1
|
Rajankunte Mahadeshwara M, Al-Jawad M, Hall RM, Pandit H, El-Gendy R, Bryant M. How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering (Basel) 2024; 11:541. [PMID: 38927777 PMCID: PMC11200606 DOI: 10.3390/bioengineering11060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage degeneration is a characteristic of osteoarthritis (OA), which is often observed in aging populations. This degeneration is due to the breakdown of articular cartilage (AC) mechanical and tribological properties primarily attributed to lubrication failure. Understanding the reasons behind these failures and identifying potential solutions could have significant economic and societal implications, ultimately enhancing quality of life. This review provides an overview of developments in the field of AC, focusing on its mechanical and tribological properties. The emphasis is on the role of lubrication in degraded AC, offering insights into its structure and function relationship. Further, it explores the fundamental connection between AC mechano-tribological properties and the advancement of its degradation and puts forth recommendations for strategies to boost its lubrication efficiency.
Collapse
Affiliation(s)
- Manoj Rajankunte Mahadeshwara
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Maisoon Al-Jawad
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Richard M. Hall
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Chapel Allerton Hospital, Leeds LS7 4SA, UK;
| | - Reem El-Gendy
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 3, Ismailia Governorate 8366004, Egypt
| | - Michael Bryant
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
2
|
Hower CC, Minaev AA, Amundson LA, Crenshaw TD, Henak CR. Effect of mineral diets on the development of cartilage material properties. J Biomech 2023; 157:111708. [PMID: 37423118 DOI: 10.1016/j.jbiomech.2023.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Vitamin D and minerals, including zinc (Zn) and manganese (Mn), are vital in the development of bones, but their roles in the development of articular cartilage material behavior are not well understood. In this study, articular cartilage material properties from a hypovitaminosis D porcine model were evaluated. Pigs were produced by sows fed vitamin D deficient diets during gestation and lactation, and the offspring were subsequently fed vitamin D deficient diets for 3 weeks during the nursery period. Pigs were then assigned to dietary treatment groups with inorganic minerals only or inorganic plus organic (chelated) minerals. Humeral heads were harvested from pigs at 24 weeks of age. Linear elastic modulus and dissipated energy were measured under compression to 15% engineering strain at 1 Hz. Anatomical location within the humeral head affected elastic modulus. Diet significantly affected linear modulus and dissipated energy. The largest modulus and highest energy dissipation was in the inorganic zinc and manganese group; the lowest modulus and the least energy dissipation was in the organic (chelated) zinc and manganese group. Pairwise results between the control group and all vitamin D deficient groups were not statistically significant. Overall, these results suggest that mineral availability during rapid growth subsequent to a vitamin-D deficiency during gestation and lactation had minimal effects on articular cartilage material properties in young growing pigs. Though not statistically significant, some of the numerical differences between mineral sources suggest the potential importance of mineral availability during cartilage formation and warrant further study.
Collapse
Affiliation(s)
- Charles C Hower
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexey A Minaev
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura A Amundson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States; Research and Discovery, Zinpro Corporation, Eden Prairie, MN, United States
| | - Thomas D Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Corinne R Henak
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
3
|
Ojanen SP, Finnilä MAJ, Herzog W, Saarakkala S, Korhonen RK, Rieppo L. Micro-computed Tomography-Based Collagen Orientation and Anisotropy Analysis of Rabbit Articular Cartilage. Ann Biomed Eng 2023:10.1007/s10439-023-03183-4. [PMID: 37005948 DOI: 10.1007/s10439-023-03183-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
The collagen network is the highly organized backbone of articular cartilage providing tissue tensile stiffness and restricting proteoglycan bleaching out of the tissue. Osteoarthritis (OA) diminishes proper collagen network adaptation. Our aim was to provide quantitative three-dimensional (3D) information of the cartilage collagen network adaptation in early osteoarthritis using high resolution micro-computed tomography (µCT)-imaging. Osteochondral samples from the femoral condyles were collected from healthy (N = 8, both legs) and experimental OA rabbit model with anterior cruciate ligament transection (N = 14, single leg). Samples were processed for cartilage µCT-imaging and histological evaluation with polarized light microscopy (PLM). Structure tensor analysis was used to analyse the collagen fibre orientation and anisotropy of the µCT-images, and PLM was used as a validation for structural changes. Depth-wise comparison of collagen fibre orientation acquired with µCT-imaging and PLM correlated well, but the values obtained with PLM were systematically greater than those measured with µCT-imaging. Structure tensor analysis allowed for 3D quantification of collagen network anisotropy. Finally, µCT-imaging revealed only minor differences between the control and experimental groups.
Collapse
Affiliation(s)
- Simo P Ojanen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland.
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
| | - Mikko A J Finnilä
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Simo Saarakkala
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Lassi Rieppo
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Ebrahimi M, Turkiewicz A, Finnilä MAJ, Saarakkala S, Englund M, Korhonen RK, Tanska P. Associations of human femoral condyle cartilage structure and composition with viscoelastic and constituent-specific material properties at different stages of osteoarthritis. J Biomech 2022; 145:111390. [PMID: 36442429 DOI: 10.1016/j.jbiomech.2022.111390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
The relationships between structure and function in human knee femoral cartilage are not well-known at different stages of osteoarthritis. Thus, our aim was to characterize the depth-dependent composition and structure (proteoglycan content, collagen network organization and collagen content) of normal and osteoarthritic human femoral condyle cartilage (n = 47) and relate them to their viscoelastic and constituent-specific mechanical properties that are obtained through dynamic sinusoidal testing and fibril-reinforced poroelastic material modeling of stress-relaxation testing, respectively. We characterized the proteoglycan content using digital densitometry, collagen network organization (orientation angle and anisotropy) using polarized light microscopy and collagen content using Fourier transform infrared spectroscopy. In the superficial cartilage (0-10 % of thickness), the collagen network disorganization and proteoglycan loss were associated with the smaller initial fibril network modulus - a parameter representing the pretension of the collagen network. Furthermore, the proteoglycan loss was associated with the greater strain-dependent fibril network modulus - a measure of nonlinear mechanical behavior. The proteoglycan loss was also associated with greater cartilage viscosity at a low loading frequency (0.005 Hz), while the collagen network disorganization was associated with greater cartilage viscosity at a high loading frequency (1 Hz). Our results suggest that proteoglycan loss and collagen network disorganization reduce the pretension of the collagen network while proteoglycan degradation also increases the nonlinear mechanical behavior of the collagen network. Further, the results also highlight that proteoglycan loss and collagen disorganization increase the viscosity of femoral cartilage, but their contribution to increased viscosity occurs in completely different loading frequencies.
Collapse
Affiliation(s)
- Mohammadhossein Ebrahimi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Aleksandra Turkiewicz
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund University, Lund, Sweden
| | - Mikko A J Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Martin Englund
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund University, Lund, Sweden
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
5
|
Jiang S, Zhang C, Lu Y, Yuan F. The molecular mechanism research of cartilage calcification induced by osteoarthritis. Bioengineered 2022; 13:13082-13088. [PMID: 35611765 PMCID: PMC9276012 DOI: 10.1080/21655979.2022.2078025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To explore the molecular mechanism of cartilage calcification induced by osteoarthritis (OA) based on distal-less homeobox gene 5 – alkaline phosphatase – integrin-binding sialoprotein – ecto-nucleotide pyrophosphatase 1 (DLX5-ALPL-IBSP-ENPP1) signal axis. Twenty-four rabbits were selected to build models of cartilage calcification induced by OA and randomly divided into 3 groups. The first group was the normal group whose rabbits were injected into 0.9% saline (0.3 mL), and the second group was model group. The third group was model group whose rabbits were injected into DLX5 antibody by caudal vein. Alizarin red calcium staining was used to analyze calcium deposition of cartilage matrix. Immunohistochemical staining was used to analyze the relative expression levels of proteins DLX5 and ENPP1, and western blot was used to analyze the DLX5, ALPL, IBSP, and ENPP1 expression. Calcium salt precipitation was the most serious, and the calcification area increased in the model group. Although calcified nodules appeared in the anti-DLX5 group, they were relatively few. Immunohistochemical staining analysis showed that the protein DLX5 located in the nucleus and the protein ENPP1 located in the extracellular matrix. Western blot analysis showed that the expressions of proteins DLX5, ALPL, IBSP, and ENPP1 were the highest in OA Model group than that of NC group, followed by anti-DLX5 group. The proteins DLX5, ALPL, IBSP, and ENPP1 can promote cartilage calcification induced by OA based on DLX5-ALPL-IBSP-ENPP1 signal axis.
Collapse
Affiliation(s)
- Shilin Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chengyuan Zhang
- Department of Orthopedics Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ye Lu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Yuan
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
6
|
Wan L, Cheng X, Searleman AC, Ma YJ, Wong JH, Meyer RS, Du J, Tang G, Chang EY. Evaluation of enzymatic proteoglycan loss and collagen degradation in human articular cartilage using ultrashort echo time-based biomarkers: A feasibility study. NMR IN BIOMEDICINE 2022; 35:e4664. [PMID: 34904305 PMCID: PMC9042587 DOI: 10.1002/nbm.4664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 05/02/2023]
Abstract
The objective of the current study was to investigate the feasibility of quantitative 3D ultrashort echo time (UTE)-based biomarkers in detecting proteoglycan (PG) loss and collagen degradation in human cartilage. A total of 104 cartilage samples were harvested for a trypsin digestion study (n = 44), and a sequential trypsin and collagenase digestion study (n = 60), respectively. Forty-four cartilage samples were randomly divided into a trypsin digestion group (tryp group) and a control group (phosphate-buffered saline [PBS] group) (n = 22 for each group) for the trypsin digestion experiment. The remaining 60 cartilage samples were divided equally into four groups (n = 15 for each group) for sequential trypsin and collagenase digestion, including PBS + Tris (incubated in PBS, then Tris buffer solution), PBS + 30 U col (incubated in PBS, then 30 U/ml collagenase [30 U col] with Tris buffer solution), tryp + 30 U col (incubated in trypsin solution, then 30 U/ml collagenase with Tris buffer solution), and tryp + Tris (incubated in trypsin solution, then Tris buffer solution). The 3D UTE-based MRI biomarkers included T1 , multiecho T2 *, adiabatic T1ρ (AdiabT1ρ ), magnetization transfer ratio (MTR), and modeling of macromolecular proton fraction (MMF). For each cartilage sample, UTE-based biomarkers (T1 , T2 *, AdiabT1ρ , MTR, and MMF) and sample weight were evaluated before and after treatment. PG and hydroxyproline assays were performed. Differences between groups and correlations were assessed. All the evaluated biomarkers were able to differentiate between healthy and degenerated cartilage in the trypsin digestion experiment, but only T1 and AdiabT1ρ were significantly correlated with the PG concentration in the digestion solution (p = 0.004 and p = 0.0001, respectively). In the sequential digestion experiment, no significant differences were found for T1 and AdiabT1ρ values between the PBS + Tris and PBS + 30 U col groups (p = 0.627 and p = 0.877, respectively), but T1 and AdiabT1ρ values increased significantly in the tryp + Tris (p = 0.031 and p = 0.024, respectively) and tryp + 30 U col groups (both p < 0.0001). Significant decreases in MMF and MTR were found in the tryp + 30 U col group compared with the PBS + Tris group (p = 0.002 and p = 0.001, respectively). It was concluded that AdiabT1ρ and T1 have the potential for detecting PG loss, while MMF and MTR are promising for the detection of collagen degradation in articular cartilage, which could facilitate earlier, noninvasive diagnosis of osteoarthritis.
Collapse
Affiliation(s)
- Lidi Wan
- Department of Radiology, University of California, San Diego, CA
- Department of Radiology, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xin Cheng
- Department of Radiology, University of California, San Diego, CA
- Division of Histology and Embryology, Jinan University, Guangzhou, China
| | | | - Ya-Jun Ma
- Department of Radiology, University of California, San Diego, CA
| | - Jonathan H. Wong
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA
| | - R. Scott Meyer
- Orthopaedic Surgery Service, VA San Diego Healthcare System, San Diego, CA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA
| | - Guangyu Tang
- Department of Radiology, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
7
|
Wyse Jackson T, Michel J, Lwin P, Fortier LA, Das M, Bonassar LJ, Cohen I. Structural origins of cartilage shear mechanics. SCIENCE ADVANCES 2022; 8:eabk2805. [PMID: 35148179 PMCID: PMC8836800 DOI: 10.1126/sciadv.abk2805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Articular cartilage is a remarkable material able to sustain millions of loading cycles over decades of use outperforming any synthetic substitute. Crucially, how extracellular matrix constituents alter mechanical performance, particularly in shear, remains poorly understood. Here, we present experiments and theory in support of a rigidity percolation framework that quantitatively describes the structural origins of cartilage's shear properties and how they arise from the mechanical interdependence of the collagen and aggrecan networks making up its extracellular matrix. This framework explains that near the cartilage surface, where the collagen network is sparse and close to the rigidity threshold, slight changes in either collagen or aggrecan concentrations, common in early stages of cartilage disease, create a marked weakening in modulus that can lead to tissue collapse. More broadly, this framework provides a map for understanding how changes in composition throughout the tissue alter its shear properties and ultimate in vivo function.
Collapse
Affiliation(s)
- Thomas Wyse Jackson
- Department of Physics, Cornell University, Ithaca, NY, USA
- Corresponding author. (T.W.J.); (I.C.)
| | - Jonathan Michel
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Pancy Lwin
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Moumita Das
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, USA
- Corresponding author. (T.W.J.); (I.C.)
| |
Collapse
|
8
|
Jambor AN, Shelton EM, Kijowski R, Henak CR, Campagnola PJ. Assessing collagen alterations in enzymatic degradation models of osteoarthritis via second harmonic generation microscopy. Osteoarthritis Cartilage 2021; 29:1590-1599. [PMID: 34454101 PMCID: PMC8542598 DOI: 10.1016/j.joca.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Structural changes in the collagen II architecture of osteoarthritis (OA) are poorly understood, which is a large shortcoming in the early diagnosis of this disease. Though degradation can be simulated by enzymes including trypsin and bacterial collagenase, the specific structural features of each digestion and their relationship to naturally occurring OA remain unclear. EXPERIMENTAL DESIGN We used collagen sensitive/specific Second Harmonic Generation (SHG) microscopy in conjunction with optical scattering measurements to probe the resulting architecture changes in bovine knee cartilage upon trypsin and collagenase degradation. Image features extracted from SHG images were used to train a linear discriminant (LD) model capable of classifying enzymatic degradation, which was then applied to human cartilage with varied modified Mankin histological scores. RESULTS The treatment of cartilage with these enzymes resulted in more disorganized collagen structure, where this effect was greatest with collagenase treatment. Using the LD model, we classified the control and degraded tissues in the three zones with >92% accuracy, showing that these enzymes have distinct activity on the collagen assembly. Application of the LD model to human cartilage indicated that collagenase effects were more representative of in vivo degeneration and were also consistent with damage beginning at the articular surface and progressing into deeper zones. CONCLUSIONS SHG and optical scattering measurements successfully delineate trypsin and collagenase degradation and suggest that collagen alterations in human OA are better simulated by the latter mechanism. These results lay the groundwork for using high-resolution SHG and optical scattering as an earlier diagnostic tool than is currently available.
Collapse
Affiliation(s)
- Alexander N. Jambor
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Emily M. Shelton
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Dr, Madison, WI 53706, USA,Department of Physics, University of Wisconsin-Madison, 1150 University Ave, Madison, WI 53706, USA
| | - Richard Kijowski
- Department of Radiology, 600 Highland Ave, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Corinne R. Henak
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Dr, Madison, WI 53706, USA,Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave, Madison, WI 53706, USA,,
| | - Paul J. Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Dr, Madison, WI 53706, USA,,
| |
Collapse
|
9
|
Bhattarai A, Mäkelä JTA, Pouran B, Kröger H, Weinans H, Grinstaff MW, Töyräs J, Turunen MJ. Effects of human articular cartilage constituents on simultaneous diffusion of cationic and nonionic contrast agents. J Orthop Res 2021; 39:771-779. [PMID: 32767676 PMCID: PMC8048551 DOI: 10.1002/jor.24824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 02/04/2023]
Abstract
Contrast-enhanced computed tomography is an emerging diagnostic technique for osteoarthritis. However, the effects of increased water content, as well as decreased collagen and proteoglycan concentrations due to cartilage degeneration, on the diffusion of cationic and nonionic agents, are not fully understood. We hypothesize that for a cationic agent, these variations increase the diffusion rate while decreasing partition, whereas, for a nonionic agent, these changes increase both the rate of diffusion and partition. Thus, we examine the diffusion of cationic and nonionic contrast agents within degraded tissue in time- and depth-dependent manners. Osteochondral plugs (N = 15, d = 8 mm) were extracted from human cadaver knee joints, immersed in a mixture of cationic CA4+ and nonionic gadoteridol contrast agents, and imaged at multiple time-points, using the dual-contrast method. Water content, and collagen and proteoglycan concentrations were determined using lyophilization, infrared spectroscopy, and digital densitometry, respectively. Superficial to mid (0%-60% depth) cartilage CA4+ partitions correlated with water content (R < -0.521, P < .05), whereas in deeper (40%-100%) cartilage, CA4+ correlated only with proteoglycans (R > 0.671, P < .01). Gadoteridol partition correlated inversely with collagen concentration (0%-100%, R < -0.514, P < .05). Cartilage degeneration substantially increased the time for CA4+ compared with healthy tissue (248 ± 171 vs 175 ± 95 minute) to reach the bone-cartilage interface, whereas for gadoteridol the time (111 ± 63 vs 179 ± 163 minute) decreased. The work clarifies the diffusion mechanisms of two different contrast agents and presents depth and time-dependent effects resulting from articular cartilage constituents. The results will inform the development of new contrast agents and optimal timing between agent administration and joint imaging.
Collapse
Affiliation(s)
- Abhisek Bhattarai
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | | | - Behdad Pouran
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Heikki Kröger
- Department of Orthopedics, Traumatology and Hand SurgeryKuopio University HospitalKuopioFinland
| | - Harrie Weinans
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials EngineeringDelft University of Technology (TU Delft)DelftThe Netherlands
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and MedicineBoston UniversityBostonMassachusetts
| | - Juha Töyräs
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| | - Mikael J. Turunen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- SIB LabsUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
10
|
Matheson AR, Sheehy EJ, Jay GD, Scott WM, O'Brien FJ, Schmidt TA. The role of synovial fluid constituents in the lubrication of collagen-glycosaminoglycan scaffolds for cartilage repair. J Mech Behav Biomed Mater 2021; 118:104445. [PMID: 33740688 DOI: 10.1016/j.jmbbm.2021.104445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022]
Abstract
Extracellular matrix (ECM)-derived scaffolds have shown promise as tissue-engineered grafts for promoting cartilage repair. However, there has been a lack of focus on fine-tuning the frictional properties of scaffolds for cartilage tissue engineering as well as understanding their interactions with synovial fluid constituents. Proteoglycan-4 (PRG4) and hyaluronan (HA) are macromolecules within synovial fluid that play key roles as boundary mode lubricants during cartilage surface interactions. The overall objective of this study was to characterize the role PRG4 and HA play in the lubricating function of collagen-glycosaminoglycan (GAG) scaffolds for cartilage repair. As a first step towards this goal, we aimed to develop a suitable in vitro friction test to establish the boundary mode lubrication parameters for collagen-GAG scaffolds articulated against glass in a phosphate buffered saline (PBS) bath. Subsequently, we sought to leverage this system to determine the effect of physiological synovial fluid lubricants, PRG4 and HA, on the frictional properties of collagen-GAG scaffolds, with scaffolds hydrated in PBS and bovine synovial fluid (bSF) serving as negative and positive controls, respectively. At all compressive strains examined (ε = 0.1-0.5), fluid depressurization within hydrated collagen-GAG scaffolds was >99% complete at ½ minute. The coefficient of friction was stable at all compressive strains (ranging from a low 0.103 ± 0.010 at ε = 0.3 up to 0.121 ± 0.015 at ε = 0.4) and indicative of boundary-mode conditions. Immunohistochemistry demonstrated that PRG4 from recombinant human (rh) and bovine sources adsorbed to collagen-GAG scaffolds and the coefficient of friction for scaffolds immersed in rhPRG4 (0.067 ± 0.027) and normal bSF (0.056 ± 0.020) solution decreased compared to PBS (0.118 ± 0.21, both p < 0.05, at ε = 0.2). The ability of the adsorbed rhPRG4 to reduce friction on the scaffolds indicates that its incorporation within collagen-GAG biomaterials may enhance their lubricating ability as potential tissue-engineered cartilage replacements. To conclude, this study reports the development of an in vitro friction test capable of characterizing the coefficient of friction of ECM-derived scaffolds tested in a range of synovial fluid lubricants and demonstrates frictional properties as a potential design parameter for implants and materials for soft tissue replacement.
Collapse
Affiliation(s)
- Austyn R Matheson
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Eamon J Sheehy
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, USA
| | - W Michael Scott
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
11
|
Bielajew BJ, Hu JC, Athanasiou KA. Collagen: quantification, biomechanics, and role of minor subtypes in cartilage. NATURE REVIEWS. MATERIALS 2020; 5:730-747. [PMID: 33996147 PMCID: PMC8114887 DOI: 10.1038/s41578-020-0213-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 05/02/2023]
Abstract
Collagen is a ubiquitous biomaterial in vertebrate animals. Although each of its 28 subtypes contributes to the functions of many different tissues in the body, most studies on collagen or collagenous tissues have focussed on only one or two subtypes. With recent developments in analytical chemistry, especially mass spectrometry, significant advances have been made toward quantifying the different collagen subtypes in various tissues; however, high-throughput and low-cost methods for collagen subtype quantification do not yet exist. In this Review, we introduce the roles of collagen subtypes and crosslinks, and describe modern assays that enable a deep understanding of tissue physiology and disease states. Using cartilage as a model tissue, we describe the roles of major and minor collagen subtypes in detail; discuss known and unknown structure-function relationships; and show how tissue engineers may harness the functional characteristics of collagen to engineer robust neotissues.
Collapse
Affiliation(s)
- Benjamin J. Bielajew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
12
|
Ebrahimi M, Turunen MJ, Finnilä MA, Joukainen A, Kröger H, Saarakkala S, Korhonen RK, Tanska P. Structure-Function Relationships of Healthy and Osteoarthritic Human Tibial Cartilage: Experimental and Numerical Investigation. Ann Biomed Eng 2020; 48:2887-2900. [PMID: 32648191 PMCID: PMC7723942 DOI: 10.1007/s10439-020-02559-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Relationships between composition, structure and constituent-specific functional properties of human articular cartilage at different stages of osteoarthritis (OA) are poorly known. We established these relationships by comparison of elastic, viscoelastic and fibril-reinforced poroelastic mechanical properties with microscopic and spectroscopic analysis of structure and composition of healthy and osteoarthritic human tibial cartilage (n = 27). At a low frequency (0.005 Hz), proteoglycan content correlated negatively and collagen content correlated positively with the phase difference (i.e. tissue viscosity). At a high-frequency regime (> 0.05 Hz), proteoglycan content correlated negatively and collagen orientation angle correlated positively with the phase difference. Proteoglycans were lost in the early and advanced OA groups compared to the healthy group, while the superficial collagen orientation angle was greater only in the advanced OA group compared to the healthy group. Simultaneously, the initial fibril network modulus (fibril pretension) was smaller in the early and advanced OA groups compared to the healthy group. These findings suggest different mechanisms contribute to cartilage viscosity in low and high frequencies, and that the loss of superficial collagen pretension during early OA is due to lower tissue swelling (PG loss), while in advanced OA, both collagen disorganization and lower swelling modulate the collagen fibril pretension.
Collapse
Affiliation(s)
- Mohammadhossein Ebrahimi
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- SIBlabs, University of Eastern Finland, Kuopio, Finland
| | - Mikko A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | | | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| |
Collapse
|
13
|
Baylon EG, Levenston ME. Osmotic Swelling Responses Are Conserved Across Cartilaginous Tissues With Varied Sulfated-Glycosaminoglycan Contents. J Orthop Res 2020; 38:785-792. [PMID: 31709600 DOI: 10.1002/jor.24521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/03/2019] [Indexed: 02/04/2023]
Abstract
Determining the influence of tissue composition on the osmotic swelling stress of articular cartilage and meniscus fibrocartilage is important to enhance our understanding of physiology and disease. This osmotic swelling stress is critical for the load-bearing capability of both tissues and results in part due to the interactions between the negatively charged sulfated glycosaminoglycan (sGAG) chains and the ionic interstitial fluid. Changes in sGAG content, as those occurring during the progression of degenerative joint disease, alter such interactions. Here, we compare the time-varying effects of altered osmotic environments on the confined compression swelling behavior of bovine tissues spanning a range of sGAG concentrations: juvenile articular cartilage, juvenile and adult meniscus, and juvenile cartilage enzymatically degraded to reduce its sGAG content. The transient response to changes in bath conditions was evaluated for explants assigned to one of three compressive offsets (5%, 10%, or 15% strain) and one of three bath conditions (0.1X, 1X, or 10X phosphate-buffered saline). Our results show that relative responses to alterations to the osmotic environment are consistent across native tissues but differ for degraded juvenile cartilage, demonstrating that changes in sGAG do not completely recapitulate the native swelling behaviors. Further, we found a strong correlation between aggregate modulus and sGAG/collagen, as well as between sGAG and collagen contents across native tissue types, suggesting some conservation of composition-function relationships across a range of tissue types with varying sGAG concentrations. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:785-792, 2020.
Collapse
Affiliation(s)
- Eva G Baylon
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305
| | - Marc E Levenston
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305
| |
Collapse
|
14
|
Mukherjee S, Nazemi M, Jonkers I, Geris L. Use of Computational Modeling to Study Joint Degeneration: A Review. Front Bioeng Biotechnol 2020; 8:93. [PMID: 32185167 PMCID: PMC7058554 DOI: 10.3389/fbioe.2020.00093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA), a degenerative joint disease, is the most common chronic condition of the joints, which cannot be prevented effectively. Computational modeling of joint degradation allows to estimate the patient-specific progression of OA, which can aid clinicians to estimate the most suitable time window for surgical intervention in osteoarthritic patients. This paper gives an overview of the different approaches used to model different aspects of joint degeneration, thereby focusing mostly on the knee joint. The paper starts by discussing how OA affects the different components of the joint and how these are accounted for in the models. Subsequently, it discusses the different modeling approaches that can be used to answer questions related to OA etiology, progression and treatment. These models are ordered based on their underlying assumptions and technologies: musculoskeletal models, Finite Element models, (gene) regulatory models, multiscale models and data-driven models (artificial intelligence/machine learning). Finally, it is concluded that in the future, efforts should be made to integrate the different modeling techniques into a more robust computational framework that should not only be efficient to predict OA progression but also easily allow a patient’s individualized risk assessment as screening tool for use in clinical practice.
Collapse
Affiliation(s)
- Satanik Mukherjee
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Majid Nazemi
- GIGA in silico Medicine, University of Liège, Liège, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium.,GIGA in silico Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
15
|
Ojanen SP, Finnilä MA, Mäkelä JT, Saarela K, Happonen E, Herzog W, Saarakkala S, Korhonen RK. Anterior cruciate ligament transection of rabbits alters composition, structure and biomechanics of articular cartilage and chondrocyte deformation 2 weeks post-surgery in a site-specific manner. J Biomech 2020; 98:109450. [DOI: 10.1016/j.jbiomech.2019.109450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 12/31/2022]
|
16
|
Beveridge JE, Proffen BL, Karamchedu NP, Chin KE, Sieker JT, Badger GJ, Kiapour AM, Murray MM, Fleming BC. Cartilage Damage Is Related to ACL Stiffness in a Porcine Model of ACL Repair. J Orthop Res 2019; 37:2249-2257. [PMID: 31125133 PMCID: PMC6739195 DOI: 10.1002/jor.24381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/02/2019] [Indexed: 02/04/2023]
Abstract
Inferior anterior cruciate ligament (ACL) structural properties may inadequately restrain tibiofemoral joint motion following surgery, contributing to the increased risk of post-traumatic osteoarthritis. Using both a direct measure of ACL linear stiffness and an in vivo magnetic resonance imaging (MRI) T2 *-based prediction model, we hypothesized that cartilage damage and ACL stiffness would increase over time, and that an inverse relationship between cartilage damage and ACL stiffness would emerge at a later stage of healing. After either 6, 12, or 24 weeks (w) of healing after ACL repair, ACL linear stiffness was determined from the force-displacement relationship during tensile testing ex vivo and predicted in vivo from the MRI T2 *-based multiple linear regression model in 24 Yucatan minipigs. Tibiofemoral cartilage was graded postmortem. There was no relationship between cartilage damage and ACL stiffness at 6 w (R2 = 0.04; p = 0.65), 12 w (R2 = 0.02; p = 0.77), or when the data from all animals were pooled (R2 = 0.02; p = 0.47). A significant inverse relationship between cartilage damage and ACL stiffness based on both ex vivo measurement (R2 = 0.90; p < 0.001) and in vivo MRI prediction (R2 = 0.78; p = 0.004) of ACL stiffness emerged at 24 w. This result suggests that 90% of the variability in gross cartilage changes is associated with the repaired ACL linear stiffness at 6 months of healing. Clinical Significance: Techniques that provide a higher stiffness to the repaired ACL may be required to mitigate the post-traumatic osteoarthritis commonly seen after ACL injury, and MRI T2 * can be used as a noninvasive estimation of ligament stiffness. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2249-2257, 2019.
Collapse
Affiliation(s)
- Jillian E. Beveridge
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital
| | - Benedikt L. Proffen
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - N. Padmini Karamchedu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital
| | - Kaitlyn E. Chin
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital
| | - Jakob T. Sieker
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Gary J. Badger
- Department of Medical Biostatistics, University of Vermont, Burlington, VT, USA
| | - Ata M. Kiapour
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha M. Murray
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital
| |
Collapse
|
17
|
Inamdar SR, Barbieri E, Terrill NJ, Knight MM, Gupta HS. Proteoglycan degradation mimics static compression by altering the natural gradients in fibrillar organisation in cartilage. Acta Biomater 2019; 97:437-450. [PMID: 31374336 PMCID: PMC6838783 DOI: 10.1016/j.actbio.2019.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/06/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Structural and associated biomechanical gradients within biological tissues are important for tissue functionality and preventing damaging interfacial stress concentrations. Articular cartilage possesses an inhomogeneous structure throughout its thickness, driving the associated variation in the biomechanical strain profile within the tissue under physiological compressive loading. However, little is known experimentally about the nanostructural mechanical role of the collagen fibrils and how this varies with depth. Utilising a high-brilliance synchrotron X-ray source, we have measured the depth-wise nanostructural parameters of the collagen network in terms of the periodic fibrillar banding (D-period) and associated parameters. We show that there is a depth dependent variation in D-period reflecting the pre-strain and concurrent with changes in the level of intrafibrillar order. Further, prolonged static compression leads to fibrillar changes mirroring those caused by removal of extrafibrillar proteoglycans (as may occur in aging or disease). We suggest that fibrillar D-period is a sensitive indicator of localised changes to the mechanical environment at the nanoscale in soft connective tissues. Statement of Significance Collagen plays a significant role in both the structural and mechanical integrity of articular cartilage, allowing the tissue to withstand highly repetitive loading. However, the fibrillar mechanics of the collagen network in cartilage are not clear. Here we find that cartilage has a spatial gradient in the nanostructural collagen fibril pre-strain, with an increase in the fibrillar pre-strain with depth. Further, the fibrillar gradient changes similarly under compression when compared to an enzymatically degraded tissue which mimics age-related changes. Given that the fibrils potentially have a finite capacity to mechanically respond and alter their configuration, these findings are significant in understanding how collagen may alter in structure and gradient in diseased cartilage, and in informing the design of cartilage replacements.
Collapse
|
18
|
Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation. Ann Biomed Eng 2019; 48:556-567. [PMID: 31576504 PMCID: PMC6949199 DOI: 10.1007/s10439-019-02362-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
Abstract
Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and imaged with synchrotron microCT 2-h post immersion in triple CA or in dual CA (CA4+ and gadoteridol). CA4+ and gadoteridol partitions were determined using QDECT, and pairwise evaluation of these partitions was conducted for samples immersed in dual and triple CAs. In conclusion, the triple CA method is sensitive to proteoglycan depletion while maintaining sufficient contrast at the articular surface to enable detection of cartilage lesions caused by mechanical impact.
Collapse
|
19
|
Simultaneous Quantitation of Cationic and Non-ionic Contrast Agents in Articular Cartilage Using Synchrotron MicroCT Imaging. Sci Rep 2019; 9:7118. [PMID: 31068614 PMCID: PMC6506503 DOI: 10.1038/s41598-019-43276-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 04/15/2019] [Indexed: 01/15/2023] Open
Abstract
Early diagnosis of acute cartilage injuries enables monitoring of disease progression and improved treatment option planning to prevent post-traumatic osteoarthritis. In contrast-enhanced computed tomography (CECT), the changes in cationic agent diffusion within the tissue reflect cartilage degeneration. The diffusion in degenerated cartilage depends on proteoglycan (PG) content and water content, but each having an opposite effect on diffusion, thus compromising the diagnostic sensitivity. To overcome this limitation, we propose the simultaneous imaging of cationic (sensitive to PG and water contents) and non-ionic (sensitive to water content) agents. In this study, quantitative dual-energy CT (QDECT) imaging of two agents is reported for the first time at clinically feasible imaging time points. Furthermore, this is the first time synchrotron microCT with monochromatic X-rays is employed in cartilage CECT. Imaging was conducted at 1 and 2 h post contrast agent immersion. Intact, PG-depleted, and mechanically injured + PG-depleted cartilage samples (n = 33) were imaged in a mixture of cationic (iodine-based CA4+) and non-ionic (gadolinium-based gadoteridol) agents. Concurrent evaluation of CA4+ and gadoteridol partitions in cartilage is accomplished using QDECT. Subsequent normalization of the CA4+ partition with that of the gadoteridol affords CA4+ attenuations that significantly correlate with PG content – a key marker of OA.
Collapse
|
20
|
Mononen ME, Tanska P, Isaksson H, Korhonen RK. New algorithm for simulation of proteoglycan loss and collagen degeneration in the knee joint: Data from the osteoarthritis initiative. J Orthop Res 2018; 36:1673-1683. [PMID: 29150953 DOI: 10.1002/jor.23811] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/11/2017] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is a harmful joint disease but prediction of disease progression is problematic. Currently, there is only one modeling framework which can be applied to predict the progression of knee osteoarthritis but it only considers degenerative changes in the collagen fibril network. Here, we have developed the framework further by considering all of the major tissue changes (proteoglycan content, fluid flow, and collagen fibril network) occurring in osteoarthritis. While excessive levels of tissue stresses controlled degeneration of the collagen fibril network, excessive levels of tissue strains controlled the decrease in proteoglycan content and the increase in permeability. We created four knee joint models with increasing degrees of complexity based on the depth-wise composition. Models were tested for normal and abnormal, physiologically relevant, loading conditions in the knee. Finally, the predicted depth-wise compositional changes from each model were compared against experimentally observed compositional changes in vitro. The model incorporating the typical depth-wise composition of cartilage produced the best match with experimental observations. Consistent with earlier in vitro experiments, this model simulated the greatest proteoglycan depletion in the superficial and middle zones, while the collagen fibril degeneration was located mostly in the superficial zone. The presented algorithm can be used for predicting simultaneous collagen degeneration and proteoglycan loss during the development of knee osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1673-1683, 2018.
Collapse
Affiliation(s)
- Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio, 70211, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio, 70211, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio, 70211, Finland.,Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
21
|
Ojanen SP, Finnilä MAJ, Reunamo AE, Ronkainen AP, Mikkonen S, Herzog W, Saarakkala S, Korhonen RK. Site-specific glycosaminoglycan content is better maintained in the pericellular matrix than the extracellular matrix in early post-traumatic osteoarthritis. PLoS One 2018; 13:e0196203. [PMID: 29694389 PMCID: PMC5919041 DOI: 10.1371/journal.pone.0196203] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 04/09/2018] [Indexed: 12/04/2022] Open
Abstract
Introduction One of the characteristics of early osteoarthritis (OA) is the loss of fixed charged density (FCD) of glycosaminoglycans in the superficial zone of articular cartilage. However, possible local changes in the FCD content of the pericellular matrix (PCM) are not fully understood. Hence, our aim was to investigate the effect of unilateral anterior cruciate ligament transection (ACLT) in rabbit knees on estimated FCD in the PCM compared to that in the ECM, and relate these results with cell morphology. Methods Articular cartilage samples were collected from ACLT, contralateral and intact control knee joints from lateral and medial femoral condyles and tibial plateaus, and from the femoral groove and patella. Histological samples were prepared and stained with Safranin-O to estimate the FCD content around the chondrocytes in the PCM and the ECM with digital densitometry. Results As a result of ACLT, the greatest decreases in the FCD content of the PCM were observed in the superficial zone of the lateral femoral condyle (p = 0.02), medial tibial plateau (p = 0.002) and patellar (p < 0.001) cartilage. The normalized FCD content of the PCM compared to the surrounding ECM was increased most in the femoral condyles (p < 0.01) and medial tibial plateau (p = 0.02) cartilage. The high normalized FCD content of the PCM in the superficial zone of lateral femoral condyle cartilage was consistent with the round cell morphology in that location. Conclusions In conclusion, we suggest that certain sites in the knee joint, particularly the lateral femoral condyle cartilage, experience less FCD loss in the PCM than in the ECM in early post-traumatic OA, which could lead to altered cell shape.
Collapse
Affiliation(s)
- Simo P. Ojanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- * E-mail:
| | - Mikko A. J. Finnilä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Aino E. Reunamo
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Ari P. Ronkainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Walter Herzog
- Mechanical & Manufacturing Engineering, Schulich School of Engineering, University of Calgary, AB, Calgary, Canada
- Human performance laboratory, Faculty of Kinesiology, University of Calgary, AB, Calgary, Canada
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
22
|
Saukko AEA, Honkanen JTJ, Xu W, Väänänen SP, Jurvelin JS, Lehto VP, Töyräs J. Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration Using a Single CT Image. Ann Biomed Eng 2017; 45:2857-2866. [PMID: 28924827 DOI: 10.1007/s10439-017-1916-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
Cartilage injuries may be detected using contrast-enhanced computed tomography (CECT) by observing variations in distribution of anionic contrast agent within cartilage. Currently, clinical CECT enables detection of injuries and related post-traumatic degeneration based on two subsequent CT scans. The first scan allows segmentation of articular surfaces and lesions while the latter scan allows evaluation of tissue properties. Segmentation of articular surfaces from the latter scan is difficult since the contrast agent diffusion diminishes the image contrast at surfaces. We hypothesize that this can be overcome by mixing anionic contrast agent (ioxaglate) with bismuth oxide nanoparticles (BINPs) too large to diffuse into cartilage, inducing a high contrast at the surfaces. Here, a dual contrast method employing this mixture is evaluated by determining the depth-wise X-ray attenuation profiles in intact, enzymatically degraded, and mechanically injured osteochondral samples (n = 3 × 10) using a microCT immediately and at 45 min after immersion in contrast agent. BiNPs were unable to diffuse into cartilage, producing high contrast at articular surfaces. Ioxaglate enabled the detection of enzymatic and mechanical degeneration. In conclusion, the dual contrast method allowed detection of injuries and degeneration simultaneously with accurate cartilage segmentation using a single scan conducted at 45 min after contrast agent administration.
Collapse
Affiliation(s)
- Annina E A Saukko
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, POB 100, 70029, Kuopio, Finland.
| | - Juuso T J Honkanen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, POB 100, 70029, Kuopio, Finland
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, POB 100, 70029, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, POB 100, 70029, Kuopio, Finland
| |
Collapse
|
23
|
Sarin JK, Rieppo L, Brommer H, Afara IO, Saarakkala S, Töyräs J. Combination of optical coherence tomography and near infrared spectroscopy enhances determination of articular cartilage composition and structure. Sci Rep 2017; 7:10586. [PMID: 28878384 PMCID: PMC5587743 DOI: 10.1038/s41598-017-10973-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/17/2017] [Indexed: 01/28/2023] Open
Abstract
Conventional arthroscopic evaluation of articular cartilage is subjective and poorly reproducible. Therefore, implementation of quantitative diagnostic techniques, such as near infrared spectroscopy (NIRS) and optical coherence tomography (OCT), is essential. Locations (n = 44) with various cartilage conditions were selected from mature equine fetlock joints (n = 5). These locations and their surroundings were measured with NIRS and OCT (n = 530). As a reference, cartilage proteoglycan (PG) and collagen contents, and collagen network organization were determined using quantitative microscopy. Additionally, lesion severity visualized in OCT images was graded with an automatic algorithm according to International Cartilage Research Society (ICRS) scoring system. Artificial neural network with variable selection was then employed to predict cartilage composition in the superficial and deep zones from NIRS data, and the performance of two models, generalized (including all samples) and condition-specific models (based on ICRS-grades), was compared. Spectral data correlated significantly (p < 0.002) with PG and collagen contents, and collagen orientation in the superficial and deep zones. The combination of NIRS and OCT provided the most reliable outcome, with condition-specific models having lower prediction errors (9.2%) compared to generalized models (10.4%). Therefore, the results highlight the potential of combining both modalities for comprehensive evaluation of cartilage during arthroscopy.
Collapse
Affiliation(s)
- Jaakko K Sarin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Lassi Rieppo
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Harold Brommer
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Isaac O Afara
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
24
|
Morgese G, Cavalli E, Müller M, Zenobi-Wong M, Benetti EM. Nanoassemblies of Tissue-Reactive, Polyoxazoline Graft-Copolymers Restore the Lubrication Properties of Degraded Cartilage. ACS NANO 2017; 11:2794-2804. [PMID: 28273419 DOI: 10.1021/acsnano.6b07847] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Osteoarthritis leads to an alteration in the composition of the synovial fluid, which is associated with an increase in friction and the progressive and irreversible destruction of the articular cartilage. In order to tackle this degenerative disease, there has been a growing interest in the medical field to establish effective, long-term treatments to restore cartilage lubrication after damage. Here we develop a series of graft-copolymers capable of assembling selectively on the degraded cartilage, resurfacing it, and restoring the lubricating properties of the native tissue. These comprise a polyglutamic acid backbone (PGA) coupled to brush-forming, poly-2-methyl-2-oxazoline (PMOXA) side chains, which provide biopassivity and lubricity to the surface, and to aldehyde-bearing tissue-reactive groups, for the anchoring on the degenerated cartilage via Schiff bases. Optimization of the graft-copolymer architecture (i.e., density and length of side chains and amount of tissue-reactive functions) allowed a uniform passivation of the degraded cartilage surface. Graft-copolymer-treated cartilage showed very low coefficients of friction within synovial fluid, reestablishing and in some cases improving the lubricating properties of the natural cartilage. Due to these distinctive properties and their high biocompatibility and stability under physiological conditions, cartilage-reactive graft-copolymers emerge as promising injectable formulations to slow down the progression of cartilage degradation, which characterizes the early stages of osteoarthritis.
Collapse
Affiliation(s)
- Giulia Morgese
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Emma Cavalli
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Mischa Müller
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| |
Collapse
|
25
|
Karhula SS, Finnilä MA, Lammi MJ, Ylärinne JH, Kauppinen S, Rieppo L, Pritzker KPH, Nieminen HJ, Saarakkala S. Effects of Articular Cartilage Constituents on Phosphotungstic Acid Enhanced Micro-Computed Tomography. PLoS One 2017; 12:e0171075. [PMID: 28135331 PMCID: PMC5279764 DOI: 10.1371/journal.pone.0171075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Contrast-enhanced micro-computed tomography (CEμCT) with phosphotungstic acid (PTA) has shown potential for detecting collagen distribution of articular cartilage. However, the selectivity of the PTA staining to articular cartilage constituents remains to be elucidated. The aim of this study was to investigate the dependence of PTA for the collagen content in bovine articular cartilage. Adjacent bovine articular cartilage samples were treated with chondroitinase ABC and collagenase to degrade the proteoglycan and the collagen constituents in articular cartilage, respectively. Enzymatically degraded samples were compared to the untreated samples using CEμCT and reference methods, such as Fourier-transform infrared imaging. Decrease in the X-ray attenuation of PTA in articular cartilage and collagen content was observed in cartilage depth of 0–13% and deeper in tissue after collagen degradation. Increase in the X-ray attenuation of PTA was observed in the cartilage depth of 13–39% after proteoglycan degradation. The X-ray attenuation of PTA-labelled articular cartilage in CEμCT is associated mainly with collagen content but the proteoglycans have a minor effect on the X-ray attenuation of the PTA-labelled articular cartilage. In conclusion, the PTA labeling provides a feasible CEμCT method for 3D characterization of articular cartilage.
Collapse
Affiliation(s)
- Sakari S. Karhula
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Infotech Doctoral Program, University of Oulu, Oulu, Finland
- * E-mail:
| | - Mikko A. Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mikko J. Lammi
- Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
- School of Public Health, Health Science Center of Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi’an, P. R. China
| | - Janne H. Ylärinne
- Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Sami Kauppinen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Lassi Rieppo
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Kenneth P. H. Pritzker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Mount Sinai Hospital, Toronto, Canada
| | - Heikki J. Nieminen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
26
|
Danso EK, Oinas JMT, Saarakkala S, Mikkonen S, Töyräs J, Korhonen RK. Structure-function relationships of human meniscus. J Mech Behav Biomed Mater 2016; 67:51-60. [PMID: 27987426 DOI: 10.1016/j.jmbbm.2016.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 01/09/2023]
Abstract
Biomechanical properties of human meniscus have been shown to be site-specific. However, it is not known which meniscus constituents at different depths and locations contribute to biomechanical properties obtained from indentation testing. Therefore, we investigated the composition and structure of human meniscus in a site- and depth-dependent manner and their relationships with tissue site-specific biomechanical properties. Elastic and poroelastic properties were analyzed from experimental stress-relaxation and sinusoidal indentation measurements with fibril reinforced poroelastic finite element modeling. Proteoglycan (PG) and collagen contents, as well as the collagen orientation angle, were determined as a function of tissue depth using microscopic and spectroscopic methods, and they were compared with biomechanical properties. For all the measurement sites (anterior, middle and posterior) of lateral and medial menisci (n=26), PG content and collagen orientation angle increased as a function of tissue depth while the collagen content had an initial sharp increase followed by a decrease across tissue depth. The highest values (p<0.05) of elastic parameters (equilibrium and instantaneous moduli) and strain-dependent biomechanical parameters (strain-dependent fibril network modulus and permeability) were observed in the anterior horn of the medial meniscus. This location had also higher (p<0.05) PG content in the deep meniscus, higher (p<0.05) collagen content in the entire tissue depth, and lower (p<0.05) collagen orientation angle at the superficial tissue, as compared to many other locations. On the other hand, in certain comparisons (such as anterior vs. middle sites of the medial meniscus) significantly higher (p<0.05) collagen content and lower orientation angle, without any difference in the PG content, were consistent with increased meniscus modulus and/or nonlinear permeability. This study suggests that nonlinear biomechanical properties of meniscus, caused by the collagen network and fluid, may be strongly influenced by tissue osmotic swelling from the deep meniscus caused by the increased PG content, leading to increased collagen fibril tension. These nonlinear biomechanical properties are suggested to be further amplified by higher collagen content at all tissue depths and superficial collagen fibril orientation. However, these structure-function relationships are suggested to be highly site-specific.
Collapse
Affiliation(s)
- Elvis K Danso
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, KYS, POB 100, FI-70029 Kuopio, Finland.
| | - Joonas M T Oinas
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, P.O. Box 50, FI-90029 Oulu, Finland
| | - Santtu Mikkonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, KYS, POB 100, FI-70029 Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, KYS, POB 100, FI-70029 Kuopio, Finland
| |
Collapse
|
27
|
Wang K, Wu J, Day R, Kirk TB, Hu X. Characterizing depth-dependent refractive index of articular cartilage subjected to mechanical wear or enzymic degeneration. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:95002. [PMID: 27626900 DOI: 10.1117/1.jbo.21.9.095002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Utilizing a laser scanning confocal microscope system, the refractive indices of articular cartilage (AC) with mechanical or biochemical degenerations were characterized to investigate whether potential correlations exist between refractive index (RI) and cartilage degeneration. The cartilage samples collected from the medial femoral condyles of kangaroo knees were mechanically degenerated under different loading patterns or digested in trypsin solution with different concentrations. The sequences of RI were then measured from cartilage surface to deep region and the fluctuations of RI were quantified considering combined effects of fluctuating frequency and amplitude. The compositional and microstructural alterations of cartilage samples were assessed with histological methods. Along with the loss of proteoglycans, the average RI of cartilage increased and the local fluctuation of RI became stronger. Short-term high-speed test induced little influence to both the depth fluctuation and overall level of RI. Long-term low-speed test increased the fluctuation of RI but the average RI was barely changed. The results substantially demonstrate that RI of AC varies with both compositional and structural alterations and is potentially an indicator for the degeneration of AC.
Collapse
Affiliation(s)
- Kuyu Wang
- University of Western Australia, School of Mechanical and Chemical Engineering, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| | - Jianping Wu
- Curtin University, Department of Mechanical Engineering, Perth, Western Australia 6102, Australia
| | - Robert Day
- University of Western Australia, School of Mechanical and Chemical Engineering, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, AustraliacRoyal Perth Hospital, Department of Medical Engineering and Physics, Perth, Western Australia 6000, Australia
| | - Thomas Brett Kirk
- Curtin University, Department of Mechanical Engineering, Perth, Western Australia 6102, Australia
| | - Xiaozhi Hu
- University of Western Australia, School of Mechanical and Chemical Engineering, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| |
Collapse
|
28
|
Nissi MJ MJ, Salo EN, Tiitu V, Liimatainen T, Michaeli S, Mangia S, Ellermann J, Nieminen MT. Multi-parametric MRI characterization of enzymatically degraded articular cartilage. J Orthop Res 2016; 34:1111-20. [PMID: 26662555 PMCID: PMC4903086 DOI: 10.1002/jor.23127] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023]
Abstract
Several laboratory and rotating frame quantitative MRI parameters were evaluated and compared for detection of changes in articular cartilage following selective enzymatic digestion. Bovine osteochondral specimens were subjected to 44 h incubation in control medium or in collagenase or chondroitinase ABC to induce superficial collagen or proteoglycan (glycosaminoglycan) alterations. The samples were scanned at 9.4 T for T1 , T1 Gd (dGEMRIC), T2 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , TRAFF2 , and T1 sat relaxation times and for magnetization transfer ratio (MTR). For reference, glycosaminoglycan content, collagen fibril orientation and biomechanical properties were determined. Changes primarily in the superficial cartilage were noted after enzymatic degradation. Most of the studied parameters were sensitive to the destruction of collagen network, whereas glycosaminoglycan depletion was detected only by native T1 and T1 Gd relaxation time constants throughout the tissue and by MTR superficially. T1 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat correlated significantly with the biomechanical properties while T1 Gd correlated with glycosaminoglycan staining. The findings indicated that most of the studied MRI parameters were sensitive to both glycosaminoglycan content and collagen network integrity, with changes due to enzymatic treatment detected primarily in the superficial tissue. Strong correlation of T1 , adiabatic T1ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat with the altered biomechanical properties, reflects that these parameters were sensitive to critical functional properties of cartilage. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1111-1120, 2016.
Collapse
Affiliation(s)
- Mikko J. Nissi MJ
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland,Corresponding author: Mikko J. Nissi, Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland, Telephone number: +358-50-5955517, Fax number: +358-17-162585
| | - Elli-Noora Salo
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Virpi Tiitu
- Institute of Biomedicine, Anatomy, University of Eastern Finland, Kuopio, Finland
| | - Timo Liimatainen
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland,Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Silvia Mangia
- CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Jutta Ellermann
- CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Miika T. Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
29
|
Palukuru UP, Hanifi A, McGoverin CM, Devlin S, Lelkes PI, Pleshko N. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy. Anal Chim Acta 2016; 926:79-87. [PMID: 27216396 DOI: 10.1016/j.aca.2016.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/16/2016] [Indexed: 11/18/2022]
Abstract
Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model of OA. Partial least squares (PLS) regression using NIR spectra as input predicted the MIR-determined compositional parameters of PG/collagen within 6% of actual values. These results indicate that NIR spectral data can be used to assess molecular changes that occur with cartilage degradation, and further, the data provide a foundation for future clinical studies where NIR fiber optic probes can be used to assess the progression of cartilage degradation.
Collapse
Affiliation(s)
- Uday P Palukuru
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Arash Hanifi
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Cushla M McGoverin
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Sean Devlin
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Peter I Lelkes
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Robinson DL, Kersh ME, Walsh NC, Ackland DC, de Steiger RN, Pandy MG. Mechanical properties of normal and osteoarthritic human articular cartilage. J Mech Behav Biomed Mater 2016; 61:96-109. [PMID: 26851527 DOI: 10.1016/j.jmbbm.2016.01.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/09/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Isotropic hyperelastic models have been used to determine the material properties of normal human cartilage, but there remains an incomplete understanding of how these properties may be altered by osteoarthritis. The aims of this study were to (1) measure the material constants of normal and osteoarthritic human knee cartilage using isotropic hyperelastic models; (2) determine whether the material constants correlate with histological measures of structure and/or cartilage tissue damage; and (3) quantify the abilities of two common isotropic hyperelastic material models, the neo-Hookean and Yeoh models, to describe articular cartilage contact force, area, and pressure. Small osteochondral specimens of normal and osteoarthritic condition were retrieved from human cadaveric knees and from the knees of patients undergoing total knee arthroplasty and tested in unconfined compression at loading rates and large strains representative of weight-bearing activity. Articular surface contact area and lateral deformation were measured concurrently and specimen-specific finite element models then were used to determine the hyperelastic material constants. Structural parameters were measured using histological techniques while the severity of cartilage damage was quantified using the OARSI grading scale. The hyperelastic material constants correlated significantly with OARSI grade, indicating that the mechanical properties of cartilage for large strains change with tissue damage. The measurements of contact area described anisotropy of the tissue constituting the superficial zone. The Yeoh model described contact force and pressure more accurately than the neo-Hookean model, whereas both models under-predicted contact area and poorly described the anisotropy of cartilage within the superficial zone. These results identify the limits by which isotropic hyperelastic material models may be used to describe cartilage contact variables. This study provides novel data for the mechanical properties of normal and osteoarthritic human articular cartilage and enhances our ability to model this tissue using simple isotropic hyperelastic materials.
Collapse
Affiliation(s)
- Dale L Robinson
- Dept. of Mechanical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Mariana E Kersh
- Dept. of Mechanical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia; Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Nicole C Walsh
- St Vincent׳s Institute of Medical Research and Department of Medicine at St Vincent׳s Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David C Ackland
- Dept. of Mechanical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard N de Steiger
- Dept. of Surgery, University of Melbourne, Parkville, Victoria 3010, Australia; Dept. of Surgery, Epworth Healthcare, Melbourne, Victoria 3010, Australia
| | - Marcus G Pandy
- Dept. of Mechanical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
31
|
Inkinen SI, Liukkonen J, Tiitu V, Virén T, Jurvelin JS, Töyräs J. Ultrasound Backscattering Is Anisotropic in Bovine Articular Cartilage. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1958-1966. [PMID: 25933711 DOI: 10.1016/j.ultrasmedbio.2015.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
Collagen, proteoglycans and chondrocytes can contribute to ultrasound scattering in articular cartilage. However, anisotropy of ultrasound scattering in cartilage is not fully characterized. We investigate this using a clinical intravascular ultrasound device with ultrasound frequencies of 9 and 40 MHz. Osteochondral samples were obtained from intact bovine patellas, and cartilage was imaged in two perpendicular directions: through articular and lateral surfaces. At both frequencies, ultrasound backscattering was higher (p < 0.05) when measured through the lateral surface of cartilage. In addition, the composition and structure of articular cartilage were investigated with multiple reference methods involving light microscopy, digital densitometry, polarized light microscopy and Fourier infrared imaging. Reference methods indicated that acoustic anisotropy of ultrasound scattering arises mainly from non-uniform distribution of chondrocytes and anisotropic orientation of collagen fibers. To conclude, ultrasound backscattering in articular cartilage was found to be anisotropic and dependent on the frequency in use.
Collapse
Affiliation(s)
- Satu I Inkinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Cancer Center, Kuopio University Hospital, Kuopio, Finland.
| | - Jukka Liukkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Virpi Tiitu
- School of Medicine, Institute of Biomedicine, Anatomy, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Virén
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
32
|
Griffin DJ, Vicari J, Buckley MR, Silverberg JL, Cohen I, Bonassar LJ. Effects of enzymatic treatments on the depth-dependent viscoelastic shear properties of articular cartilage. J Orthop Res 2014; 32:1652-7. [PMID: 25196502 DOI: 10.1002/jor.22713] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/14/2014] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a disease that involves the erosion and structural weakening of articular cartilage. OA is characterized by the degradation of collagen and proteoglycans in the extracellular matrix (ECM), particularly at the articular surface by proteinases including matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs).(1) Degradation of collagen and proteoglycans is known to alter shear mechanical properties of cartilage, but study of this phenomenon has been focused on bulk tissue properties. The purpose of this study was to assess microscale cartilage damage induced by trypsin or collagenase using a technique to measure the local shear viscoelastic properties. Safranin-O histology revealed a decrease in proteoglycans near the articular surface after collagenase and trypsin digestions, with proteoglycan depletion increasing in time. Similarly, confocal reflectance micrographs showed increasing collagen degradation in collagenase treated samples, although the collagen network remained intact after trypsin treatment. Both treatments induced changes in shear modulus that were confined to a narrow range (∼400µm) near tissue surface. In addition, collagenase altered the total energy dissipation distribution by up to a factor of 100, with longer digestion times corresponding to higher energy dissipation. The ability to detect local mechanical signatures in tissue composition and mechanics is an important tool for understanding the spatially non-uniform changes that occur in articular cartilage diseases such as OA.
Collapse
Affiliation(s)
- Darvin J Griffin
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | | | | | | | | |
Collapse
|
33
|
Li J, Yuan H, Wu M, Dong L, Zhang L, Shi H, Luo S. Quantitative assessment of murine articular cartilage and bone using X-ray phase-contrast imaging. PLoS One 2014; 9:e111939. [PMID: 25369528 PMCID: PMC4219817 DOI: 10.1371/journal.pone.0111939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022] Open
Abstract
Murine models for rheumatoid arthritis (RA) research can provide important insights for understanding RA pathogenesis and evaluating the efficacy of novel treatments. However, simultaneously imaging both murine articular cartilage and subchondral bone using conventional techniques is challenging because of low spatial resolution and poor soft tissue contrast. X-ray phase-contrast imaging (XPCI) is a new technique that offers high spatial resolution for the visualisation of cartilage and skeletal tissues. The purpose of this study was to utilise XPCI to observe articular cartilage and subchondral bone in a collagen-induced arthritis (CIA) murine model and quantitatively assess changes in the joint microstructure. XPCI was performed on the two treatment groups (the control group and CIA group, n = 9 per group) to monitor the progression of damage to the femur from the knee joint in a longitudinal study (at 0, 4 and 8 weeks after primary injection). For quantitative assessment, morphologic parameters were measured in three-dimensional (3D) images using appropriate image analysis software. Our results showed that the average femoral cartilage volume, surface area and thickness were significantly decreased (P<0.05) in the CIA group compared to the control group. Meanwhile, these decreases were accompanied by obvious destruction of the surface of subchondral bone and a loss of trabecular bone in the CIA group. This study confirms that XPCI technology has the ability to qualitatively and quantitatively evaluate microstructural changes in mouse joints. This technique has the potential to become a routine analysis method for accurately monitoring joint damage and comprehensively assessing treatment efficacy.
Collapse
Affiliation(s)
- Jun Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Huihui Yuan
- Department of Rheumatology and Immunology, Capital Medical University, Beijing, China
| | - Mingshu Wu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Linan Dong
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Lu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongli Shi
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Shuqian Luo
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
34
|
Huttu MRJ, Puhakka J, Mäkelä JTA, Takakubo Y, Tiitu V, Saarakkala S, Konttinen YT, Kiviranta I, Korhonen RK. Cell-tissue interactions in osteoarthritic human hip joint articular cartilage. Connect Tissue Res 2014; 55:282-91. [PMID: 24702070 DOI: 10.3109/03008207.2014.912645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Volume and morphology of chondrocytes in osteoarthritic human hip joint articular cartilage were characterized, and their relationship to tissue structure and function was determined. Human osteochondral articular cartilage samples (n=16) were obtained from the femoral heads of nine patients undergoing total hip arthroplasty due to osteoarthritis (OA). Superficial chondrocytes (N=65) were imaged in situ with a confocal laser scanning microscope at 37 °C. This was followed by the determination of the mechanical properties of the tissue samples, depth-wise characterization of cell morphology (height, width; N=385) as well as structure and composition of the tissues using light microscopy, digital densitometry, Fourier transform infrared microspectroscopy and polarized light microscopy. Significant correlations were found between the cell volume and the orientation angle associated with the collagen fibers (r=0.320, p=0.009) as well as between the cell volume and the initial dynamic modulus of the tissue (r=-0.305, p=0.013). Furthermore, the depth-dependent chondrocyte aspect ratio (height/width) correlated significantly with the orientation angle of the collagen fibers and with the tissue's proteoglycan content (r=0.261 and r=0.228, respectively, p<0.001). Our findings suggest that the orientation angle of the collagen fibers primarily controls chondrocyte volume and shape in osteoarthritic human hip joint articular cartilage.
Collapse
Affiliation(s)
- Mari R J Huttu
- Department of Applied Physics, University of Eastern Finland , Kuopio , Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
ZHOU MINGSHU, YU DONG. Cartilage tissue engineering using PHBV and PHBV/Bioglass scaffolds. Mol Med Rep 2014; 10:508-14. [DOI: 10.3892/mmr.2014.2145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/10/2014] [Indexed: 11/05/2022] Open
|
36
|
Kim W, McArdle BH, Kawcak CE, McIlwraith CW, Firth EC, Broom ND. Histomorphometric evaluation of the effect of early exercise on subchondral vascularity in the third carpal bone of horses. Am J Vet Res 2013; 74:542-9. [PMID: 23531061 DOI: 10.2460/ajvr.74.4.542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate histomorphometric changes in the cartilage and subchondral bone of the third carpal bone associated with conditioning exercise in young Thoroughbreds. ANIMALS Nine 18-month-old Thoroughbreds. Procedures-Both third carpal bones of 9 horses (4 exercised spontaneously at pasture only and 5 given additional conditioning exercise beginning at a mean age of 3 weeks) were evaluated. Histomorphometric variables (hyaline and calcified cartilage thickness and collagen orientation; vascular channel area, number, and orientation; and osteochondral junction rugosity) of the third carpal bone, sampled at 4 dorsopalmar sites in the radial facet, were compared between the exercised and nonexercised groups. RESULTS The vascular channel area measured at the 4 dorsopalmar sites was larger in the exercised group than in the control group, but none of the variables were significantly different between groups. Both groups had significant site-specific variations in all measured variables. Most importantly, the vascular channel area was highest in the most dorsal aspect. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the mild exercise imposed in both groups during the developmental period appeared to be associated with an increase in the vascular channel area beneath the calcified cartilage layer in the third carpal bone. This increased vascular channel area could also be associated with high stress in the dorsal aspect of the radial facet, a region that is known to be vulnerable to osteochondral fragmentation.
Collapse
Affiliation(s)
- Woong Kim
- Tissue Mechanics Laboratory, Department of Chemical and Materials Engineering, Faculty of Engineering, Faculty of Science, University of Auckland, Auckland 1142, New Zealand
| | | | | | | | | | | |
Collapse
|
37
|
Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS One 2013; 8:e71563. [PMID: 23951190 PMCID: PMC3739736 DOI: 10.1371/journal.pone.0071563] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
Polymer scaffold systems consisting of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) have proven to be possible matrices for the three-dimensional growth of chondrocyte cultures. However, the engineered cartilage grown on these PHBV scaffolds is currently unsatisfactory for clinical applications due to PHBV’s poor hydrophilicity, resulting in inadequate thickness and poor biomechanical properties of the engineered cartilage. It has been reported that the incorporation of Bioglass (BG) into PHBV can improve the hydrophilicity of the composites. In this study, we compared the effects of PHBV scaffolds and PHBV/BG composite scaffolds on the properties of engineered cartilage in vivo. Rabbit articular chondrocytes were seeded into PHBV scaffolds and PHBV/BG scaffolds. Short-term in vitro culture followed by long-term in vivo transplantation was performed to evaluate the difference in cartilage regeneration between the cartilage layers grown on PHBV and PHBV/BG scaffolds. The results show that the incorporation of BG into PHBV efficiently improved both the hydrophilicity of the composites and the percentage of adhered cells and promoted cell migration into the inner part the constructs. With prolonged incubation time in vivo, the chondrocyte-scaffold constructs in the PHBV/BG group formed thicker cartilage-like tissue with better biomechanical properties and a higher cartilage matrix content than the constructs in the PHBV/BG group. These results indicate that PHBV/BG scaffolds can be used to prepare better engineered cartilage than pure PHBV.
Collapse
|
38
|
Nieminen MT, Nissi MJ, Mattila L, Kiviranta I. Evaluation of chondral repair using quantitative MRI. J Magn Reson Imaging 2013; 36:1287-99. [PMID: 23165732 DOI: 10.1002/jmri.23644] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/17/2012] [Indexed: 01/30/2023] Open
Abstract
Various quantitative magnetic resonance imaging (qMRI) biomarkers, including but not limited to parametric MRI mapping, semiquantitative evaluation, and morphological assessment, have been successfully applied to assess cartilage repair in both animal and human studies. Through the interaction between interstitial water and constituent macromolecules the compositional and structural properties of cartilage can be evaluated. In this review a comprehensive view of a variety of quantitative techniques, particularly those involving parametric mapping, and their relationship to the properties of cartilage repair is presented. Some techniques, such as T2 relaxation time mapping and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), are well established, while the full potential of more recently introduced techniques remain to be demonstrated. A combination of several MRI techniques is necessary for a comprehensive characterization of chondral repair.
Collapse
Affiliation(s)
- Miika T Nieminen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | | | | | | |
Collapse
|
39
|
A review of the combination of experimental measurements and fibril-reinforced modeling for investigation of articular cartilage and chondrocyte response to loading. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:326150. [PMID: 23653665 PMCID: PMC3638701 DOI: 10.1155/2013/326150] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/11/2013] [Accepted: 02/23/2013] [Indexed: 11/17/2022]
Abstract
The function of articular cartilage depends on its structure and composition, sensitively impaired in disease (e.g. osteoarthritis, OA). Responses of chondrocytes to tissue loading are modulated by the structure. Altered cell responses as an effect of OA may regulate cartilage mechanotransduction and cell biosynthesis. To be able to evaluate cell responses and factors affecting the onset and progression of OA, local tissue and cell stresses and strains in cartilage need to be characterized. This is extremely challenging with the presently available experimental techniques and therefore computational modeling is required. Modern models of articular cartilage are inhomogeneous and anisotropic, and they include many aspects of the real tissue structure and composition. In this paper, we provide an overview of the computational applications that have been developed for modeling the mechanics of articular cartilage at the tissue and cellular level. We concentrate on the use of fibril-reinforced models of cartilage. Furthermore, we introduce practical considerations for modeling applications, including also experimental tests that can be combined with the modeling approach. At the end, we discuss the prospects for patient-specific models when aiming to use finite element modeling analysis and evaluation of articular cartilage function, cellular responses, failure points, OA progression, and rehabilitation.
Collapse
|
40
|
Prediction of compressive stiffness of articular cartilage using Fourier transform infrared spectroscopy. J Biomech 2013; 46:1269-75. [PMID: 23538002 DOI: 10.1016/j.jbiomech.2013.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 02/19/2013] [Indexed: 11/21/2022]
Abstract
Unique biomechanical behavior of articular cartilage is a result of its structure and composition. Interrelationships of tissue constituents (collagen, proteoglycans (PGs) and water) and tissue biomechanical parameters have been studied, but it is evident that no constituent alone explains the tissue mechanics. Fourier transform infrared (FT-IR) spectra can provide detailed information about the biochemical composition of articular cartilage. In this study, a chemometric approach to predict the biomechanical behavior of articular cartilage directly from the FT-IR spectra, i.e., without converting the data into collagen and PG information, was investigated. Partial least squares regression (PLSR) was used to predict equilibrium modulus (n=32) and dynamic modulus (n=24) of bovine cartilage samples from their average FT-IR spectra. The linear correlation coefficients between the reference and predicted values of Young's modulus and dynamic modulus were r=0.866 (p<0.001) and r=0.898 (p<0.001), respectively. When the compressive biomechanical behavior of AC is predicted, the present study indicates that similar or improved results can be obtained with FT-IR spectroscopy as compared to those of traditional biochemical methods.
Collapse
|
41
|
Superficial collagen fibril modulus and pericellular fixed charge density modulate chondrocyte volumetric behaviour in early osteoarthritis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:164146. [PMID: 23634175 PMCID: PMC3619633 DOI: 10.1155/2013/164146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/07/2013] [Accepted: 01/22/2013] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior.
Collapse
|
42
|
Pulkkinen HJ, Tiitu V, Valonen P, Jurvelin JS, Rieppo L, Töyräs J, Silvast TS, Lammi MJ, Kiviranta I. Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit. Osteoarthritis Cartilage 2013; 21:481-90. [PMID: 23257243 DOI: 10.1016/j.joca.2012.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/22/2012] [Accepted: 12/07/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recombinant human type II collagen (rhCII) gels combined with autologous chondrocytes were tested as a scaffold for cartilage repair in rabbits in vivo. METHOD Autologous chondrocytes were harvested, expanded and combined with rhCII-gel and further pre-cultivated for 2 weeks prior to transplantation into a 4 mm diameter lesion created into the rabbit's femoral trochlea (n = 8). Rabbits with similar untreated lesions (n = 7) served as a control group. RESULTS Six months after the transplantation the repair tissue in both groups filled the lesion site, but in the rhCII-repair the filling was more complete. Both repair groups also had high proteoglycan and type II collagen contents, except in the fibrous superficial layer. However, the integration to the adjacent cartilage was incomplete. The O'Driscoll grading showed no significant differences between the rhCII-repair and spontaneous repair, both representing lower quality than intact cartilage. In the repair tissues the collagen fibers were abnormally organized and oriented. No dramatic changes were detected in the subchondral bone structure. The repair cartilage was mechanically softer than the intact tissue. Spontaneously repaired tissue showed lower values of equilibrium and dynamic modulus than the rhCII-repair. However, the differences in the mechanical properties between all three groups were insignificant. CONCLUSION When rhCII was used to repair cartilage defects, the repair quality was histologically incomplete, but still the rhCII-repairs showed moderate mechanical characteristics and a slight improvement over those in spontaneous repair. Therefore, further studies using rhCII for cartilage repair with emphasis on improving integration and surface protection are required.
Collapse
Affiliation(s)
- H J Pulkkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Turunen SM, Han SK, Herzog W, Korhonen RK. Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection. Osteoarthritis Cartilage 2013; 21:505-13. [PMID: 23247212 DOI: 10.1016/j.joca.2012.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 11/27/2012] [Accepted: 12/07/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocyte stresses and strains in articular cartilage are known to modulate tissue mechanobiology. Cell deformation behavior in cartilage under mechanical loading is not known at the earliest stages of osteoarthritis. Thus, the aim of this study was to investigate the effect of mechanical loading on volume and morphology of chondrocytes in the superficial tissue of osteoarthritic cartilage obtained from anterior cruciate ligament transected (ACLT) rabbit knee joints, 4 weeks after intervention. METHODS A unique custom-made microscopy indentation system with dual-photon microscope was used to apply controlled 2 MPa force-relaxation loading on patellar cartilage surfaces. Volume and morphology of chondrocytes were analyzed before and after loading. Also global and local tissue strains were calculated. Collagen content, collagen orientation and proteoglycan content were quantified with Fourier transform infrared microspectroscopy, polarized light microscopy and digital densitometry, respectively. RESULTS Following the mechanical loading, the volume of chondrocytes in the superficial tissue increased significantly in ACLT cartilage by 24% (95% confidence interval (CI) 17.2-31.5, P < 0.001), while it reduced significantly in contralateral group tissue by -5.3% (95% CI -8.1 to -2.5, P = 0.003). Collagen content in ACLT and contralateral cartilage were similar. PG content was reduced and collagen orientation angle was increased in the superficial tissue of ACLT cartilage compared to the contralateral cartilage. CONCLUSIONS We found the novel result that chondrocyte deformation behavior in the superficial tissue of rabbit articular cartilage is altered already at 4 weeks after ACLT, likely because of changes in collagen fibril orientation and a reduction in PG content.
Collapse
Affiliation(s)
- S M Turunen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
44
|
Kobrina Y, Rieppo L, Saarakkala S, Pulkkinen HJ, Tiitu V, Valonen P, Kiviranta I, Jurvelin JS, Isaksson H. Cluster analysis of infrared spectra can differentiate intact and repaired articular cartilage. Osteoarthritis Cartilage 2013; 21:462-9. [PMID: 23267848 DOI: 10.1016/j.joca.2012.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 11/27/2012] [Accepted: 12/14/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Successful repair of articular cartilage (AC) defects would be a major advantage due to the low ability of AC to heal spontaneously. Sensitive methods to determine changes in AC composition and structure are required to monitor the success of repair. This study evaluates the ability of unsupervised cluster analysis applied to Fourier transform infrared (FTIR) microspectroscopy to discriminate between healthy and repaired AC. METHODS Osteochondral lesions (3 mm in depth) were surgically created in patellar grooves of rabbit femurs and were either left to heal spontaneously (n = 6) or surgically repaired with autologous chondrocytes in type II collagen gel (n = 6). After 6 months, tissues were harvested, FTIR microspectroscopy was conducted and Fuzzy c-means (FCM) cluster analysis applied to spectra of pairs of intact and repaired AC samples from each rabbit. Two spectral regions [amide I and carbohydrate (CHO)] were analyzed and the results from the two types of repair were compared. RESULTS Two separate regions of repair were detected with FCM. The estimated proteoglycan content (from CHO region) in the repaired AC was significantly lower than that in intact AC. The spontaneously repaired AC was better distinguished from the intact AC than the collagen II gel repaired AC. The most distinct clustering was observed for spontaneously repaired samples using CHO region. CONCLUSIONS This study revealed that unsupervised cluster analysis applied to FTIR microspectroscopy can detect subtle differences in infrared spectra between normal and repaired AC. The method may help in evaluation and optimization of future AC repair strategies.
Collapse
Affiliation(s)
- Y Kobrina
- Department of Applied Physics, University of Eastern Finland, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Virén T, Huang YP, Saarakkala S, Pulkkinen H, Tiitu V, Linjama A, Kiviranta I, Lammi MJ, Brünott A, Brommer H, Van Weeren R, Brama PAJ, Zheng YP, Jurvelin JS, Töyräs J. Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage. J Med Eng Technol 2012; 36:185-92. [PMID: 22439802 DOI: 10.3109/03091902.2012.663054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of this study was to compare sensitivity of ultrasound and optical coherence tomography (OCT) techniques for the evaluation of the integrity of spontaneously repaired horse cartilage. Articular surfaces of horse intercarpal joints, featuring both intact tissue and spontaneously healed chondral or osteochondral defects, were imaged ex vivo with arthroscopic ultrasound and laboratory OCT devices. Quantitative ultrasound (integrated reflection coefficient (IRC), apparent integrated backscattering coefficient (AIB) and ultrasound roughness index (URI)) and optical parameters (optical reflection coefficient (ORC), optical roughness index (ORI) and optical backscattering (OBS)) were determined and compared with histological integrity and mechanical properties of the tissue. Spontaneously healed tissue could be quantitatively discerned from the intact tissue with ultrasound and OCT techniques. Furthermore, several significant correlations (p < 0.05) were detected between ultrasound and OCT parameters. Superior resolution of OCT provided a more accurate measurement of cartilage surface roughness, while the ultrasound backscattering from the inner structures of the cartilage matched better with the histological findings. Since the techniques were found to be complementary to each other, dual modality imaging techniques could provide a useful tool for the arthroscopic evaluation of the integrity of articular cartilage.
Collapse
Affiliation(s)
- T Virén
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Turunen SM, Lammi MJ, Saarakkala S, Han SK, Herzog W, Tanska P, Korhonen RK. The effect of collagen degradation on chondrocyte volume and morphology in bovine articular cartilage following a hypotonic challenge. Biomech Model Mechanobiol 2012; 12:417-29. [DOI: 10.1007/s10237-012-0409-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|
47
|
Desrochers J, Amrein MW, Matyas JR. Viscoelasticity of the articular cartilage surface in early osteoarthritis. Osteoarthritis Cartilage 2012; 20:413-421. [PMID: 22313971 DOI: 10.1016/j.joca.2012.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/09/2012] [Accepted: 01/17/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Structural and biochemical changes in articular cartilage occur throughout the pathogenesis of osteoarthritis (OA). Early changes include proteoglycan loss and collagen network disorganization at or near the articular surface. These changes accompany reductions in mechanical properties of cartilage, yet the relationships between mechanics and structure in early OA are poorly defined. Thus, the overall goal of this work was to measure changes in the microscale mechanics and structure of the articular surface in an in vivo model of OA to better understand the early pathogenesis of cartilage degeneration in this disease. DESIGN A canine cranial cruciate ligament transection (CCL(x)) model was used. The contralateral joint served as an internal control (Ctl). The frequency dependence of the dynamic indentation modulus (E(∗)) was evaluated, and creep behavior was measured to estimate the instantaneous (E(i,inst)) and equilibrium (E(i,eq)) indentation moduli and longest creep time-constant (τ). These functional parameters were related to microscopic metrics of cartilage structure and biochemistry, measured by polarized light microscopy and digital densitometry of proteoglycan staining by safranin-O. RESULTS CCL(x) and Ctl cartilage exhibited frequency sensitivity. E(i,inst), E(i,eq), and τ were lower in CCL(x) vs Ctl cartilage. These mechanical changes were accompanied by a reduction in superficial zone thickness and changes in superficial zone collagen organization, as well as a non-significant reduction in superficial zone proteoglycan staining. CONCLUSIONS Changes in the microscale viscoelastic behavior of the cartilage surface are a functional hallmark of early OA that accompany significant changes to the microstructural organization of the collagenous extracellular matrix.
Collapse
Affiliation(s)
- J Desrochers
- McCaig Institute for Bone and Joint Health, University of Calgary, Canada.
| | - M W Amrein
- Director, Microscopy and Imaging Facility, Faculty of Medicine, University of Calgary, Canada.
| | - J R Matyas
- McCaig Institute for Bone and Joint Health, University of Calgary, Canada; Director, Microscopy and Imaging Facility, Faculty of Medicine, University of Calgary, Canada.
| |
Collapse
|
48
|
Kobrina Y, Rieppo L, Saarakkala S, Jurvelin JS, Isaksson H. Clustering of infrared spectra reveals histological zones in intact articular cartilage. Osteoarthritis Cartilage 2012; 20:460-468. [PMID: 22333731 DOI: 10.1016/j.joca.2012.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 12/21/2011] [Accepted: 01/24/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Articular cartilage (AC) exhibits specific zonal structure that follows the organization of collagen network and concentration of tissue constituents. The aim of this study was to investigate the potential of unsupervised clustering analysis applied to Fourier transform infrared (FTIR) microspectroscopy to detect depth-dependent structural and compositional differences in intact AC. METHOD Seven rabbit and eight bovine intact patellae AC samples were imaged using FTIR microspectroscopy and normalized raw spectra were clustered using the fuzzy C-means algorithm. Differences in mean spectra of clusters were investigated by quantitative estimation of collagen and proteoglycan (PG) contents, as well as by careful visual investigation of locations of spectral changes. RESULTS Clustering revealed the typical layered structure of AC in both species. However, more distinct clusters were found for rabbit samples, whereas bovine AC showed more complex layered structure. In both species, clustering structure corresponded with that in polarized light microscopic (PLM) images; however, some differences were also observed. Spectral differences between clusters were identified at the same spectral locations for both species. Estimated PG/collagen ratio decreased significantly from superficial to middle or deep zones, which might explain the difference in clustering results compared to PLM. CONCLUSION FTIR microspectroscopy in combination with cluster analysis allows detailed examination of spatial changes in AC. As far as we know, no previous single technique could reveal a layered structure of AC without any a priori information.
Collapse
Affiliation(s)
- Yevgeniya Kobrina
- Department of Applied Physics, University of Eastern Finland, Finland
| | - Lassi Rieppo
- Department of Applied Physics, University of Eastern Finland, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Simo Saarakkala
- Department of Diagnostic Radiology, Institute of Diagnostics, University of Oulu, Finland; Department of Medical Technology, Institute of Biomedicine, University of Oulu, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, Finland
| | - Hanna Isaksson
- Department of Applied Physics, University of Eastern Finland, Finland; Division of Solid Mechanics, Lund University, Sweden.
| |
Collapse
|
49
|
Rieppo L, Saarakkala S, Närhi T, Helminen HJ, Jurvelin JS, Rieppo J. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthritis Cartilage 2012; 20:451-459. [PMID: 22321720 DOI: 10.1016/j.joca.2012.01.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 01/06/2012] [Accepted: 01/17/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Fourier transform infrared (FT-IR) spectroscopic imaging is a promising method that enables the analysis of spatial distribution of biochemical components within histological sections. However, analysis of FT-IR spectroscopic data is complicated since absorption peaks often overlap with each other. Second derivative spectroscopy is a technique which enhances the separation of overlapping peaks. The objective of this study was to evaluate the specificity of the second derivative peaks for the main tissue components of articular cartilage (AC), i.e., collagen and proteoglycans (PGs). MATERIALS AND METHODS Histological bovine AC sections were measured before and after enzymatic removal of PGs. Both formalin-fixed sections (n = 10) and cryosections (n = 6) were investigated. Relative changes in the second derivative peak heights caused by the removal of PGs were calculated for both sample groups. RESULTS The results showed that numerous peaks, e.g., peaks located at 1202 cm(-1) and 1336 cm(-1), altered less than 5% in the experiment. These peaks were assumed to be specific for collagen. In contrast, two peaks located at 1064 cm(-1) and 1376 cm(-1) were seen to alter notably, approximately 50% or more. These peaks were regarded to be specific for PGs. The changes were greater in cryosections than formalin-fixed sections. CONCLUSIONS The results of this study suggest that the second derivative spectroscopy offers a practical and more specific method than routinely used absorption spectrum analysis methods to obtain compositional information on AC with FT-IR spectroscopic imaging.
Collapse
Affiliation(s)
- L Rieppo
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.
| | - S Saarakkala
- Department of Diagnostic Radiology, Institute of Diagnostics, University of Oulu, Oulu, Finland; Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu, Finland.
| | - T Närhi
- Institute of Biomedicine, Department of Anatomy, University of Eastern Finland, Kuopio, Finland.
| | - H J Helminen
- Institute of Biomedicine, Department of Anatomy, University of Eastern Finland, Kuopio, Finland.
| | - J S Jurvelin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - J Rieppo
- Institute of Biomedicine, Department of Anatomy, University of Eastern Finland, Kuopio, Finland; Iisalmi Hospital, Iisalmi, Finland.
| |
Collapse
|
50
|
Popp JR, Roberts JJ, Gallagher DV, Anseth KS, Bryant SJ, Quinn TP. An Instrumented Bioreactor for Mechanical Stimulation and Real-Time, Nondestructive Evaluation of Engineered Cartilage Tissue. J Med Device 2012. [DOI: 10.1115/1.4006546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mechanical stimulation is essential for chondrocyte metabolism and cartilage matrix deposition. Traditional methods for evaluating developing tissue in vitro are destructive, time consuming, and expensive. Nondestructive evaluation of engineered tissue is promising for the development of replacement tissues. Here we present a novel instrumented bioreactor for dynamic mechanical stimulation and nondestructive evaluation of tissue mechanical properties and extracellular matrix (ECM) content. The bioreactor is instrumented with a video microscope and load cells in each well to measure tissue stiffness and an ultrasonic transducer for evaluating ECM content. Chondrocyte-laden hydrogel constructs were placed in the bioreactor and subjected to dynamic intermittent compression at 1 Hz and 10% strain for 1 h, twice per day for 7 days. Compressive modulus of the constructs, measured online in the bioreactor and offline on a mechanical testing machine, did not significantly change over time. Deposition of sulfated glycosaminoglycan (sGAG) increased significantly after 7 days, independent of loading. Furthermore, the relative reflection amplitude of the loaded constructs decreased significantly after 7 days, consistent with an increase in sGAG content. This preliminary work with our novel bioreactor demonstrates its capabilities for dynamic culture and nondestructive evaluation.
Collapse
Affiliation(s)
- Jenni R. Popp
- Materials Reliability Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305
| | - Justine J. Roberts
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| | - Doug V. Gallagher
- Materials Reliability Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| | - Timothy P. Quinn
- Materials Reliability Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305
| |
Collapse
|