1
|
Vanessa Becerra-Hernández L, Casanova MF, Buriticá E. Cortical calretinin-positive neurons: Functional and ontogenetic characteristics and their relationship to brain pathologies. Brain Res 2024; 1846:149285. [PMID: 39490954 DOI: 10.1016/j.brainres.2024.149285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/02/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Cortical GABAergic interneurons can be classified according to electrophysiological, biochemical, and/or morphological criteria. In humans, the use of calcium-binding proteins allows us to differentiate three subpopulations of GABAergic interneurons with minimal overlap. Cortical calretinin-positive neurons mainly include bipolar and double-bouquet morphologies, with a largely non-rapid and adaptive firing pattern, originating from the ganglionic eminence and the ventricular and subventricular regions of the developing brain. These cells are distributed from layer I to VI of the neocortex, with predominance in layers II and III. Given their morphology, distribution of processes, and elucidated synaptic contacts, these neurons are considered important in the control of intraminicolumnar processing through vertical inhibition. They have been extensively studied in the context of pathologies characterized by excitation/inhibition imbalance, such as Alzheimer's disease, epilepsy, traumatic brain injury, and autism. In light of the current evidence, this review considers these aspects in depth and discusses the pathophysiological role and selective vulnerability (pathoclisis) vs. the resistance that these interneurons can present against different types of injury.
Collapse
Affiliation(s)
- Lina Vanessa Becerra-Hernández
- Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia; Departamento de Ciencias Básicas de la Salud, Pontificia Universidad Javeriana, Cali, Colombia.
| | - Manuel F Casanova
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Efraín Buriticá
- Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia
| |
Collapse
|
2
|
Atapour N, Rosa MGP, Bai S, Bednarek S, Kulesza A, Saworska G, Teymornejad S, Worthy KH, Majka P. Distribution of calbindin-positive neurons across areas and layers of the marmoset cerebral cortex. PLoS Comput Biol 2024; 20:e1012428. [PMID: 39312590 PMCID: PMC11495585 DOI: 10.1371/journal.pcbi.1012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/22/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
The diversity of the mammalian cerebral cortex demands technical approaches to map the spatial distribution of neurons with different biochemical identities. This issue is magnified in the case of the primate cortex, characterized by a large number of areas with distinctive cytoarchitectures. To date, no full map of the distribution of cells expressing a specific protein has been reported for the cortex of any primate. Here we have charted the 3-dimensional distribution of neurons expressing the calcium-binding protein calbindin (CB+ neurons) across the entire marmoset cortex, using a combination of immunohistochemistry, automated cell identification, computerized reconstruction, and cytoarchitecture-aware registration. CB+ neurons formed a heterogeneous population, which together corresponded to 10-20% of the cortical neurons. They occurred in higher proportions in areas corresponding to low hierarchical levels of processing, such as sensory cortices. Although CB+ neurons were concentrated in the supragranular and granular layers, there were clear global trends in their laminar distribution. For example, their relative density in infragranular layers increased with hierarchical level along sensorimotor processing streams, and their density in layer 4 was lower in areas involved in sensorimotor integration, action planning and motor control. These results reveal new quantitative aspects of the cytoarchitectural organization of the primate cortex, and demonstrate an approach to mapping the full distribution of neurochemically distinct cells throughout the brain which is readily applicable to most other mammalian species.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Marcello G. P. Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Shi Bai
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kulesza
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Gabriela Saworska
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Sadaf Teymornejad
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Katrina H. Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Desantis S, Minervini S, Zallocco L, Cozzi B, Pirone A. Age-Related Changes in the Primary Motor Cortex of Newborn to Adult Domestic Pig Sus scrofa domesticus. Animals (Basel) 2021; 11:2019. [PMID: 34359147 PMCID: PMC8300406 DOI: 10.3390/ani11072019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The pig has been increasingly used as a suitable animal model in translational neuroscience. However, several features of the fast-growing, immediately motor-competent cerebral cortex of this species have been adequately described. This study analyzes the cytoarchitecture of the primary motor cortex (M1) of newborn, young and adult pigs (Sus scrofa domesticus). Moreover, we investigated the distribution of the neural cells expressing the calcium-binding proteins (CaBPs) (calretinin, CR; parvalbumin, PV) throughout M1. The primary motor cortex of newborn piglets was characterized by a dense neuronal arrangement that made the discrimination of the cell layers difficult, except for layer one. The absence of a clearly recognizable layer four, typical of the agranular cortex, was noted in young and adult pigs. The morphometric and immunohistochemical analyses revealed age-associated changes characterized by (1) thickness increase and neuronal density (number of cells/mm2 of M1) reduction during the first year of life; (2) morphological changes of CR-immunoreactive neurons in the first months of life; (3) higher density of CR- and PV-immunopositive neurons in newborns when compared to young and adult pigs. Since most of the present findings match with those of the human M1, this study strengthens the growing evidence that the brain of the pig can be used as a potentially valuable translational animal model during growth and development.
Collapse
Affiliation(s)
- Salvatore Desantis
- Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70010 Valenzano, Italy; (S.D.); (S.M.)
| | - Serena Minervini
- Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70010 Valenzano, Italy; (S.D.); (S.M.)
| | | | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy;
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
5
|
Fish KN, Rocco BR, DeDionisio AM, Dienel SJ, Sweet RA, Lewis DA. Altered Parvalbumin Basket Cell Terminals in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biol Psychiatry 2021; 90:47-57. [PMID: 33892915 PMCID: PMC8243491 DOI: 10.1016/j.biopsych.2021.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Visuospatial working memory (vsWM), which is commonly impaired in schizophrenia, involves information processing across the primary visual cortex, association visual cortex, posterior parietal cortex, and dorsolateral prefrontal cortex (DLPFC). Within these regions, vsWM requires inhibition from parvalbumin-expressing basket cells (PVBCs). Here, we analyzed indices of PVBC axon terminals across regions of the vsWM network in schizophrenia. METHODS For 20 matched pairs of subjects with schizophrenia and unaffected comparison subjects, tissue sections from the primary visual cortex, association visual cortex, posterior parietal cortex, and DLPFC were immunolabeled for PV, the 65- and 67-kDa isoforms of glutamic acid decarboxylase (GAD65 and GAD67) that synthesize GABA (gamma-aminobutyric acid), and the vesicular GABA transporter. The density of PVBC terminals and of protein levels per terminal was quantified in layer 3 of each cortical region using fluorescence confocal microscopy. RESULTS In comparison subjects, all measures, except for GAD65 levels, exhibited a caudal-to-rostral decline across the vsWM network. In subjects with schizophrenia, the density of detectable PVBC terminals was significantly lower in all regions except the DLPFC, whereas PVBC terminal levels of PV, GAD67, and GAD65 proteins were lower in all regions. A composite measure of inhibitory strength was lower in subjects with schizophrenia, although the magnitude of the diagnosis effect was greater in the primary visual, association visual, and posterior parietal cortices than in the DLPFC. CONCLUSIONS In schizophrenia, alterations in PVBC terminals across the vsWM network suggest the presence of a shared substrate for cortical dysfunction during vsWM tasks. However, regional differences in the magnitude of the disease effect on an index of PVBC inhibitory strength suggest region-specific alterations in information processing during vsWM tasks.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Brad R Rocco
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam M DeDionisio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel J Dienel
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Li S, Zhou X, Constantinidis C, Qi XL. Plasticity of Persistent Activity and Its Constraints. Front Neural Circuits 2020; 14:15. [PMID: 32528254 PMCID: PMC7247814 DOI: 10.3389/fncir.2020.00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Stimulus information is maintained in working memory by action potentials that persist after the stimulus is no longer physically present. The prefrontal cortex is a critical brain area that maintains such persistent activity due to an intrinsic network with unique synaptic connectivity, NMDA receptors, and interneuron types. Persistent activity can be highly plastic depending on task demands but it also appears in naïve subjects, not trained or required to perform a task at all. Here, we review what aspects of persistent activity remain constant and what factors can modify it, focusing primarily on neurophysiological results from non-human primate studies. Changes in persistent activity are constrained by anatomical location, with more ventral and more anterior prefrontal areas exhibiting the greatest capacity for plasticity, as opposed to posterior and dorsal areas, which change relatively little with training. Learning to perform a cognitive task for the first time, further practicing the task, and switching between learned tasks can modify persistent activity. The ability of the prefrontal cortex to generate persistent activity also depends on age, with changes noted between adolescence, adulthood, and old age. Mean firing rates, variability and correlation of persistent discharges, but also time-varying firing rate dynamics are altered by these factors. Plastic changes in the strength of intrinsic network connections can be revealed by the analysis of synchronous spiking between neurons. These results are essential for understanding how the prefrontal cortex mediates working memory and intelligent behavior.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xin Zhou
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Computer Science, Stanford University, Stanford, CA, United States
| | - Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xue-Lian Qi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
7
|
Elston GN, Fujita I. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat 2014; 8:78. [PMID: 25161611 PMCID: PMC4130200 DOI: 10.3389/fnana.2014.00078] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/22/2014] [Indexed: 01/12/2023] Open
Abstract
Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1) prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE) and granular prefrontal cortex (gPFC; Brodmann's area 12) grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the “use it or lose it” notion of synaptic reinforcement may speak to only part of the story, “use it but you still might lose it” may be just as prevalent in the cerebral cortex.
Collapse
Affiliation(s)
- Guy N Elston
- Centre for Cognitive Neuroscience Sunshine Coast, QLD, Australia
| | - Ichiro Fujita
- Graduate School of Frontier Biosciences and Center for Information and Neural Networks, Osaka University and National Institute of Communication Technology Suita, Japan
| |
Collapse
|
8
|
Time course of functional connectivity in primate dorsolateral prefrontal and posterior parietal cortex during working memory. PLoS One 2013; 8:e81601. [PMID: 24260582 PMCID: PMC3834341 DOI: 10.1371/journal.pone.0081601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 10/15/2013] [Indexed: 12/04/2022] Open
Abstract
The dorsolateral prefrontal and posterior parietal cortex play critical roles in mediating attention, working memory, and executive function. Despite proposed dynamic modulation of connectivity strength within each area according to task demands, scant empirical data exist about the time course of the strength of effective connectivity, particularly in tasks requiring information to be sustained in working memory. We investigated this question by performing time-resolved cross-correlation analysis for pairs of neurons recorded simultaneously at distances of 0.2–1.5 mm apart of each other while monkeys were engaged in working memory tasks. The strength of effective connectivity determined in this manner was higher throughout the trial in the posterior parietal cortex than the dorsolateral prefrontal cortex. Significantly higher levels of parietal effective connectivity were observed specifically during the delay period of the task. These differences could not be accounted for by differences in firing rate, or electrode distance in the samples recorded in the posterior parietal and prefrontal cortex. Differences were present when we restricted our analysis to only neurons with significant delay period activity and overlapping receptive fields. Our results indicate that dynamic changes in connectivity strength are present but area-specific intrinsic organization is the predominant factor that determines the strength of connections between neurons in each of the two areas.
Collapse
|
9
|
Young NA, Collins CE, Kaas JH. Cell and neuron densities in the primary motor cortex of primates. Front Neural Circuits 2013; 7:30. [PMID: 23450743 PMCID: PMC3583034 DOI: 10.3389/fncir.2013.00030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/08/2013] [Indexed: 01/13/2023] Open
Abstract
Cell and neuron densities vary across the cortical sheet in a predictable manner across different primate species (Collins et al., 2010b). Primary motor cortex, M1, is characterized by lower neuron densities relative to other cortical areas. M1 contains a motor representation map of contralateral body parts from tail to tongue in a mediolateral sequence. Different functional movement representations within M1 likely require specialized microcircuitry for control of different body parts, and these differences in circuitry may be reflected by variation in cell and neuron densities. Here we determined cell and neuron densities for multiple sub-regions of M1 in six primate species, using the semi-automated flow fractionator method. The results verify previous reports of lower overall neuron densities in M1 compared to other parts of cortex in the six primate species examined. The most lateral regions of M1 that correspond to face and hand movement representations, are more neuron dense relative to medial locations in M1, which suggests differences in cortical circuitry within movement zones.
Collapse
Affiliation(s)
- Nicole A Young
- Department of Psychology, Vanderbilt University Nashville, TN, USA
| | | | | |
Collapse
|
10
|
Ouda L, Syka J. Immunocytochemical profiles of inferior colliculus neurons in the rat and their changes with aging. Front Neural Circuits 2012; 6:68. [PMID: 23049499 PMCID: PMC3448074 DOI: 10.3389/fncir.2012.00068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/04/2012] [Indexed: 12/04/2022] Open
Abstract
The inferior colliculus (IC) plays a strategic role in the central auditory system in relaying and processing acoustical information, and therefore its age-related changes may significantly influence the quality of the auditory function. A very complex processing of acoustical stimuli occurs in the IC, as supported also by the fact that the rat IC contains more neurons than all other subcortical auditory structures combined. GABAergic neurons, which predominantly co-express parvalbumin (PV), are present in the central nucleus of the IC in large numbers and to a lesser extent in the dorsal and external/lateral cortices of the IC. On the other hand, calbindin (CB) and calretinin (CR) are prevalent in the dorsal and external cortices of the IC, with only a few positive neurons in the central nucleus. The relationship between CB and CR expression in the IC and any neurotransmitter system has not yet been well established, but the distribution and morphology of the immunoreactive neurons suggest that they are at least partially non-GABAergic cells. The expression of glutamate decarboxylase (GAD) (a key enzyme for GABA synthesis) and calcium binding proteins (CBPs) in the IC of rats undergoes pronounced changes with aging that involve mostly a decline in protein expression and a decline in the number of immunoreactive neurons. Similar age-related changes in GAD, CB, and CR expression are present in the IC of two rat strains with differently preserved inner ear function up to late senescence (Long-Evans and Fischer 344), which suggests that these changes do not depend exclusively on peripheral deafferentation but are, at least partially, of central origin. These changes may be associated with the age-related deterioration in the processing of the temporal parameters of acoustical stimuli, which is not correlated with hearing threshold shifts, and therefore may contribute to central presbycusis.
Collapse
Affiliation(s)
- Ladislav Ouda
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | | |
Collapse
|
11
|
Age-related changes in calbindin and calretinin immunoreactivity in the central auditory system of the rat. Exp Gerontol 2012; 47:497-506. [DOI: 10.1016/j.exger.2012.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/22/2012] [Accepted: 04/10/2012] [Indexed: 11/22/2022]
|
12
|
Katsuki F, Constantinidis C. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Front Integr Neurosci 2012; 6:17. [PMID: 22563310 PMCID: PMC3342558 DOI: 10.3389/fnint.2012.00017] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/16/2012] [Indexed: 11/24/2022] Open
Abstract
The dorsolateral prefrontal cortex (PFC) and posterior parietal cortex (PPC) are two parts of a broader brain network involved in the control of cognitive functions such as working-memory, spatial attention, and decision-making. The two areas share many functional properties and exhibit similar patterns of activation during the execution of mental operations. However, neurophysiological experiments in non-human primates have also documented subtle differences, revealing functional specialization within the fronto-parietal network. These differences include the ability of the PFC to influence memory performance, attention allocation, and motor responses to a greater extent, and to resist interference by distracting stimuli. In recent years, distinct cellular and anatomical differences have been identified, offering insights into how functional specialization is achieved. This article reviews the common functions and functional differences between the PFC and PPC, and their underlying mechanisms.
Collapse
Affiliation(s)
- Fumi Katsuki
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | | |
Collapse
|
13
|
Zhou X, Katsuki F, Qi XL, Constantinidis C. Neurons with inverted tuning during the delay periods of working memory tasks in the dorsal prefrontal and posterior parietal cortex. J Neurophysiol 2012; 108:31-8. [PMID: 22490554 DOI: 10.1152/jn.01151.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dorsolateral prefrontal and posterior parietal cortices are two interconnected brain areas that are coactivated in tasks involving functions such as spatial attention and working memory. The response properties of neurons in the two areas are in many respects indistinguishable, yet only prefrontal neurons are able to resist interference by distracting stimuli when subjects are required to remember an initial stimulus. Several mechanisms have been proposed that could account for this functional difference, including the existence of specialized interneuron types, specific to the prefrontal cortex. Although such neurons with inverted tuning during the delay period of a working memory task have been described in the prefrontal cortex, no comparative data exist from other cortical areas that would establish a unique prefrontal role. To test this hypothesis, we analyzed a large database of recordings obtained in the dorsolateral prefrontal and posterior parietal cortex of the same monkeys as they performed working memory tasks. We found that in the prefrontal cortex, neurons with inverted tuning were more numerous and manifested unique properties. Our results give credence to the idea that a division of labor exists between separate neuron types in the prefrontal cortex and that this represents a functional specialization that is not present in its cortical afferents.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
14
|
Wills S, Rossi CC, Bennett J, Martinez-Cerdeño V, Ashwood P, Amaral DG, Van de Water J. Further characterization of autoantibodies to GABAergic neurons in the central nervous system produced by a subset of children with autism. Mol Autism 2011; 2:5. [PMID: 21521495 PMCID: PMC3108923 DOI: 10.1186/2040-2392-2-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/26/2011] [Indexed: 11/10/2022] Open
Abstract
Background Autism is a neurodevelopmental disorder characterized by impairments in social interaction and deficits in verbal and nonverbal communication, together with the presence of repetitive behaviors or a limited repertoire of activities and interests. The causes of autism are currently unclear. In a previous study, we determined that 21% of children with autism have plasma autoantibodies that are immunoreactive with a population of neurons in the cerebellum that appear to be Golgi cells, which are GABAergic interneurons. Methods We have extended this analysis by examining plasma immunoreactivity in the remainder of the brain. To determine cell specificity, double-labeling studies that included one of the calcium-binding proteins that are commonly colocalized in GABAergic neurons (calbindin, parvalbumin or calretinin) were also carried out to determine which GABAergic neurons are immunoreactive. Coronal sections through the rostrocaudal extent of the macaque monkey brain were reacted with plasma from each of seven individuals with autism who had previously demonstrated positive Golgi cell staining, as well as six negative controls. In addition, brain sections from adult male mice were similarly examined. Results In each case, specific staining was observed for neurons that had the morphological appearance of interneurons. By double-labeling sections with plasma and with antibodies directed against γ-aminobutyric acid (GABA), we determined that all autoantibody-positive neurons were GABAergic. However, not all GABAergic neurons were autoantibody-positive. Calbindin was colabeled in several of the autoantibody-labeled cells, while parvalbumin colabeling was less frequently observed. Autoantibody-positive cells rarely expressed calretinin. Sections from the mouse brain processed similarly to the primate sections also demonstrated immunoreactivity to interneurons distributed throughout the neocortex and many subcortical regions. Some cell populations stained in the primate (such as the Golgi neurons in the cerebellum) were not as robustly immunoreactive in the mouse brain. Conclusions These results suggest that the earlier report of autoantibody immunoreactivity to specific cells in the cerebellum extend to other regions of the brain. Further, these findings confirm the autoantibody-targeted cells to be a subpopulation of GABAergic interneurons. The potential impact of these autoantibodies on GABAergic disruption with respect to the etiology of autism is discussed herein.
Collapse
Affiliation(s)
- Sharifia Wills
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510 GBSF, Davis, CA 95616, USA.,NIEHS Center for Children's Environmental Health, University of California, Davis, Davis, CA 95616, USA
| | - Christy C Rossi
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Veronica Martinez-Cerdeño
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA.,NIEHS Center for Children's Environmental Health, University of California, Davis, Davis, CA 95616, USA
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510 GBSF, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA.,NIEHS Center for Children's Environmental Health, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
15
|
Elston GN, Benavides-Piccione R, Elston A, Manger PR, DeFelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat 2011; 5:2. [PMID: 21347276 PMCID: PMC3039119 DOI: 10.3389/fnana.2011.00002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/11/2011] [Indexed: 11/16/2022] Open
Abstract
The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates.
Collapse
Affiliation(s)
- Guy N. Elston
- Centre for Cognitive NeuroscienceSunshine Coast, QLD, Australia
| | - Ruth Benavides-Piccione
- Laboratorio de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Instituto Cajal (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | | | - Paul R. Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| | - Javier DeFelipe
- Laboratorio de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Instituto Cajal (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
16
|
Inda MC, DeFelipe J, Munoz A. Morphology and Distribution of Chandelier Cell Axon Terminals in the Mouse Cerebral Cortex and Claustroamygdaloid Complex. Cereb Cortex 2008; 19:41-54. [DOI: 10.1093/cercor/bhn057] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Abstract
The neocortex is an ultracomplex, six-layered structure that develops from the dorsal palliai sector of the telencephalic hemispheres (Figs. 2.24, 2.25, 11.1). All mammals, including monotremes and marsupials, possess a neocortex, but in reptiles, i.e. the ancestors of mammals, only a three-layered neocortical primordium is present [509, 511]. The term neocortex refers to its late phylogenetic appearance, in comparison to the “palaeocortical” olfactory cortex and the “archicortical” hippocampal cortex, both of which are present in all amniotes [509].
Collapse
|
18
|
Belmalih A, Borra E, Contini M, Gerbella M, Rozzi S, Luppino G. A multiarchitectonic approach for the definition of functionally distinct areas and domains in the monkey frontal lobe. J Anat 2007; 211:199-211. [PMID: 17623035 PMCID: PMC2375766 DOI: 10.1111/j.1469-7580.2007.00775.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Over the last century, anatomical studies have shown that the cerebral cortex can be subdivided into structurally distinct regions, giving rise to a new branch of neuroanatomy: 'architectonics'. Since then, architectonics has been often accused of being overly subjective, and its validity for the definition of functionally different cortical fields has been seriously questioned. Since the late 1980s, however, the problem of localization has become particularly important in functional studies of the primate motor cortex, because of evidence that (1) the primate motor cortex is made up of a mosaic of functionally specialized areas and (2) the human motor cortex shares several general organizational principles with the monkey motor cortex. Studies of the macaque agranular frontal cortex that used a multimodal cyto-, myelo- and immuno-architectonic approach have shown that architectonic borders can be reliably and consistently defined across different individuals, even at a qualitative level of analysis. The validity of this approach has been confirmed by its ability to localize functionally distinct areas precisely and to predict the existence of new functional areas. After more than a century, architectonics as a discipline goes far beyond its original aim of generating cortical maps.
Collapse
Affiliation(s)
| | - Elena Borra
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di ParmaItaly
| | - Massimo Contini
- Dipartimento di Anatomia, Istologia e Medicina Legale, Sezione di Anatomia, Università degli studi di FirenzeItaly
| | - Marzio Gerbella
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di ParmaItaly
| | - Stefano Rozzi
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di ParmaItaly
| | - Giuseppe Luppino
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di ParmaItaly
| |
Collapse
|
19
|
Inda MC, Defelipe J, Muñoz A. The distribution of chandelier cell axon terminals that express the GABA plasma membrane transporter GAT-1 in the human neocortex. ACTA ACUST UNITED AC 2006; 17:2060-71. [PMID: 17099065 DOI: 10.1093/cercor/bhl114] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Chandelier cells represent a unique type of cortical GABAergic interneuron whose axon terminals (Ch-terminals) form synapses exclusively with the axon initial segments of pyramidal cells. In this study, we have used immunocytochemistry for the high-affinity plasma membrane transporter-1 (GAT-1) to analyze the distribution and density of Ch-terminals in various cytoarchitectonic and functional areas of the human neocortex. The lowest density of GAT-1-immuoreactive (-ir) Ch-terminals was detected in the primary and secondary visual (areas 17 and 18) and in the somatosensory areas (areas 3b and 1). In contrast, an intermediate density was observed in the motor area 4 and the associative frontolateral areas 45 and 46, whereas the associative frontolateral areas 9 and 10, frontal orbitary areas 11, 12, 13, 14, and 47, associative temporal areas 20, 21, 22, and 38, and cingulate areas 24 and 32 displayed the highest density of GAT-1-ir Ch-terminals. Despite these differences, the laminar distribution of GAT-1-ir Ch-terminals was similar in most cortical areas. Hence, the highest density of this transporter was observed in layer II, followed by layers III, V, VI, and IV. In most cortical areas, the density of GAT-1-ir Ch-terminals was positively correlated with the neuronal density, although a negative correlation was detected in layer III across all cortical areas. These results indicate that there are substantial differences in the distribution and density of GAT-1-ir Ch-terminals between areas and layers of the human neocortex. These differences might be related to the different functional attributes of the cortical regions examined.
Collapse
Affiliation(s)
- M C Inda
- Instituto Cajal, CSIC, 28002 Madrid, Spain
| | | | | |
Collapse
|
20
|
Halabisky B, Shen F, Huguenard JR, Prince DA. Electrophysiological Classification of Somatostatin-Positive Interneurons in Mouse Sensorimotor Cortex. J Neurophysiol 2006; 96:834-45. [PMID: 16707715 DOI: 10.1152/jn.01079.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Classification of inhibitory interneurons is critical in determining their role in normal information processing and pathophysiological conditions such as epilepsy. Classification schemes have relied on morphological, physiological, biochemical, and molecular criteria; and clear correlations have been demonstrated between firing patterns and cellular markers such as neuropeptides and calcium-binding proteins. This molecular diversity has allowed generation of transgenic mouse strains in which GFP expression is linked to the expression of one of these markers and presumably a single subtype of neuron. In the GIN mouse (E GFP-expressing Inhibitory Neurons), a subpopulation of somatostatin-containing interneurons in the hippocampus and neocortex is labeled with enhanced green fluorescent protein (EGFP). To optimize the use of the GIN mouse, it is critical to know whether the population of somatostatin–EGFP-expressing interneurons is homogeneous. We performed unsupervised cluster analysis on 46 EGFP-expressing interneurons, based on data obtained from whole cell patch-clamp recordings. Cells were classified according to a number of electrophysiological variables related to spontaneous excitatory postsynaptic currents (sEPSCs), firing behavior, and intrinsic membrane properties. EGFP-expressing interneurons were heterogeneous and at least four subgroups could be distinguished. In addition, multiple discriminant analysis was applied to data collected during whole cell recordings to develop an algorithm for predicting the group membership of newly encountered EGFP-expressing interneurons. Our data are consistent with a heterogeneous population of neurons based on electrophysiological properties and indicate that EGFP expression in the GIN mouse is not restricted to a single class of somatostatin-positive interneuron.
Collapse
Affiliation(s)
- Brian Halabisky
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | | | | | | |
Collapse
|
21
|
Yáñez IB, Muñoz A, Contreras J, Gonzalez J, Rodriguez-Veiga E, DeFelipe J. Double bouquet cell in the human cerebral cortex and a comparison with other mammals. J Comp Neurol 2005; 486:344-60. [PMID: 15846784 DOI: 10.1002/cne.20533] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Double bouquet cells (DBCs) are neocortical gamma-aminobutyric acid (GABA)ergic interneurons characterized by the vertical bundling of its axon, which are generally termed "bundles" or "horse-tails." Using immunocytochemistry for the calcium binding protein calbindin, we have analyzed the morphology, density, and distribution of DBC horse-tails in different cortical areas of the human cortex (Brodmann's areas 10, 4, 3b, 22, 18, and 17). Although DBC horse-tails were very numerous and regularly distributed in all cortical areas, variations were observed both in terms of morphology and density. We distinguished two major classes of DBC horse-tails: the thicker complex type (type I) that had more axon collaterals; and the simple type (type II). The density of DBC horse-tails was significantly higher in areas 17, 18, 22, and 4 than in areas 3b and 10. Moreover, the proportion of type I and type II DBC horse-tails varied in the cortical areas studied. We also examined the distribution of DBC horse-tails in frontal, parietal, and occipital areas of different mammalian species. We found DBCs to be present in carnivores but not in rodents, lagomorphs, or artiodactyls. In carnivores, relatively few DBC horse-tails can be identified and they were generally found in the occipital cortex. Therefore, there is significant variability in the morphology and distribution of DBC horse-tails in different species and cortical areas. We conclude that, although these interneurons may be an important element in the organization of cortical microcolumns in primates, this is not the case in other mammalian species.
Collapse
|
22
|
Desgent S, Boire D, Ptito M. Distribution of calcium binding proteins in visual and auditory cortices of hamsters. Exp Brain Res 2005; 163:159-72. [PMID: 15672239 DOI: 10.1007/s00221-004-2151-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2004] [Accepted: 10/14/2004] [Indexed: 12/19/2022]
Abstract
The morphology and distribution of neurons immunoreactive (ir) to parvalbumin (PV), calretinin (CR) and calbindin (CB) were studied in the primary visual (V1) and auditory (A1) cortices of hamsters. Cortical cell populations were labelled immunohistochemically using a glucose oxidase-diaminobenzidine-nickel combined revelation method. Quantitative analysis revealed significant differences between V1 and A1 in the density and distribution of their neuronal population. CBir cells exhibited several typologies in both cortical regions. Most cells were multipolar even though many of them had bitufted or bipolar morphologies. These cells were distributed in layers II/III and in layer V of both A1 and V1, but were more numerous in layer V of V1. CRir cells were of the fusiform type with long bipolar dendritic arbours. These were similarly distributed in both cortices with a peak in superficial layers II/III. PVir cells were also found in both cortices and had round or oval-shaped somata with multipolar processes. They were mostly located in layer V for V1 and in layers III/IV for A1. Visual and auditory primary cortices can thus be differentiated on the basis of their immunoreactivity to specific calcium binding proteins.
Collapse
Affiliation(s)
- Sébastien Desgent
- School of Optometry, University of Montreal, CP6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7, Canada
| | | | | |
Collapse
|
23
|
Barbas H, Medalla M, Alade O, Suski J, Zikopoulos B, Lera P. Relationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey. ACTA ACUST UNITED AC 2005; 15:1356-70. [PMID: 15635060 DOI: 10.1093/cercor/bhi018] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The prefrontal cortex selects relevant signals and suppresses irrelevant signals in behavior, as exemplified by its functional interaction with superior temporal cortices. We addressed the structural basis of this process by investigating quantitatively the relationship of prefrontal pathways to inhibitory interneurons in superior temporal cortices. Pathways were labeled with neural tracers, and two neurochemical classes of inhibitory interneurons were labeled with parvalbumin (PV) and calbindin (CB), which differ in mode of inhibitory control. Both markers varied significantly and systematically across superior temporal areas. Calbindin neurons were more prevalent than PV neurons, with the highest densities found in posterior high-order auditory association cortices. Axons from anterior lateral, medial prefrontal and orbitofrontal areas terminated in the anterior half of the superior temporal gyrus, targeting mostly the superficial layers (I to upper III), where CB neurons predominated. Reciprocal projection neurons were intermingled with PV neurons, and emanated mostly from the deep part of layer III and to a lesser extent from layers V-VI, in proportions matching the laminar density of inhibitory interneurons. In marked contrast, prefrontal connections in temporal polar cortex were found mostly in the deep layers, showing mismatch with the predominant upper laminar distribution of interneurons. Differences in the relationship of connections to inhibitory neurons probably affect the dynamics in distinct superior temporal cortices. These findings may help explain the reduced efficacy of inhibitory control in superior temporal areas after prefrontal cortical damage.
Collapse
Affiliation(s)
- H Barbas
- Department of Health Sciences, Boston University, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Eagleson KL, Bonnin A, Levitt P. Region- and age-specific deficits in γ-aminobutyric acidergic neuron development in the telencephalon of theuPAR-/- mouse. J Comp Neurol 2005; 489:449-66. [PMID: 16025458 DOI: 10.1002/cne.20647] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have previously shown that in adult mice with a null mutation in the urokinase-type plasminogen activator receptor (uPAR) gene, maintained on a C57BL/6J/129Sv background, there is a selective loss of GABAergic interneurons in anterior cingulate and parietal cortex, with the parvalbumin-expressing subpopulation preferentially affected. Here, we performed a more detailed anatomical analysis of uPAR(-/-) mutation on the congenic C57BL/6J background. With glutamic acid decarboxylase-67 and gamma-aminobutyric acid (GABA) immunostaining, there is a similar region-selective loss of cortical interneurons in the congenic uPAR(-/-) mice from the earliest age examined (P21). In contrast, the loss of parvalbumin-immunoreactive cells is observed only in adult cortex, and the extent of this loss is less than in the mixed background. Moreover, earlier in development, although there are normal numbers of parvalbumin cells in the uPAR(-/-) cortex, fewer cells coexpress GABA, suggesting that the parvalbumin subpopulation migrates appropriately to the cortex, but does not differentiate normally. Among the other forebrain regions examined, only the adult hippocampus shows a loss of GABAergic interneurons, although the somatostatin, rather than the parvalbumin, subpopulation contributes to this loss. The data suggest that uPAR function is necessary for the normal development of a subpopulation of GABAergic neurons in the telencephalon. It is likely that the late-onset parvalbumin phenotype is due to the effects of an altered local environment on selectively vulnerable neurons and that the extent of this loss is strain dependent. Thus, an interplay between complex genetic factors and the environment may influence the phenotypic impact of the uPAR mutation both pre- and postnatally.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Vanderbilt Kennedy Center for Research on Human Development; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
25
|
Wang XJ, Tegnér J, Constantinidis C, Goldman-Rakic PS. Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc Natl Acad Sci U S A 2004; 101:1368-73. [PMID: 14742867 PMCID: PMC337059 DOI: 10.1073/pnas.0305337101] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Indexed: 11/18/2022] Open
Abstract
A conspicuous feature of cortical organization is the wide diversity of inhibitory interneurons; their differential computational functions remain unclear. Here we propose a local cortical circuit in which three major subtypes of interneurons play distinct roles. In a model designed for spatial working memory, stimulus tuning of persistent activity arises from the concerted action of widespread inhibition mediated by perisoma-targeting (parvalbumin-containing) interneurons and localized disinhibition of pyramidal cells via interneuron-targeting (calretinin-containing) interneurons. Moreover, resistance against distracting stimuli (a fundamental property of working memory) is dynamically controlled by dendrite-targeting (calbindin-containing) interneurons. The experimental observation of inverted tuning curves of monkey prefrontal neurons recorded during working memory supports a key model prediction. This work suggests a framework for understanding the division of labor and cooperation among different inhibitory cell types in a recurrent cortical circuit.
Collapse
Affiliation(s)
- X-J Wang
- Center for Complex Systems, Brandeis University, Waltham, MA 02254, USA.
| | | | | | | |
Collapse
|