1
|
Gao L, Chen R, Liu J, Tan Y, Gao Q, Zhang C, Lv L. Hypergravity stimulates mechanical behavior and micro-architecture of tibia in rats. J Bone Miner Metab 2024; 42:17-26. [PMID: 38062272 DOI: 10.1007/s00774-023-01481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/27/2023] [Accepted: 11/02/2023] [Indexed: 02/10/2024]
Abstract
INTRODUCTION The bone tissue is susceptible to hypergravity (+ G) environment. It is necessary to discuss the extent to which specific + G values are beneficial or detrimental to bone tissue. The objective of this study was to characterize the effects of high + G values on mechanical properties, microstructures, and cellular metabolism of bone. MATERIALS AND METHODS 30 male Wistar rats aged 12 weeks were randomly divided into 5 groups, and bore different + G (namely + 1G, + 4G, + 8G, + 10G and + 12G) environments respectively for 4 weeks, 5 days each week, and 3 minutes each day. The macro-mechanical parameters, microstructure parameters, and mRNA transcription levels of the tibia were determined through the three-point bending method, micro-CT detection, and q-PCR analysis, respectively. RESULTS As the + G value increases, hypergravity becomes increasingly detrimental to the macro-mechanical performance of rat tibia. Concerning the microstructure of cancellous bone, there appears to be a favorable trend at + 4G, followed by a progressively detrimental trend at higher G values. In addition, the mRNA transcription levels of OPG and RANKL show an initial tendency of enhanced bone absorption at +4G, followed by an increase in bone remodeling capacity as G value increases. CONCLUSION The higher G values correspond to poorer macro-mechanical properties of the tibia, and a + 4G environment benefits the microstructure of the tibia. At the cellular level, bone resorption is enhanced in the + 4G group, but the bone remodeling capability gradually increases with further increments in G values.
Collapse
Affiliation(s)
- Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Ruiqi Chen
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Jin Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Yansong Tan
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Qijun Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Linwei Lv
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| |
Collapse
|
2
|
Mantuano P, Boccanegra B, Bianchini G, Conte E, De Bellis M, Sanarica F, Camerino GM, Pierno S, Cappellari O, Allegretti M, Aramini A, De Luca A. BCAAs and Di-Alanine supplementation in the prevention of skeletal muscle atrophy: preclinical evaluation in a murine model of hind limb unloading. Pharmacol Res 2021; 171:105798. [PMID: 34352400 DOI: 10.1016/j.phrs.2021.105798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/12/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy occurs in response to various pathophysiological stimuli, including disuse, aging, and neuromuscular disorders, mainly due to an imbalance of anabolic/catabolic signaling. Branched Chain Amino Acids (BCAAs: leucine, isoleucine, valine) supplements can be beneficial for counteracting muscle atrophy, in virtue of their reported anabolic properties. Here, we carried out a proof-of-concept study to assess the in vivo/ex vivo effects of a 4-week treatment with BCAAs on disuse-induced atrophy, in a murine model of hind limb unloading (HU). BCAAs were formulated in drinking water, alone, or plus two equivalents of L-Alanine (2 ALA) or the dipeptide L-Alanyl-L-Alanine (Di-ALA), to boost BCAAs bioavailability. HU mice were characterized by reduction of body mass, decrease of soleus - SOL - muscle mass and total protein, alteration of postural muscles architecture and fiber size, dysregulation of atrophy-related genes (Atrogin-1, MuRF-1, mTOR, Mstn). In parallel, we provided new robust readouts in the HU murine model, such as impaired in vivo isometric torque and ex vivo SOL muscle contractility and elasticity, as well as altered immune response. An acute pharmacokinetic study confirmed that L-ALA, also as dipeptide, enhanced plasma exposure of BCAAs. Globally, the most sensitive parameters to BCAAs action were muscle atrophy and myofiber cross-sectional area, muscle force and compliance to stress, protein synthesis via mTOR and innate immunity, with the new BCAAs + Di-ALA formulation being the most effective treatment. Our results support the working hypothesis and highlight the importance of developing innovative formulations to optimize BCAAs biodistribution.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Gianluca Bianchini
- Research & Early Development, Dompé farmaceutici S.p.A., Via Campo di Pile, s.n.c., 67100 L'Aquila, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Marcello Allegretti
- Research & Early Development, Dompé farmaceutici S.p.A., Via Campo di Pile, s.n.c., 67100 L'Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé farmaceutici S.p.A., Via Campo di Pile, s.n.c., 67100 L'Aquila, Italy.
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy.
| |
Collapse
|
3
|
Siddiqui R, Akbar N, Khan NA. Gut microbiome and human health under the space environment. J Appl Microbiol 2020; 130:14-24. [PMID: 32692438 DOI: 10.1111/jam.14789] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiome is well recognized to have a pivotal role in regulation of the health and behaviour of the host, affecting digestion, metabolism, immunity, and has been linked to changes in bones, muscles and the brain, to name a few. However, the impact of microgravity environment on gut bacteria is not well understood. In space environments, astronauts face several health issues including stress, high iron diet, radiation and being in a closed system during extended space missions. Herein, we discuss the role of gut bacteria in the space environment, in relation to factors such as microgravity, radiation and diet. Gut bacteria may exact their effects by synthesis of molecules, their absorption, and through physiological effects on the host. Moreover we deliberate the role of these challenges in the dysbiosis of the human microbiota and possible dysregulation of the immune system.
Collapse
Affiliation(s)
- R Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - N Akbar
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - N A Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Qaisar R, Karim A, Elmoselhi AB. Muscle unloading: A comparison between spaceflight and ground-based models. Acta Physiol (Oxf) 2020; 228:e13431. [PMID: 31840423 DOI: 10.1111/apha.13431] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Prolonged unloading of skeletal muscle, a common outcome of events such as spaceflight, bed rest and hindlimb unloading, can result in extensive metabolic, structural and functional changes in muscle fibres. With advancement in investigations of cellular and molecular mechanisms, understanding of disuse muscle atrophy has significantly increased. However, substantial gaps exist in our understanding of the processes dictating muscle plasticity during unloading, which prevent us from developing effective interventions to combat muscle loss. This review aims to update the status of knowledge and underlying mechanisms leading to cellular and molecular changes in skeletal muscle during unloading. We have also discussed advances in the understanding of contractile dysfunction during spaceflights and in ground-based models of muscle unloading. Additionally, we have elaborated on potential therapeutic interventions that show promising results in boosting muscle mass and strength during mechanical unloading. Finally, we have identified key gaps in our knowledge as well as possible research direction for the future.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Asima Karim
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Adel B. Elmoselhi
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
- Department of Physiology Michigan State University East Lansing MI USA
| |
Collapse
|
5
|
Fayez AM, Elnoby AS, Bahnasawy NH, Hassan O. Neuroprotective effects of zafirlukast, piracetam and their combination on L-Methionine-induced vascular dementia in rats. Fundam Clin Pharmacol 2019; 33:634-648. [PMID: 31001898 DOI: 10.1111/fcp.12473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2018] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022]
Abstract
Vascular dementia is considered a vascular cognitive impairment disease caused by neuronal degeneration in the brain. Several studies have supported the hypothesis that oxidative stress and endothelial dysfunction are the main pathogenic factors in vascular dementia. This current study aims to determine the possible neuroprotective effects of zafirlukast, piracetam and the combination of piracetam and zafirlukast on L-methionine-induced vascular dementia in rats. Male Wistar albino rats were divided into five groups. Group I was the normal control, and group II received L-methionine (1700 mg/kg, P.O.) for 32 days. The remaining groups received zafirlukast (20 mg/kg, P.O.), piracetam (600 mg/kg, P.O.) or their combination (zafirlukast 20 mg/kg + piracetam 600 mg/kg, P.O.) for 32 days after L-methionine administration. Afterwards, the cognitive and memory performances of the rats were investigated using the novel object recognition (NOR) test; rats were then sacrificed for histopathological and biochemical analyses. L-methionine-induced vascular dementia altered rats' behaviours and the brain contents of different neurotransmitters and acetylcholinesterase activity while increasing levels of oxidative stress and causing notable histopathological alterations in brain tissues. The treatment of vascular dementia with zafirlukast and the combination improved neurochemical, behavioural and histological alterations to a comparable level to those of piracetam. Thus, zafirlukast, piracetam and the combination of both drugs can be considered as potential therapeutic strategies for the treatment of vascular dementia induced by L-methionine. To the best of our knowledge, this study is the first to explore the neuroprotective effects of zafirlukast and piracetam on L-methionine-induced vascular dementia.
Collapse
Affiliation(s)
- Ahmed M Fayez
- Pharmacology Department, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| | - Ahmed S Elnoby
- Clinical Pharmacy Department, Children's Cancer Hospital Egypt, 57357, Cairo, Egypt.,Faculty of Pharmacy, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| | - Nada H Bahnasawy
- Faculty of Pharmacy, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| | - Omar Hassan
- Pharmacology Department, October University for Modern Science and Arts, 11787, 6 October City, Egypt.,Faculty of Pharmacy, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| |
Collapse
|
6
|
El-Dessouki AM, Galal MA, Awad AS, Zaki HF. Neuroprotective Effects of Simvastatin and Cilostazol in L-Methionine-Induced Vascular Dementia in Rats. Mol Neurobiol 2016; 54:5074-5084. [PMID: 27544235 DOI: 10.1007/s12035-016-0051-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Vascular dementia (VaD) is a degenerative cerebrovascular disorder that leads to progressive decline in cognitive abilities and memory. Several reports demonstrated that oxidative stress and endothelial dysfunction are principal pathogenic factors in VaD. The present study was constructed to determine the possible neuroprotective effects of simvastatin in comparison with cilostazol in VaD induced by L-methionine in rats. Male Wistar rats were divided into four groups. Group I (control group), group II received L-methionine (1.7 g/kg, p.o.) for 32 days. The remaining two groups received simvastatin (50 mg/kg, p.o.) and cilostazol (100 mg/kg, p.o.), respectively, for 32 days after induction of VaD by L-methionine. Subsequently, rats were tested for cognitive performance using Morris water maze test then sacrificed for biochemical and histopathological assays. L-methionine induced VaD reflected by alterations in rats' behavior as well as the estimated neurotransmitters, acetylcholinesterase activity as well as increased brain oxidative stress and inflammation parallel to histopathological changes in brain tissue. Treatment of rats with simvastatin ameliorated L-methionine-induced behavioral, neurochemical, and histological changes in a manner comparable to cilostazol. Simvastatin may be regarded as a potential therapeutic strategy for the treatment of VaD. To the best of our knowledge, this is the first study to reveal the neuroprotective effects of simvastatin or cilostazol in L-methionine-induced VaD. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ahmed M El-Dessouki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6-October, 4th Industrial Area, Giza, 12566, Egypt.
| | - Mai A Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6-October, 4th Industrial Area, Giza, 12566, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
7
|
Globus RK, Morey-Holton E. Hindlimb unloading: rodent analog for microgravity. J Appl Physiol (1985) 2016; 120:1196-206. [PMID: 26869711 DOI: 10.1152/japplphysiol.00997.2015] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
The rodent hindlimb unloading (HU) model was developed in the 1980s to make it possible to study mechanisms, responses, and treatments for the adverse consequences of spaceflight. Decades before development of the HU model, weightlessness was predicted to yield deficits in the principal tissues responsible for structure and movement on Earth, primarily muscle and bone. Indeed, results from early spaceflight and HU experiments confirmed the expected sensitivity of the musculoskeletal system to gravity loading. Results from human and animal spaceflight and HU experiments show that nearly all organ systems and tissues studied display some measurable changes, albeit sometimes minor and of uncertain relevance to astronaut health. The focus of this review is to examine key HU results for various organ systems including those related to stress; the immune, cardiovascular, and nervous systems; vision changes; and wound healing. Analysis of the validity of the HU model is important given its potential value for both hypothesis testing and countermeasure development.
Collapse
Affiliation(s)
- Ruth K Globus
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| | - Emily Morey-Holton
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| |
Collapse
|
8
|
Ritchie LE, Taddeo SS, Weeks BR, Lima F, Bloomfield SA, Azcarate-Peril MA, Zwart SR, Smith SM, Turner ND. Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis. PLoS One 2015; 10:e0125792. [PMID: 26083373 PMCID: PMC4470690 DOI: 10.1371/journal.pone.0125792] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2014] [Accepted: 03/26/2015] [Indexed: 01/01/2023] Open
Abstract
Astronaut intestinal health may be impacted by microgravity, radiation, and diet. The aim of this study was to characterize how high and low linear energy transfer (LET) radiation, microgravity, and elevated dietary iron affect colon microbiota (determined by 16S rDNA pyrosequencing) and colon function. Three independent experiments were conducted to achieve these goals: 1) fractionated low LET γ radiation (137Cs, 3 Gy, RAD), high Fe diet (IRON) (650 mg/kg diet), and a combination of low LET γ radiation and high Fe diet (IRON+RAD) in male Sprague-Dawley rats; 2) high LET 38Si particle exposure (0.050 Gy), 1/6 G partial weight bearing (PWB), and a combination of high LET38Si particle exposure and PWB in female BalbC/ByJ mice; and 3) 13 d spaceflight in female C57BL/6 mice. Low LET radiation, IRON and spaceflight increased Bacteroidetes and decreased Firmicutes. RAD and IRON+RAD increased Lactobacillales and lowered Clostridiales compared to the control (CON) and IRON treatments. Low LET radiation, IRON, and spaceflight did not significantly affect diversity or richness, or elevate pathogenic genera. Spaceflight increased Clostridiales and decreased Lactobacillales, and similar trends were observed in the experiment using a ground-based model of microgravity, suggesting altered gravity may affect colonic microbiota. Although we noted no differences in colon epithelial injury or inflammation, spaceflight elevated TGFβ gene expression. Microbiota and mucosal characterization in these models is a first step in understanding the impact of the space environment on intestinal health.
Collapse
Affiliation(s)
- Lauren E. Ritchie
- Intercollegiate Faculty of Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Stella S. Taddeo
- Nutrition & Food Science Department, Texas A&M University, College Station, Texas, United States of America
| | - Brad R. Weeks
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Florence Lima
- Division of Nephrology, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Susan A. Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, United States of America
| | - M. Andrea Azcarate-Peril
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Sara R. Zwart
- Human Health and Performance Directorate, NASA Lyndon B. Johnson Space Center, Houston, Texas, United States of America
| | - Scott M. Smith
- Human Health and Performance Directorate, NASA Lyndon B. Johnson Space Center, Houston, Texas, United States of America
| | - Nancy D. Turner
- Intercollegiate Faculty of Genetics, Texas A&M University, College Station, Texas, United States of America
- Nutrition & Food Science Department, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
9
|
Ghislin S, Ouzren-Zarhloul N, Kaminski S, Frippiat JP. Hypergravity exposure during gestation modifies the TCRβ repertoire of newborn mice. Sci Rep 2015; 5:9318. [PMID: 25792033 PMCID: PMC5380131 DOI: 10.1038/srep09318] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 01/03/2023] Open
Abstract
During spaceflight, organisms are subjected to mechanical force changes (gravity (G) changes) that affect the immune system. However, gravitational effects on lymphopoiesis have rarely been studied. Consequently, we investigated whether the TCRβ repertoire, created by V(D)J recombination during T lymphopoiesis, is affected by hypergravity exposure during murine development. To address this question, C57BL/6j mice were mated in a centrifuge so that embryonic development, birth and TCRβ rearrangements occurred at 2G. Pups were sacrificed at birth, and their thymus used to quantify transcripts coding for factors required for V(D)J recombination and T lymphopoiesis. We also created cDNA mini-libraries of TCRβ transcripts to study the impact of hypergravity on TCRβ diversity. Our data show that hypergravity exposure increases the transcription of TCRβ chains, and of genes whose products are involved in TCR signaling, and affects the V(D)J recombination process. We also observed that ~85% of the TCRβ repertoire is different between hypergravity and control pups. These data indicate that changing a mechanical force (the gravity) during ontogeny will likely affect host immunity because properties of loops constituting TCR antigen-binding sites are modified in hypergravity newborns. The spectrum of peptides recognized by TCR will therefore likely be different.
Collapse
Affiliation(s)
- Stéphanie Ghislin
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Lorraine University, F-54500 Vandœuvre-lès-Nancy, France
| | - Nassima Ouzren-Zarhloul
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Lorraine University, F-54500 Vandœuvre-lès-Nancy, France
| | - Sandra Kaminski
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Lorraine University, F-54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pol Frippiat
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Lorraine University, F-54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
10
|
Broad-spectrum antibiotic or G-CSF as potential countermeasures for impaired control of bacterial infection associated with an SPE exposure during spaceflight. PLoS One 2015; 10:e0120126. [PMID: 25793272 PMCID: PMC4368688 DOI: 10.1371/journal.pone.0120126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2014] [Accepted: 02/04/2015] [Indexed: 12/31/2022] Open
Abstract
A major risk for astronauts during prolonged space flight is infection as a result of the combined effects of microgravity, situational and confinement stress, alterations in food intake, altered circadian rhythm, and radiation that can significantly impair the immune system and the body’s defense systems. We previously reported a massive increase in morbidity with a decrease in the ability to control a bacterial challenge when mice were maintained under hindlimb suspension (HS) conditions and exposed to solar particle event (SPE)-like radiation. HS and SPE-like radiation treatment alone resulted in a borderline significant increase in morbidity. Therefore, development and testing of countermeasures that can be used during extended space missions in the setting of exposure to SPE radiation becomes a serious need. In the present study, we investigated the efficacy of enrofloxacin (an orally bioavailable antibiotic) and Granulocyte colony stimulating factor (G-CSF) (Neulasta) on enhancing resistance to Pseudomonas aeruginosa infection in mice subjected to HS and SPE-like radiation. The results revealed that treatment with enrofloxacin or G-CSF enhanced bacterial clearance and significantly decreased morbidity and mortality in challenged mice exposed to suspension and radiation. These results establish that antibiotics, such as enrofloxacin, and G-CSF could be effective countermeasures to decrease the risk of bacterial infections after exposure to SPE radiation during extended space flight, thereby reducing both the risk to the crew and the danger of mission failure.
Collapse
|
11
|
Crucian BE, Zwart SR, Mehta S, Uchakin P, Quiriarte HD, Pierson D, Sams CF, Smith SM. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J Interferon Cytokine Res 2014; 34:778-86. [PMID: 24702175 DOI: 10.1089/jir.2013.0129] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Aspects of immune system dysregulation associated with long-duration spaceflight have yet to be fully characterized and may represent a clinical risk to crewmembers during deep space missions. Plasma cytokine concentration may serve as an indicator of in vivo physiological changes or immune system mobilization. The plasma concentrations of 22 cytokines were monitored in 28 astronauts during long-duration spaceflight onboard the International Space Station. Blood samples were collected 3 times before flight, 3-5 times during flight (depending on mission duration), at landing, and 30 days after landing. Analysis was performed by bead array immunoassay. With few exceptions, minimal detectable mean plasma concentrations were observed at baseline (launch minus 180) for innate inflammatory cytokines or adaptive regulatory cytokines; however, interleukin (IL)-1ra and several chemokines and growth factors were constitutively present. An increase in the plasma concentration, tumor necrosis factor-α (TNFα), IL-8, IL-1ra, thrombopoietin (Tpo), vascular endothelial growth factor (VEGF), C-C motif chemokine ligand 2 (CCL2), chemokine ligand 4/macrophage inhibitory protein 1b (CCL4), and C-X-C motif chemokine 5/epithelial neutrophil-activating protein 78 (CXCL5) was observed associated with spaceflight. No significant alterations were observed during or following spaceflight for the inflammatory or adaptive/T-regulatory cytokines: IL-1α, IL-1β, IL-2, interferon-gamma (IFN-γ), IL-17, IL-4, IL-5, IL-10, G-CSF, GM-CSF, FGF basic, CCL3, or CCL5. This pattern of cytokine dysregulation suggests multiple physiological adaptations persist during flight, including inflammation, leukocyte recruitment, angiogenesis, and thrombocyte regulation.
Collapse
|
12
|
Gaignier F, Schenten V, De Carvalho Bittencourt M, Gauquelin-Koch G, Frippiat JP, Legrand-Frossi C. Three weeks of murine hindlimb unloading induces shifts from B to T and from th to tc splenic lymphocytes in absence of stress and differentially reduces cell-specific mitogenic responses. PLoS One 2014; 9:e92664. [PMID: 24664102 PMCID: PMC3963916 DOI: 10.1371/journal.pone.0092664] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2013] [Accepted: 02/24/2014] [Indexed: 11/20/2022] Open
Abstract
Extended space missions are known to induce stress and immune dysregulation. Hindlimb unloading is a ground-based model used to reproduce most spaceflight conditions. The aim of this study was to better characterize the consequences of prolonged exposure to hindlimb unloading on murine splenic lymphocyte sub-populations. To ensure that the observed changes were not due to tail restraint but to the antiorthostatic position, three groups of mice were used: control (C), orthostatic restrained (R) and hindlimb unloaded (HU). After 21 days of exposure, no difference in serum corticosterone levels nor in thymus and spleen weights were observed between HU mice and their counterparts, revealing a low state of stress. Interestingly, flow cytometric analyses showed that B cells were drastically reduced in HU mouse spleens by 59% and, while the T cells number did not change, the Th/Tc ratio was decreased. Finally, the use of a fluorescent dye monitoring lymphoproliferation demonstrated that lymphocyte response to mitogen was reduced in Th and Tc populations and to a greater extent in B cells. Thus, we showed for the first time that, even if restraint has its own effects on the animals and their splenic lymphocytes, the prolonged antiorthostatic position leads, despite the absence of stress, to an inversion of the B/T ratio in the spleen. Furthermore, the lymphoproliferative response was impaired with a strong impact on B cells. Altogether, these results suggest that B cells are more affected by hindlimb unloading than T cells which may explain the high susceptibility to pathogens, such as gram-negative bacteria, described in animal models and astronauts.
Collapse
Affiliation(s)
- Fanny Gaignier
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Vandœuvre-lès-Nancy, France
| | - Véronique Schenten
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Vandœuvre-lès-Nancy, France
| | | | | | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Vandœuvre-lès-Nancy, France
| | - Christine Legrand-Frossi
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
13
|
Li M, Holmes V, Zhou Y, Ni H, Sanzari JK, Kennedy AR, Weissman D. Hindlimb suspension and SPE-like radiation impairs clearance of bacterial infections. PLoS One 2014; 9:e85665. [PMID: 24454913 PMCID: PMC3893249 DOI: 10.1371/journal.pone.0085665] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2013] [Accepted: 12/01/2013] [Indexed: 12/22/2022] Open
Abstract
A major risk of extended space travel is the combined effects of weightlessness and radiation exposure on the immune system. In this study, we used the hindlimb suspension model of microgravity that includes the other space stressors, situational and confinement stress and alterations in food intake, and solar particle event (SPE)-like radiation to measure the combined effects on the ability to control bacterial infections. A massive increase in morbidity and decrease in the ability to control bacterial growth was observed using 2 different types of bacteria delivered by systemic and pulmonary routes in 3 different strains of mice. These data suggest that an astronaut exposed to a strong SPE during extended space travel is at increased risk for the development of infections that could potentially be severe and interfere with mission success and astronaut health.
Collapse
Affiliation(s)
- Minghong Li
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Veronica Holmes
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yu Zhou
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Houping Ni
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenine K. Sanzari
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ann R. Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Drew Weissman
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Contribution of the urodele amphibian Pleurodeles waltl to the analysis of spaceflight-associated immune system deregulation. Mol Immunol 2013; 56:434-41. [DOI: 10.1016/j.molimm.2013.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022]
|
15
|
Zhou Y, Ni H, Li M, Sanzari JK, Diffenderfer ES, Lin L, Kennedy AR, Weissman D. Effect of solar particle event radiation and hindlimb suspension on gastrointestinal tract bacterial translocation and immune activation. PLoS One 2012; 7:e44329. [PMID: 23028522 PMCID: PMC3446907 DOI: 10.1371/journal.pone.0044329] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2012] [Accepted: 08/01/2012] [Indexed: 01/26/2023] Open
Abstract
The environmental conditions that could lead to an increased risk for the development of an infection during prolonged space flight include: microgravity, stress, radiation, disturbance of circadian rhythms, and altered nutritional intake. A large body of literature exists on the impairment of the immune system by space flight. With the advent of missions outside the Earth's magnetic field, the increased risk of adverse effects due to exposure to radiation from a solar particle event (SPE) needs to be considered. Using models of reduced gravity and SPE radiation, we identify that either 2 Gy of radiation or hindlimb suspension alone leads to activation of the innate immune system and the two together are synergistic. The mechanism for the transient systemic immune activation is a reduced ability of the GI tract to contain bacterial products. The identification of mechanisms responsible for immune dysfunction during extended space missions will allow the development of specific countermeasures.
Collapse
Affiliation(s)
- Yu Zhou
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Houping Ni
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Minghong Li
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenine K. Sanzari
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric S. Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Liyong Lin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ann R. Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Drew Weissman
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Guéguinou N, Bojados M, Jamon M, Derradji H, Baatout S, Tschirhart E, Frippiat JP, Legrand-Frossi C. Stress response and humoral immune system alterations related to chronic hypergravity in mice. Psychoneuroendocrinology 2012; 37:137-47. [PMID: 21724335 DOI: 10.1016/j.psyneuen.2011.05.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/28/2011] [Revised: 05/12/2011] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
Abstract
Spaceflights are known to induce stress and immune dysregulation. Centrifugation, as hindlimb unloading, is a good ground based-model to simulate altered gravity which occurs during space missions. The aim of this study was to investigate the consequences of a long-term exposure to different levels of hypergravity on the stress response and the humoral immunity in a mouse model. For this purpose, adult C57Bl/6J male mice were subjected for 21 days either to control conditions or to 2G or 3G acceleration gravity forces. Corticosterone level and anxiety behavior revealed a stress response which was associated with a decrease of body weight, after 21-day of centrifugation at 3G but not at 2G. Spleen lymphocyte lipopolysaccharide (LPS) responsiveness was diminished by 40% in the 2G group only, whereas a decrease was noted when cells were stimulated with concanavalin A for both 2G and 3G groups (about 25% and 20%, respectively) compared to controls. Pro-inflammatory chemokines (MCP-1 and IP-10) and Th1 cytokines (IFNγ and IL2) were slightly decreased in the 2G group and strongly decreased in the 3G mouse group. Regarding Th2 cytokines (IL4, IL5) no further significant modification was observed, whereas the immunosuppressive cytokine IL10 was slightly increased in the 3G mice. Finally, serum IgG concentration was twice higher whereas IgA concentration was slightly increased (about 30%) and IgM were unchanged in 2G mice compared to controls. No difference was observed in the 3G group with these isotypes. Consequently, functional immune dysregulations and stress responses were dependent of the gravity level.
Collapse
Affiliation(s)
- Nathan Guéguinou
- Development and Immunogenetics Team, Nancy-University, Henri Poincaré University, JE 2537, F-54500 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wilson JM, Krigsfeld GS, Sanzari JK, Wagner EB, Mick R, Kennedy AR. Comparison of hindlimb unloading and partial weight suspension models for spaceflight-type condition induced effects on white blood cells. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2012; 49:237-248. [PMID: 23766550 PMCID: PMC3678840 DOI: 10.1016/j.asr.2011.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/06/2023]
Abstract
Animal models are frequently used to assist in the determination of the long- and short-term effects of space flight. The space environment, including microgravity, can impact many physiological and immunological system parameters. It has been found that ground based models of microgravity produce changes in white blood cell counts, which negatively affects immunologic function. As part of the Center of Acute Radiation Research (CARR), we compared the acute effects on white blood cell parameters induced by the more traditionally used animal model of hindlimb unloading (HU) with a recently developed reduced weightbearing analog known as partial weight suspension (PWS). Female ICR mice were either hindlimb unloaded or placed in the PWS system at 16% quadrupedal weightbearing for 4 h, 1, 2, 7 or 10 days, at which point complete blood counts were obtained. Control animals (jacketed and non-jacketed) were exposed to identical conditions without reduced weightbearing. Results indicate that significant changes in total white blood cell (WBC), neutrophil, lymphocyte, monocyte and eosinophil counts were observed within the first 2 days of exposure to each system. These differences in blood cell counts normalized by day 7 in both systems. The results of these studies indicate that there are some statistically significant changes observed in the blood cell counts for animals exposed to both the PWS and HU simulated microgravity systems.
Collapse
Affiliation(s)
- Jolaine M Wilson
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Gabriel S. Krigsfeld
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jenine K. Sanzari
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika B. Wagner
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rosemarie Mick
- Department of Biostatistics & Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ann R. Kennedy
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Corresponding author. Fax: +1 215 898 1411
| |
Collapse
|
18
|
Wagatsuma A, Kotake N, Kawachi T, Shiozuka M, Yamada S, Matsuda R. Mitochondrial adaptations in skeletal muscle to hindlimb unloading. Mol Cell Biochem 2011; 350:1-11. [PMID: 21165677 DOI: 10.1007/s11010-010-0677-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2010] [Accepted: 12/02/2010] [Indexed: 12/20/2022]
Abstract
To gain insight into the regulation of mitochondrial adaptations to hindlimb unloading (HU), the activity of mitochondrial enzymes and the expression of nuclear-encoded genes which control mitochondrial properties in mouse gastrocnemius muscle were investigated. Biochemical and enzyme histochemical analysis showed that subsarcolemmal mitochondria were lost largely than intermyofibrillar mitochondria after HU. Gene expression analysis revealed disturbed or diminished gene expression patterns. The three main results of this analysis are as follows. First, in contrast to peroxisome proliferator-activated receptor γ coactivator 1 β (PGC-1β) and PGC-1-related coactivator, which were down-regulated by HU, PGC-1α was up-regulated concomitant with decreased expression of its DNA binding transcription factors, PPARα, and estrogen-related receptor α (ERRα). Moreover, there was no alteration in expression of nuclear respiratory factor 1, but its downstream target gene, mitochondrial transcription factor A, was down-regulated. Second, both mitofusin 2 and fission 1, which control mitochondrial morphology, were down-regulated. Third, ATP-dependent Lon protease, which participates in mitochondrial-protein degradation, was also down-regulated. These findings suggest that HU may induce uncoordinated expression of PGC-1 family coactivators and DNA binding transcription factors, resulting in reducing ability of mitochondrial biogenesis. Furthermore, down-regulation of mitochondrial morphology-related genes associated with HU may be also involved in alterations in intracellular mitochondrial distribution.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Animals
- Citrate (si)-Synthase/genetics
- Citrate (si)-Synthase/metabolism
- Female
- Gene Expression Regulation
- Gene Expression Regulation, Enzymologic
- Hindlimb Suspension/physiology
- Mice
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/physiology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- SKP Cullin F-Box Protein Ligases/genetics
- SKP Cullin F-Box Protein Ligases/metabolism
- Succinate Dehydrogenase/genetics
- Succinate Dehydrogenase/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Akira Wagatsuma
- Department of Life Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Marcu O, Lera MP, Sanchez ME, Levic E, Higgins LA, Shmygelska A, Fahlen TF, Nichol H, Bhattacharya S. Innate immune responses of Drosophila melanogaster are altered by spaceflight. PLoS One 2011; 6:e15361. [PMID: 21264297 PMCID: PMC3019151 DOI: 10.1371/journal.pone.0015361] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2010] [Accepted: 11/11/2010] [Indexed: 01/20/2023] Open
Abstract
Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.
Collapse
Affiliation(s)
- Oana Marcu
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
- Carl Sagan Center, SETI Institute, Mountain View, California, United States of America
| | - Matthew P. Lera
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
- Lockheed Martin Exploration & Science, NASA Ames Research Center, Mountain View, California, United States of America
| | - Max E. Sanchez
- Lockheed Martin Exploration & Science, NASA Ames Research Center, Mountain View, California, United States of America
| | - Edina Levic
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
| | - Laura A. Higgins
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
| | - Alena Shmygelska
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
- Silicon Valley Campus of Carnegie Mellon University, NASA Ames Research Center, Mountain View, California, United States of America
| | - Thomas F. Fahlen
- Lockheed Martin Exploration & Science, NASA Ames Research Center, Mountain View, California, United States of America
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Guéguinou N, Huin-Schohn C, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C, Frippiat JP. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit? J Leukoc Biol 2009; 86:1027-38. [DOI: 10.1189/jlb.0309167] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
|
21
|
Wang KX, Shi YF, Ron Y, Kazanecki CC, Denhardt DT. Plasma osteopontin modulates chronic restraint stress-induced thymus atrophy by regulating stress hormones: inhibition by an anti-osteopontin monoclonal antibody. THE JOURNAL OF IMMUNOLOGY 2009; 182:2485-91. [PMID: 19201904 DOI: 10.4049/jimmunol.0803023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
Abstract
Osteopontin (OPN) is a cytokine implicated in mediating responses to certain stressors, including mechanical, oxidative, and cellular stress. However, the involvement of OPN in responding to other physical and psychological stress is largely unexplored. Our previous research revealed that OPN is critical for hind limb-unloading induced lymphoid organ atrophy through modulation of corticosteroid production. In this study, we demonstrate that OPN(-/-) mice are resistant to chronic restraint stress (CRS)-induced lymphoid (largely thymus) organ atrophy; additionally, the stress-induced up-regulation of corticosterone production is significantly reduced in OPN(-/-) mice. Underlying this observation is the fact that normal adrenocorticotropic hormone levels are substantially reduced in the OPN(-/-) mice. Our data demonstrate both that injection of OPN into OPN-deficient mice enhances the CRS-induced lymphoid organ atrophy and that injection of a specific anti-OPN mAb (2C5) into wild-type mice ameliorates the CRS-induced organ atrophy; changes in corticosterone levels were also partially reversed. These studies reveal that circulating OPN plays a significant role in the regulation of the hypothalamus-pituitary-adrenal axis hormones and that it augments CRS-induced organ atrophy.
Collapse
Affiliation(s)
- Kathryn X Wang
- Graduate Program in Cell and Developmental Biology, The State University of New Jersey, Nelson Biological Laboratories, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
22
|
O'Donnell PM, Orshal JM, Sen D, Sonnenfeld G, Aviles HO. Effects of exposure of mice to hindlimb unloading on leukocyte subsets and sympathetic nervous system activity. Stress 2009; 12:82-8. [PMID: 18609303 DOI: 10.1080/10253890802049269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022] Open
Abstract
The hindlimb unloading (HU) rodent model was developed to simulate some of the aspects of spaceflight conditions. Our previous studies showed that exposure to HU for 48 h (h) followed by bacterial challenge, reduces the ability of mice to resist infection. The purpose of this study was to investigate the physiological changes in mice during the 48 h of exposure to HU to understand the mechanisms involved in the increased susceptibility to infection observed in mice subjected to these conditions. Female Swiss Webster mice were hindlimb-unloaded during 48 h. Blood samples, spleen and peritoneal cells were removed before and after 18 or 48 h of HU-exposure. Leukocyte subset analysis was performed in spleen and peritoneal cells by flow cytometry, and catecholamine levels were measured in plasma and whole spleen by a catecholamine enzyme immunoassay. Catecholamine levels measured in plasma and spleen were significantly greater in mice exposed to HU compared to control. This increase coincided with significant reductions in spleen size in the HU group. Flow cytometric analyses showed a significant reduction of splenic CD19 + B-cells and NK1.1+ cells in mice exposed to HU with a concomitant increase in T-cells. These results suggest that exposure to HU increases the activity of the sympathetic nervous system (SNS) and induces lymphocyte sub-population changes that may contribute to the deregulation of immunity seen in mice exposed to HU and, more importantly may predispose the otherwise healthy host to the subsequent reduced ability to resist infections.
Collapse
Affiliation(s)
- Phyllis M O'Donnell
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13850, USA
| | | | | | | | | |
Collapse
|
23
|
Active hexose correlated compound activates immune function to decrease bacterial load in a murine model of intramuscular infection. Am J Surg 2008; 195:537-45. [PMID: 18304499 DOI: 10.1016/j.amjsurg.2007.05.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2007] [Revised: 05/11/2007] [Accepted: 05/11/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND Infection is a serious, costly, and common complication of surgery and constitutes the principal cause of late death in patients undergoing surgery. The objective of this study was to clarify the mechanisms by which active hexose correlated compound (AHCC) increases survival in a murine model of intramuscular infection. METHODS Food-deprived mice receiving either AHCC or excipient were infected with bacteria. Kinetics of bacterial load, white blood cell counts, cytokine levels, and antibody levels were compared between groups. RESULTS AHCC-treated mice had reduced bacterial load at day 5 and cleared bacteria entirely at day 6. Levels of interleukin-12, tumor necrosis factor-alpha, and interleukin-6 peaked earlier in this group (day 3) compared with controls (day 5). Increased percentages of peripheral lymphocytes and monocytes and decreased numbers of polymorphonuclear cells were detected in the AHCC group. CONCLUSIONS AHCC appears to induce an early activation of the immune response, leading to an effective clearance of bacteria and rapid recovery.
Collapse
|
24
|
Wang KX, Shi Y, Denhardt DT. Osteopontin regulates hindlimb-unloading-induced lymphoid organ atrophy and weight loss by modulating corticosteroid production. Proc Natl Acad Sci U S A 2007; 104:14777-82. [PMID: 17785423 PMCID: PMC1976226 DOI: 10.1073/pnas.0703236104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN), a multifunctional secreted phosphoglycoprotein, plays diverse roles in bone biology, immune regulation, cell survival, inflammation, and cancer metastasis. Here we show its role in determining lymphocyte homeostasis and body mass in response to hindlimb unloading (HU), a model for evaluating effects of weightlessness on the musculoskeletal and other physiological systems. Using this stress model, we compared OPN(-/-) mice with OPN(+/+) mice subjected to HU for 3 days. Whereas OPN(+/+) mice suffered a marked reduction of body weight and significant spleen and thymus atrophy, OPN(-/-) mice exhibited minor weight loss and much less spleen and thymus atrophy. The HU-induced lymphoid organ atrophy was the result of dramatically diminished numbers, respectively, of T and B cells in the spleen and CD4(+)CD8(+) double-positive cells in the thymus of OPN(+/+) mice. Increased levels of corticosterone, which modulates lymphocyte activation responses and apoptosis during stress, were found only in OPN(+/+) mice. Apoptotic cell death was evident in the spleen and thymus of OPN(+/+) mice subjected to HU but not in OPN(-/-)mice. Importantly, lymphocytes from both OPN(+/+) and OPN(-/-) mice were equally sensitive to corticosteroid-induced apoptosis. These results reveal that OPN is required for enhanced corticosterone production, immune organ atrophy, and weight loss in mice subjected to HU.
Collapse
Affiliation(s)
| | - Yufang Shi
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854
| | - David T. Denhardt
- *Graduate Program in Cell and Developmental Biology
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Nelson Biological Laboratories, 604 Allison Road, Piscataway, NJ 08854; and
- To whom correspondence should be addressed at:
Nelson Laboratories, 604 Allison Road, Piscataway, NJ 08854. E-mail:
| |
Collapse
|
25
|
Aviles H, O'Donnell P, Sun B, Sonnenfeld G. Active hexose correlated compound (AHCC) enhances resistance to infection in a mouse model of surgical wound infection. Surg Infect (Larchmt) 2007; 7:527-35. [PMID: 17233570 DOI: 10.1089/sur.2006.7.527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Infection is the most common postoperative complication within the surgical wound and during severe trauma. In spite of the use of modern sterile techniques and prophylaxis, infection continues to be a leading cause of death in these patients. Therefore, it has become crucial to develop new alternatives to prevent the effects of trauma and other complications on the immune system and improve resistance to infection. The objective of this study was to test the prophylactic effects of oral administration of active hexose correlated compound (AHCC), a natural immunoenhancer, on survival in a mouse model of surgical soft tissue infection. METHODS The model involves the intramuscular administration of a 50% lethal dose (LD50) of K. pneumoniae to mice that have restricted food intake for 24 hours prior to and six hours after infection and simulates local infection and food deprivation that often occur during trauma or surgical procedures. In the present study, AHCC was administrated orally to Swiss Webster mice for eight days prior to and during the infection period. Survival, time of death, LD50, and clearance of bacteria of this group were compared with those control mice receiving the excipient alone. RESULTS Survival and mean time to death were increased significantly in the AHCC-treated group; the LD50 was greater in mice receiving AHCC than in mice receiving the excipient. Mice receiving AHCC were better able to clear bacteria from their systems than were control animals. CONCLUSIONS The results suggest that AHCC protects mice in this model by restoring the immune and other systems negatively affected by trauma, infection, and food deprivation. More studies are necessary to determine the intrinsic mechanisms involved in this model and whether AHCC can prevent infection or improve survival in human beings with severe trauma or undergoing surgical procedures.
Collapse
Affiliation(s)
- Hernan Aviles
- Department of Biological Sciences, State University of New York at Binghamton, Binghamton, New York 13902-6000, USA.
| | | | | | | |
Collapse
|
26
|
O'Donnell PM, Aviles H, Lyte M, Sonnenfeld G. Enhancement of in vitro growth of pathogenic bacteria by norepinephrine: importance of inoculum density and role of transferrin. Appl Environ Microbiol 2006; 72:5097-9. [PMID: 16820514 PMCID: PMC1489335 DOI: 10.1128/aem.00075-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2006] [Accepted: 04/30/2006] [Indexed: 11/20/2022] Open
Abstract
Norepinephrine is a stress hormone that enhances bacterial growth. We examined the effects of a small inoculum on the norepinephrine-induced growth of species previously reported to be unaffected by norepinephrine. The results indicated that a reduced inoculum density is essential for observing norepinephrine-induced effects. Additional studies using serum-free media suggested that transferrin plays a role in norepinephrine-induced growth.
Collapse
Affiliation(s)
- Phyllis M O'Donnell
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902-6000, USA.
| | | | | | | |
Collapse
|
27
|
Klaus DM, Howard HN. Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol 2006; 24:131-6. [PMID: 16460819 DOI: 10.1016/j.tibtech.2006.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2005] [Revised: 12/14/2005] [Accepted: 01/16/2006] [Indexed: 10/25/2022]
Abstract
Human space flight is a complex undertaking that entails numerous technological and biomedical challenges. Engineers and scientists endeavor, to the extent possible, to identify and mitigate the ensuing risks. The potential for an outbreak of an infectious disease in a spacecraft presents one such concern, which is compounded by several components unique to an extraterrestrial environment. Various factors associated with the space flight environment have been shown to potentially compromise the immune system of astronauts, increase microbial proliferation and microflora exchange, alter virulence and decrease antibiotic effectiveness. An acceptable resolution of the above concerns must be achieved to ensure safe and efficient space habitation. To help bring this about, scientists are employing advances in biotechnology to better characterize the relevant variables and establish appropriate solutions. Because many of these clinical concerns are also relevant in terrestrial society, this research will have reciprocal benefits back on Earth.
Collapse
Affiliation(s)
- David M Klaus
- Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO 80309-0429, USA.
| | | |
Collapse
|