1
|
Ospital IA, Táquez Delgado MA, Nicoud MB, Corrêa MF, Borges Fernandes GA, Andrade IW, Lauretta P, Martínez Vivot R, Comba MB, Zanardi MM, Speisky D, Uriburu JL, Fernandes JPS, Medina VA. Therapeutic potential of LINS01 histamine H 3 receptor antagonists as antineoplastic agents for triple negative breast cancer. Biomed Pharmacother 2024; 174:116527. [PMID: 38579399 DOI: 10.1016/j.biopha.2024.116527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
The aims of this work were to evaluate the expression of histamine H3 receptor (H3R) in triple negative breast cancer (TNBC) samples and to investigate the antitumoral efficacy and safety of the LINS01 series of H3R antagonists, through in silico, in vitro, and in vivo approaches. Antitumor activity of LINS01009, LINS01010, LINS01022, LINS01023 was assayed in vitro in 4T1 and MDA-MB-231 TNBC cells (0.01-100 μM), and in vivo in 4T1 tumors orthotopically established in BALB/c mice (1 or 20 mg/kg). Additionally, H3R expression was assessed in 50 human TNBC samples. We have described a higher H3R mRNA expression in basal-like/TNBC tumors vs. matched normal tissue using TCGA Pan-Cancer Atlas data, and a higher H3R expression in human tumor samples vs. peritumoral tissue evidenced by immunohistochemistry associated with poorer survival. Furthermore, while all the essayed compounds showed antitumoral properties, LINS01022 and LINS01023 exhibited the most potent antiproliferative effects by: i) inducing cell apoptosis and suppressing cell migration in 4T1 and MDA-MB-231 TNBC cells, and ii) inhibiting cell growth in paclitaxel-resistant 4T1 cells (potentiating the paclitaxel antiproliferative effect). Moreover, 20 mg/kg LINS01022 reduced tumor size in 4T1 tumor-bearing mice, exhibiting a safe toxicological profile and potential for druggability estimated by ADME calculations. We conclude that the H3R is involved in the regulation of TNBC progression, offering promising therapeutic potential for the novel LINS01 series of H3R antagonists.
Collapse
Affiliation(s)
- Ignacio A Ospital
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Mónica A Táquez Delgado
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Melisa B Nicoud
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Michelle F Corrêa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Isabela W Andrade
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Paolo Lauretta
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Rocío Martínez Vivot
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - María Betina Comba
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Rosario 2000, Argentina
| | - María Marta Zanardi
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Rosario 2000, Argentina
| | | | | | - João P S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Vanina A Medina
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina.
| |
Collapse
|
2
|
Carvalho N, Barreira AL, Henriques S, Ferreira M, Cardoso C, Luz C, Costa PM. Compilation of Evidence Supporting the Role of a T Helper 2 Reaction in the Pathogenesis of Acute Appendicitis. Int J Mol Sci 2024; 25:4216. [PMID: 38673802 PMCID: PMC11050072 DOI: 10.3390/ijms25084216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Despite being the most common abdominal surgical emergency, the cause of acute appendicitis (AA) remains unclear, since in recent decades little progress has been made regarding its etiology. Obstruction of the appendicular lumen has been traditionally presented as the initial event of AA; however, this is often the exception rather than the rule, as experimental data suggest that obstruction is not an important causal factor in AA, despite possibly occurring as a consequence of the inflammatory process. Type I hypersensitivity reaction has been extensively studied, involving Th2 lymphocytes, and cytokines such as IL-4, IL-5, IL-9 and IL-13, which have well-defined functions, such as a positive-feedback effect on Th0 for differentiating into Th2 cells, recruitment of eosinophils and the release of eosinophilic proteins and the production of IgE with the activation of mast cells, with the release of proteins from their granules. Cytotoxic activity and tissue damage will be responsible for the clinical manifestation of the allergy. AA histological features are similar to those found in allergic reactions like asthma. The intestine has all the components for an allergic immune response. It has contact with hundreds of antigens daily, most of them harmless, but some can potentially induce an allergic response. In recent years, researchers have been trying to assess if allergy is a component of AA, with their latest advances in the understanding of AA as a Th2 reaction shown by the authors of this article.
Collapse
Affiliation(s)
- Nuno Carvalho
- Serviço Cirurgia Geral, Hospital Garcia de Orta, 2805-267 Almada, Portugal; (A.L.B.); (S.H.); (M.F.); (C.L.); (P.M.C.)
- Faculdade Medicina, Universidade Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Lúcia Barreira
- Serviço Cirurgia Geral, Hospital Garcia de Orta, 2805-267 Almada, Portugal; (A.L.B.); (S.H.); (M.F.); (C.L.); (P.M.C.)
| | - Susana Henriques
- Serviço Cirurgia Geral, Hospital Garcia de Orta, 2805-267 Almada, Portugal; (A.L.B.); (S.H.); (M.F.); (C.L.); (P.M.C.)
| | - Margarida Ferreira
- Serviço Cirurgia Geral, Hospital Garcia de Orta, 2805-267 Almada, Portugal; (A.L.B.); (S.H.); (M.F.); (C.L.); (P.M.C.)
- Faculdade Medicina, Universidade Lisboa, 1649-028 Lisboa, Portugal
| | - Carlos Cardoso
- Dr. Joaquim Chaves, Laboratório de Análises Clínicas, 1495-068 Algés, Portugal;
| | - Carlos Luz
- Serviço Cirurgia Geral, Hospital Garcia de Orta, 2805-267 Almada, Portugal; (A.L.B.); (S.H.); (M.F.); (C.L.); (P.M.C.)
- Faculdade Medicina, Universidade Lisboa, 1649-028 Lisboa, Portugal
| | - Paulo Matos Costa
- Serviço Cirurgia Geral, Hospital Garcia de Orta, 2805-267 Almada, Portugal; (A.L.B.); (S.H.); (M.F.); (C.L.); (P.M.C.)
- Faculdade Medicina, Universidade Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
3
|
Bouboulis D, Huff A, Burawski L. Twenty cases of perennial and seasonal allergic rhinitis treated with LumiMed® Nasal Device. J Med Case Rep 2023; 17:263. [PMID: 37312188 DOI: 10.1186/s13256-023-03980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Allergic rhinitis is the most common allergic disease, with a prevalence up to 40% in the general population. Allergic rhinitis requires daily treatment to block inflammatory mediators and suppress the inflammatory response. However, these medications may have harmful side effects. Photobiomodulation as a treatment modality to reduce inflammation has been beneficial in many chronic disorders, yet therapy has not been US Food and Drug Administration approved for the treatment of allergic rhinitis. The LumiMed Nasal Device was designed to address the limitations associated with the treatment of allergic rhinitis with photobiomodulation. This in-office study hopes to show efficacy, usability, and comfortability of the LumiMed Nasal Device. CASE PRESENTATION Twenty patients with allergic rhinitis were treated during high allergy season with LumiMed Nasal Device. The average age of patients was 35 years (10-75); 11 were female and 9 were male. The population's ethnicities were white (n = 11), Black (n = 6), Oriental (n = 2), and Iranian (n = 1). Patients were treated with twice-daily dosing, 10 seconds in each nostril, for 10 consecutive days. After 10 days, patients were evaluated for symptom relief, device comfort and device ease of use. The Total Nasal Symptom Score was used to assess severity of main symptoms of allergic rhinitis. The sum of Total Nasal Symptom Scores for each symptom category was calculated (total possible scores per patient were 0-9). Rhinorrhea/nasal secretions, nasal congestion, and nasal itching/sneezing were evaluated on a scale of 0-3 (0 no symptoms, 1 mild symptoms, 2 moderate symptoms, 3 severe symptoms). Device comfort was evaluated on a scale of 0-3 (0 no discomfort, 1 mild discomfort, 2 moderate discomfort, 3 severe discomfort). Device ease of use was evaluated on a scale of 0-3 (0 very easy, 1 somewhat difficult, 2 difficult, 3 very difficult). CONCLUSIONS The results from these case studies indicated that of the 20 patients in this case study, 100% of patients experienced improvement in overall Total Nasal Symptom Score after using LumiMed Nasal Device. Of those patients, 40% brought their Total Nasal Symptom Score down to 0. Furthermore, 95% felt the LumiMed Nasal Device was comfortable to use, while 85% of patients felt the LumiMed Nasal Device was easy to use.
Collapse
Affiliation(s)
| | - Avery Huff
- LumiMed, 106 Noroton Ave Suite 101, Darien, CT, 06820, USA
| | | |
Collapse
|
4
|
Fabrication of an Ag-based SERS nanotag for histamine quantitative detection. Talanta 2023; 256:124256. [PMID: 36641996 DOI: 10.1016/j.talanta.2023.124256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
A crucial issue in analytical science and physiology is the detection of histamine with high sensitivity, specificity and credibility, which served as an important neurotransmitter in biofluids. Despite the high sensitivity of surface-enhanced Raman spectroscopy (SERS) at the level of single molecule, there are still challenges in providing high sensitivity for histamine with a small cross section. For the selective detection of histamine using SERS, a highly sensitive sandwich structure substrate combining Fe3O4 and an Ag-based SERS nanotag was developed. The Fe3O4@SiO2-COOH served as a capture component for enriching histamine. Upon functionalized Ag nanoparticles with glycine (Gly) and (3-Aminopheyonyl) boronic acid (APBA), they were then used to connect with histamine and serve as a SERS nanotag, respectively. A linear relationship between the Raman intensity and the histamine concentration was observed over the range 10-4-10-8 M with a limit of detection of 7.24 × 10-9 M. This methodology also exhibited good selectivity in the presence of other neurotransmitters. With our new approach, histamine can be detected sensitively and reliably in fish samples, which indicates the potential prospect of an effective method for analyzing histamine in complex specimens.
Collapse
|
5
|
Martynova E, Khaibullin T, Salafutdinov I, Markelova M, Laikov A, Lopukhov L, Liu R, Sahay K, Goyal M, Baranwal M, Rizvanov AA, Khaiboullina S. Seasonal Changes in Serum Metabolites in Multiple Sclerosis Relapse. Int J Mol Sci 2023; 24:3542. [PMID: 36834957 PMCID: PMC9959388 DOI: 10.3390/ijms24043542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating chronic disease of unknown etiology. There are limited treatment options due to an incomplete understanding of disease pathology. The disease is shown to have seasonal exacerbation of clinical symptoms. The mechanisms of such seasonal worsening of symptoms remains unknown. In this study, we applied targeted metabolomics analysis of serum samples using LC-MC/MC to determine seasonal changes in metabolites throughout the four seasons. We also analyzed seasonal serum cytokine alterations in patients with relapsed MS. For the first time, we can demonstrate seasonal changes in various metabolites in MS compared to the control. More metabolites were affected in MS in the fall season followed by spring, while summer MS was characterized by the smallest number of affected metabolites. Ceramides were activated in all seasons, suggesting their central role in the disease pathogenesis. Substantial changes in glucose metabolite levels were found in MS, indicating a potential shift to glycolysis. An increased serum level of quinolinic acid was demonstrated in winter MS. Histidine pathways were affected, suggesting their role in relapse of MS in the spring and fall. We also found that spring and fall seasons had a higher number of overlapping metabolites affected in MS. This could be explained by patients having a relapse of symptoms during these two seasons.
Collapse
Affiliation(s)
- Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Timur Khaibullin
- Republican Clinical Neurological Center, Republic of Tatarstan, 420021 Kazan, Russia
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Department of Medical Biology and Genetic, Kazan State Medical University, 420088 Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Alexander Laikov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Leonid Lopukhov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Mehendi Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
6
|
Hassanen EI, Kamel S, Mohamed WA, Mansour HA, Mahmoud MA. The potential mechanism of histamine-inducing cardiopulmonary inflammation and apoptosis in a novel oral model of rat intoxication. Toxicology 2023; 484:153410. [PMID: 36565801 DOI: 10.1016/j.tox.2022.153410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Histamine (HIS) is a potent vasodilator that contributes to anaphylactic reactions. Our investigation aims to study the possible toxic impact of repeated oral administration of histamine on the target organs of HIS poisoning (lung & heart) in rats as a model of scombroid poisoning. We used 15 rats that were separated into three groups with 5 rats in each. All rats received the treatments orally for 14 days as follows; (1): distilled water, (2) HIS at a dosage level of 250 mg/kg BWT daily and (3) HIS at a dosage level of 1750 mg/kg BWT weekly. Our results revealed that the consumption of HIS either daily or weekly could cause marked cardiopulmonary toxicity in rats. HIS can trigger inflammatory reactions in the cardiopulmonary tissues and induce oxidative stress damage along with apoptosis of such organs. HIS was markedly increase the MDA levels and decrease the CAT and GSH activity in both lung and heart tissues. The main pathological lesion observed is inflammation which was confirmed by immunohistochemistry and demonstrated strong iNOS and TNF-α protein expressions. Cardiac muscles showed extensive degeneration and necrosis and displayed strong casp-3 protein expression. Additionally, all HIS receiving groups noticed marked elevation of the pulmonary transcription levels of Cox2, TNF-α, and IL1β along with substantial elevation of casp-3 and bax genes and downregulation of Bcl2 gene in the cardiac tissue. We concluded that the oral administration of HIS either daily or weekly can induce cardiopulmonary toxicity via the upregulation of proinflammatory cytokines resulting in ROS overgeneration and inducing both oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wafaa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hayam A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
7
|
Gao S, Liu K, Ku W, Wang D, Wake H, Qiao H, Teshigawara K, Nishibori M. Histamine induced high mobility group box-1 release from vascular endothelial cells through H1 receptor. Front Immunol 2022; 13:930683. [PMID: 36275732 PMCID: PMC9583674 DOI: 10.3389/fimmu.2022.930683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background Systemic allergic reaction is characterized by vasodilation and vascular leakage, which causes a rapid, precipitous and sustained decrease in arterial blood pressure with a concomitant decrease of cardiac output. Histamine is a major mediator released by mast cells in allergic inflammation and response. It causes a cascade of inflammation and strongly increases vascular permeability within minutes through its four G-protein-coupled receptors (GPCRs) on endothelial cells. High mobility group box-1 (HMGB1), a nonhistone chromatin-binding nuclear protein, can be actively secreted into the extracellular space by endothelial cells. HMGB1 has been reported to exert pro-inflammatory effects on endothelial cells and to increase vascular endothelial permeability. However, the relationship between histamine and HMGB1-mediated signaling in vascular endothelial cells and the role of HMGB1 in anaphylactic-induced hypotension have never been studied. Methods and results EA.hy 926 cells were treated with different concentrations of histamine for the indicated periods. The results showed that histamine induced HMGB1 translocation and release from the endothelial cells in a concentration- and time-dependent manner. These effects of histamine were concentration-dependently inhibited by d-chlorpheniramine, a specific H1 receptor antagonist, but not by H2 or H3/4 receptor antagonists. Moreover, an H1-specific agonist, 2-pyridylethylamine, mimicked the effects of histamine, whereas an H2-receptor agonist, 4-methylhistamine, did not. Adrenaline and noradrenaline, which are commonly used in the clinical treatment of anaphylactic shock, also inhibited the histamine-induced HMGB1 translocation in endothelial cells. We therefore established a rat model of allergic shock by i.v. injection of compound 48/80, a potent histamine-releasing agent. The plasma HMGB1 levels in compound 48/80-injected rats were higher than those in controls. Moreover, the treatment with anti-HMGB1 antibody successfully facilitated the recovery from compound 48/80-induced hypotension. Conclusion Histamine induces HMGB1 release from vascular endothelial cells solely through H1 receptor stimulation. Anti-HMGB1 therapy may provide a novel treatment for life-threatening systemic anaphylaxis.
Collapse
Affiliation(s)
- Shangze Gao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Wenhan Ku
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Handong Qiao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- *Correspondence: Masahiro Nishibori,
| |
Collapse
|
8
|
Xi Y, Deng YQ, Li HD, Jiao WE, Chen J, Chen JJ, Tao ZZ. Diagnostic Value of a Novel Eosinophil Cationic Protein-Myeloperoxidase Test Paper Before and After Treatment for Allergic Rhinitis. J Asthma Allergy 2022; 15:1005-1019. [PMID: 35958353 PMCID: PMC9359790 DOI: 10.2147/jaa.s375069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yang Xi
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yu-Qin Deng
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Han-Da Li
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Wo-Er Jiao
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jin Chen
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jian-Jun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Jian-Jun Chen, Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Jianghan District, Wuhan, 430060, Hubei, People’s Republic of China, Tel +86 13659851719, Fax +86 27 85726300, Email
| | - Ze-Zhang Tao
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Correspondence: Ze-Zhang Tao, Department of Otolaryngology, Head and Neck Surgery Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People’s Republic of China, Tel +86 13907141892, Fax +86 27 88043958, Email
| |
Collapse
|
9
|
Bayarsaikhan G, Bayarsaikhan D, Lee J, Lee B. Targeting Scavenger Receptors in Inflammatory Disorders and Oxidative Stress. Antioxidants (Basel) 2022; 11:936. [PMID: 35624800 PMCID: PMC9137717 DOI: 10.3390/antiox11050936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and inflammation cannot be considered as diseases themselves; however, they are major risk factors for the development and progression of the pathogenesis underlying many illnesses, such as cancer, neurological disorders (including Alzheimer's disease and Parkinson's disease), autoimmune and metabolic disorders, etc. According to the results obtained from extensive studies, oxidative stress-induced biomolecules, such as advanced oxidation protein products, advanced glycation end products, and advanced lipoxidation end products, are critical for an accelerated level of inflammation and oxidative stress-induced cellular damage, as reflected in their strong affinity to a wide range of scavenger receptors. Based on the limitations of antioxidative and anti-inflammatory molecules in practical applications, targeting such interactions between harmful molecules and their cellular receptors/signaling with advances in gene engineering technology, such as CRISPR or TALEN, may prove to be a safe and effective alternative. In this review, we summarize the findings of recent studies focused on the deletion of scavenger receptors under oxidative stress as a development in the therapeutic approaches against the diseases linked to inflammation and the contribution of advanced glycation end products (AGEs), advanced lipid peroxidation products (ALEs), and advanced oxidation protein products (AOPPs).
Collapse
Affiliation(s)
- Govigerel Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
| | - Delger Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
| | - Jaewon Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
| | - Bonghee Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Gachon University, Incheon 405-760, Korea
| |
Collapse
|
10
|
Neelakanta G, Sultana H. Tick Saliva and Salivary Glands: What Do We Know So Far on Their Role in Arthropod Blood Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2022; 11:816547. [PMID: 35127563 PMCID: PMC8809362 DOI: 10.3389/fcimb.2021.816547] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Ticks are blood-sucking arthropods that have developed myriad of strategies to get a blood meal from the vertebrate host. They first attach to the host skin, select a bite site for a blood meal, create a feeding niche at the bite site, secrete plethora of molecules in its saliva and then starts feeding. On the other side, host defenses will try to counter-attack and stop tick feeding at the bite site. In this constant battle between ticks and the host, arthropods successfully pacify the host and completes a blood meal and then replete after full engorgement. In this review, we discuss some of the known and emerging roles for arthropod components such as cement, salivary proteins, lipocalins, HSP70s, OATPs, and extracellular vesicles/exosomes in facilitating successful blood feeding from ticks. In addition, we discuss how tick-borne pathogens modulate(s) these components to infect the vertebrate host. Understanding the biology of arthropod blood feeding and molecular interactions at the tick-host interface during pathogen transmission is very important. This information would eventually lead us in the identification of candidates for the development of transmission-blocking vaccines to prevent diseases caused by medically important vector-borne pathogens.
Collapse
|
11
|
Sarasola MDLP, Táquez Delgado MA, Nicoud MB, Medina VA. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect 2021; 9:e00778. [PMID: 34609067 PMCID: PMC8491460 DOI: 10.1002/prp2.778] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death globally and its incidence and mortality are rapidly increasing worldwide. The dynamic interaction of immune cells and tumor cells determines the clinical outcome of cancer. Immunotherapy comes to the forefront of cancer treatments, resulting in impressive and durable responses but only in a fraction of patients. Thus, understanding the characteristics and profiles of immune cells in the tumor microenvironment (TME) is a necessary step to move forward in the design of new immunomodulatory strategies that can boost the immune system to fight cancer. Histamine produces a complex and fine-tuned regulation of the phenotype and functions of the different immune cells, participating in multiple regulatory responses of the innate and adaptive immunity. Considering the important actions of histamine-producing immune cells in the TME, in this review we first address the most important immunomodulatory roles of histamine and histamine receptors in the context of cancer development and progression. In addition, this review highlights the current progress and foundational developments in the field of cancer immunotherapy in combination with histamine and pharmacological compounds targeting histamine receptors.
Collapse
Affiliation(s)
- María de la Paz Sarasola
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Pathophysiological Roles of Histamine Receptors in Cancer Progression: Implications and Perspectives as Potential Molecular Targets. Biomolecules 2021; 11:biom11081232. [PMID: 34439898 PMCID: PMC8392479 DOI: 10.3390/biom11081232] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
High levels of histamine and histamine receptors (HRs), including H1R~H4R, are found in many different types of tumor cells and cells in the tumor microenvironment, suggesting their involvement in tumor progression. This review summarizes the latest evidence demonstrating the pathophysiological roles of histamine and its cognate receptors in cancer biology. We also discuss the novel therapeutic approaches of selective HR ligands and their potential prognostic values in cancer treatment. Briefly, histamine is highly implicated in cancer development, growth, and metastasis through interactions with distinct HRs. It also regulates the infiltration of immune cells into the tumor sites, exerting an immunomodulatory function. Moreover, the effects of various HR ligands, including H1R antagonists, H2R antagonists, and H4R agonists, on tumor progression in many different cancer types are described. Interestingly, the expression levels of HR subtypes may serve as prognostic biomarkers in several cancers. Taken together, HRs are promising targets for cancer treatment, and HR ligands may offer novel therapeutic potential, alone or in combination with conventional therapy. However, due to the complexity of the pathophysiological roles of histamine and HRs in cancer biology, further studies are warranted before HR ligands can be introduced into clinical settings.
Collapse
|
13
|
Wang D, Xu X, Lv L, Wu P, Dong H, Xiao S, Liu J, Hu Y. Gene cloning, analysis and effect of a new lipocalin homologue from Haemaphysalis longicornis as a protective antigen for an anti-tick vaccine. Vet Parasitol 2021; 290:109358. [PMID: 33482427 DOI: 10.1016/j.vetpar.2021.109358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
Haemaphysalis longicornis is distributed worldwide and transmits a variety of pathogens, causing human and animal disease. Use of chemical acaricides, as a primary tick control method, has several disadvantages, including acaricide resistance, environmental damage and residue accumulation in livestock. Development of a livestock vaccination aimed at a tick protective antigen could be an effective, labor-saving and environmentally-friendly method of reducing tick infestation and transmission of tick-borne pathogens. Lipocalins are low molecular weight proteins that play important roles in blood feeding, immune response and reproduction in ticks. In our study, the open reading frame (ORF) of a lipocalin homologue from H. longicornis (HlLIP) was successfully cloned, which consisted of 387 bp encoding a protein of 128 amino acids. The HlLIP protein sequence showed a close sequence homology with Ixodes persulcatus lipocalin. The HlLIP gene was constitutively detected in all developmental stages and in all tissues of the unfed female tick. The ORF of the HlLIP gene was sub-cloned into pET-32a (+) to obtain the recombinant protein (rHlLIP) and its immunogenicity was comfirmed by western blot. A vaccination trial on rabbits against H. longicornis infestation demonstrated that the rHlLIP protein could significantly prolong the period of tick blood feeding, and reduce tick engorged weight, oviposition and egg hatching rate. The vaccination efficacy of the rHlLIP protein was 60.17 % based on engorged weight, oviposition and egg hatching rate of ticks. The results obtained in this study demonstrate that rHlLIP protein is a promising antigen that could potentially be developed as a vaccine against H. longicornis infestation.
Collapse
Affiliation(s)
- Duo Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei province, 050024, PR China
| | - Xiaocan Xu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei province, 050024, PR China
| | - Lihong Lv
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei province, 050024, PR China
| | - Pinxing Wu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei province, 050024, PR China
| | - Hongmeng Dong
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei province, 050024, PR China
| | - Shuwen Xiao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei province, 050024, PR China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei province, 050024, PR China.
| | - Yonghong Hu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei province, 050024, PR China.
| |
Collapse
|
14
|
Kucuksezer UC, Ozdemir C, Cevhertas L, Ogulur I, Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy and allergen tolerance. Allergol Int 2020; 69:549-560. [PMID: 32900655 DOI: 10.1016/j.alit.2020.08.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the mainstay treatment for the cure of allergic disorders, with depicted efficacy and safety by several trials and meta-analysis. AIT impressively contributes to the management of allergic rhinitis, asthma and venom allergies. Food allergy is a new arena for AIT with promising results, especially via novel administration routes. Cell subsets with regulatory capacities are induced during AIT. IL-10 and transforming growth factor (TGF)-β are the main suppressor cytokines, in addition to surface molecules such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) within the micro milieu. Modified T- and B-cell responses and antibody isotypes, increased activity thresholds for eosinophils, basophils and mast cells and consequent limitation of inflammatory cascades altogether induce and maintain a state of sustained allergen-specific unresponsiveness. Established tolerance is reflected into the clinical perspectives as improvement of allergy symptoms together with reduced medication requirements and evolved disease severity. Long treatment durations, costs, reduced patient compliance and risk of severe, even life-threatening adverse reactions during treatment stand as major limiting factors for AIT. By development of purified non-allergenic, highly-immunogenic modified allergen extracts, and combinational usage of them with novel adjuvant molecules via new routes may shorten treatment durations and possibly reduce these drawbacks. AIT is the best model for custom-tailored therapy of allergic disorders. Better characterization of disease endotypes, definition of specific biomarkers for diagnosis and therapy follow-up, as well as precision medicine approaches may further contribute to success of AIT in management of allergic disorders.
Collapse
|
15
|
Aedes albopictus D7 Salivary Protein Prevents Host Hemostasis and Inflammation. Biomolecules 2020; 10:biom10101372. [PMID: 32992542 PMCID: PMC7601585 DOI: 10.3390/biom10101372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022] Open
Abstract
Mosquitoes inject saliva into the host skin to facilitate blood meal acquisition through active compounds that prevent hemostasis. D7 proteins are among the most abundant components of the mosquito saliva and act as scavengers of biogenic amines and eicosanoids. Several members of the D7 family have been characterized at the biochemical level; however, none have been studied thus far in Aedes albopictus, a permissive vector for several arboviruses that causes extensive human morbidity and mortality. Here, we report the binding capabilities of a D7 long form protein from Ae. albopictus (AlboD7L1) by isothermal titration calorimetry and compared its model structure with previously solved D7 structures. The physiological function of AlboD7L1 was demonstrated by ex vivo platelet aggregation and in vivo leukocyte recruitment experiments. AlboD7L1 binds host hemostasis agonists, including biogenic amines, leukotrienes, and the thromboxane A2 analog U-46619. AlboD7L1 protein model predicts binding of biolipids through its N-terminal domain, while the C-terminal domain binds biogenic amines. We demonstrated the biological function of AlboD7L1 as an inhibitor of both platelet aggregation and cell recruitment of neutrophils and eosinophils. Altogether, this study reinforces the physiological relevance of the D7 salivary proteins as anti-hemostatic and anti-inflammatory molecules that help blood feeding in mosquitoes.
Collapse
|
16
|
Expression, Distribution and Role of Aquaporins in Various Rhinologic Conditions. Int J Mol Sci 2020; 21:ijms21165853. [PMID: 32824013 PMCID: PMC7461600 DOI: 10.3390/ijms21165853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are water-specific membrane channel proteins that regulate cellular and organismal water homeostasis. The nose, an organ with important respiratory and olfactory functions, is the first organ exposed to external stimuli. Nose-related topics such as allergic rhinitis (AR) and chronic rhinosinusitis (CRS) have been the subject of extensive research. These studies have reported that mechanisms that drive the development of multiple inflammatory diseases that occur in the nose and contribute to the process of olfactory recognition of compounds entering the nasal cavity involve the action of water channels such as AQPs. In this review, we provide a comprehensive overview of the relationship between AQPs and rhinologic conditions, focusing on the current state of knowledge and mechanisms that link AQPs and rhinologic conditions. Key conclusions include the following: (1) Various AQPs are expressed in both nasal mucosa and olfactory mucosa; (2) the expression of AQPs in these tissues is different in inflammatory diseases such as AR or CRS, as compared with that in normal tissues; (3) the expression of AQPs in CRS differs depending on the presence or absence of nasal polyps; and (4) the expression of AQPs in tissues associated with olfaction is different from that in the respiratory epithelium.
Collapse
|
17
|
Eissa N, Sadeq A, Sasse A, Sadek B. Role of Neuroinflammation in Autism Spectrum Disorder and the Emergence of Brain Histaminergic System. Lessons Also for BPSD? Front Pharmacol 2020; 11:886. [PMID: 32612529 PMCID: PMC7309953 DOI: 10.3389/fphar.2020.00886] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Many behavioral and psychological symptoms of dementia (BPSD) share similarities in executive functioning and communication deficits with those described in several neuropsychiatric disorders, including Alzheimer's disease (AD), epilepsy, schizophrenia (SCH), and autism spectrum disorder (ASD). Numerous studies over the last four decades have documented altered neuroinflammation among individuals diagnosed with ASD. The purpose of this review is to examine the hypothesis that central histamine (HA) plays a significant role in the regulation of neuroinflammatory processes of microglia functions in numerous neuropsychiatric diseases, i.e., ASD, AD, SCH, and BPSD. In addition, this review summarizes the latest preclinical and clinical results that support the relevance of histamine H1-, H2-, and H3-receptor antagonists for the potential clinical use in ASD, SCH, AD, epilepsy, and BPSD, based on the substantial symptomatic overlap between these disorders with regards to cognitive dysfunction. The review focuses on the histaminergic neurotransmission as relevant in these brain disorders, as well as the effects of a variety of H3R antagonists in animal models and in clinical studies.
Collapse
Affiliation(s)
- Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Adel Sadeq
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, Church MK, Saluja R. The Role of Histamine and Histamine Receptors in Mast Cell-Mediated Allergy and Inflammation: The Hunt for New Therapeutic Targets. Front Immunol 2018; 9:1873. [PMID: 30150993 PMCID: PMC6099187 DOI: 10.3389/fimmu.2018.01873] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/30/2018] [Indexed: 11/22/2022] Open
Abstract
Histamine and its receptors (H1R–H4R) play a crucial and significant role in the development of various allergic diseases. Mast cells are multifunctional bone marrow-derived tissue-dwelling cells that are the major producer of histamine in the body. H1R are expressed in many cells, including mast cells, and are involved in Type 1 hypersensitivity reactions. H2R are involved in Th1 lymphocyte cytokine production. H3R are mainly involved in blood–brain barrier function. H4R are highly expressed on mast cells where their stimulation exacerbates histamine and cytokine generation. Both H1R and H4R have important roles in the progression and modulation of histamine-mediated allergic diseases. Antihistamines that target H1R alone are not entirely effective in the treatment of acute pruritus, atopic dermatitis, allergic asthma, and other allergic diseases. However, antagonists that target H4R have shown promising effects in preclinical and clinical studies in the treatment of several allergic diseases. In the present review, we examine the accumulating evidence suggesting novel therapeutic approaches that explore both H1R and H4R as therapeutic targets for histamine-mediated allergic diseases.
Collapse
Affiliation(s)
- Elden Berla Thangam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ebenezer Angel Jemima
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Himadri Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Mirza Saqib Baig
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, Madhya Pradesh, India
| | - Mahejibin Khan
- Central Food Technological Research Institute-Resource Centre, Lucknow, India
| | - Clinton B Mathias
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA, United States
| | - Martin K Church
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rohit Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India.,Department of Biotechnology, Government of India, New Delhi, India
| |
Collapse
|
19
|
Kono R, Nakamura M, Nomura S, Kitano N, Kagiya T, Okuno Y, Inada KI, Tokuda A, Utsunomiya H, Ueno M. Biological and epidemiological evidence of anti-allergic effects of traditional Japanese food ume (Prunus mume). Sci Rep 2018; 8:11638. [PMID: 30076416 PMCID: PMC6076304 DOI: 10.1038/s41598-018-30086-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Japanese apricot (Prunus mume; ume) is a traditional food in Japan that has been shown to have various beneficial health effects. There is some evidence to suggest that ume is also effective against allergic disease. Here, we conducted a cross-sectional epidemiological pilot study to examine the association between ume intake frequency and allergic symptoms including rhinitis in 563 adults (288 men and 275 women) who resided in Wakayama, Japan. After adjusting for age, present illness and medication, women with high ume intake had significantly lower odds ratio (OR) for the presence of symptoms of allergy [OR: 0.49 with 95% confidence interval (CI): 0.25-0.97]. Therefore, we investigated the anti-allergic effect of ume on passive cutaneous anaphylaxis (PCA) reaction in immunoglobulin E (IgE)-sensitized mice. The animal study demonstrated that oral administration of ume extract attenuated the PCA reaction and mast cell degranulation. Furthermore, RBL-2H3 mast cells were used to identify anti-allergic ume compounds. The following ume compounds inhibited IgE-mediated mast cell degranulation: vanillin, syringic acid, protocatechuic aldehyde, lyoniresinol and p-coumaric acid. These results suggested that ume has the potential to inhibit mast cell degranulation and may be associated with reduced risk of allergic symptoms in women.
Collapse
Affiliation(s)
- Ryohei Kono
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-0012, Japan
| | - Misa Nakamura
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka City, Osaka, 597-0104, Japan
| | - Sachiko Nomura
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-0012, Japan
| | - Naomi Kitano
- Research Center for Community Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-0012, Japan
- Department of Public Health, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-0012, Japan
| | - Tomoko Kagiya
- Faculty of Health Science, Kansai University of Health Science, 2-11-1 Wakaba, Kumatori-cho, Sennan-gun, Osaka, 590-0482, Japan
| | - Yoshiharu Okuno
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama Collage, 77 Noshima, Nada, Gobo, Wakayama, 644-0023, Japan
| | - Ken-Ichi Inada
- Department of Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Akihiko Tokuda
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-0012, Japan
| | - Hirotoshi Utsunomiya
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-0012, Japan.
| | - Masami Ueno
- Research Center for Community Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-0012, Japan
| |
Collapse
|
20
|
Neelakanta G, Sultana H, Sonenshine DE, Andersen JF. Identification and characterization of a histamine-binding lipocalin-like molecule from the relapsing fever tick Ornithodoros turicata. INSECT MOLECULAR BIOLOGY 2018; 27:177-187. [PMID: 29164729 DOI: 10.1111/imb.12362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lipocalins are low molecular weight membrane transporters that are abundantly expressed in the salivary glands and other tissues of ticks. In this study, we identified a lipocalin-like molecule, designated as otlip, from the soft ticks Ornithodoros turicata, the vector for the relapsing fever causing spirochete Borrelia turicatae. We noted that the expression of otlip was developmentally regulated, with adult ticks expressing significantly higher levels in comparison to the larvae or nymphal ticks. Expression of otlip was evident in both fed and unfed O. turicata ticks, with significantly increased expression in the salivary glands in comparison to the midgut or ovary tissues. High conservation of the biogenic amine-binding motif was evident in the deduced primary amino acid sequence of Otlip. Protein modelling of Otlip revealed conservation of most of the residues involved in binding histamine or serotonin ligand. In vitro assays demonstrated binding of recombinant Otlip with histamine. Furthermore, prediction of post-translational modifications revealed that Otlip contained phosphorylation and myristoylation sites. Taken together, our study not only provides evidence for the presence of a lipocalin-like molecule in O. turicata ticks but also suggests a role for this molecule in the salivary glands of this medically important vector.
Collapse
Affiliation(s)
- G Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - H Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - D E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, MA, USA
| | - J F Andersen
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, MA, USA
| |
Collapse
|
21
|
Kandhare AD, Aswar UM, Mohan V, Thakurdesai PA. Ameliorative effects of type-A procyanidins polyphenols from cinnamon bark in compound 48/80-induced mast cell degranulation. Anat Cell Biol 2017; 50:275-283. [PMID: 29354299 PMCID: PMC5768564 DOI: 10.5115/acb.2017.50.4.275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/21/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Allergic diseases are a significant health concern in developing countries. Type-A procyanidin polyphenols from cinnamon (Cinnamomum zeylanicum Blume) bark (TAPP-CZ) possesses antiasthmatic and antiallergic potential. The present study was aimed at the possible anti-allergic mechanism of TAPP-CZ against the compound 48/80 (C48/80)–induced mast cell degranulation in isolated rat peritoneal mast cells (RPMCs). TAPP-CZ (1, 3, 10, and 30 µg/ml) was incubated for 3 hours with isolated, purified RPMCs. The C48/80 (1 µg/ml) was used to induce mast cell degranulation. The mast cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay whereas histamine, β-hexosaminidase (β-HEX), and interleukin-4 (IL-4) levels were determined in RPMCs. TAPP-CZ (3, 10, and 30 µg/ml) showed significant and dose-dependent decrease in a number of degranulated cells and levels of markers (histamine, β-HEX, and IL-4) as compared with C48/80 control. In conclusion, TAPP-CZ stabilizes mast cell and cause inhibition of the allergic markers such as histamine, IL-4, and β-HEX in IgE-mediated manner. The present study supports mast cell stabilization as a possible mechanism of action of TAPP-CZ against immune respiratory disorders such as asthma and allergic rhinitis.
Collapse
Affiliation(s)
- Amit D Kandhare
- Department of Scientific Affairs, Indus Biotech Private Limited, Pune, India
| | - Urmila M Aswar
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Pune, India
| | - Vishwaraman Mohan
- Department of Scientific Affairs, Indus Biotech Private Limited, Pune, India
| | | |
Collapse
|
22
|
Abstract
Histamine is a pro-inflammatory mediator with a prominent role in allergic diseases. Antagonists at the histamine receptor subtype 1 are central in anti-allergic therapies, with the exception of allergic asthma, where they are clinically without effect. The latest identified histamine receptor subtype 4, which is expressed mainly in hematopoietic cells, now provides a reasonable target for new therapeutic strategies inhibiting histamine function. The pathophysiology of allergy, esp. allergic asthma, and in its context the effects of antagonists at the histamine receptor subtype 4 in preclinical and clinical settings are discussed in this chapter.
Collapse
|
23
|
Zhang Y, Chen Z, Luo X, Wu B, Li B, Wang B. Cimetidine down-regulates stability of Foxp3 protein via Stub1 in Treg cells. Hum Vaccin Immunother 2017; 12:2512-2518. [PMID: 27324694 DOI: 10.1080/21645515.2016.1191719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Foxp3-expressing Treg cells have been well documented to provide immune regulation by promoting immune tolerance and suppressing immune over-reaction. Cimetidine (CIM), used to inhibit stomach acid secretion, has been reported to promote immune responses and suppress Treg cell function in several studies. However, the underlying mechanism is unknown. To investigate CIM effects on the suppressive function of Treg and Foxp3, here we used CIM to stimulate human CD4+CD25+ Treg cells and Jurkat T cells and evaluated changes of Foxp3 expression and stability. Our data showed that CIM leads to a reduction of Foxp3 via E3 ligase Stub1-mediated proteosomal degradation, which is dependent on an activated PI3K-AKT-mTOR pathway. Thus, CIM affects the suppressive function of Treg cells by destabilizing their Foxp3 expression.
Collapse
Affiliation(s)
- Yizhi Zhang
- a State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University , Beijing , China
| | - Zhoujia Chen
- b Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Xuerui Luo
- b Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Bin Wu
- a State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University , Beijing , China
| | - Bin Li
- b Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Bin Wang
- a State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University , Beijing , China.,c Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College , Shanghai , China
| |
Collapse
|
24
|
Singh V, Gohil N, Ramírez-García R. New insight into the control of peptic ulcer by targeting the histamine H 2 receptor. J Cell Biochem 2017; 119:2003-2011. [PMID: 28817204 DOI: 10.1002/jcb.26361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/15/2017] [Indexed: 11/09/2022]
Abstract
Peptic ulcer disease is one of the major challenges in public health globally and new evidence shows that it can be controlled by targeting the histamine H2 receptor (H2 R). Recently, a number of H2 R antagonists have been synthesized and used to block the action of histamine on the parietal cells in the stomach and decrease the acid production. In this study, we modeled the H2 R by homology modeling using the 3-D crystal structure and this model was validated based on free energy and amino acid residues present in the allowed regions of a Ramachandran plot. We used this 3-D model for screening of highly potent drugs using molecular docking. We found cimetidine, cimetex, and famotidine as the most potent drugs based on the binding affinity of drug-protein interactions. We also generated a cellular network for H2 R that could be useful for better understanding of cellular mechanism and drug targets. These findings provide a new insight into the development of suitable, specific, and effective anti-ulcer drugs for a most effective treatment of ulcerous diseases.
Collapse
Affiliation(s)
- Vijai Singh
- Department of Microbiology, Synthetic Biology Laboratory, School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Nisarg Gohil
- Department of Microbiology, Synthetic Biology Laboratory, School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Robert Ramírez-García
- Department of Microbiology, Synthetic Biology Laboratory, School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| |
Collapse
|
25
|
Wright C, Shin JH, Rajpurohit A, Deep-Soboslay A, Collado-Torres L, Brandon NJ, Hyde TM, Kleinman JE, Jaffe AE, Cross AJ, Weinberger DR. Altered expression of histamine signaling genes in autism spectrum disorder. Transl Psychiatry 2017; 7:e1126. [PMID: 28485729 PMCID: PMC5534955 DOI: 10.1038/tp.2017.87] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022] Open
Abstract
The histaminergic system (HS) has a critical role in cognition, sleep and other behaviors. Although not well studied in autism spectrum disorder (ASD), the HS is implicated in many neurological disorders, some of which share comorbidity with ASD, including Tourette syndrome (TS). Preliminary studies suggest that antagonism of histamine receptors 1-3 reduces symptoms and specific behaviors in ASD patients and relevant animal models. In addition, the HS mediates neuroinflammation, which may be heightened in ASD. Together, this suggests that the HS may also be altered in ASD. Using RNA sequencing (RNA-seq), we investigated genome-wide expression, as well as a focused gene set analysis of key HS genes (HDC, HNMT, HRH1, HRH2, HRH3 and HRH4) in postmortem dorsolateral prefrontal cortex (DLPFC) initially in 13 subjects with ASD and 39 matched controls. At the genome level, eight transcripts were differentially expressed (false discovery rate <0.05), six of which were small nucleolar RNAs (snoRNAs). There was no significant diagnosis effect on any of the individual HS genes but expression of the gene set of HNMT, HRH1, HRH2 and HRH3 was significantly altered. Curated HS gene sets were also significantly differentially expressed. Differential expression analysis of these gene sets in an independent RNA-seq ASD data set from DLPFC of 47 additional subjects confirmed these findings. Understanding the physiological relevance of an altered HS may suggest new therapeutic options for the treatment of ASD.
Collapse
Affiliation(s)
- C Wright
- Lieber Institute for Brain Development, Clinical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA,AstraZeneca Postdoc Program, Innovative Medicines and Early Development, Waltham, MA, USA
| | - J H Shin
- Lieber Institute for Brain Development, Clinical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A Rajpurohit
- Lieber Institute for Brain Development, Clinical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A Deep-Soboslay
- Lieber Institute for Brain Development, Clinical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - L Collado-Torres
- Lieber Institute for Brain Development, Clinical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - N J Brandon
- AstraZeneca Neuroscience, Innovative Medicines and Early Development, Waltham, MA, USA
| | - T M Hyde
- Lieber Institute for Brain Development, Clinical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - J E Kleinman
- Lieber Institute for Brain Development, Clinical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A E Jaffe
- Lieber Institute for Brain Development, Clinical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A J Cross
- AstraZeneca Neuroscience, Innovative Medicines and Early Development, Waltham, MA, USA
| | - D R Weinberger
- Lieber Institute for Brain Development, Clinical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Lieber Institute for Brain Development, Clinical Sciences, Johns Hopkins School of Medicine, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, 3rd Floor, Baltimore, MD 21205, USA. E-mail:
| |
Collapse
|
26
|
Al Asmari AK, Al Sadoon KT, Obaid AA, Yesunayagam D, Tariq M. Protective effect of quinacrine against glycerol-induced acute kidney injury in rats. BMC Nephrol 2017; 18:41. [PMID: 28129740 PMCID: PMC5273840 DOI: 10.1186/s12882-017-0450-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/13/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a serious clinical problem with high rate of mortality and morbidity. Currently used prophylactic and therapeutic strategies to address AKI are limited and warrant further studies. In the present study an attempt was made to investigate the effect of quinacrine, a phospholipase A2 inhibitor against glycerol induced AKI in rats. METHODS Adult female Wistar rats were divided in to five groups. After 24 h of water deprivation rats in groups 3, 4 and 5 received an intraperitoneal injection of quinacrine (3 mg/kg, 10 mg/kg and 30 mg/kg of body weight respectively). Thirty minutes after the first injection of quinacrine animals in groups 3, 4 and 5 received an intramuscular injection of 25% glycerol (10 ml/kg of body weight). The animals in group 2 received 25% glycerol (10 ml/kg of body weight) only whereas rats in group 1 served as control . The quinacrine administration was continued once daily for three days, on the fourth day animals were sacrificed, blood and kidney were collected for various biochemical and histopathological studies. RESULTS Glycerol treatment produced significant renal structural abnormalities and functional impairment (increased urea and creatinine). Increase in myeloperoxidase (MPO) and malondialdehyde (MDA) clearly suggested the involvement of oxidative stress and neutrophilic activity following glycerol administration. Quinacrine dose dependently attenuated glycerol induced structural and functional changes in kidney. CONCLUSION The reversal of glycerol induced AKI by quinacrine points towards a role of phospholipase A2 (PLA2) in the pathogenesis of renal injury. The result of this study suggests that quinacrine may offer an alternative mode of treatment for AKI.
Collapse
Affiliation(s)
| | | | - Ali Ahmed Obaid
- Department of Urology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Mohammad Tariq
- Scientific Research Centre, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Chen C, Lianhua L, Nana S, Yongning L, Xudong J. Development of a BALB/c mouse model for food allergy: comparison of allergy-related responses to peanut agglutinin, β-lactoglobulin and potato acid phosphatase. Toxicol Res (Camb) 2017; 6:251-261. [PMID: 30090496 DOI: 10.1039/c6tx00371k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/14/2017] [Indexed: 01/24/2023] Open
Abstract
The purpose of this study was to develop a BALB/c mouse model for comprehensively assessing food allergies. Serum specific IgE and IgG1 antibodies against protein (PNA, β-LG, and PAP) were induced in intraperitoneally sensitized BALB/c mice. On day 28, blood was collected to obtain the serum, and the splenocytes were cultured. On day 30, mice were challenged with antigen by intraperitoneal injection or intragastric administration, and the physiological and immunological responses to the antigen were studied. A general finding was that allergenicity-related parameters in the mice treated with PNA were statistically higher than those in the mice treated with PAP (P < 0.05 for IL-4; P < 0.05 for specific IgE; P < 0.001 for specific IgG1), whereas parameters in those treated with β-LG were between the other two. Statistically higher histamine release was observed in PNA and β-LG-sensitized mice than in control mice challenged with the same protein by i.p. injection. Intraperitoneal challenge with PNA and β-LG in sensitized mice induced edema in the ear and inflammatory cell infiltration in the lung, which were not observed with the control mice. The results show a new model that covers many features of clinical food allergies that are not seen in other models. The order of potential allergenicity might be PNA > β-LG > PAP, and the intraperitoneal challenge could be more sensitive to induced systemic food allergy.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Trace Element Nutrition MOH , National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , PR China
| | - Lu Lianhua
- Shandong Center for Disease Control and Prevention , Jinan 250014 , Shandong , China
| | - Sun Nana
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health , China National Center for Food Safety Risk Assessment , Beijing 100021 , PR China . ; ; Tel: +86 10 67770977
| | - Li Yongning
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health , China National Center for Food Safety Risk Assessment , Beijing 100021 , PR China . ; ; Tel: +86 10 67770977
| | - Jia Xudong
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health , China National Center for Food Safety Risk Assessment , Beijing 100021 , PR China . ; ; Tel: +86 10 67770977
| |
Collapse
|
28
|
Nakamura Y, Ishimaru K, Shibata S, Nakao A. Regulation of plasma histamine levels by the mast cell clock and its modulation by stress. Sci Rep 2017; 7:39934. [PMID: 28074918 PMCID: PMC5225447 DOI: 10.1038/srep39934] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
At steady state, plasma histamine levels exhibit circadian variations with nocturnal peaks, which is implicated in the nighttime exacerbation of allergic symptoms. However, the regulatory mechanisms are largely unexplored. This study determined how steady-state plasma histamine levels are regulated and affected by environmental factors. We found that plasma histamine levels decreased in mast cell–deficient mice and their circadian variations were lost in mast cell–deficient mice reconstituted with bone marrow–derived mast cells (BMMCs) harboring a mutation in the circadian gene Clock. Clock temporally regulates expression of organic cation transporter 3 (OCT3), which is involved in histamine transport, in mast cells; OCT inhibition abolished circadian variations in plasma histamine levels. Mice housed under aberrant light/dark conditions or suffering from restraint stress exhibited de-synchronization of the mast cell clockwork, concomitant with the loss of circadian variations in OCT3 expression and plasma histamine levels. The degree of compound 48/80–induced plasma extravasation in mice was correlated with plasma histamine levels. Collectively, the mast cell clock mediates circadian regulation of plasma histamine levels at steady state, in part by controlling OCT3 expression, which can be modulated by stress. Additionally, we propose that plasma histamine levels potentiate mast cell–mediated allergic reactions.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Immunology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kayoko Ishimaru
- Department of Immunology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Shigenobu Shibata
- Department of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.,Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
29
|
Wang W, Shao S, Wang S. The role for human nasal epithelial nuclear factor kappa B activation in histamine-induced mucin 5 subtype B overproduction. Int Forum Allergy Rhinol 2015; 6:264-70. [PMID: 26574733 DOI: 10.1002/alr.21665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 11/08/2022]
Abstract
BACKGROUND Mucin 5 subtype B (MUC5B) is 1 of the major mucins secreted by airway epithelial cells. We sought to determine the effect of histamine on MUC5B expression in human nasal epithelial cells. METHODS Human nasal epithelial cells from allergic rhinitis patients were cultured, and stimulated with 4 concentrations of histamine, or pretreated with a specific nuclear factor-kappa B (NF-κB) inhibitor (Bay11-7082) before histamine stimulation. Immunocytochemistry and Western blotting were used to detect phosphorylated inhibitor of kappa B alpha (p-IκBα), NF-κBp65 and MUC5B protein. MUC5B content in supernatants was assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS Histamine promoted IκBα phosphorylation and NF-κBp65 nuclear translocation. A concentration-dependent histamine-induced increase of MUC5B protein was observed, and its content in supernatants was upregulated in a concentration-dependent fashion, but these effects were attenuated by Bay11-7082. CONCLUSION Histamine activated the IκBα/NF-κB pathway by promoting IκBα phosphorylation and inducing NF-κBp65 nuclear translocation, contributing to MUC5B overproduction and secretion.
Collapse
Affiliation(s)
- Weiwei Wang
- Program in Molecular and Translational Medicine and Department of Anatomy, Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou City, China
| | - Shengwen Shao
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou City, China
| | - Sha Wang
- Schools of Medicine and Nursing Sciences, Huzhou University, Huzhou City, China
| |
Collapse
|
30
|
Yoon SC, Je IG, Cui X, Park HR, Khang D, Park JS, Kim SH, Shin TY. Anti-allergic and anti-inflammatory effects of aqueous extract of Pogostemon cablin. Int J Mol Med 2015; 37:217-24. [PMID: 26531835 DOI: 10.3892/ijmm.2015.2401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
Allergic disease is caused by exposure to normally innocuous substances that activate mast cells. Mast cell-mediated allergic inflammation is closely related to a number of allergic disorders, such as anaphylaxis, allergic rhinitis, asthma and atopic dermatitis. The discovery of drugs for treating allergic disease is an interesting subject and important to human health. The aim of the present study was to investigate the anti‑allergic and anti-inflammatory effects of the aqueous extract of Pogostemon cablin (Blanco) Benth (AEPC) (a member of the Labiatae family) using mast cells, and also to determine its possible mechanisms of action. An intraperitoneal injection of compound 48/80 or a serial injection of immunoglobulin E and antigen was used to induce anaphylaxis in mice. We found that AEPC inhibited compound 48/80‑induced systemic and immunoglobulin E-mediated cutaneous anaphylaxis in a dose-dependent manner. The release of histamine from mast cells was reduced by AEPC, and this suppressive effect was associated with the regulation of calcium influx. In addition, AEPC attenuated the phorbol 12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated expression of pro-inflammatory cytokines in mast cells. The inhibitory effects of AEPC on pro-inflammatory cytokines were dependent on the activation of nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). AEPC blocked the PMACI-induced translocation of NF-κB into the nucleus by hindering the degradation of IκBα and the phosphorylation of p38 MAPK. Our results thus indicate that AEPC inhibits mast cell‑mediated allergic inflammation by suppressing mast cell degranulation and the expression of pro-inflammatory cytokines caused by reduced intracellular calcium levels and the activation of NF-κB and p38 MAPK.
Collapse
Affiliation(s)
- Seok Cheol Yoon
- College of Pharmacy, Woosuk University, Jeonju 565-701, Republic of Korea
| | - In-Gyu Je
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Xun Cui
- College of Pharmacy, Woosuk University, Jeonju 565-701, Republic of Korea
| | - Hae Ran Park
- College of Pharmacy, Woosuk University, Jeonju 565-701, Republic of Korea
| | - Dongwoo Khang
- Department of Molecular Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Jeong-Suk Park
- Department of Alternative Medicine, Nambu University, Gwangju 506-706, Republic of Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonju 565-701, Republic of Korea
| |
Collapse
|
31
|
Fox EM, Morris CP, Hübner MP, Mitre E. Histamine 1 Receptor Blockade Enhances Eosinophil-Mediated Clearance of Adult Filarial Worms. PLoS Negl Trop Dis 2015. [PMID: 26204515 PMCID: PMC4512699 DOI: 10.1371/journal.pntd.0003932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filariae are tissue-invasive nematodes that cause diseases such as elephantiasis and river blindness. The goal of this study was to characterize the role of histamine during Litomosoides sigmodontis infection of BALB/c mice, a murine model of filariasis. Time course studies demonstrated that while expression of histidine decarboxylase mRNA increases throughout 12 weeks of infection, serum levels of histamine exhibit two peaks—one 30 minutes after primary infection and one 8 weeks later. Interestingly, mice treated with fexofenadine, a histamine receptor 1 inhibitor, demonstrated significantly reduced worm burden in infected mice compared to untreated infected controls. Although fexofenadine-treated mice had decreased antigen-specific IgE levels as well as lower splenocyte IL-5 and IFNγ production, they exhibited a greater than fourfold rise in eosinophil numbers at the tissue site where adult L. sigmodontis worms reside. Fexofenadine-mediated clearance of L. sigmodontis worms was dependent on host eosinophils, as fexofenadine did not decrease worm burdens in eosinophil-deficient dblGATA mice. These findings suggest that histamine release induced by tissue invasive helminths may aid parasite survival by diminishing eosinophilic responses. Further, these results raise the possibility that combining H1 receptor inhibitors with current anthelmintics may improve treatment efficacy for filariae and other tissue-invasive helminths. Filariae are tissue-invasive parasitic roundworms that infect over 100 million people worldwide and cause debilitating conditions such as river blindness and elephantiasis. One of the major factors limiting our ability to eliminate these infections is the lack of drugs that kill adult worms when given as a short course therapy. Additionally, the mechanisms by which adult worms are cleared from infected individuals remains poorly understood. In this study, we demonstrate that treatment of infected mice with fexofenadine, an inhibitor of histamine receptor 1, significantly reduces adult worm numbers through a mechanism dependent on host eosinophils. These findings suggest that histamine release induced by parasitic worms may aid parasite survival by decreasing eosinophilic responses. Further, as antihistamines are generally safe medications, these results raise the possibility that antihistamine therapy may be useful either alone, or potentially in combination with other antifilarial medications such as diethylcarbamazine (DEC), to eliminate adult filarial worms from infected individuals.
Collapse
Affiliation(s)
- Ellen Mueller Fox
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christopher P. Morris
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Marc P. Hübner
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Kurtz KH, Moor AN, Souza-Smith FM, Breslin JW. Involvement of H1 and H2 receptors and soluble guanylate cyclase in histamine-induced relaxation of rat mesenteric collecting lymphatics. Microcirculation 2015; 21:593-605. [PMID: 24702851 DOI: 10.1111/micc.12138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/01/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE This study investigated the roles of the H1 and H2 histamine receptors, NO synthase, and sGC cyclase in histamine-induced modulation of rat mesenteric collecting lymphatic pumping. METHODS Isolated rat mesenteric collecting lymphatics were treated with 1- to 100-μM histamine. Histamine receptors were blocked with either the H1 antagonist mepyramine or the H2 antagonist cimetidine. The role of NO/sGC signaling was tested using the arginine analog L-NAME, the sGC inhibitor ODQ, and SNP as a positive control. RESULTS Histamine applied at 100 μM decreased tone and CF of isolated rat mesenteric collecting lymphatics. Pharmacologic blockade of either H1 or H2 histamine receptors significantly inhibited the response to histamine. Pretreatment with ODQ, but not L-NAME, completely inhibited the histamine-induced decrease in tone. ODQ pretreatment also significantly inhibited SNP-induced lymphatic relaxation. CONCLUSIONS H1 and H2 histamine receptors are both involved in histamine-induced relaxation of rat mesenteric collecting lymphatics. NO synthesis does not appear to contribute to the histamine-induced response. However, sGC is critical for the histamine-induced decrease in tone and contributes to the drop in CF.
Collapse
Affiliation(s)
- Kristine H Kurtz
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center-New Orleans, New Orleans, Louisiana, USA
| | | | | | | |
Collapse
|
33
|
Hong SM, Park IH, Um JY, Shin JM, Lee HM. Stimulatory effects of histamine on migration of nasal fibroblasts. Int Forum Allergy Rhinol 2015; 5:923-8. [PMID: 26097205 DOI: 10.1002/alr.21555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Fibroblast migration is crucial for normal wound repair after sinonasal surgery. Histamine is known to be involved in wound healing by its effects on cell proliferation and migration. This study aimed to determine whether histamine affects the migration of nasal fibroblasts and to investigate the mechanism of action of histamine on nasal fibroblasts. METHODS Primary cultures of nasal fibroblasts were established from inferior turbinate samples. Fibroblast migration was evaluated with scratch assays. Cells were treated with histamine and/or histamine receptor-selective antagonists. U-73122 and pertussis toxin, which are selective inhibitors of the lower signaling pathway of H1R and H4R, were used to confirm the modulation of nasal fibroblast migration by histamine. Fibroblast cytoskeletal structures were visualized with immunocytochemistry. RESULTS Histamine significantly stimulated the migration of nasal fibroblasts. Antagonists selective for HR1 and HR4 significantly reduced nasal fibroblast migration. In immunocytochemical staining, histamine treatment increased membrane ruffling and pyrilamine, diphenhydramine, fexofenadine, and JNJ7777120 decreased histamine-induced membrane ruffling. U-73122 and pertussis toxin also decreased histamine-induced migration of fibroblasts. Histamine maintains its stimulatory effects on fibroblast migration in the presence of mitomycin C, which blocks proliferation of cells. CONCLUSION We showed that histamine stimulates fibroblast migration in nasal fibroblasts. This effect appeared to be mediated by HR1 and HR4. However, because fibroblast migration also can be involved in scaring and fibrosis, more research is necessary to determine the effects of antihistamine on wound healing after sinus surgery.
Collapse
Affiliation(s)
- Sung-Moon Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Ji-Young Um
- Department of Biomedical Sciences, Korea University Graduate School, Korea University, Seoul, Korea
| | - Jae-Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Heung-Man Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Sciences, Korea University Graduate School, Korea University, Seoul, Korea.,Medical Devices Clinical Trial Center, Guro Hospital, Korea University, Seoul, Korea
| |
Collapse
|
34
|
Wang W, Wang X, Ma L, Zhang R. Histamine downregulates aquaporin 5 in human nasal epithelial cells. Am J Rhinol Allergy 2015; 29:188-92. [PMID: 25781725 DOI: 10.2500/ajra.2015.29.4181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Aquaporin 5 (AQP5) is a water-specific channel protein. It is thought to be a key participant in fluid secretion and a rate-limiting barrier to the secretion seen during allergic inflammation. We sought to determine the effect of histamine on AQP5 expression in human nasal epithelial cells (HNEpC). METHODS HNEpC cells were cultured with four concentrations of histamine in vitro. The phosphorylation of cyclic adenosine monophosphate-responsive element binding protein (CREB) at serine 133 and the AQP5 protein were measured by using immunocytochemistry and Western blotting. Real-time polymerase chain reaction was used to detect AQP5 messenger ribonucleic acid (mRNA). RESULTS Concentration-dependent histamine induced-inhibition of CREB phosphorylation at serine 133 in HNEpC cells was observed, and AQP5 mRNA and protein were also downregulated in a concentration-dependent fashion. CONCLUSION Histamine downregulates AQP5 production in HNEpC cells by inhibiting CREB phosphorylation at serine 133.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Anatomy, Schools of Medicine and Nursing Sciences, Huzhou University, China
| | | | | | | |
Collapse
|
35
|
Hartwig C, Munder A, Glage S, Wedekind D, Schenk H, Seifert R, Neumann D. The histamine H4 -receptor (H4 R) regulates eosinophilic inflammation in ovalbumin-induced experimental allergic asthma in mice. Eur J Immunol 2015; 45:1129-40. [PMID: 25501767 DOI: 10.1002/eji.201445179] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/18/2014] [Accepted: 12/09/2014] [Indexed: 01/05/2023]
Abstract
Via the histamine H4 -receptor (H4 R), histamine promotes the pathogenesis of experimental allergic asthma in mice. Application of H4 R antagonists during sensitization as well as during provocation reduces the severity of the disease. However, the specific cell types functionally expressing H4 R in experimental allergic asthma have not been well characterized in vivo. In this study, we identified the cell type(s) responsible for H4 R activity in experimental asthma and related physiological mechanisms. Using H4 R-deficient mice, we studied the role of H4 R in the sensitization and effector phase. DCs lacking H4 R expression during the in vitro sensitization reaction resulted in effector T cells unable to induce an entire eosinophilic inflammation in the lung upon adoptive transfer in vivo. Recipient mice lacking H4 R expression, which were adoptively transferred with H4 R(+/+) T cells polarized in the presence of H4 R(+/+) DCs, showed reduced signs of inflammation and ameliorated lung function. Here, we provide in vivo evidence that in experimental asthma in mice the H4 R specifically regulates activation of DCs during sensitization, while in the effector phase the H4 R is active in cells involved in the activation of eosinophils, and possibly other cells. A putative therapy targeting the H4 R may be an option for asthma patients developing IL-5-dependent eosinophilia.
Collapse
Affiliation(s)
- Christina Hartwig
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol 2014; 23:316-29. [PMID: 24933589 DOI: 10.1016/j.intimp.2014.05.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
Asthma is described as a chronic inflammatory disorder of the conducting airways. It is characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyper-responsiveness and airway remodeling. Our findings to date have largely been dependent on work done using animal models, which have been instrumental in broadening our understanding of the mechanism of the disease. However, using animals to model a uniquely human disease is not without its drawbacks. This review aims to examine some of the key mediators and cells of allergic asthma learned from animal models and shed some light on emerging mediators in the pathogenesis allergic airway inflammation in acute and chronic asthma.
Collapse
|
37
|
Kucuksezer UC, Ozdemir C, Akdis M, Akdis CA. Mechanisms of immune tolerance to allergens in children. KOREAN JOURNAL OF PEDIATRICS 2013; 56:505-13. [PMID: 24416044 PMCID: PMC3885784 DOI: 10.3345/kjp.2013.56.12.505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/11/2013] [Indexed: 11/27/2022]
Abstract
Because the prevalence of allergic diseases has significantly increased in recent years, understanding the causes and mechanisms of these disorders is of high importance, and intense investigations are ongoing. Current knowledge pinpoints immune tolerance mechanisms as indispensable for healthy immune response to allergens in daily life. It is evident that development and maintenance of allergens-pecific T cell tolerance is of vital importance for a healthy immune response to allergens. Such tolerance can be gained spontaneously by dose-dependent exposures to allergens in nature or by allergen-specific immunotherapy. Allergen-specific immunotherapy induces regulatory T cells with the capacity to secrete interleukin-10 and transforming growth factor-β, limits activation of effector cells of allergic inflammation (such as mast cells and basophils), and switches antibody isotype from IgE to the noninflammatory type IgG4. Although allergen-specific immunotherapy is the only method of tolerance induction in allergic individuals, several factors, such as long duration of treatment, compliance problems, and life-threatening side effects, have limited widespread applicability of this immunomodulatory treatment. To overcome these limitations, current research focuses on the introduction of allergens in more efficient and safer ways. Defining the endotypes and phenotypes of allergic diseases might provide the ability to select ideal patients, and novel biomarkers might ensure new custom-tailored therapy modalities.
Collapse
Affiliation(s)
- Umut C Kucuksezer
- Department of Immunology, Institute of Experimental Medicine (DETAE), Istanbul University, Istanbul, Turkey
| | - Cevdet Ozdemir
- Department of Pediatric Allergy, Atasehir Hospital, Memorial Health Group, Istanbul, Turkey
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland. ; Christine Kuhne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
38
|
Kim HH, Park SB, Lee S, Kwon TK, Shin TY, Park PH, Lee SH, Kim SH. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation. Toxicol Appl Pharmacol 2013; 274:455-61. [PMID: 24361550 DOI: 10.1016/j.taap.2013.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 12/19/2022]
Abstract
A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited the expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H1 receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells.
Collapse
Affiliation(s)
- Hui-Hun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Seung-Bin Park
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Soyoung Lee
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| | - Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonju 565-701, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Youngnam University, Kyungsan 712-749, Republic of Korea
| | - Seung-Ho Lee
- College of Pharmacy, Youngnam University, Kyungsan 712-749, Republic of Korea
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea.
| |
Collapse
|
39
|
Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA. Under the skin or under the tongue: differences and similarities in mechanisms of sublingual and subcutaneous immunotherapy. Immunotherapy 2013; 5:1151-8. [DOI: 10.2217/imt.13.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Cevdet Ozdemir
- Memorial Health Group, Atasehir Hospital, Department of Pediatric Allergy, Istanbul, Turkey
| | - Umut C Kucuksezer
- Istanbul University, Institute of Experimental Medicine (DETAE), Department of Immunology, Istanbul, Turkey
| | - Mübeccel Akdis
- Swiss Institute of Allergy & Asthma Research (SIAF), University of Zürich Obere Strasse 22, CH-7270 Davos Platz, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy & Asthma Research (SIAF), University of Zürich Obere Strasse 22, CH-7270 Davos Platz, Switzerland and Christine Kühne – Center for Allergy Research & Education, Davos, Switzerland
| |
Collapse
|
40
|
Säfholm J, Dahlén SE, Adner M. Antagonising EP1 and EP2 receptors reveal that the TP receptor mediates a component of antigen-induced contraction of the guinea pig trachea. Eur J Pharmacol 2013; 718:277-82. [DOI: 10.1016/j.ejphar.2013.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/25/2013] [Accepted: 08/26/2013] [Indexed: 11/29/2022]
|
41
|
Kim HH, Kim SW, Kim DS, Oh HM, Rho MC, Kim SH. Vigna angularis inhibits mast cell-mediated allergic inflammation. Int J Mol Med 2013; 32:736-42. [PMID: 23828310 DOI: 10.3892/ijmm.2013.1430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/25/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to elucidate whether extracts of Vigna angularis (EVA) inhibit allergic inflammatory reactions and to elucidate the possible mechanisms of action. For the assessment of allergic inflammatory response, histamine release and the expression of pro-inflammatory cytokines from human mast cells (HMC-1) were examined. To identify the underlying mechanisms of action, intracellular calcium and the activation of nuclear factor (NF)-κB and mitogen-activated protein kinases (MAPKs) were assayed. To confirm the effects of EVA in vivo, systemic and local allergic reaction mouse models were employed. EVA dose-dependently reduced phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-induced histamine release from mast cells. The inhibitory effects of EVA on the release of histamine from mast cells were mediated by the reduction of intracellular calcium levels. EVA decreased the PMACI-stimulated gene expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6. The inhibitory effects of EVA on pro-inflammatory cytokines were NF-κB- and MAPK-dependent. In addition, EVA inhibited compound 48/80-induced systemic anaphylaxis and immunoglobulin E (IgE)-mediated cutaneous anaphylaxis. Our findings provide evidence that EVA inhibits mast cell-derived allergic inflammation, and suggest the possible therapeutic application of EVA in allergic inflammatory disorders.
Collapse
Affiliation(s)
- Hui-Hun Kim
- Korean Traditional Medicine Agency, Korea Promotion Institute for Traditional Medicine Industry, Gyeongsan 712‑210, Republic of Korea
| | | | | | | | | | | |
Collapse
|
42
|
Yağcı M, Yegin ZA, Akyürek N, Kayhan H, Özkurt ZN, Sucak GT, Haznedar R. TCTP/HRF pathway and angiogenesis: A feasible intercourse in chronic lymphocytic leukemia. Leuk Res 2013; 37:665-70. [DOI: 10.1016/j.leukres.2013.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/06/2013] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
|
43
|
Kim HH, Yoo JS, Shin TY, Kim SH. Aqueous extract of Mosla chinensis inhibits mast cell-mediated allergic inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 40:1257-70. [PMID: 23227796 DOI: 10.1142/s0192415x12500930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Allergic inflammatory diseases such as food allergy, asthma, sinusitis, and atopic dermatitis are increasing worldwide. In this study, we investigated the effects of aqueous extract of Mosla chinensis Max. (AMC) on mast cell-mediated allergic inflammation and studied the possible mechanism of this action. AMC inhibited compound 48/80-induced systemic and immunoglobulin E (IgE)-mediated local anaphylaxis. AMC reduced intracellular calcium levels and downstream histamine release from rat peritoneal mast cells activated by compound 48/80 or IgE. In addition, AMC decreased gene expression and secretion of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-8 in human mast cells. The inhibitory effect of AMC on cytokine expression was nuclear factor (NF)-κB dependent. Our results indicate that AMC inhibits mast cell-mediated allergic inflammatory reaction by suppressing histamine release and expression of proinflammatory cytokines and the involvement of calcium and NF-κB in these effects. AMC might be a possible therapeutic candidate for allergic inflammatory disorders.
Collapse
Affiliation(s)
- Hui-Hun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | | | | | | |
Collapse
|
44
|
Ko YJ, Kim HH, Kim EJ, Katakura Y, Lee WS, Kim GS, Ryu CH. Piceatannol inhibits mast cell-mediated allergic inflammation. Int J Mol Med 2013; 31:951-8. [PMID: 23426871 DOI: 10.3892/ijmm.2013.1283] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/15/2013] [Indexed: 11/05/2022] Open
Abstract
Piceatannol is a phenolic stilbenoid and a metabolite of resveratrol which is found in red wine. Piceatannol (PIC) commonly exhibits anti-inflammatory, antiplatelet and antiproliferative activity. In the present study, the anti-allergic and anti-inflammatory mechanisms of PIC were investigated by examining the effects of PIC on pro‑inflammatory cytokine release and phosphorylation of mitogen-activated protein (MAP) kinases (ERK, JNK and p38) in a human mast cell line. PIC dose-dependently inhibited compound 48/80-induced systemic anaphylaxis and immunoglobulin E-mediated local allergic reactions. PIC reduced the immunoglobulin E (IgE)-mediated local allergic reaction and attenuated histamine release from rat peritoneal mast cells. Histamine and β-hexosaminidase release was markedly decreased dose-dependently by PIC treatment in RBL-2H3 cells. PIC treatments of HMC-1 cells definitely reduced mRNA expression and the release of the pro‑inflammatory cytokines, tumor necrosis factor-α and interleukin-8. MAP kinase phosphorylation was also strongly decreased dose-dependently following PIC treatment. PIC regulated the production of cytokines and histamine in phorbol 12-myristate 13-acetate plus A23187-stimulated mast cells. Thus, PIC may alleviate allergic inflammation and may be a useful therapeutic agent for allergic diseases.
Collapse
Affiliation(s)
- Yu-Jin Ko
- Division of Applied Life Sciences (BK 21 Program), Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Cui J, Xu G, Liu J, Pang Z, Florholmen J, Cui G. The Expression of Non-Mast Histamine in Tumor Associated Microvessels in Human Colorectal Cancers. Pathol Oncol Res 2012; 19:311-6. [DOI: 10.1007/s12253-012-9584-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
|
46
|
Effect of histamine on contractile activity of smooth muscles in bovine mesenteric lymph nodes. Bull Exp Biol Med 2012; 152:406-8. [PMID: 22803097 DOI: 10.1007/s10517-012-1539-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of histamine and mechanisms of its action on the capsular smooth muscle cells of mesenteric lymph nodes were examined on isolated capsular strips under isometric conditions. Histamine (1×10(-8)-5×10(-7) M) decreased the tone of capsular smooth muscle cells and the frequency of phasic contractions. At high concentrations (more than 5×10(-6) M), histamine increased the amplitude and frequency of phasic contractions against the background of increased tonic stress. The effects of histamine were dose-dependent and were realized via direct stimulation of H(1)- and H(2)-receptors on the membrane of smooth muscle cells.
Collapse
|
47
|
Biswas S, Benedict SH, Lynch SG, LeVine SM. Potential immunological consequences of pharmacological suppression of gastric acid production in patients with multiple sclerosis. BMC Med 2012; 10:57. [PMID: 22676575 PMCID: PMC3386885 DOI: 10.1186/1741-7015-10-57] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022] Open
Abstract
Corticosteroids are standard treatment for patients with multiple sclerosis experiencing acute relapse. Because dyspeptic pain is a common side effect of this intervention, patients can be given a histamine receptor-2 antagonist, proton pump inhibitor or antacid to prevent or ameliorate this disturbance. Additionally, patients with multiple sclerosis may be taking these medications independent of corticosteroid treatment. Interventions for gastric disturbances can influence the activation state of the immune system, a principal mediator of pathology in multiple sclerosis. Although histamine release promotes inflammation, activation of the histamine receptor-2 can suppress a proinflammatory immune response, and blocking histamine receptor-2 with an antagonist could shift the balance more towards immune stimulation. Studies utilizing an animal model of multiple sclerosis indicate that histamine receptor-2 antagonists potentially augment disease activity in patients with multiple sclerosis. In contrast, proton pump inhibitors appear to favor immune suppression, but have not been studied in models of multiple sclerosis. Antacids, histamine receptor-2 antagonists and proton pump inhibitors also could alter the intestinal microflora, which may indirectly lead to immune stimulation. Additionally, elevated gastric pH can promote the vitamin B12 deficiency that patients with multiple sclerosis are at risk of developing. Here, we review possible roles of gastric acid inhibitors on immunopathogenic mechanisms associated with multiple sclerosis.
Collapse
Affiliation(s)
- Sangita Biswas
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | |
Collapse
|
48
|
Nemeth K, Wilson T, Rada B, Parmelee A, Mayer B, Buzas E, Falus A, Key S, Masszi T, Karpati S, Mezey E. Characterization and function of histamine receptors in human bone marrow stromal cells. Stem Cells 2012; 30:222-31. [PMID: 22045589 DOI: 10.1002/stem.771] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are several clinical trials worldwide using bone marrow stromal cells (BMSCs) as a cellular therapy to modulate immune responses in patients suffering from various inflammatory conditions. A deeper understanding of the molecular mechanisms involved in this modulatory effect could help us design better, more effective protocols to treat immune mediated diseases. In this study, we demonstrated that human BMSCs express H1, H2, and H4 histamine receptors and they respond to histamine stimulation with an increased interleukin 6 (IL-6) production both in vitro and in vivo. Using different receptor antagonists, we pinpointed the importance of the H1 histamine receptor, while Western blot analysis and application of various mitogen-activated protein kinase inhibitors highlighted the role of p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase kinases in the observed effect. When BMSCs were pretreated with either histamine or degranulated human mast cells, they exhibited an enhanced IL-6-dependent antiapoptotic effect on neutrophil granulocytes. Based on these observations, it is likely that introduction of BMSCs into a histamine-rich environment (such as any allergic setting) or pretreatment of these cells with synthetic histamine could have a significant modulatory effect on the therapeutic potential of BMSCs.
Collapse
Affiliation(s)
- Krisztian Nemeth
- National Institutes of Dental and Craniofacial Research, Craniofacial and Skeletal Diseases Branch, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim HH, Lee S, Singh TSK, Choi JK, Shin TY, Kim SH. Sparassis crispa suppresses mast cell-mediated allergic inflammation: Role of calcium, mitogen-activated protein kinase and nuclear factor-κB. Int J Mol Med 2012; 30:344-50. [PMID: 22614038 DOI: 10.3892/ijmm.2012.1000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/17/2012] [Indexed: 11/05/2022] Open
Abstract
Allergic inflammatory disease such as food allergy, asthma and atopic dermatitis are increasing worldwide. In this study, we investigated the effect of water extract of Sparassis crispa (WESC) Fr. (Aphyllophoromycetideae) on mast cell-mediated allergic inflammation and the possible mechanisms of action. WESC inhibited compound 48/80-induced systemic anaphylaxis and serum histamine release in mice. WESC decreased immunoglobulin E (IgE)-mediated passive cutaneous anaphylaxis. Additionally, WESC reduced histamine release and intracellular calcium in human mast cells activated by phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187. WESC decreased PMA and A23187-stimulated expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, inlerleukin (IL)-6 and IL-1β. The inhibitory effect of WESC on pro-inflammatory cytokines was nuclear factor-κB, extracellular signal-regulated kinase and p38 mitogen-activated protein kinase-dependent. Our results suggest potential therapeutic application of WESC in allergic inflammatory diseases.
Collapse
Affiliation(s)
- Hui-Hun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | | | | | | | | | | |
Collapse
|
50
|
Dandekar RD, Khan MM. Involvement of histamine receptors in SAPK/JNK phosphorylation. Int Immunopharmacol 2012; 13:190-6. [PMID: 22487127 DOI: 10.1016/j.intimp.2012.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
Histamine is a mediator of inflammation in allergic disease and asthma. Stress activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) are involved in asthma. This study examined the role of histamine receptors on the phosphorylation of SAPK/JNK in splenocytes. C57BL/6 mice splenocytes were treated with histamine (10⁻⁴ M to 10⁻¹¹ M), and its selective receptor agonists, phorbol 12 myristate 13-acetate (PMA) was used as a positive control, and phosphorylation of SAPK/JNK was determined. Histamine (10⁻⁴ M-10⁻⁸ M) inhibited phosphorylation of SAPK/JNK. H1R agonist betahistine (10⁻⁵ M) decreased SAPK/JNK phosphorylation and H2R agonist amthamine (10⁻⁵ M) did not show any significant effect. However, H3R agonist methimepip (10⁻⁶ M) and H4R agonist 4-methyl histamine (10⁻⁶ M), increased SAPK/JNK phosphorylation. We used TNFα knockout mice to determine if histamine regulated SAPK/JNK phosphorylation via TNFα. While the effects of histamine and H1 agonists were similar to that of wild type mice in inhibiting the phosphorylation of SAPK/JNK, the effects of H3 and H4 agonists differed in TNFα knockout mice splenocytes. Activation of H3 receptors decreased SAPK/JNK phosphorylation in TNFα knockout mice, as opposed to an increase in wild type mice, whereas H4 agonist did not show any significant effect on the phosphorylation of SAPK/JNK. This data showed that histamine acting through H4 receptors caused the phosphorylation of SAPK/JNK via TNFα. The role of H4 receptors in pro-inflammatory response is intriguing.
Collapse
Affiliation(s)
- Radhika D Dandekar
- Department of Pharmaceutical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | |
Collapse
|