formyl peptide receptors (FPRs) are critical regulators of host defense in phagocytes and are also expressed in epithelia. FPR signaling and function have been extensively studied in phagocytes, yet their functional biology in epithelia is poorly understood. We describe a novel intestinal epithelial FPR signaling pathway that is activated by an endogenous FPR ligand, annexin A1 (ANXA1), and its cleavage product Ac2-26, which mediate activation of ROS by an epithelial NADPH oxidase, NOX1. We show that epithelial cell migration was regulated by this signaling cascade through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with consequent activation of focal adhesion kinase (FAK) and paxillin. In vivo studies using intestinal epithelial specific Nox1(-/-IEC) and AnxA1(-/-) mice demonstrated defects in intestinal mucosal wound repair, while systemic administration of ANXA1 promoted wound recovery in a NOX1-dependent fashion. Additionally, increased ANXA1 expression was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of ulcerative colitis patients compared with normal intestinal mucosa. Our findings delineate a novel epithelial FPR1/NOX1-dependent redox signaling pathway that promotes mucosal wound repair.
Collapse
Affiliation(s)
- Giovanna Leoni
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Juchem G, Weiss DR, Knott M, Senftl A, Förch S, Fischlein T, Kreuzer E, Reichart B, Laufer S, Nees S. Regulation of coronary venular barrier function by blood borne inflammatory mediators and pharmacological tools: insights from novel microvascular wall models. Am J Physiol Heart Circ Physiol 2012; 302:H567-81. [DOI: 10.1152/ajpheart.00360.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that postcapillary venules play a central role in the control of the tightness of the coronary system as a whole, particularly under inflammatory conditions. Sandwich cultures of endothelial cells and pericytes of precapillary arteriolar or postcapillary venular origin from human myocardium as models of the respective vascular walls (sandwich cultures of precapillary arteriolar or postcapillary venular origin) were exposed to thrombin and components of the acutely activatable inflammatory system, and their hydraulic conductivity ( LP) was registered. LP of SC-PAO remained low under all conditions (3.24 ± 0.52·10−8cm·s−1·cmH2O−1). In contrast, in the venular wall model, PGE2, platelet-activating factor (PAF), leukotriene B4 (LTB4), IL-6, and IL-8 induced a prompt, concentration-dependent, up to 10-fold increase in LP with synergistic support when combined. PAF and LTB4 released by metabolically cooperating platelets, and polymorphonuclear leucocytes (PMNs) caused selectively venular endothelial cells to contract and to open their clefts widely. This breakdown of the barrier function was preventable and even reversible within 6–8 h by the presence of 50 μM quercetin glucuronide (QG). LTB4 synthesis was facilitated by biochemical involvement of erythrocytes. Platelets segregated in the arterioles and PMNs in the venules of blood-perfused human myocardium (histological studies on donor hearts refused for heart transplantation). Extrapolating these findings to the coronary microcirculation in vivo would imply that the latter's complex functionality after accumulation of blood borne inflammatory mediators can change rapidly due to selective breakdown of the postcapillary venular barrier. The resulting inflammatory edema and venulo-thrombosis will severely impair myocardial performance. The protection afforded by QG could be of particular relevance in the context of cardiosurgical intervention.
Collapse
Affiliation(s)
- Gerd Juchem
- Department of Cardiac Surgery, University of Munich (Ludwig Maximilians University), Munich
| | - Dominik R. Weiss
- Department of Transfusion Medicine and Hemostaseology, University of Erlangen-Nuremberg (Friedrich Alexander University), Erlangen
| | - Maria Knott
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| | - Anton Senftl
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| | - Stefan Förch
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| | - Theodor Fischlein
- Department of Cardiac Surgery, Hospital Nuremberg South, Nuremberg; and
| | - Eckart Kreuzer
- Department of Cardiac Surgery, University of Munich (Ludwig Maximilians University), Munich
| | - Bruno Reichart
- Department of Cardiac Surgery, University of Munich (Ludwig Maximilians University), Munich
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tuebingen (Eberhard Karls University), Munich, Germany
| | - Stephan Nees
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| |
Collapse
|
9
|
Decreased anti-inflammatory responses to vitamin D in neonatal neutrophils. Mediators Inflamm 2011; 2011:598345. [PMID: 22219556 PMCID: PMC3246794 DOI: 10.1155/2011/598345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 11/17/2022] Open
Abstract
Neutrophil activity is prolonged in newborns, suggesting decreased exposure and/or responses to immunosuppressive modulators, such as 1,25-hydroxyvitamin D(3) (1,25-vit D(3)). We hypothesized that 1,25-vit D(3) suppresses neutrophil activation and that this response is impaired in newborns. Consistent with this, 1,25-vit D(3) decreased LPS-induced expression of macrophage inflammatory protein-1β and VEGF in adult, but not neonatal, neutrophils. Expression of vitamin D receptor (VDR) and 25-hydroxyvitamin D(3)-1α-hydroxylase was reduced in neonatal, relative to adult neutrophils. Moreover, 1,25-vit D(3) induced VDR gene expression in activated adult, but not neonatal, neutrophils. 1,25-vit D(3) also suppressed expression of cyclooxygenase-2 and induced expression of 5-lipoxygenase in LPS-exposed adult neutrophils, while neonatal cells were not affected. 1,25-vit D(3) had no effect on respiratory burst in either adult or neonatal cells. Anti-inflammatory activity of vitamin D is impaired in neonatal neutrophils, and this may be due to decreased expression of VDR and 1α-hydroxylase. Insensitivity to 1,25-vit D(3) may contribute to chronic inflammation in neonates.
Collapse
|
10
|
Pelus LM, Hoggatt J, Singh P. Pulse exposure of haematopoietic grafts to prostaglandin E2 in vitro facilitates engraftment and recovery. Cell Prolif 2011; 44 Suppl 1:22-9. [PMID: 21481039 DOI: 10.1111/j.1365-2184.2010.00726.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the effects of prostaglandin E(2) (PGE(2) ) on haematopoietic stem cell (HSC) function and determine its mechanism of action. MATERIALS AND METHODS HSC were exposed to PGE(2) for 2 h and effects on their homing, engraftment and self-renewal evaluated in vivo. Effects of PGE(2) on HSC cell cycle, CXCR4 expression and migration to SDF-1α were analysed in vitro. Apoptosis was evaluated by examination of survivin expression and active caspase-3 levels. RESULTS Equivalent haematopoietic reconstitution was demonstrated using 4-fold fewer PGE(2) -treated cells compared to controls. Multilineage reconstitution was stable on secondary transplantation, indicating that PGE(2) affects long-term repopulating HSC (LT-HSC) and that enhanced chimaerism of PGE(2) -pulsed cells results from their initial treatment. PGE(2) increased CXCR4 expression on mouse and human HSC, increased their migration to SDF-1αin vitro and enhanced in vivo marrow homing 2-fold, which was blocked by a CXCR4 receptor antagonist. PGE(2) pulse exposure reduced apoptosis of mouse and human HSC, with increase in endogenous caspase inhibitor survivin, and concomitant decrease in active caspase-3. Two-fold more HSC entered the cell cycle and proliferated within 24 h after PGE(2) pulse exposure. CONCLUSIONS These studies demonstrate that short-term PGE(2) exposure enhances HSC function and supports the concept of utility of PGE(2) as an ex vivo strategy to improve function of haematopoietic grafts, particularly those where HSC numbers are limited.
Collapse
Affiliation(s)
- L M Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, 46202, USA.
| | | | | |
Collapse
|
11
|
Van Veldhoven PP. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 2010; 51:2863-95. [PMID: 20558530 DOI: 10.1194/jlr.r005959] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In humans, peroxisomes harbor a complex set of enzymes acting on various lipophilic carboxylic acids, organized in two basic pathways, alpha-oxidation and beta-oxidation; the latter pathway can also handle omega-oxidized compounds. Some oxidation products are crucial to human health (primary bile acids and polyunsaturated FAs), whereas other substrates have to be degraded in order to avoid neuropathology at a later age (very long-chain FAs and xenobiotic phytanic acid and pristanic acid). Whereas total absence of peroxisomes is lethal, single peroxisomal protein deficiencies can present with a mild or severe phenotype and are more informative to understand the pathogenic factors. The currently known single protein deficiencies equal about one-fourth of the number of proteins involved in peroxisomal FA metabolism. The biochemical properties of these proteins are highlighted, followed by an overview of the known diseases.
Collapse
Affiliation(s)
- Paul P Van Veldhoven
- Katholieke Universiteit Leuven, Department of Molecular Cell Biology, LIPIT, Campus Gasthuisberg, Herestraat, Leuven, Belgium.
| |
Collapse
|
12
|
Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009; 4:399-418. [PMID: 19655259 PMCID: PMC2773116 DOI: 10.1007/s11481-009-9164-4] [Citation(s) in RCA: 659] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/30/2009] [Indexed: 01/14/2023]
Abstract
The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain's innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed.
Collapse
Affiliation(s)
- Carol A Colton
- Division of Neurology, Duke University Medical Center, Durham, 27710 NC, USA.
| |
Collapse
|
13
|
Weinberger B, Quizon C, Vetrano AM, Archer F, Laskin JD, Laskin DL. Mechanisms mediating reduced responsiveness of neonatal neutrophils to lipoxin A4. Pediatr Res 2008; 64:393-8. [PMID: 18535486 PMCID: PMC2651411 DOI: 10.1203/pdr.0b013e318180e4af] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lipoxin A4 is an eicosanoid that plays a key role in the resolution of neutrophilic inflammation. In these studies, we investigated the hypothesis that responses to lipoxin A4 are impaired in neonates, relative to adults. Lipoxin A4 was found to inhibit chemotaxis and respiratory burst in adult neutrophils. In contrast, it had no effect on these activities in neonatal neutrophils. In addition, while lipoxin A4 augmented apoptosis in LPS-treated adult neutrophils, apoptosis in neonatal cells was not affected by lipoxin A4 alone or in combination with LPS. The biologic actions of anti-inflammatory eicosanoids are mediated, in part, via the transcription factor peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Expression of PPAR-gamma mRNA and its target gene, neutrophil gelatinase-associated lipocalin (NGAL), were significantly reduced in neonatal cells when compared with adult cells. Moreover, whereas treatment of adult neutrophils with lipoxin A4 increased PPAR-gamma expression, no effects were observed in neonatal cells. 5- and 15-lipoxygenase, enzymes required for the synthesis of lipoxin A4, were also reduced in neonatal neutrophils. These findings suggest that the anti-inflammatory activity of lipoxin A4 is impaired in neonatal neutrophils and that this is due, in part, to reduced PPAR-gamma signaling. This may contribute to diseases associated with chronic inflammation in neonates.
Collapse
Affiliation(s)
- Barry Weinberger
- Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Brooks JD, Milne GL, Yin H, Sanchez SC, Porter NA, Morrow JD. Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid. J Biol Chem 2008; 283:12043-55. [PMID: 18263929 DOI: 10.1074/jbc.m800122200] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Omega-3 (omega-3) polyunsaturated fatty acids (PUFAs) found in marine fish oils are known to suppress inflammation associated with a wide variety of diseases. Eicosapentaenoic acid (EPA) is one of the most abundant omega-3 fatty acids in fish oil, but the mechanism(s) by which EPA exerts its beneficial effects is unknown. Recent studies, however, have demonstrated that oxidized EPA, rather than native EPA, possesses anti-atherosclerotic, anti-inflammatory, and anti-proliferative effects. Very few studies to date have investigated which EPA oxidation products are responsible for this bioactivity. Our research group has previously reported that anti-inflammatory prostaglandin A(2)-like and prostaglandin J(2)-like compounds, termed A(2)/J(2)-isoprostanes (IsoPs), are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid and represent one of the major products resulting from the oxidation of this PUFA. Based on these observations, we questioned whether cyclopentenone-IsoP compounds are formed from the oxidation of EPA in vivo. Herein, we report the formation of cyclopentenone-IsoP molecules, termed A(3)/J(3)-IsoPs, formed in abundance in vitro and in vivo from EPA peroxidation. Chemical approaches coupled with gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) were used to structurally characterize these compounds as A(3)/J(3)-IsoPs. We found that levels of these molecules increase approximately 200-fold with oxidation of EPA in vitro from a basal level of 0.8 +/- 0.4 ng/mg EPA to 196 +/- 23 ng/mg EPA after 36 h. We also detected these compounds in significant amounts in fresh liver tissue from EPA-fed rats at basal levels of 19 +/- 2 ng/g tissue. Amounts increased to 102 +/- 15 ng/g tissue in vivo in settings of oxidative stress. These studies have, for the first time, definitively characterized novel, highly reactive A/J-ring IsoP compounds that form in abundance from the oxidation of EPA in vivo.
Collapse
Affiliation(s)
- Joshua D Brooks
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
15
|
Riesselman M, Miettinen HM, Gripentrog JM, Lord CI, Mumey B, Dratz EA, Stie J, Taylor RM, Jesaitis AJ. C-Terminal Tail Phosphorylation of N-Formyl Peptide Receptor: Differential Recognition of Two Neutrophil Chemoattractant Receptors by Monoclonal Antibodies NFPR1 and NFPR2. THE JOURNAL OF IMMUNOLOGY 2007; 179:2520-31. [PMID: 17675514 DOI: 10.4049/jimmunol.179.4.2520] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The N-formyl peptide receptor (FPR), a G protein-coupled receptor that binds proinflammatory chemoattractant peptides, serves as a model receptor for leukocyte chemotaxis. Recombinant histidine-tagged FPR (rHis-FPR) was purified in lysophosphatidyl glycerol (LPG) by Ni(2+)-NTA agarose chromatography to >95% purity with high yield. MALDI-TOF mass analysis (>36% sequence coverage) and immunoblotting confirmed the identity as FPR. The rHis-FPR served as an immunogen for the production of 2 mAbs, NFPR1 and NFPR2, that epitope map to the FPR C-terminal tail sequences, 305-GQDFRERLI-313 and 337-NSTLPSAEVE-346, respectively. Both mAbs specifically immunoblotted rHis-FPR and recombinant FPR (rFPR) expressed in Chinese hamster ovary cells. NFPR1 also recognized recombinant FPRL1, specifically expressed in mouse L fibroblasts. In human neutrophil membranes, both Abs labeled a 45-75 kDa species (peak M(r) approximately 60 kDa) localized primarily in the plasma membrane with a minor component in the lactoferrin-enriched intracellular fractions, consistent with FPR size and localization. NFPR1 also recognized a band of M(r) approximately 40 kDa localized, in equal proportions to the plasma membrane and lactoferrin-enriched fractions, consistent with FPRL1 size and localization. Only NFPR2 was capable of immunoprecipitation of rFPR in detergent extracts. The recognition of rFPR by NFPR2 is lost after exposure of cellular rFPR to f-Met-Leu-Phe (fMLF) and regained after alkaline phosphatase treatment of rFPR-bearing membranes. In neutrophils, NFPR2 immunofluorescence was lost upon fMLF stimulation. Immunoblotting approximately 60 kDa species, after phosphatase treatment of fMLF-stimulated neutrophil membranes, was also enhanced. We conclude that the region 337-346 of FPR becomes phosphorylated after fMLF activation of rFPR-expressing Chinese hamster ovary cells and neutrophils.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- CHO Cells
- Cell Membrane/chemistry
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Chemotaxis/drug effects
- Chemotaxis/genetics
- Chemotaxis/immunology
- Chromatography, Affinity
- Cricetinae
- Cricetulus
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Gene Expression
- Humans
- Lactoferrin/chemistry
- Lactoferrin/genetics
- Lactoferrin/immunology
- Lactoferrin/metabolism
- Lysophospholipids/chemistry
- Mice
- Models, Immunological
- N-Formylmethionine Leucyl-Phenylalanine/analogs & derivatives
- N-Formylmethionine Leucyl-Phenylalanine/chemistry
- N-Formylmethionine Leucyl-Phenylalanine/immunology
- N-Formylmethionine Leucyl-Phenylalanine/metabolism
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Neutrophils/chemistry
- Neutrophils/immunology
- Neutrophils/metabolism
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/genetics
- Protein Processing, Post-Translational/immunology
- Protein Structure, Tertiary/genetics
- Receptors, Formyl Peptide/chemistry
- Receptors, Formyl Peptide/genetics
- Receptors, Formyl Peptide/immunology
- Receptors, Formyl Peptide/isolation & purification
- Receptors, Formyl Peptide/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spodoptera
Collapse
Affiliation(s)
- Marcia Riesselman
- Department of Microbiology, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hattermann K, Picard S, Borgeat M, Leclerc P, Pouliot M, Borgeat P. The Toll‐like receptor 7/8‐ligand resiquimod (R‐848) primes human neutrophils for leukotriene B4, prostaglandin E2and platelet‐activating factor biosynthesis. FASEB J 2007; 21:1575-85. [PMID: 17264163 DOI: 10.1096/fj.06-7457com] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLR) recognize pathogen-associated molecular patterns and play important roles in the innate immune system. While single-stranded viral RNA is the natural ligand of TLR7/TLR8, the imidazoquinoline resiquimod (R-848) is recognized as a potent synthetic agonist of TLR7/TLR8. We investigated the effects of TLR7/8 activation on lipid mediator production in polymorphonuclear leukocytes exposed to R-848. Although R-848 had minimal effects by itself, it strongly enhanced leukotriene B4 formation on subsequent stimulation by fMLP, platelet-activating factor, and the ionophore A23187. R-848 acted via TLR8 but not TLR7 as shown by the lack of effect of the TLR7-specific ligand imiquimod. Priming with R-848 also resulted in enhanced arachidonic acid release and platelet-activating factor formation following fMLP stimulation, as well as enhanced prostaglandin E2 synthesis following the addition of arachidonic acid. Western blot analysis demonstrated that R-848 induced the phosphorylation of the cytosolic phospholipase A2alpha, promoted 5-lipoxygenase translocation and potently stimulated the expression of the type 2 cyclooxygenase. Bafilomycin A1, an inhibitor of endosomal acidification, efficiently inhibited all R-848-induced effects. These studies demonstrate that TLR8 signaling strongly promotes inflammatory lipid mediator biosynthesis and provide novel insights on innate immune response to viral infections.
Collapse
Affiliation(s)
- Kim Hattermann
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Quebec Research Center and Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Neuroinflammation is a host defense mechanism associated with neutralization of an insult and restoration of normal structure and function of brain. Neuroinflammation is a hallmark of all major CNS diseases. The main mediators of neuroinflammation are microglial cells. These cells are activated during a CNS injury. Microglial cells initiate a rapid response that involves cell migration, proliferation, release of cytokines/chemokines and trophic and/or toxic effects. Cytokines/chemokines stimulate phospholipases A2 and cyclooxygenases. This results in breakdown of membrane glycerophospholipids with the release of arachidonic acid (AA) and docosahexaenoic acid (DHA). Oxidation of AA produces pro-inflammatory prostaglandins, leukotrienes, and thromboxanes. One of the lyso-glycerophospholipids, the other products of reactions catalyzed by phospholipase A2, is used for the synthesis of pro-inflammatory platelet-activating factor. These pro-inflammatory mediators intensify neuroinflammation. Lipoxin, an oxidized product of AA through 5-lipoxygenase, is involved in the resolution of inflammation and is anti-inflammatory. Docosahexaenoic acid is metabolized to resolvins and neuroprotectins. These lipid mediators inhibit the generation of prostaglandins, leukotrienes, and thromboxanes. Levels of prostaglandins, leukotrienes, and thromboxanes are markedly increased in acute neural trauma and neurodegenerative diseases. Docosahexaenoic acid and its lipid mediators prevent neuroinflammation by inhibiting transcription factor NFkappaB, preventing cytokine secretion, blocking the synthesis of prostaglandins, leukotrienes, and thromboxanes, and modulating leukocyte trafficking. Depending on its timing and magnitude in brain tissue, inflammation serves multiple purposes. It is involved in the protection of uninjured neurons and removal of degenerating neuronal debris and also in assisting repair and recovery processes. The dietary ratio of AA to DHA may affect neurodegeneration associated with acute neural trauma and neurodegenerative diseases. The dietary intake of docosahexaenoic acid offers the possibility of counter-balancing the harmful effects of high levels of AA-derived pro-inflammatory lipid mediators.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
18
|
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. ACTA ACUST UNITED AC 2006; 52:201-43. [PMID: 16647138 DOI: 10.1016/j.brainresrev.2006.02.002] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 01/01/2023]
Abstract
Three enzyme systems, cyclooxygenases that generate prostaglandins, lipoxygenases that form hydroxy derivatives and leukotrienes, and epoxygenases that give rise to epoxyeicosatrienoic products, metabolize arachidonic acid after its release from neural membrane phospholipids by the action of phospholipase A(2). Lysophospholipids, the other products of phospholipase A(2) reactions, are either reacylated or metabolized to platelet-activating factor. Under normal conditions, these metabolites play important roles in synaptic function, cerebral blood flow regulation, apoptosis, angiogenesis, and gene expression. Increased activities of cyclooxygenases, lipoxygenases, and epoxygenases under pathological situations such as ischemia, epilepsy, Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease produce neuroinflammation involving vasodilation and vasoconstriction, platelet aggregation, leukocyte chemotaxis and release of cytokines, and oxidative stress. These are closely associated with the neural cell injury which occurs in these neurological conditions. The metabolic products of docosahexaenoic acid, through these enzymes, generate a new class of lipid mediators, namely docosatrienes and resolvins. These metabolites antagonize the effect of metabolites derived from arachidonic acid. Recent studies provide insight into how these arachidonic acid metabolites interact with each other and other bioactive mediators such as platelet-activating factor, endocannabinoids, and docosatrienes under normal and pathological conditions. Here, we review present knowledge of the functions of cyclooxygenases, lipoxygenases, and epoxygenases in brain and their association with neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
19
|
Gao L, Yin H, Milne GL, Porter NA, Morrow JD. Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid. J Biol Chem 2006; 281:14092-9. [PMID: 16569632 DOI: 10.1074/jbc.m601035200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Eicosapentaenoic acid (EPA, C20:5, omega-3) is the most abundant polyunsaturated fatty acid (PUFA) in fish oil. Recent studies suggest that the beneficial effects of fish oil are due, in part, to the generation of various free radical-generated non-enzymatic bioactive oxidation products from omega-3 PUFAs, although the specific molecular species responsible for these effects have not been identified. Our research group has previously reported that pro-inflammatory prostaglandin F2-like compounds, termed F2-isoprostanes (IsoPs), are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid and represent one of the major products resulting from the oxidation of this PUFA. Based on these observations, we questioned whether F2-IsoP-like compounds (F3-IsoPs) are formed from the oxidation of EPA in vivo. Oxidation of EPA in vitro yielded a series of compounds that were structurally established to be F3-IsoPs using a number of chemical and mass spectrometric approaches. The amounts formed were extremely large (up to 8.7 + 1.0 microg/mg EPA) and greater than levels of F2-IsoPs generated from arachidonic acid. We then examined the formation of F3-IsoPs in vivo in mice. Levels of F3-IsoPs in tissues such as heart are virtually undetectable at baseline, but supplementation of animals with EPA markedly increases quantities up to 27.4 + 5.6 ng/g of heart. Interestingly, EPA supplementation also markedly reduced levels of pro-inflammatory arachidonate-derived F2-IsoPs by up to 64% (p < 0.05). Our studies provide the first evidence that identify F3-IsoPs as novel oxidation products of EPA that are generated in vivo. Further understanding of the biological consequences of F3-IsoP formation may provide valuable insights into the cardioprotective mechanism of EPA.
Collapse
Affiliation(s)
- Ling Gao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Endothelial cells are key regulators of the inflammatory response. Lining blood vessels, they provide in the steady state an antiinflammatory, anticoagulatory surface. However, in the case of injury or infection, endothelial cells control the adhesion and migration of inflammatory cells, as well as the exchange of fluid from the bloodstream into the damaged tissue. Thus, expression of endothelial adhesion molecules, cytokines, and changes in permeability need to be tightly regulated to allow for a controlled inflammatory response. Acute inflammation is characterized by tissue infiltration of neutrophils, followed by monocytes/macrophages. For successful tissue regeneration and healing, the acute inflammatory response needs to be actively shut down, a process called resolution of inflammation. Unsuccessful resolution may lead to excessive tissue damage and ultimately results in chronic, self-promoting inflammation. This review will summarize recent advances in the field of endothelial biology, which point to an active participation of the endothelial barrier in the resolving process.
Collapse
Affiliation(s)
- Alexandra Kadl
- Cardiovascular Research Center and Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
21
|
Meruvu S, Walther M, Ivanov I, Hammarström S, Fürstenberger G, Krieg P, Reddanna P, Kuhn H. Sequence determinants for the reaction specificity of murine (12R)-lipoxygenase: targeted substrate modification and site-directed mutagenesis. J Biol Chem 2005; 280:36633-41. [PMID: 16129665 DOI: 10.1074/jbc.m508260200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mammalian lipoxygenases (LOXs) are categorized with respect to their positional specificity of arachidonic acid oxygenation. Site-directed mutagenesis identified sequence determinants for the positional specificity of these enzymes, and a critical amino acid for the stereoselectivity was recently discovered. To search for sequence determinants of murine (12R)-LOX, we carried out multiple amino acid sequence alignments and found that Phe(390), Gly(441), Ala(455), and Val(631) align with previously identified positional determinants of S-LOX isoforms. Multiple site-directed mutagenesis studies on Phe(390) and Ala(455) did not induce specific alterations in the reaction specificity, but yielded enzyme species with reduced specific activities and stereo random product patterns. Mutation of Gly(441) to Ala, which caused drastic alterations in the reaction specificity of other LOX isoforms, failed to induce major alterations in the positional specificity of mouse (12R)-LOX, but markedly modified the enantioselectivity of the enzyme. When Val(631), which aligns with the positional determinant Ile(593) of rabbit 15-LOX, was mutated to a less space-filling residue (Ala or Gly), we obtained an enzyme species with augmented catalytic activity and specifically altered reaction characteristics (major formation of chiral (11R)-hydroxyeicosatetraenoic acid methyl ester). The importance of Val(631) for the stereo control of murine (12R)-LOX was confirmed with other substrates such as methyl linoleate and 20-hydroxyeicosatetraenoic acid methyl ester. These data identify Val(631) as the major sequence determinant for the specificity of murine (12R)-LOX. Furthermore, we conclude that substrate fatty acids may adopt different catalytically productive arrangements at the active site of murine (12R)-LOX and that each of these arrangements may lead to the formation of chiral oxygenation products.
Collapse
Affiliation(s)
- Sunitha Meruvu
- University Medicine Berlin Charité, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pinho V, Souza DG, Barsante MM, Hamer FP, De Freitas MS, Rossi AG, Teixeira MM. Phosphoinositide-3 kinases critically regulate the recruitment and survival of eosinophils in vivo: importance for the resolution of allergic inflammation. J Leukoc Biol 2005; 77:800-10. [PMID: 15860799 DOI: 10.1189/jlb.0704386] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The phosphatidylinositol-3 kinase (PI3K) family of signaling enzymes plays a crucial role in leukocyte recruitment and activation and hence, likely regulates the induction and propagation phases of inflammation. However, little data have emerged showing a role for these processes in the resolution phase in models of in vivo inflammation. Here, we have evaluated the role of PI3K for the migration and survival of eosinophils in a model of allergic pleurisy in mice. Eosinophil accumulation in PI3Kgamma-deficient mice was inhibited at 48 h, as compared with wild-type mice but not at earlier time-points (6 and 24 h). Experiments with adoptive transfer of bone marrow showed that PI3Kgamma in eosinophils but not in non-bone marrow-derived cells was required for their accumulation. Systemic treatment with PI3K inhibitors before antigen challenge prevented the recruitment of eosinophils. This was associated with decreased Akt phosphorylation, interleukin-5 production, and eosinophil release from the bone marrow. Treatment with PI3K inhibitors 24 h after antigen challenge markedly cleared the accumulated eosinophils, an effect associated with inhibition of Akt phosphorylation and an increased number of apoptotic events. Altogether, our data demonstrate an important role of PI3Kgamma for the maintenance of eosinophilic inflammation in vivo, whereas other isoforms of PI3K may be relevant for the recruitment process.
Collapse
Affiliation(s)
- Vanessa Pinho
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen Q, Wade D, Kurosaka K, Wang ZY, Oppenheim JJ, Yang D. Temporin A and related frog antimicrobial peptides use formyl peptide receptor-like 1 as a receptor to chemoattract phagocytes. THE JOURNAL OF IMMUNOLOGY 2004; 173:2652-9. [PMID: 15294982 DOI: 10.4049/jimmunol.173.4.2652] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many mammalian antimicrobial peptides (AMPs) have multiple effects on antimicrobial immunity. We found that temporin A (TA), a representative frog-derived AMP, induced the migration of human monocytes, neutrophils, and macrophages with a bell-shaped response curve in a pertussis toxin-sensitive manner, activated p44/42 MAPK, and stimulated Ca(2+) flux in monocytes, suggesting that TA is capable of chemoattracting phagocytic leukocytes by the use of a G(ialpha) protein-coupled receptor. TA-induced Ca(2+) flux in monocytes was cross-desensitized by an agonistic ligand MMK-1 specific for formyl peptide receptor-like 1 (FPRL1) and vice versa, suggesting that TA uses FPRL1 as a receptor. This conclusion was confirmed by data showing that TA selectively stimulated chemotaxis of HEK 293 cells transfected with human FPRL1 or its mouse ortholog, murine formyl peptide receptor 2. In addition, TA elicited the infiltration of neutrophils and monocytes into the injection site of mice, indicating that TA is also functionally chemotactic in vivo. Examination of two additional temporins revealed that Rana-6 was also able to attract human phagocytes using FPRL1, but temporin 1P selectively induced the migration of neutrophils using a distinct receptor. Comparison of the chemotactic and antimicrobial activities of several synthetic analogues suggested that these activities are likely to rely on different structural characteristics. Overall, the results demonstrate that certain frog-derived temporins have the capacity to chemoattract phagocytes by the use of human FPRL1 (or its orthologs in other species), providing the first evidence suggesting the potential participation of certain amphibian antimicrobial peptides in host antimicrobial immunity.
Collapse
Affiliation(s)
- Qian Chen
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
15-lipoxygenase-1 (also known as 12/15-LO in mice) and 5-LO/5-LO-activating protein (FLAP) cascades play central roles in low-density lipoprotein oxidation and leukotriene biosynthesis, respectively. Several genetic and expression studies unraveling an association of the 5-LO/FLAP pathway to human cardiovascular disease have surfaced recently. Experimental studies in 12/15-LO knockout, 15-LO-1 transgenic, and 5-LO knockout mice on atherosclerotic backgrounds combined with gene expression data in human coronary artery disease have created compelling links that these pathways participate in the etiologic progression. However, a few conflicting studies and several unexplained mechanistic issues need to be resolved prior to assigning firm roles for LOs in cardiovascular disease. Development of novel pharmacologic tools to dissect the individual enzymes and receptors in the LO pathways should improve understanding of the individual components in the inflammatory aspects of atherosclerosis disease progression.
Collapse
Affiliation(s)
- Lei Zhao
- Center for Experimental Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160, USA
| | | |
Collapse
|