1
|
Liao CH, Tseng XW, Rajneesh CP, Chang YJ, Tsai MS, Hsu WC, Chen KC, Wu YN. Harnessing the regenerative effects of human amniotic stem cells (hAFSCs) on restoring erectile function in a bilateral cavernous nerve crush (BCNC) injury rat model. Stem Cell Res Ther 2024; 15:400. [PMID: 39501401 PMCID: PMC11539709 DOI: 10.1186/s13287-024-03972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Intracavernous (IC) injections of stem cells has been shown to ameliorate cavernous nerve (CN)-induced erectile dysfunction (ED). However, the regenerative effects underlying the recovery of erectile function (EF) in human amniotic fluid-derived stem cells (hAFSCs) remain unclear. In the bilateral cavernous nerve crushing (BCNC) injury rat paradigm, we sought to ascertain the effects of hAFSC treatment on EF recovery during the incipient phase. METHODS Three groups of 45 male rats were used in this study: sham (Group 1), saline IC injection after BCNC (Group 2), and hAFSC intracavernous injection (ICI) after BCNC (Group 3). hAFSCs from the fourth passage showed potential to differentiate into trilineage cells. All animals were subjected to EF analysis on the 28th day post-injection and tissues were retrieved for histopathological and immunohistochemical analyses. RESULTS IC injections of hAFSC significantly improved EF parameters in BCNC-ED rats at 28 days post-injury. AFSC treatment enhanced the smooth muscle condition and increased the smooth muscle/collagen ratio, as evidenced by histological analysis. Immunohistology revealed increased expression of 𝛼-SMA andvWf in the corpus cavernosum and enhanced expression of nNOS in the dorsal penile nerve in BCNC-ED rats (p < 0.05). Western blotting showed that hAFSC treatment significantly increased α-SMA expression in the hAFSC group compared with that in the BCNC group. Electron microscopy revealed significantly elevated myelination in the CN (p < 0.05), maintenance of smooth muscle structures, and restoration of EF in BCNC-ED rats treated with hAFSC. DISCUSSION AND CONCLUSIONS hAFSC treatment increased EF in BCNC-ED rats at a single dose. As BCNC-ED resembles ED caused by radical prostatectomy (RP), this therapy has high potential for ED patients after RP surgery.
Collapse
Affiliation(s)
- Chun-Hou Liao
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City, 231403, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
| | - Xiao-Wen Tseng
- Program in Pharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
| | | | - Yu-Jen Chang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu City, 300193, Taiwan
| | - Ming-Song Tsai
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei City, 106438, Taiwan
| | - Wen-Chun Hsu
- Graduate Institute of Nutrition and Food Sciences, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
- Department of Clinical Pathology, Cathay General Hospital, Taipei City, 106438, Taiwan
| | - Kuo-Chiang Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
- Department of Urology, Cathay General Hospital, Taipei City, 106438, Taiwan
| | - Yi-No Wu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan.
| |
Collapse
|
2
|
Eisinger K, Girke P, Buechler C, Krautbauer S. Adipose tissue depot specific expression and regulation of fibrosis-related genes and proteins in experimental obesity. Mamm Genome 2024; 35:13-30. [PMID: 37884762 PMCID: PMC10884164 DOI: 10.1007/s00335-023-10022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Transforming growth factor beta (Tgfb) is a well-studied pro-fibrotic cytokine, which upregulates cellular communication network factor 2 (Ccn2), collagen, and actin alpha 2, smooth muscle (Acta2) expression. Obesity induces adipose tissue fibrosis, which contributes to metabolic diseases. This work aimed to analyze the expression of Tgfb, Ccn2, collagen1a1 (Col1a1), Acta2 and BMP and activin membrane-bound inhibitor (Bambi), which is a negative regulator of Tgfb signaling, in different adipose tissue depots of mice fed a standard chow, mice fed a high fat diet (HFD) and ob/ob mice. Principally, these genes were low expressed in brown adipose tissues and this difference was less evident for the ob/ob mice. Ccn2 and Bambi protein as well as mRNA expression, and collagen1a1 mRNA were not induced in the adipose tissues upon HFD feeding whereas Tgfb and Acta2 mRNA increased in the white fat depots. Immunoblot analysis showed that Acta2 protein was higher in subcutaneous and perirenal fat of these mice. In the ob/ob mice, Ccn2 mRNA and Ccn2 protein were upregulated in the fat depots. Here, Tgfb, Acta2 and Col1a1 mRNA levels and serum Tgfb protein were increased. Acta2 protein was, however, not higher in subcutaneous and perirenal fat of these mice. Col6a1 mRNA was shown before to be higher in obese fat tissues. Current analysis proved the Col6a1 protein was induced in subcutaneous fat of HFD fed mice. Notably, Col6a1 was reduced in perirenal fat of ob/ob mice in comparison to the respective controls. 3T3-L1 cells express Ccn2 and Bambi protein, whose levels were not changed by fatty acids, leptin, lipopolysaccharide, tumor necrosis factor and interleukin-6. All of these factors led to higher Tgfb in 3T3-L1 adipocyte media but did not increase its mRNA levels. Free fatty acids induced necrosis whereas apoptosis did not occur in any of the in vitro incubations excluding cell death as a main reason for higher Tgfb in cell media. In summary, Tgfb mRNA is consistently induced in white fat tissues in obesity but this is not paralleled by a clear increase of its target genes. Moreover, discrepancies between mRNA and protein expression of Acta2 were observed. Adipocytes seemingly do not contribute to higher Tgfb mRNA levels in obesity. These cells release more Tgfb protein when challenged with obesity-related metabolites connecting metabolic dysfunction and fibrosis.
Collapse
Affiliation(s)
- Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Philipp Girke
- Department of Genetics, University of Regensburg, 93040, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| |
Collapse
|
3
|
Ascorbic Acid 2-Phosphate-Releasing Supercritical Carbon Dioxide-Foamed Poly(L-Lactide-Co-epsilon-Caprolactone) Scaffolds Support Urothelial Cell Growth and Enhance Human Adipose-Derived Stromal Cell Proliferation and Collagen Production. J Tissue Eng Regen Med 2023. [DOI: 10.1155/2023/6404468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Tissue engineering can provide a novel approach for the reconstruction of large urethral defects, which currently lacks optimal repair methods. Cell-seeded scaffolds aim to prevent urethral stricture and scarring, as effective urothelium and stromal tissue regeneration is important in urethral repair. In this study, the aim was to evaluate the effect of the novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide-foamed poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds (scPLCLA2P) on the viability, proliferation, phenotype maintenance, and collagen production of human urothelial cell (hUC) and human adipose-derived stromal cell (hASC) mono- and cocultures. The scPLCLA2P scaffold supported hUC growth and phenotype both in monoculture and in coculture. In monocultures, the proliferation and collagen production of hASCs were significantly increased on the scPLCLA2P compared to scPLCL scaffolds without A2P, on which the hASCs formed nonproliferating cell clusters. Our findings suggest the A2P-releasing scPLCLA2P to be a promising material for urethral tissue engineering.
Collapse
|
4
|
Wahba NS, Saliem AO, Abd Allah EG, Mohammed MZ. Therapeutic efficacy of adipose-derived mesenchymal stem cells after chronic fluoxetine treatment on pars distalis in adult male albino rats. Tissue Cell 2022; 76:101770. [DOI: 10.1016/j.tice.2022.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 10/19/2022]
|
5
|
Vriend L, van Dongen J, Sinkunas V, Brouwer L, Buikema H, Moreira L, Gemperli R, Bongiovanni L, de Bruin A, van der Lei B, Camargo C, Harmsen MC. Limited efficacy of adipose stromal cell secretome-loaded skin-derived hydrogels to augment skin flap regeneration in rats. Stem Cells Dev 2022; 31:630-640. [PMID: 35583223 DOI: 10.1089/scd.2022.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insufficient vascularization is a recurring cause of impaired pedicled skin flap healing. The administration of adipose tissue-derived stromal cells' (ASC) secretome is a novel approach to augment vascularization. Yet, the secretome comprised soluble factors that require a sustained release vehicle to increase residence time. We hypothesized that administration of a hydrogel derived from decellularized extracellular matrix (ECM) of porcine skin with bound trophic factors from ASCs, enhances skin flap viability and wound repair in a rat model. Porcine skin was decellularized and pepsin-digested to form a hydrogel at 37°C. Conditioned medium (CMe) of human ASC was collected, concentrated twentyfold and mixed with the hydrogel. Sixty Wistar rats were included. A dorsal skin flap (caudal based) of 3 x 10 cm was elevated for topical application of: DMEM medium (group I), a pre-hydrogel with or without ASC CMe (group II and III) or ASC CMe (group IV). After 7, 14 and 28 days, perfusion was measured and skin flaps were harvested for wound healing assessment and immunohistochemical analysis. Decellularized skin ECM hydrogel contained negligible amounts of DNA (11.6 ± 0.6 ng/mg), was noncytotoxic and well-tolerated by rats. Irrespective of ASC secretome, ECM hydrogel application resulted macroscopically and microscopically in similar dermal wound healing in terms of proliferation, immune response and matrix remodeling as the control group. However, ASC CMe alone increased vessel density after seven days. Concluding, porcine skin derived ECM hydrogels loaded with ASC secretome are non-cytotoxic but demand optimization to significantly augment wound healing of skin flaps.
Collapse
Affiliation(s)
- Linda Vriend
- University Medical Centre Groningen, 10173, Plastic Surgery, Groningen, Netherlands;
| | - Joris van Dongen
- University Medical Center Utrecht, Plastic Surgery, Netherlands;
| | - Viktor Sinkunas
- Universidade of Sao Paulo, Sao Paulo, Brazil, Department of Cardiovascular Surgery, Brazil;
| | - Linda Brouwer
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Netherlands;
| | - Henk Buikema
- University and Medical Center Groningen, The Netherlands, Medical Biology and Pathology, Netherlands;
| | - Luiz Moreira
- Universidade of Sao Paulo, Sao Paulo, Brazil, Department of Cardiovascular Surgery, Brazil;
| | - Rolf Gemperli
- Universidade de São Paulo, São Paulo, Brazil, Department of Surgery, Discipline of Plastic Surgery, Brazil;
| | - Laura Bongiovanni
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, the Netherlands, Netherlands.,Utrecht University, Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht, the Netherlands, Netherlands;
| | - Alain de Bruin
- Faculty of Veterinary Medicine, Pathobiology, Utrecht, Netherlands;
| | - Berend van der Lei
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands, Department of Plastic Surgery, Netherlands;
| | - Cristina Camargo
- Universidade of Sao Paulo, Department of Plastic Surgery Microsurgery and Plastic Surgery laboratory, Sao Paulo, Brazil, Brazil;
| | - Martin C Harmsen
- University of Groningen, Dept. Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands;
| |
Collapse
|
6
|
Potential for combined delivery of riboflavin and all-trans retinoic acid, from silk fibroin for corneal bioengineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110093. [DOI: 10.1016/j.msec.2019.110093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
|
7
|
Del Valle Guaytima E, Brandán YR, Favale NO, Sterin-Speziale NB, Márquez MG. Novel cellular mechanism that mediates the collecting duct formation during postnatal renal development. J Cell Physiol 2019; 234:13387-13402. [PMID: 30624780 DOI: 10.1002/jcp.28016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/30/2018] [Indexed: 11/11/2022]
Abstract
We have previously demonstrated that kidney embryonic structures are present in rats, and are still developing until postnatal Day 20. Consequently, at postnatal Day 10, the rat renal papilla contains newly formed collecting duct (CD) cells and others in a more mature stage. Performing primary cultures, combined with immunocytochemical and time-lapse analysis, we investigate the cellular mechanisms that mediate the postnatal CD formation. CD cells acquired a greater degree of differentiation, as we observed that they gradually lose the ability to bind BSL-I lectin, and acquire the capacity to bind Dolichos biflorus. Because CD cells retain the same behavior in culture than in vivo, and by using DBA and BSL-I as markers of cellular lineage besides specific markers of epithelial/mesenchymal phenotype, the experimental results strongly suggest the existence of mesenchymal cell insertion into the epithelial CD sheet. We propose such a mechanism as an alternative strategy for CD growing and development.
Collapse
Affiliation(s)
- Edith Del Valle Guaytima
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Yamila Romina Brandán
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Nicolás Octavio Favale
- Instituto de Química y Físico-Química Biológica (IQUIFIB)-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Norma B Sterin-Speziale
- Instituto de Química y Físico-Química Biológica (IQUIFIB)-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Gabriela Márquez
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, La Rioja, Argentina
| |
Collapse
|
8
|
Ma C, Guo Y, Wen H, Zheng Y, Tan L, Li X, Wang C, Guan W, Liu C. Identification and Multilineage Potential Research of a Novel Type of Adipose-Derived Mesenchymal Stem Cells from Goose Inguinal Groove. DNA Cell Biol 2018; 37:731-741. [PMID: 30102556 DOI: 10.1089/dna.2017.4061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) play a crucial role in the field of regenerative medicine and tissue repair for its own unique features. However, up to date, the isolation and characterizations of multidifferentiation potentials of goose ADSCs are still uncertain. In this study, we successfully isolated ADSCs from goose inguinal groove in vitro for the first time and also attempted to unravel its fundamental differentiation potentials and genetic characteristics. The results showed that isolated ADSCs exhibited a typical fibroblast-like morphology and high proliferative potential, could be passaged for at least 40 passages and maintained high hereditary stability with more than 92.2% of cells were diploid (2n = 78) by G-banding analysis. Moreover, the ADSCs could express pluripotent marker gene (OCT4) and mesenchymal stem cells-related surface antigens, which are similar to previously reported human ADSCs. Additionally, the goose ADSCs could be induced to transdifferentiate into cells of three layers in vitro, such as osteoblasts, chondrocytes, and adipocytes derived from mesoderm, neurocytes from ectoderm, and hepatocytes of the endoderm. Most of all, we confirmed that the induced β-like cells and hepatocytes had metabolic functions similar to normal cells in vivo. Taken together, these results demonstrated the multidifferentiation potentials of ADSCs in vitro, which conferred an appealing candidate for cell regenerative therapy.
Collapse
Affiliation(s)
- Caiyun Ma
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Guo
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Hebao Wen
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanjie Zheng
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leiqi Tan
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Xiangchen Li
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunjing Wang
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Weijun Guan
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changqing Liu
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,4 Department of Neuroscience, University of Connecticut Health Center , Farmington, Connecticut
| |
Collapse
|
9
|
Hypoxia Enhances Differentiation of Adipose Tissue-Derived Stem Cells toward the Smooth Muscle Phenotype. Int J Mol Sci 2018; 19:ijms19020517. [PMID: 29419805 PMCID: PMC5855739 DOI: 10.3390/ijms19020517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/17/2022] Open
Abstract
Smooth muscle differentiated adipose tissue-derived stem cells are a valuable resource for regeneration of gastrointestinal tissues, such as the gut and sphincters. Hypoxia has been shown to promote adipose tissue-derived stem cells proliferation and maintenance of pluripotency, but the influence of hypoxia on their smooth myogenic differentiation remains unexplored. This study investigated the phenotype and contractility of adipose-derived stem cells differentiated toward the smooth myogenic lineage under hypoxic conditions. Oxygen concentrations of 2%, 5%, 10%, and 20% were used during differentiation of adipose tissue-derived stem cells. Real time reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of smooth muscle cells-specific markers, including early marker smooth muscle alpha actin, middle markers calponin, caldesmon, and late marker smooth muscle myosin heavy chain. The specific contractile properties of cells were verified with both a single cell contraction assay and a gel contraction assay. Five percent oxygen concentration significantly increased the expression levels of α-smooth muscle actin, calponin, and myosin heavy chain in adipose-derived stem cell cultures after 2 weeks of induction (p < 0.01). Cells differentiated in 5% oxygen conditions showed greater contraction effect (p < 0.01). Hypoxia influences differentiation of smooth muscle cells from adipose stem cells and 5% oxygen was the optimal condition to generate smooth muscle cells that contract from adipose stem cells.
Collapse
|
10
|
Brandán YR, Guaytima EDV, Favale NO, Pescio LG, Sterin-Speziale NB, Márquez MG. The inhibition of sphingomyelin synthase 1 activity induces collecting duct cells to lose their epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:309-322. [PMID: 29128370 DOI: 10.1016/j.bbamcr.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Epithelial tissue requires that cells attach to each other and to the extracellular matrix by the assembly of adherens junctions (AJ) and focal adhesions (FA) respectively. We have previously shown that, in renal papillary collecting duct (CD) cells, both AJ and FA are located in sphingomyelin (SM)-enriched plasma membrane microdomains. In the present work, we investigated the involvement of SM metabolism in the preservation of the epithelial cell phenotype and tissue organization. To this end, primary cultures of renal papillary CD cells were performed. Cultured cells preserved the fully differentiated epithelial phenotype as reflected by the presence of primary cilia. Cells were then incubated for 24h with increasing concentrations of D609, a SM synthase (SMS) inhibitor. Knock-down experiments silencing SMS 1 and 2 were also performed. By combining biochemical and immunofluorescence studies, we found experimental evidences suggesting that, in CD cells, SMS 1 activity is essential for the preservation of cell-cell adhesion structures and therefore for the maintenance of CD tissue/tubular organization. The inhibition of SMS 1 activity induced CD cells to lose their epithelial phenotype and to undergo an epithelial-mesenchymal transition (EMT) process.
Collapse
Affiliation(s)
- Yamila Romina Brandán
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina
| | - Edith Del Valle Guaytima
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina
| | - Nicolás Octavio Favale
- Instituto de Química y Físico-Química Biológica (IQUIFIB) -CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina; Cátedra de Biología Celular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Instituto de Química y Físico-Química Biológica (IQUIFIB) -CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina; Cátedra de Biología Celular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Norma B Sterin-Speziale
- Instituto de Química y Físico-Química Biológica (IQUIFIB) -CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| | - María Gabriela Márquez
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina.
| |
Collapse
|
11
|
Billaud M, Donnenberg VS, Ellis BW, Meyer EM, Donnenberg AD, Hill JC, Richards TD, Gleason TG, Phillippi JA. Classification and Functional Characterization of Vasa Vasorum-Associated Perivascular Progenitor Cells in Human Aorta. Stem Cell Reports 2017; 9:292-303. [PMID: 28552602 PMCID: PMC5511043 DOI: 10.1016/j.stemcr.2017.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/27/2023] Open
Abstract
In the microcirculation, pericytes are believed to function as mesenchymal stromal cells (MSCs). We hypothesized that the vasa vasorum harbor progenitor cells within the adventitia of human aorta. Pericytes, endothelial progenitor cells, and other cell subpopulations were detected among freshly isolated adventitial cells using flow cytometry. Purified cultured pericytes were enriched for the MSC markers CD105 and CD73 and depleted of the endothelial markers von Willebrand factor and CD31. Cultured pericytes were capable of smooth muscle lineage progression including inducible expression of smooth muscle myosin heavy chain, calponin, and α-smooth muscle actin, and adopted a spindle shape. Pericytes formed spheroids when cultured on Matrigel substrates and peripherally localized with branching endothelial cells in vitro. Our results indicate that the vasa vasorum form a progenitor cell niche distinct from other previously described progenitor populations in human adventitia. These findings could have important implications for understanding the complex pathophysiology of human aortic disease. Perivascular progenitor cells were classified in human ascending aorta Adventitial vasa vasorum were identified as a progenitor cell niche Purified pericytes were functional in vitro as smooth muscle cell progenitors Branching endothelial cell networks were associated with pericytes in vitro
Collapse
Affiliation(s)
- Marie Billaud
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bradley W Ellis
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - E Michael Meyer
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Albert D Donnenberg
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Jennifer C Hill
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tara D Richards
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Thomas G Gleason
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Roosens A, Puype I, Cornelissen R. Scaffold-free high throughput generation of quiescent valvular microtissues. J Mol Cell Cardiol 2017; 106:45-54. [PMID: 28322869 DOI: 10.1016/j.yjmcc.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
AIMS The major challenge of working with valvular interstitial cells in vitro is the preservation or recovery of their native quiescent state. In this study, a biomimetic approach is used which aims to engineer small volume, high quality valve microtissues, having a potential in regenerative medicine and as a relevant 3D in vitro model to provide insights into valve (patho)biology. METHODS AND RESULTS To form micro-aggregates, porcine valvular interstitial cells were seeded in agarose micro-wells and cultured in medium supplemented with 250μM Ascorbic Acid 2-phosphate for 22days. Histology showed viable aggregates with normal nuclei and without any signs of calcification. Aggregates stained strongly for GAG and collagen I and reticular fibers were present. ECM formation was quantified and showed a significant increase of GAG, elastin and Col I during aggregate culture. Cultivation of VIC in aggregates also promoted mRNA expression of Col I/III/V, elastin, hyaluronan, biglycan, decorin, versican MMP-1/2/3/9 and TIMP-2 compared to monolayer cultured VIC. Phenotype analysis of aggregates showed a significant decrease in α-SMA expression, and an increase in FSP-1 expression at any time point. Furthermore, VIC aggregates did not show a significant difference in OCN, Egr-1, Sox-9 or Runx2 expression. CONCLUSION In this study high quality valvular interstitial cell aggregates were generated that are able to produce their own ECM, resembling the native valve composition. The applied and completely cell driven 3D approach overcomes the problems of VIC activation in 2D, by downregulating α-SMA expression and stimulating a homeostatic quiescent VIC state.
Collapse
Affiliation(s)
- Annelies Roosens
- Department of Basic Medical Sciences, Tissue Engineering Group, Ghent University, Ghent, Belgium.
| | - Inès Puype
- Department of Basic Medical Sciences, Tissue Engineering Group, Ghent University, Ghent, Belgium.
| | - Ria Cornelissen
- Department of Basic Medical Sciences, Tissue Engineering Group, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
Lynch AP, Ahearne M. Retinoic Acid Enhances the Differentiation of Adipose-Derived Stem Cells to Keratocytes In Vitro. Transl Vis Sci Technol 2017; 6:6. [PMID: 28138416 PMCID: PMC5270625 DOI: 10.1167/tvst.6.1.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Purpose All-trans retinoic acid (RA) supplementation was investigated as a method of enhancing the differentiation of human adipose-derived stem cells (ASCs) to corneal keratocytes in vitro, in combination with a chemically defined serum-free medium. Methods Adipose-derived stem cells were cultured in monolayer and supplemented with 0.1, 1, or 10 μM RA for 14 days. The effects of RA on cell proliferation, migration, and extracellular matrix (ECM) accumulation were evaluated. In addition, the expression of phenotypic keratocyte markers was examined by reverse transcription polymerase chain reaction (PCR), immunocytochemistry, and Western blotting. Results Adipose-derived stem cells cultured with RA showed improved cell proliferation and ECM production. In addition, RA enhanced the expression of keratocyte-specific markers, keratocan, aldehyde dehydrogenase 3A1, lumican, and decorin, when compared to serum-free media alone. Furthermore, the presence of RA increased the amount of collagen type I while reducing the expression of fibrotic marker, α-smooth muscle actin. Conclusions These findings indicate that RA is a useful supplement for promoting a keratocyte phenotype in ASC. Translational Relevance This study is particularly important for the generation of biological corneal substitutes and next generation cell based therapies for corneal conditions.
Collapse
Affiliation(s)
- Amy P Lynch
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland, ; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mark Ahearne
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland, ; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Quan L, Wang Y, Liang J, Qiu T, Wang H, Zhang Y, Zhang Y, Hui Q, Tao K. Screening for genes, transcription factors and miRNAs associated with the myogenic and osteogenic differentiation of human adipose tissue-derived stem cells. Int J Mol Med 2016; 38:1839-1849. [PMID: 27779643 DOI: 10.3892/ijmm.2016.2788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/09/2016] [Indexed: 11/05/2022] Open
Abstract
In the present study, we aimed to reveal the molecular mechanisms responsible for the differentiation of human adipose tissue-derived stem cells (hASCs) into myocytes and osteoblasts. Microarray data GSE37329 were obtained from the Gene Expression Omnibus database, including three hASC cell lines from healthy donors, two osteogenic lineages and two myogenic lineages from the in vitro‑induction of hASCs. Differentially expressed genes (DEGs) in the two lineages were firstly screened. Subsequently, the underlying functions of the two sets of DEGs were investigated by Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, followed by protein-protein interaction (PPI) network construction. Regulatory relationships between transcription factors (TFs) and microRNAs (miRNAs or miRs) with target genes were finally explored using different algorithms. A total of 665 and 485 DEGs were identified from the hASC‑derived myogenic and osteogenic lineages, respectively. The shared upregulated genes (n=205) in the two sets of DEGs were mainly involved in metabolism-related pathways, whereas the shared downregulated genes (n=128) were significantly enriched in the transforming growth factor-β (TGF-β) signaling pathway. Four genes, vascular endothelial growth factor A (VEGFA), fibroblast growth factor 2 (FGF2), nerve growth factor (NGF) and interleukin 1B (IL1B), presented with relatively higher degrees in both PPI networks. The transcription factor RAD21 was predicted to target shared upregulated and downregulated genes as well as specific downregulated genes in the myogenic and the osteogenic lineages. In addition, miRNA-DEG interaction analysis revealed that hsa-miR-1 regulated the most shared DEGs in the two lineages. There may be a correlation between the four genes, VEGFA, FGF2, IL1B and NGF, and the differentiation of hASCs into myocytes and osteoblasts. The TF RAD21 and hsa-miR-1 may play important roles in regulating the expression of differentiation-associated genes.
Collapse
Affiliation(s)
- Liangliang Quan
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Yang Wang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Jiulong Liang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Tao Qiu
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Hongyi Wang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Ye Zhang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Yu Zhang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Qiang Hui
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Kai Tao
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
15
|
Lo Furno D, Mannino G, Cardile V, Parenti R, Giuffrida R. Potential Therapeutic Applications of Adipose-Derived Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1615-1628. [PMID: 27520311 DOI: 10.1089/scd.2016.0135] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cells are subdivided into two main categories: embryonic and adult stem cells. In principle, pluripotent embryonic stem cells might differentiate in any cell types of the organism, whereas the potential of adult stem cells would be more restricted. Although adult stem cells from bone marrow have been initially the most extensively studied, those derived from human adipose tissue have been lately more widely investigated, because of several advantages. First, they can be easily obtained in large amounts from subcutaneous adipose tissue, with minimal pain and morbidity for the patients during harvesting. In addition, they feature low immunogenicity and can differentiate not only in cells of mesodermal lineage (adipocytes, osteoblasts, chondrocytes and muscle cells), but also in cells of other germ layers, such as neural or epithelial cells. As their multilineage differentiation capabilities are increasingly highlighted, their possible use in cell-based regenerative medicine is now broadly explored. In fact, starting from in vitro observations, many studies have already entered the preclinical and clinical phases. In this review, because of our main scientific interest, adipogenic, osteogenic, chondrogenic, and neurogenic differentiation abilities of adipose-derived mesenchymal stem cells, as well as their possible therapeutic applications, are chiefly focused. In addition, their ability to differentiate toward muscle, epithelial, pancreatic, and hepatic cells is briefly reported.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| |
Collapse
|
16
|
Lei M, Wang X. Biodegradable Polymers and Stem Cells for Bioprinting. Molecules 2016; 21:E539. [PMID: 27136526 PMCID: PMC6274354 DOI: 10.3390/molecules21050539] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023] Open
Abstract
It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.
Collapse
Affiliation(s)
- Meijuan Lei
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaohong Wang
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
- Center of 3D printing & Organ Manufacturing, Department of Tissue Engineering, China Medical University (CMU), Shenyang 110122, China.
| |
Collapse
|
17
|
Scioli MG, Bielli A, Gentile P, Cervelli V, Orlandi A. Combined treatment with platelet-rich plasma and insulin favours chondrogenic and osteogenic differentiation of human adipose-derived stem cells in three-dimensional collagen scaffolds. J Tissue Eng Regen Med 2016; 11:2398-2410. [PMID: 27074878 DOI: 10.1002/term.2139] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Abstract
Osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis and progressive joint destruction. Bioengineered scaffolds are widely studied for regenerative surgery strategies in osteochondral defect management, also combining the use of stem cells, growth factors and hormones. The utility in tissue engineering of human adipose-derived stem cells (ASCs) isolated from adipose tissue has been widely noted. Autologous platelet-rich plasma (PRP) represents an alternative strategy in regenerative medicine for the local release of endogenous growth factors and hormones. Here we compared the effects of three-dimensional (3D) collagen type I scaffold culture and combined treatment with PRP and human recombinant insulin on the chondro-/osteogenic differentiation of ASCs. Histochemical and biomolecular analyses demonstrated that chondro-/osteogenic differentiation was increased in ASC-populated 3D collagen scaffolds compared with two-dimensional (2D) plastic dish culture. Chondro-/osteogenic differentiation was further enhanced in the presence of combined PRP (5% v/v) and insulin (100 nm) treatment. In addition, chondro-/osteogenic differentiation associated with the contraction of ASC-populated 3D collagen scaffold and increased β1/β3-integrin expression. Inhibition studies demonstrated that PRP/insulin-induced chondro-/osteogenic differentiation is independent of insulin-like growth factor 1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) signalling; IGF-R1/mTOR inhibition even enhanced ASC chondro-/osteogenic differentiation. Our findings underline that 3D collagen scaffold culture in association with platelet-derived growth factors and insulin favour the chondro-/osteogenic differentiation of ASCs, suggesting new translational applications in regenerative medicine for the management of osteochondral defects. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Alessandra Bielli
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Augusto Orlandi
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
18
|
Qadir AS, Woo KM, Ryoo HM, Yi T, Song SU, Baek JH. MiR-124 inhibits myogenic differentiation of mesenchymal stem cells via targeting Dlx5. J Cell Biochem 2015; 115:1572-81. [PMID: 24733577 DOI: 10.1002/jcb.24821] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/11/2014] [Indexed: 11/08/2022]
Abstract
MicroRNAs (miRNAs), including miR-1, miR-133, and miR-206, play a crucial role in muscle development by regulating muscle cell proliferation and differentiation. The aim of the present study was to define the effect of miR-124 on myogenic differentiation of mesenchymal stem cells (MSCs). The expression level of miR-124 in skeletal muscles was much lower than those in primary cultured bone marrow-derived MSCs and the bone, fat and brain tissues obtained from C57BL/6 mice. Myogenic stimuli significantly decreased the expression levels of miR-124 in mouse bone marrow-derived MSCs and C2C12 cells. Forced expression of miR-124 suppressed the expression of myogenic marker genes such as Myf5, Myod1, myogenin and myosin heavy chain and multinucleated myotube formation. Blockade of endogenous miR-124 with a hairpin inhibitor enhanced myogenic marker gene expression and myotube formation. During myogenic differentiation of MSCs and C2C12 cells, the levels of Dlx5, a known target of miR-124, were inversely regulated with those of miR-124. Furthermore, overexpression of Dlx5 increased myogenic differentiation, whereas knockdown of Dlx5 using siRNA inhibited myogenesis in C2C12 cells. These results suggest that miR-124 is a negative regulator of myogenic differentiation of MSCs and that upregulation of Dlx5 accompanied with downregulation of miR-124 by myogenic stimuli is necessary for the proper progression of myogenic differentiation.
Collapse
Affiliation(s)
- Abdul S Qadir
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Chung E, Rytlewski JA, Merchant AG, Dhada KS, Lewis EW, Suggs LJ. Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells. Acta Biomater 2015; 17:78-88. [PMID: 25600400 DOI: 10.1016/j.actbio.2015.01.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 01/07/2015] [Accepted: 01/11/2015] [Indexed: 12/27/2022]
Abstract
Engineered three-dimensional biomaterials are known to affect the regenerative capacity of stem cells. The extent to which these materials can modify cellular activities is still poorly understood, particularly for adipose-derived stem cells (ASCs). This study evaluates PEGylated fibrin (P-fibrin) gels as an ASC-carrying scaffold for encouraging local angiogenesis by comparing with two commonly used hydrogels (i.e., collagen and fibrin) in the tissue-engineering field. Human ASCs in P-fibrin were compared to cultures in collagen and fibrin under basic growth media without any additional soluble factors. ASCs proliferated similarly in all gel scaffolds but showed significantly elongated morphologies in the P-fibrin gels relative to other gels. P-fibrin elicited higher von Willebrand factor expression in ASCs than either collagen or fibrin while cells in collagen expressed more smooth muscle alpha actin than in other gels. VEGF was secreted more at 7 days in fibrin and P-fibrin than in collagen and several other angiogenic and immunomodulatory cytokines were similarly enhanced. Fibrin-based matrices appear to activate angiogenic signaling in ASCs while P-fibrin matrices are uniquely able to also drive a vessel-like ASC phenotype. Collectively, these results suggest that P-fibrin promotes the angiogenic potential of ASC-based therapeutic applications.
Collapse
Affiliation(s)
- Eunna Chung
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA.
| | - Julie A Rytlewski
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Arjun G Merchant
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Kabir S Dhada
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Evan W Lewis
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA.
| |
Collapse
|
20
|
Adipose-Derived Stem Cells for Therapeutic Applications. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Faghihi F, Baghaban Eslaminejad M. The effect of nano-scale topography on osteogenic differentiation of mesenchymal stem cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158:5-16. [DOI: 10.5507/bp.2013.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 02/14/2013] [Indexed: 01/08/2023] Open
|
22
|
Bianchi F, Maioli M, Leonardi E, Olivi E, Pasquinelli G, Valente S, Mendez AJ, Ricordi C, Raffaini M, Tremolada C, Ventura C. A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transplant 2012; 22:2063-77. [PMID: 23051701 DOI: 10.3727/096368912x657855] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue contains multipotent elements with phenotypic and gene expression profiles similar to human mesenchymal stem cells (hMSCs) and pericytes. The chance of clinical translation of the multilineage potential of these cells is delayed by the poor/negligible cell survival within cryopreserved lipoaspirates, the difficulty of ex vivo expansion, and the complexity of current Good Manufacturing Practice (cGMP) requirements for expanded cells. Hence, availability of a minimally manipulated, autologous, hMSC/pericyte-enriched fat product would have remarkable biomedical and clinical relevance. Here, we present an innovative system, named Lipogems, providing a nonexpanded, ready-to-use fat product. The system uses mild mechanical forces in a completely closed system, avoiding enzymes, additives, and other manipulations. Differently from unprocessed lipoaspirate, the nonexpanded Lipogems product encompasses a remarkably preserved vascular stroma with slit-like capillaries wedged between adipocytes and stromal stalks containing vascular channels with evident lumina. Immunohistochemistry revealed that Lipogems stromal vascular tissue included abundant cells with pericyte/hMSC identity. Flow cytometry analysis of nonexpanded, collagenase-treated Lipogems product showed that it was comprised with a significantly higher percentage of mature pericytes and hMSCs, and lower amount of hematopoietic elements, than enzymatically digested lipoaspirates. Differently from the lipoaspirate, the distinctive traits of freshly isolated Lipogems product were not altered by cryopreservation. Noteworthy, the features of fresh product were retained in the Lipogems product obtained from human cadavers, paving the way to an off-the-shelf strategy for reconstructive procedures and regenerative medicine. When placed in tissue culture medium, the Lipogems product yielded a highly homogeneous adipose tissue-derived hMSC population, exhibiting features of hMSCs isolated from other sources, including the classical commitment to osteogenic, chondrogenic, and adipogenic lineages. Moreover, the transcription of vasculogenic genes in Lipogems-derived adipose tissue hMSCs was enhanced at a significantly greater extent by a mixture of natural provasculogenic molecules, when compared to hMSCs isolated from enzymatically digested lipoaspirates.
Collapse
Affiliation(s)
- Francesca Bianchi
- Laboratory of Molecular Biology and Stem Cell Engineering-National Institute of Biostructures and Biosystems, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Park IS, Kim SH, Heo DN, Jung Y, Kwon IK, Rhie JW, Kim SH. Synergistic Effect of Biochemical Factors and Strain on the Smooth Muscle Cell Differentiation of Adipose-Derived Stem Cells on an Elastic Nanofibrous Scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1579-93. [DOI: 10.1163/092050611x587538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- In Su Park
- a Center for Biomaterials, Medical Engineering Institute, Korea Institute of Science and Technology , 39-1 Hawolgok, Seongbuk , Seoul , 136-791 , South Korea
| | - Soo Hyun Kim
- a Center for Biomaterials, Medical Engineering Institute, Korea Institute of Science and Technology , 39-1 Hawolgok, Seongbuk , Seoul , 136-791 , South Korea
| | - Dong Nyoung Heo
- b Department of Oral Biology , School of Dentistry, Kyung Hee University , Seoul , 130-701 , South Korea
| | - Youngmee Jung
- a Center for Biomaterials, Medical Engineering Institute, Korea Institute of Science and Technology , 39-1 Hawolgok, Seongbuk , Seoul , 136-791 , South Korea
| | - Il Keun Kwon
- b Department of Oral Biology , School of Dentistry, Kyung Hee University , Seoul , 130-701 , South Korea
| | - Jong-Won Rhie
- c Department of Plastic Surgery , College of Medicine, The Catholic University of Korea , Seoul , 137-701 , South Korea
| | - Sang-Heon Kim
- a Center for Biomaterials, Medical Engineering Institute, Korea Institute of Science and Technology , 39-1 Hawolgok, Seongbuk , Seoul , 136-791 , South Korea
| |
Collapse
|
24
|
Bieback K, Hecker A, Schlechter T, Hofmann I, Brousos N, Redmer T, Besser D, Klüter H, Müller AM, Becker M. Replicative aging and differentiation potential of human adipose tissue-derived mesenchymal stromal cells expanded in pooled human or fetal bovine serum. Cytotherapy 2012; 14:570-83. [DOI: 10.3109/14653249.2011.652809] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Zhang Y, Khan D, Delling J, Tobiasch E. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. ScientificWorldJournal 2012; 2012:793823. [PMID: 22500143 PMCID: PMC3317548 DOI: 10.1100/2012/793823] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/15/2011] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are considered a promising cell source for regenerative medicine, because they have the potential to differentiate into a variety of lineages among which the mesoderm-derived lineages such adipo- or osteogenesis are investigated best. Human MSCs can be harvested in reasonable to large amounts from several parts of the patient's body and due to this possible autologous origin, allorecognition can be avoided. In addition, even in allogenic origin-derived donor cells, hMSCs generate a local immunosuppressive microenvironment, causing only a weak immune reaction. There is an increasing need for bone replacement in patients from all ages, due to a variety of reasons such as a new recreational behavior in young adults or age-related diseases. Adipogenic differentiation is another interesting lineage, because fat tissue is considered to be a major factor triggering atherosclerosis that ultimately leads to cardiovascular diseases, the main cause of death in industrialized countries. However, understanding the differentiation process in detail is obligatory to achieve a tight control of the process for future clinical applications to avoid undesired side effects. In this review, the current findings for adipo- and osteo-differentiation are summarized together with a brief statement on first clinical trials.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | | | | | | |
Collapse
|
26
|
Ertan AB, Yılgor P, Bayyurt B, Çalıkoğlu AC, Kaspar Ç, Kök FN, Kose GT, Hasirci V. Effect of double growth factor release on cartilage tissue engineering. J Tissue Eng Regen Med 2011; 7:149-60. [DOI: 10.1002/term.509] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 01/05/2023]
Affiliation(s)
- Ayşe Burcu Ertan
- Department of Genetics and Bioengineering Yeditepe University, Faculty of Engineering and Architecture Istanbul Turkey
| | - Pınar Yılgor
- Department of Biochemistry Cukurova University Faculty of Medicine Balcali Adana Turkey
- BIOMATEN Centre of Excellence in Biomaterials of Tissue Engineering, Biotechnology Research Unit Middle East Technical University Ankara Turkey
| | - Banu Bayyurt
- Department of Molecular Biology and Genetics, Biotherapeutic ODN Lab Bilkent University Ankara Turkey
| | - Ayşe Ceren Çalıkoğlu
- Department of Genetics and Bioengineering Yeditepe University, Faculty of Engineering and Architecture Istanbul Turkey
| | - Çiğdem Kaspar
- Department of Medicine Yeditepe University Istanbul Turkey
| | - Fatma Neşe Kök
- Molecular Biology and Genetics Department Istanbul Technical University Maslak Istanbul Turkey
- BIOMATEN Centre of Excellence in Biomaterials of Tissue Engineering, Biotechnology Research Unit Middle East Technical University Ankara Turkey
| | - Gamze Torun Kose
- Department of Genetics and Bioengineering Yeditepe University, Faculty of Engineering and Architecture Istanbul Turkey
- BIOMATEN Centre of Excellence in Biomaterials of Tissue Engineering, Biotechnology Research Unit Middle East Technical University Ankara Turkey
| | - Vasif Hasirci
- BIOMATEN Centre of Excellence in Biomaterials of Tissue Engineering, Biotechnology Research Unit Middle East Technical University Ankara Turkey
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| |
Collapse
|
27
|
Cheng Z, Sundberg-Smith LJ, Mangiante LE, Sayers RL, Hakim ZS, Musunuri S, Maguire CT, Majesky MW, Zhou Z, Mack CP, Taylor JM. Focal adhesion kinase regulates smooth muscle cell recruitment to the developing vasculature. Arterioscler Thromb Vasc Biol 2011; 31:2193-202. [PMID: 21757658 DOI: 10.1161/atvbaha.111.232231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The investment of newly formed endothelial cell tubes with differentiated smooth muscle cells (SMC) is critical for appropriate vessel formation, but the underlying mechanisms remain unknown. We previously showed that depletion of focal adhesion kinase (FAK) in the nkx2.5 expression domain led to aberrant outflow tract (OFT) morphogenesis and strove herein to determine the cell types and mechanisms involved. METHODS AND RESULTS We crossed fak(loxp) targeted mice with available Cre drivers to deplete FAK in OFT SMC (FAK(wnt) and FAK(nk)) or coronary SMC (FAK(cSMC)). In each case, depletion of FAK led to defective vasculogenesis that was incompatible with postnatal life. Immunohistochemical analysis of the mutant vascular structures revealed that FAK was not required for progenitor cell proliferation, survival, or differentiation into SMC but was necessary for subsequent SMC recruitment to developing vasculature. Using a novel FAK-null SMC culture model, we found that depletion of FAK did not influence SMC growth or survival, but blocked directional SMC motility and invasion toward the potent endothelial-derived chemokine, platelet-derived growth factor PDGFBB. FAK depletion resulted in unstable lamellipodial protrusions due to defective spatial-temporal activation of the small GTPase, Rac-1, and lack of Rac1-dependent recruitment of cortactin (an actin stabilizing protein) to the leading edge. Moreover, FAK null SMC exhibited a significant reduction in stimulated extracellular matrix degradation. CONCLUSIONS FAK drives PDGFBB-stimulated SMC chemotaxis/invasion and is essential for SMC to appropriately populate the aorticopulmonary septum and the coronary vascular plexus.
Collapse
Affiliation(s)
- Zhaokang Cheng
- Department of Pathology, University of North Carolina, Chapel Hill, 27599-7525, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Maul TM, Chew DW, Nieponice A, Vorp DA. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 2011; 10:939-53. [PMID: 21253809 DOI: 10.1007/s10237-010-0285-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/31/2010] [Indexed: 11/29/2022]
Abstract
Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications.
Collapse
Affiliation(s)
- Timothy M Maul
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The differentiation of adipose-derived stem cells (ASCs) into functional smooth muscle cells has received limited investigation. Various methodologies for both in vitro and in vivo differentiation is described. In vitro differentiation is obtained by either chemical or mechanical stimulation, and is determined by expression of smooth muscle cell markers. In vivo differentiation studies include animal models of cardiovascular disease and one study with urinary bladder reconstruction. The ease of obtaining an abundant number of ASCs render this cell population useful for potential vascular therapies that require autologous smooth muscle cells.
Collapse
Affiliation(s)
- Kacey G Marra
- Division of Plastic Surgery, Department of Surgery, McGowan Institute for Regenerative Medicine, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
30
|
Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V. Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 2010; 10:409-20. [PMID: 20132061 PMCID: PMC4580374 DOI: 10.1517/14712590903563352] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. AREAS COVERED IN THIS REVIEW We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. WHAT THE READER WILL GAIN The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. TAKE HOME MESSAGE It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.
Collapse
Affiliation(s)
- Richard P Visconti
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Vladimir Kasyanov
- Riga Stradins University, Department of Anatomy and Anthropology, Riga, Latvia
| | - Carmine Gentile
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Jing Zhang
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Roger R Markwald
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Vladimir Mironov
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
31
|
Lin G, Banie L, Ning H, Bella AJ, Lin CS, Lue TF. Potential of adipose-derived stem cells for treatment of erectile dysfunction. J Sex Med 2009; 6 Suppl 3:320-7. [PMID: 19267855 DOI: 10.1111/j.1743-6109.2008.01190.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adipose-derived stem cells (ADSCs) are a somatic stem cell population contained in fat tissue that possess the ability for self-renewal, differentiation into one or more phenotypes, and functional regeneration of damaged tissue, which may benefit the recovery of erectile function by using a stem cell-based therapy. AIM To review available evidence concerning ADSCs availability, differentiation into functional cells, and the potential of these cells for the treatment of erectile dysfunction (ED). METHODS We examined the current data (from 1964 to 2008) associated with the definition, characterization, differentiation, and application of ADSCs, as well as other kinds of stem cells for the cell-based therapies of ED. MAIN OUTCOME MEASURES There is strong evidence supporting the concept that ADSCs may be a potential stem cell therapy source in treating ED. RESULTS The ADSCs are paravascularly localized in the adipose tissue. Under specific induction medium conditions, these cells differentiated into neuron-like cells, smooth muscle cells, and endothelium in vitro. The insulin-like growth factor/insulin-like growth factor receptor (IGF/IGFR) pathway participates in neuronal differentiation while the fibroblast growth factor 2 (FGF2) pathway is involved in endothelium differentiation. In a preliminary in vivo experiment, the ADSCs functionally recovered the damaged erectile function. However, the underlying mechanism needs to be further examined. CONCLUSION The ADSCs are a potential source for stem cell-based therapies, which imply the possibility of an effective clinical therapy for ED in the near future.
Collapse
Affiliation(s)
- Guiting Lin
- School of Medicine, Department of Urology, University of California-Knuppe Molecular Urology Laboratory, San Francisco, CA 94143-0738, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Baer PC, Bereiter-Hahn J, Missler C, Brzoska M, Schubert R, Gauer S, Geiger H. Conditioned medium from renal tubular epithelial cells initiates differentiation of human mesenchymal stem cells. Cell Prolif 2009; 42:29-37. [PMID: 19143761 DOI: 10.1111/j.1365-2184.2008.00572.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Mesenchymal-epithelial interactions play a pivotal role in tubular morphogenesis and in maintaining the integrity of the kidney. During renal repair, similar mechanisms may regulate cellular reorganization and differentiation. We have hypothesized that soluble factors from proximal tubular epithelial cells (PTC) induce differentiation of adipose-derived adult mesenchymal stem cells (ASC). This hypothesis has been tested using cultured ASC and PTC. MATERIAL AND METHODS Conditioned medium was prepared from injured PTC and transferred to ASC cultures. ASC proliferation was analysed by a fluorometric and photometric assay. Signal transduction was analysed by phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2). Grade of ASC differentiation was assessed by morphological analysis and cell expression of characteristic markers. RESULTS Conditioned medium significantly induced proliferation and phosphorylation of ERK1/ERK2 of ASC. After 12 days of incubation, cell morphology changed to an epithelial-like monolayer. Expression of cytokeratin 18 was induced by conditioned medium, while alpha-smooth muscle actin, CD49a and CD90 expression decreased. These alterations strongly indicate onset of the differentiation process to the epithelial lineage. In summary, soluble factors from PTC induce signal transduction and differentiation of ASC. CONCLUSIONS Our study shows that conditioned medium from renal tubular epithelial cells provides a convenient source of inductive signals to initiate differentiation of ASC towards epithelial lineage. We deduce that these interactions may play an important role during renal repair mechanisms.
Collapse
Affiliation(s)
- P C Baer
- Division of Nephrology, Department of Internal Medicine III, John Wolfgang Goethe-University, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Choi KM, Seo YK, Yoon HH, Song KY, Kwon SY, Lee HS, Park JK. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng 2008; 105:586-94. [PMID: 18640597 DOI: 10.1263/jbb.105.586] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 02/27/2008] [Indexed: 11/17/2022]
Abstract
Mesenchymal stem cells (MSCs) derived from bone marrow are an important tool in tissue engineering and cell-based therapies because of their multipotent capacity. Majority of studies on MSCs have investigated the roles of growth factors, cytokines, and hormones. Antioxidants such as ascorbic acid can be used to expand MSCs while preserving their differentiation ability. Moreover, ascorbic acid can also stimulate MSC proliferation without reciprocal loss of phenotype and differentiation potency. In this study, we evaluated the effects of ascorbic acid on the proliferation, differentiation, extracellular matrix (ECM) secretion of MSCs. The MSCs were cultured in media containing various concentrations (0-500 microM) of L-ascorbate-2-phosphate (Asc-2-P) for 2 weeks, following which they were differentiated into adipocytes and osteoblasts. Ascorbic acid stimulated ECM secretion (collagen and glycosaminoglycan) and cell proliferation. Moreover, the phenotypes of the experimental groups as well as the differentiation potential of MSCs remained unchanged. The apparent absence of decreased cell density or morphologic change is consistent with the toxicity observed with 5-250 microM concentrations of Asc-2-P. The results demonstrate that MSC proliferation or differentiation depends on ascorbic acid concentration.
Collapse
Affiliation(s)
- Kyung-Min Choi
- Department of Chemical and Biochemical Engineering, Dongguk University, 3-26 Pil Dong, Choong-Gu, Seoul 100-715, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Gimble JM, Guilak F, Nuttall ME, Sathishkumar S, Vidal M, Bunnell BA. In vitro Differentiation Potential of Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2008; 35:228-238. [PMID: 21547120 DOI: 10.1159/000124281] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 03/07/2008] [Indexed: 12/19/2022]
Abstract
SUMMARY: Mesenchymal stem cells (MSCs) represent a class of multipotent progenitor cells that have been isolated from multiple tissue sites. Of these, adipose tissue and bone marrow offer advantages in terms of access, abundance, and the extent of their documentation in the literature. This review focuses on the in vitro differentiation capability of cells derived from adult human tissue. Multiple, independent studies have demonstrated that MSCs can commit to mesodermal (adipocyte, chondrocyte, hematopoietic support, myocyte, osteoblast, tenocyte), ectodermal (epithelial, glial, neural), and endodermal (hepatocyte, islet cell) lineages. The limitations and promises of these studies in the context of tissue engineering are discussed.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Lo Cicero V, Montelatici E, Cantarella G, Mazzola R, Sambataro G, Rebulla P, Lazzari L. Do mesenchymal stem cells play a role in vocal fold fat graft survival? Cell Prolif 2008; 41:460-73. [PMID: 18435791 DOI: 10.1111/j.1365-2184.2008.00533.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Adipose tissue in vocal fold lipoinjection is currently used to treat patients affected by laryngeal hemiplegia or anatomical defects. The aim of this study has been to evaluate the efficacy of this clinical strategy, by long-term follow-up of the patients and to investigate whether the fat samples used to treat them contain a stem cell population with a wide differentiation potential. MATERIALS AND METHODS Fat samples harvested from 12 patients affected by severe breathy dysphonia who had undergone vocal fold lipoinjection were analysed by immunocytochemistry, by flow cytometry and reverse transcription-polymerase chain reaction, and the isolated adipose derived mesenchymal stem cells (ADMSCs) were evaluated in order to define their ability to produce soluble factors possibly involved in tissue regeneration, and to differentiate towards different lineages. RESULTS ADMSCs were efficiently and successfully isolated from all of the samples. They were positive for SSEA-4, an embryonic marker recently identified on bone marrow MSCs and which could explain their high differentiation plasticity. Molecular analysis showed that these cells also expressed Oct-4, Runx-1 and ABCG-2, which characterize the stem cell state, and a number of other specific lineage markers. Flow cytometry revealed mesenchymal markers expressed on ADMSCs and identified a subpopulation characterized by CD146(+)/34(-)/45(-) cells consistent with perivascular/pericyte-like cells. Osteogenic, adipogenic and endothelial tissue differentiation were obtained. CONCLUSIONS Our results confirmed the therapeutic efficacy of this clinical approach and showed that adipose tissue, administered to patients in order to restore glottic competence, contains mesenchymal stem cells.
Collapse
Affiliation(s)
- V Lo Cicero
- Cell Factory, Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena IRCCS, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Shvetsova EV, Rogovaya OS, Tkachenko SB, Kiselev IV, Vasil’ev AV, Terskikh VV. Contractile capacity of fibroblasts from different sources in the model of living skin equivalent. BIOL BULL+ 2008. [DOI: 10.1134/s1062359008020088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Heydarkhan-Hagvall S, Schenke-Layland K, Yang JQ, Heydarkhan S, Xu Y, Zuk PA, MacLellan WR, Beygui RE. Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs 2008; 187:263-74. [PMID: 18196894 DOI: 10.1159/000113407] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2007] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS A crucial step in providing clinically relevant applications of cardiovascular tissue engineering involves the identification of a suitable cell source. The objective of this study was to identify the exogenous and endogenous parameters that are critical for the differentiation of human adipose stem cells (hASCs) into cardiovascular cells. METHODS hASCs were isolated from human lipoaspirate samples, analyzed, and subjected to two differentiation protocols. RESULTS As shown by fluorescence-activated cell sorter (FACS) analysis, a population of hASCs expressed stem cell markers including CXCR4, CD34, c-kit, and ABCG2. Further, FACS and immunofluorescence analysis of hASCs, cultured for 2 weeks in DMEM-20%-FBS, showed the expression of smooth muscle cell (SMC)-specific markers including SM alpha-actin, basic calponin, h-caldesmon and SM myosin. hASCs, cultured for 2 weeks in endothelial cell growth medium-2 (EGM-2), formed a network of branched tube-like structures positive for CD31, CD144, and von Willebrand factor. The frequency of endothelial cell (EC) marker-expressing cells was passage number-dependent. Moreover, hASCs attached and formed a confluent layer on top of electrospun collagen-elastin scaffolds. Scanning electron microscopy and DAPI staining confirmed the integration of hASCs with the fibers and formation of a cell-matrix network. CONCLUSION Our results indicate that hASCs are a potential cell source for cardiovascular tissue engineering; however, the differentiation capacity of hASCs into SMCs and ECs is passage number- and culture condition-dependent.
Collapse
Affiliation(s)
- Sepideh Heydarkhan-Hagvall
- Regenerative Bioengineering and Repair Laboratory, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, Calif., USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue represents an abundant and accessible source of adult stem cells with the ability to differentiate along multiple lineage pathways. The isolation, characterization, and preclinical and clinical application of adipose-derived stem cells (ASCs) are reviewed in this article.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Stem Cell Biology Laboratory and Clinical Nutrition Research Unit, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|