1
|
Iwasa A, Hanaoka N, Ohwada K, Iwamuro S, Toyoda F, Kikuyama S, Hasunuma I. Cell proliferation and neurogenesis in the adult telencephalon of the newt Cynops pyrrhogaster. Dev Growth Differ 2022; 64:474-485. [PMID: 36398337 DOI: 10.1111/dgd.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Abstract
Urodele amphibians have the ability to regenerate several organs, including the brain. For this reason, the research on neurogenesis in these species after ablation of some parts of the brain has markedly progressed. However, detailed information on the characteristics and fate of proliferated cells as well as the function of newly generated neurons under normal conditions is still limited. In this study, we focused on investigating the proliferative and neurogenic zones as well as the fate of proliferated cells in the adult brain of the Japanese red-bellied newt to clarify the significance of neurogenesis in adulthood. We found that the proximal region of the lateral ventricles in the telencephalon and the preoptic area in the diencephalon were the main sites for continuous cell proliferation in the adult brain. Furthermore, we characterized proliferative cells and analyzed neurogenesis through a combination of 5-ethynyl-2'-deoxyuridine (EdU) labeling and immunohistochemistry using antibodies against the stem cell marker Sox2 and neuronal marker NeuN. Twenty-four hours after EdU injection, most of the EdU-positive cells were Sox2-immunopositive, whereas, EdU-positive signals and NeuN-immunoreactivities were not colocalized. Two months after EdU injection, the colocalization ratio of EdU-positive signals with Sox2-immunoreactivities decreased to approximately 10%, whereas the ratio of colocalization of EdU-positive signals with NeuN-immunoreactivities increased to approximately 60%. Furthermore, a portion of the EdU-incorporated cells developed into γ-aminobutyric acid-producing cells, which are assumed to function as interneurons. On the basis of these results, the significance of newly generated neurons was discussed with special reference to their reproductive behavior.
Collapse
Affiliation(s)
- Ami Iwasa
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Naoki Hanaoka
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Kosuke Ohwada
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Shawichi Iwamuro
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Fumiyo Toyoda
- Department of Neurophysiology, Nara Medical University, Nara, Japan
| | - Sakae Kikuyama
- Department of Biology, Faculty of Education and Integrated Sciences, Center for Advanced Biomedical Sciences, Waseda University, Tokyo, Japan
| | - Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| |
Collapse
|
2
|
Breivogel CS, McPartland JM, Parekh B. Investigation of non-CB 1, non-CB 2 WIN55212-2-sensitive G-protein-coupled receptors in the brains of mammals, birds, and amphibians. J Recept Signal Transduct Res 2018; 38:316-326. [PMID: 30376752 DOI: 10.1080/10799893.2018.1494743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Previous studies have found non-CB1 non-CB2 G-protein-coupled receptors in rodents that are activated by the aminoalkylindole cannabinoid agonist WIN55212-2. This work obtained evidence for the presence or absence of similar receptors in the brains of other mammals, birds and amphibians. MATERIALS AND METHODS Antagonism of the stimulation of [35S]GTPγS binding by WIN55212-2 and CP55940 was assessed in multiple CNS regions of rat and canine, and in whole brain membranes from shrew, pigeon, frog and newt. A bioinformatics approach searched for orthologs of GRP3, GPR6, and GPR12 (closely related to cannabinoid receptors) in the genomes of these or related species. Orthologs were examined for amino acid motifs known to impart functionality to receptors. RESULTS In mammals and pigeon, but not amphibians, a significant fraction of the stimulation of [35S]GTPγS binding by WIN55212-2 was not blocked by the CB1 antagonist SR141716A. BLAST searches found that GPR3 was restricted to mammals. GPR12 orthologs existed in all species, and they shared identical amino acid motifs. GPR6 orthologs existed all species, but with significant departures in the identity of some critical amino acids in bird, more so in amphibian. CONCLUSIONS The portion of WIN55212-2-stimulated [35S]GTPγS binding that was antagonized by SR141716A was consistent with stimulation via CB1 receptors, indicating that antagonist-insensitive activity was via a different G-protein coupled receptor. Pharmacological evidence of this receptor was found in the brains of mammals and pigeon, but not frog or newt. Bioinfomatics results implicate GPR6 as a possible candidate for the additional WIN55212-2-sensitive receptor.
Collapse
Affiliation(s)
- Chris S Breivogel
- a Department of Pharmaceutical Sciences , Campbell University College of Pharmacy & Health Sciences , Buies Creek , NC , USA
| | - John M McPartland
- b College of Medicine, University of Vermont , Burlington , VT , USA
| | - Bhavita Parekh
- a Department of Pharmaceutical Sciences , Campbell University College of Pharmacy & Health Sciences , Buies Creek , NC , USA
| |
Collapse
|
3
|
Oltrabella F, Melgoza A, Nguyen B, Guo S. Role of the endocannabinoid system in vertebrates: Emphasis on the zebrafish model. Dev Growth Differ 2017; 59:194-210. [PMID: 28516445 DOI: 10.1111/dgd.12351] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 12/15/2022]
Abstract
The endocannabinoid system (eCBs), named after the plant Cannabis sativa, comprises cannabinoid receptors, endogenous ligands known as "endocannabinoids", and enzymes involved in the biosynthesis and degradation of these ligands, as well as putative transporters for these ligands. ECBs proteins and small molecules have been detected in early embryonic stages of many vertebrate models. As a result, cannabinoid receptors and endogenous as well as exogenous cannabinoids influence development and behavior in many vertebrate species. Understanding the precise mechanisms of action for the eCBs will provide an invaluable guide towards elucidation of vertebrate development and will also help delineate how developmental exposure to marijuana might impact health and cognitive/executive functioning in adulthood. Here we review the developmental roles of the eCBs in vertebrates, focusing our attention on the zebrafish model. Since little is known regarding the eCBs in zebrafish, we provide new data on the expression profiles of eCBs genes during development and in adult tissue types of this model organism. We also highlight exciting areas for future investigations, including the synaptic regulation of eCBs, its role in reward and addiction, and in nervous system development and plasticity.
Collapse
Affiliation(s)
- Francesca Oltrabella
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94158-2811, USA
| | - Adam Melgoza
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94158-2811, USA.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California, 94158-2811, USA
| | - Brian Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94158-2811, USA.,Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, 94720-3104, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94158-2811, USA.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California, 94158-2811, USA.,Institute for Human Genetics, University of California, San Francisco, California, 94158-2811, USA
| |
Collapse
|
4
|
DeVries MS, Cordes MA, Rodriguez JD, Stevenson SA, Riters LV. Neural endocannabinoid CB1 receptor expression, social status, and behavior in male European starlings. Brain Res 2016; 1644:240-8. [PMID: 27206544 DOI: 10.1016/j.brainres.2016.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022]
Abstract
Many species modify behavior in response to changes in resource availability or social status; however, the neural mechanisms underlying these modifications are not well understood. Prior work in male starlings demonstrates that status-appropriate changes in behavior involve brain regions that regulate social behavior and vocal production. Endocannabinoids are ubiquitously distributed neuromodulators that are proposed to play a role in adjusting behavior to match social status. As an initial step to provide insight into this hypothesis we observed flocks of male starlings in outdoor aviaries during the breeding season. We used quantitative real-time PCR to measure expression of endocannabinoid CB1 receptors in brain regions involved in social behavior and motivation (lateral septum [LS], ventral tegmental area [VTA], medial preoptic nucleus [POM]) and vocal behavior (Area X and robust nucleus of the arcopallium; RA). Males with nesting sites sang to females and displaced other males more than males without nesting sites. They also had higher levels of CB1 receptor expression in LS and RA. CB1 expression in LS correlated positively with agonistic behaviors. CB1 expression in RA correlated positively with singing behavior. CB1 in VTA also correlated positively with singing when only singing birds were considered. These correlations nicely map onto the well-established role of LS in agonistic behavior and the known role of RA in song production and VTA in motivation and song production. Studies are now needed to precisely characterize the role of CB1 receptors in these regions in the production of status-appropriate social behaviors.
Collapse
Affiliation(s)
- M Susan DeVries
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706 USA
| | - Melissa A Cordes
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706 USA
| | - Jonathan D Rodriguez
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706 USA
| | - Sharon A Stevenson
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706 USA
| | - Lauren V Riters
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706 USA.
| |
Collapse
|
5
|
Sagheddu C, Muntoni AL, Pistis M, Melis M. Endocannabinoid Signaling in Motivation, Reward, and Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:257-302. [DOI: 10.1016/bs.irn.2015.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Cottone E, Pomatto V, Bovolin P. Role of the endocannabinoid system in the central regulation of nonmammalian vertebrate reproduction. Int J Endocrinol 2013; 2013:941237. [PMID: 24101926 PMCID: PMC3786540 DOI: 10.1155/2013/941237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/12/2013] [Indexed: 12/20/2022] Open
Abstract
The endocannabinoid system (ECS) has a well-documented pivotal role in the control of mammalian reproductive functions, by acting at multiple levels, that is, central (CNS) and local (gonads) levels. Since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, in the present paper we review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, focussing in particular on the central regulation of teleost and amphibian reproduction. The morphofunctional distribution of brain cannabinoid receptors will be discussed in relation to other crucial signalling molecules involved in the control of reproductive functions, such as GnRH, dopamine, aromatase, and pituitary gonadotropins.
Collapse
Affiliation(s)
- Erika Cottone
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
- *Erika Cottone:
| | - Valentina Pomatto
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Patrizia Bovolin
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
7
|
Elphick MR. The evolution and comparative neurobiology of endocannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 2012; 367:3201-15. [PMID: 23108540 PMCID: PMC3481536 DOI: 10.1098/rstb.2011.0394] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CB(1)- and CB(2)-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB(1)-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB(1)/CB(2)-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB(1)/CB(2)-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB(1)/CB(2)-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB(1)/CB(2)-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids.
Collapse
Affiliation(s)
- Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
8
|
Abstract
There is abundant evidence for the presence of endogenous cannabinoid signaling systems in many nonmammalian species, including several classes of invertebrates. Interest in the study of these animals largely relates to their production of distinct and measurable specialized behaviors. The ability to alter these behaviors through manipulation of cannabinoid signaling has provided important insight into both the phylogenetic history and physiological relevance of this essential neuromodulatory system.This chapter presents a review of literature relevant to cannabinoid-altered behaviors in nonmammalian species from insects through advanced vocal learning avian species. Integration of findings supports a common role for endocannabinoid (ECB) modulation of ingestive and locomotor behaviors, with interesting contrasting agonist effects that distinguish vertebrate and invertebrate classes. Studies in amphibians and birds suggest that ECB signaling may function as a behavioral switch, allowing redirection from less- to more-essential behaviors in response to emergent environmental changes. Overall, the studies provide evidence for cannabinoid modulation of aggression, emesis, feeding behavior, locomotor activity, reproductive behaviors, vocal learning, sensory perception and stress responses.
Collapse
|
9
|
Localization of three types of arginine vasotocin receptors in the brain and pituitary of the newt Cynops pyrrhogaster. Cell Tissue Res 2010; 342:437-57. [DOI: 10.1007/s00441-010-1079-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/11/2010] [Indexed: 02/04/2023]
|
10
|
Abstract
Mineralocorticoids and glucocorticoids are steroid hormones that are released by the adrenal cortex in response to stress and hydromineral imbalance. Historically, adrenocorticosteroid actions are attributed to effects on gene transcription. More recently, however, it has become clear that genome-independent pathways represent an important facet of adrenal steroid actions. These hormones exert nongenomic effects throughout the body, although a significant portion of their actions are specific to the central nervous system. These actions are mediated by a variety of signalling pathways, and lead to physiologically meaningful events in vitro and in vivo. We review the nongenomic effects of adrenal steroids in the central nervous system at the levels of behaviour, neural system activity, individual neurone activity and subcellular signalling activity. A clearer understanding of adrenal steroid activity in the central nervous system will lead to a better ability to treat human disease as well as reduce the side-effects of the steroid treatments already in use.
Collapse
Affiliation(s)
- N K Evanson
- Department of Psychiatry, University of Cincinnati, OH 45237, USA.
| | | | | | | |
Collapse
|
11
|
Fattore L, Melis M, Fadda P, Pistis M, Fratta W. The endocannabinoid system and nondrug rewarding behaviours. Exp Neurol 2010; 224:23-36. [PMID: 20353776 DOI: 10.1016/j.expneurol.2010.03.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rewarding behaviours such as sexual activity, eating, nursing, parenting, social interactions, and play activity are conserved strongly in evolution, and they are essential for development and survival. All of these behaviours are enjoyable and represent pleasant experiences with a high reward value. Remarkably, rewarding behaviours activate the same brain circuits that mediate the positive reinforcing effects of drugs of abuse and of other forms of addiction, such as gambling and food addiction. Given the involvement of the endocannabinoid system in a variety of physiological functions of the nervous system, it is not surprising that it takes part in the complex machinery that regulates gratification and perception of pleasure. In this review, we focus first on the role of the endocannabinoid system in the modulation of neural activity and synaptic functions in brain regions that are involved in natural and nonnatural rewards (namely, the ventral tegmental area, striatum, amygdala, and prefrontal cortex). Then, we examine the role of the endocannabinoid system in modulating behaviours that directly or indirectly activate these brain reward pathways. More specifically, current knowledge of the effects of the pharmacological manipulation of the endocannabinoid system on natural (eating, sexual behaviour, parenting, and social play) and pathological (gambling) rewarding behaviours is summarised and discussed.
Collapse
Affiliation(s)
- Liana Fattore
- CNR Neuroscience Institute - Cagliari, Cittadella Universitaria di Monserrato, Italy
| | | | | | | | | |
Collapse
|
12
|
Effects of cannabinoids on caffeine contractures in slow and fast skeletal muscle fibers of the frog. J Membr Biol 2009; 229:91-9. [PMID: 19506935 PMCID: PMC2697372 DOI: 10.1007/s00232-009-9174-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Accepted: 05/08/2009] [Indexed: 01/27/2023]
Abstract
The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 μM) caused a decrease in tension. These doses reduced maximum tension to 67.43 ± 8.07% (P = 0.02, n = 5) and 79.4 ± 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 ± 7.17% and 75.10 ± 3.60% (P = 0.002, n = 5), respectively. Using the CB1 cannabinoid receptor agonist ACPA (1 μM) reduced the maximum tension of caffeine contractures by 68.70 ± 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 ± 6.89% (P = 0.02, n = 5) compared to controls. When the CB1 receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers, ACPA (1 μM) also decreased tension; the maximum tension was reduced by 56.48 ± 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 ± 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers. Moreover, we detected the presence of mRNA for the cannabinoid CB1 receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression. In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked tension through a receptor-mediated mechanism.
Collapse
|
13
|
Elphick MR, Egertová M. Cannabinoid Receptor Genetics and Evolution. THE CANNABINOID RECEPTORS 2009. [DOI: 10.1007/978-1-59745-503-9_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Cottone E, Guastalla A, Mackie K, Franzoni MF. Endocannabinoids affect the reproductive functions in teleosts and amphibians. Mol Cell Endocrinol 2008; 286:S41-5. [PMID: 18343023 DOI: 10.1016/j.mce.2008.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/28/2008] [Accepted: 01/28/2008] [Indexed: 01/31/2023]
Abstract
Following the discovery in the brain of the bonyfish Fugu rubripes of two genes encoding for type 1 cannabinoid receptors (CB1A and CB1B), investigations on the phylogeny of these receptors have indicated that the cannabinergic system is highly conserved. Among the multiple functions modulated by cannabinoids/endocannabinoids through the CB1 receptors one of the more investigated is the mammalian reproduction. Therefore, since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, the major aim of the present paper was to review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, namely bonyfish and amphibians. The expression and distribution of CB1 receptors were investigated in the CNS and gonads of two teleosts, Pelvicachromis pulcher and Carassius auratus as well as in the anuran amphibians Xenopus laevis and Rana esculenta. In general the large diffusion of neurons targeted by cannabinoids in both fish and amphibian forebrain indicate endocannabinoids as pivotal local messengers in several neural circuits involved in either sensory integrative activities, like the olfactory processes (in amphibians) and food response (in bonyfish), or neuroendocrine machinery (in both). By using immunohistochemistry for CB1 and GnRH-I, the codistribution of the two signalling molecules was found in the fish basal telencephalon and preoptic area, which are key centers for gonadotropic regulation in all vertebrates. A similar topographical codistribution was observed also in the septum of the telencephalon in Rana esculenta and Xenopus laevis. Interestingly, the double standard immunofluorescence on the same brain section, aided with a laser confocal microscope, showed that in anurans a subset of GnRH-I neurons exhibited also the CB1 immunostaining. The fact that CB1-LI-IR was found indeed in the FSH gonadotrophs of the Xenopus pituitary gland and CB1 receptors together with the fatty acid amide hydrolase, the degradative enzyme of the endocannabinoid anandamide, were demonstrated in both bonyfish and frog gonads, strongly suggests that endocannabinoids are involved in central and peripheral gonadotropic functions of teleosts and amphibians.
Collapse
Affiliation(s)
- E Cottone
- Dipartimento di Biologia Animale e dell'Uomo, Laboratorio di Anatomia Comparata, Università degli Studi di Torino, Via Accademia Albertina 13, I-10123 Torino, Italy
| | | | | | | |
Collapse
|
15
|
Fontana MF, Houck LD, Staub NL. In situ localization of plethodontid courtship pheromone mRNA in formalin-fixed tissue. Gen Comp Endocrinol 2007; 150:480-5. [PMID: 17188687 DOI: 10.1016/j.ygcen.2006.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 11/14/2006] [Indexed: 11/30/2022]
Abstract
Male plethodontid salamanders produce courtship pheromones that increase female receptivity. Three protein components of the courtship pheromone cocktail have been characterized in the mental gland of Plethodon shermani, the red-legged salamander: plethodontid receptivity factor (PRF), plethodontid modulating factor (PMF), and sodefrin precursor-like factor (SPF). In this study, a streamlined in situ hybridization (ISH) protocol, employing a biotinylated oligonucleotide probe, is used to visualize the sites of pheromone expression in formalin-fixed paraffin-embedded P. shermani mental gland and post-cloacal tail tissue. Results corroborate previous RT-PCR studies on pheromone expression. PRF and PMF are highly expressed in P. shermani mental gland, while SPF expression is more variable. None of the tested pheromones is expressed in dorsal or ventral tail glands. The reported protocol is simple, rapid, and effective, allowing visualization of high-copy mRNA transcript in formalin-fixed tissue.
Collapse
Affiliation(s)
- Mary F Fontana
- Biology Department, Gonzaga University, Spokane, WA 99258, USA
| | | | | |
Collapse
|