1
|
Hirth N, Wiesemann N, Krüger S, Gerlach MS, Preußner K, Galea D, Herzberg M, Große C, Nies DH. A gold speciation that adds a second layer to synergistic gold-copper toxicity in Cupriavidus metallidurans. Appl Environ Microbiol 2024; 90:e0014624. [PMID: 38557120 PMCID: PMC11022561 DOI: 10.1128/aem.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephanie Krüger
- Microscopy Unit, Biocenter, Martin Luther University Halle Wittenberg, Wittenberg, Germany
| | - Michelle-Sophie Gerlach
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kilian Preußner
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Galea
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Cornelia Große
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Hirth N, Gerlach MS, Wiesemann N, Herzberg M, Große C, Nies DH. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl Environ Microbiol 2023:e0056723. [PMID: 37191542 DOI: 10.1128/aem.00567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Nicole Wiesemann
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
3
|
Interplay between Two-Component Regulatory Systems Is Involved in Control of Cupriavidus metallidurans Metal Resistance Genes. J Bacteriol 2023; 205:e0034322. [PMID: 36892288 PMCID: PMC10127602 DOI: 10.1128/jb.00343-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Metal resistance of Cupriavidus metallidurans is based on determinants that were acquired in the past by horizontal gene transfer during evolution. Some of these determinants encode transmembrane metal efflux systems. Expression of most of the respective genes is controlled by two-component regulatory systems composed of a membrane-bound sensor/sensory histidine kinase (HK) and a cytoplasmic, DNA-binding response regulator (RR). Here, we investigated the interplay between the three closely related two-component regulatory systems CzcRS, CzcR2S2, and AgrRS. All three systems regulate the response regulator CzcR, while the RRs AgrR and CzcR2 were not involved in czc regulation. Target promoters were czcNp and czcPp for genes upstream and downstream of the central czc gene region. The two systems together repressed CzcRS-dependent upregulation of czcP-lacZ at low zinc concentrations in the presence of CzcS but activated this signal transmission at higher zinc concentrations. AgrRS and CzcR2S2 interacted to quench CzcRS-mediated expression of czcNp-lacZ and czcPp-lacZ. Together, cross talk between the three two-component regulatory systems enhanced the capabilities of the Czc systems by controlling expression of the additional genes czcN and czcP. IMPORTANCE Bacteria are able to acquire genes encoding resistance to metals and antibiotics by horizontal gene transfer. To bestow an evolutionary advantage on their host cell, new genes must be expressed, and their expression should be regulated so that resistance-mediating proteins are produced only when needed. Newly acquired regulators may interfere with those already present in a host cell. Such an event was studied here in the metal-resistant bacterium Cupriavidus metallidurans. The results demonstrate how regulation by the acquired genes interacts with the host's extant regulatory network. This leads to emergence of a new system level of complexity that optimizes the response of the cell to periplasmic signals.
Collapse
|
4
|
Importance of RpoD- and Non-RpoD-Dependent Expression of Horizontally Acquired Genes in Cupriavidus metallidurans. Microbiol Spectr 2022; 10:e0012122. [PMID: 35311568 PMCID: PMC9045368 DOI: 10.1128/spectrum.00121-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the metal-resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans contains a large number of horizontally acquired plasmids and genomic islands that were integrated into its chromosome or chromid. For the C. metallidurans CH34 wild-type strain growing under nonchallenging conditions, 5,763 transcriptional starting sequences (TSSs) were determined. Using a custom-built motif discovery software based on hidden Markov models, patterns upstream of the TSSs were identified. The pattern TTGACA, −35.6 ± 1.6 bp upstream of the TSSs, in combination with a TATAAT sequence 15.8 ± 1.4 bp upstream occurred frequently, especially upstream of the TSSs for 48 housekeeping genes, and these were assigned to promoters used by RNA polymerase containing the main housekeeping sigma factor RpoD. From patterns upstream of the housekeeping genes, a score for RpoD-dependent promoters in C. metallidurans was derived and applied to all 5,763 TSSs. Among these, 2,572 TSSs could be associated with RpoD with high probability, 373 with low probability, and 2,818 with no probability. In a detailed analysis of horizontally acquired genes involved in metal resistance and not involved in this process, the TSSs responsible for the expression of these genes under nonchallenging conditions were assigned to RpoD- or non-RpoD-dependent promoters. RpoD-dependent promoters occurred frequently in horizontally acquired metal resistance and other determinants, which should allow their initial expression in a new host. However, other sigma factors and sense/antisense effects also contribute—maybe to mold in subsequent adaptation steps the assimilated gene into the regulatory network of the cell. IMPORTANCE In their natural environment, bacteria are constantly acquiring genes by horizontal gene transfer. To be of any benefit, these genes should be expressed. We show here that the main housekeeping sigma factor RpoD plays an important role in the expression of horizontally acquired genes in the metal-resistant hydrogen-oxidizing bacterium C. metallidurans. By conservation of the RpoD recognition consensus sequence, a newly arriving gene has a high probability to be expressed in the new host cell. In addition to integrons and genes travelling together with that for their sigma factor, conservation of the RpoD consensus sequence may be an important contributor to the overall evolutionary success of horizontal gene transfer in bacteria. Using C. metallidurans as an example, this publication sheds some light on the fate and function of horizontally acquired genes in bacteria.
Collapse
|
5
|
Lara P, Vega-Alvarado L, Sahonero-Canavesi DX, Koenen M, Villanueva L, Riveros-Mckay F, Morett E, Juárez K. Transcriptome Analysis Reveals Cr(VI) Adaptation Mechanisms in Klebsiella sp. Strain AqSCr. Front Microbiol 2021; 12:656589. [PMID: 34122372 PMCID: PMC8195247 DOI: 10.3389/fmicb.2021.656589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella sp. strain AqSCr, isolated from Cr(VI)-polluted groundwater, reduces Cr(VI) both aerobically and anaerobically and resists up 34 mM Cr(VI); this resistance is independent of the ChrA efflux transporter. In this study, we report the whole genome sequence and the transcriptional profile by RNA-Seq of strain AqSCr under Cr(VI)-adapted conditions and found 255 upregulated and 240 downregulated genes compared to controls without Cr(VI) supplementation. Genes differentially transcribed were mostly associated with oxidative stress response, DNA repair and replication, sulfur starvation response, envelope-osmotic stress response, fatty acid (FA) metabolism, ribosomal subunits, and energy metabolism. Among them, genes not previously associated with chromium resistance, for example, cybB, encoding a putative superoxide oxidase (SOO), gltA2, encoding an alternative citrate synthase, and des, encoding a FA desaturase, were upregulated. The sodA gene encoding a manganese superoxide dismutase was upregulated in the presence of Cr(VI), whereas sodB encoding an iron superoxide dismutase was downregulated. Cr(VI) resistance mechanisms in strain AqSCr seem to be orchestrated by the alternative sigma factors fecl, rpoE, and rpoS (all of them upregulated). Membrane lipid analysis of the Cr(IV)-adapted strain showed a lower proportion of unsaturated lipids with respect to the control, which we hypothesized could result from unsaturated lipid peroxidation followed by degradation, together with de novo synthesis mediated by the upregulated FA desaturase-encoding gene, des. This report helps to elucidate both Cr(VI) toxicity targets and global bacterial response to Cr(VI).
Collapse
Affiliation(s)
- Paloma Lara
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands.,Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Fernando Riveros-Mckay
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Enrique Morett
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Katy Juárez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Van Houdt R, Vandecraen J, Leys N, Monsieurs P, Aertsen A. Adaptation of Cupriavidus metallidurans CH34 to Toxic Zinc Concentrations Involves an Uncharacterized ABC-Type Transporter. Microorganisms 2021; 9:microorganisms9020309. [PMID: 33540705 PMCID: PMC7912956 DOI: 10.3390/microorganisms9020309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/30/2022] Open
Abstract
Cupriavidus metallidurans CH34 is a well-studied metal-resistant β-proteobacterium and contains a battery of genes participating in metal metabolism and resistance. Here, we generated a mutant (CH34ZnR) adapted to high zinc concentrations in order to study how CH34 could adaptively further increase its resistance against this metal. Characterization of CH34ZnR revealed that it was also more resistant to cadmium, and that it incurred seven insertion sequence-mediated mutations. Among these, an IS1088 disruption of the glpR gene (encoding a DeoR-type transcriptional repressor) resulted in the constitutive expression of the neighboring ATP-binding cassette (ABC)-type transporter. GlpR and the adjacent ABC transporter are highly similar to the glycerol operon regulator and ATP-driven glycerol importer of Rhizobium leguminosarum bv. viciae VF39, respectively. Deletion of glpR or the ABC transporter and complementation of CH34ZnR with the parental glpR gene further demonstrated that loss of GlpR function and concomitant derepression of the adjacent ABC transporter is pivotal for the observed resistance phenotype. Importantly, addition of glycerol, presumably by glycerol-mediated attenuation of GlpR activity, also promoted increased zinc and cadmium resistance in the parental CH34 strain. Upregulation of this ABC-type transporter is therefore proposed as a new adaptation route towards metal resistance.
Collapse
Affiliation(s)
- Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
- Correspondence:
| | - Joachim Vandecraen
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
| | - Pieter Monsieurs
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
7
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
8
|
Mazhar SH, Herzberg M, Ben Fekih I, Zhang C, Bello SK, Li YP, Su J, Xu J, Feng R, Zhou S, Rensing C. Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant Cupriavidus metallidurans Strain BS1 Isolated From a Gold-Copper Mine. Front Microbiol 2020; 11:47. [PMID: 32117100 PMCID: PMC7019866 DOI: 10.3389/fmicb.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
The highly heavy metal resistant strain Cupriavidus metallidurans BS1 was isolated from the Zijin gold–copper mine in China. This was of particular interest since the extensively studied, closely related strain, C. metallidurans CH34 was shown to not be only highly heavy metal resistant but also able to reduce metal complexes and biomineralizing them into metallic nanoparticles including gold nanoparticles. After isolation, C. metallidurans BS1 was characterized and complete genome sequenced using PacBio and compared to CH34. Many heavy metal resistance determinants were identified and shown to have wide-ranging similarities to those of CH34. However, both BS1 and CH34 displayed extensive genome plasticity, probably responsible for significant differences between those strains. BS1 was shown to contain three prophages, not present in CH34, that appear intact and might be responsible for shifting major heavy metal resistance determinants from plasmid to chromid (CHR2) in C. metallidurans BS1. Surprisingly, the single plasmid – pBS1 (364.4 kbp) of BS1 contains only a single heavy metal resistance determinant, the czc determinant representing RND-type efflux system conferring resistance to cobalt, zinc and cadmium, shown here to be highly similar to that determinant located on pMOL30 in C. metallidurans CH34. However, in BS1 another homologous czc determinant was identified on the chromid, most similar to the czc determinant from pMOL30 in CH34. Other heavy metal resistance determinants such as cnr and chr determinants, located on megaplasmid pMOL28 in CH34, were shown to be adjacent to the czc determinant on chromid (CHR2) in BS1. Additionally, other heavy metal resistance determinants such as pbr, cop, sil, and ars were located on the chromid (CHR2) and not on pBS1 in BS1. A diverse range of genomic rearrangements occurred in this strain, isolated from a habitat of constant exposure to high concentrations of copper, gold and other heavy metals. In contrast, the megaplasmid in BS1 contains mostly genes encoding unknown functions, thus might be more of an evolutionary playground where useful genes could be acquired by horizontal gene transfer and possibly reshuffled to help C. metallidurans BS1 withstand the intense pressure of extreme concentrations of heavy metals in its environment.
Collapse
Affiliation(s)
- Sohaib H Mazhar
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suleiman Kehinde Bello
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junming Su
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junqiang Xu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Große C, Poehlein A, Blank K, Schwarzenberger C, Schleuder G, Herzberg M, Nies DH. The third pillar of metal homeostasis inCupriavidus metalliduransCH34: preferences are controlled by extracytoplasmic function sigma factors. Metallomics 2019; 11:291-316. [DOI: 10.1039/c8mt00299a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
InC. metallidurans, a network of 11 extracytoplasmic function sigma factors forms the third pillar of metal homeostasis acting in addition to the metal transportome and metal repositories as the first and second pillar.
Collapse
Affiliation(s)
- Cornelia Große
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory
- Georg-August-University Göttingen, Grisebachstr. 8
- 37077 Göttingen
- Germany
| | - Kathrin Blank
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Claudia Schwarzenberger
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Grit Schleuder
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Martin Herzberg
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Dietrich H. Nies
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| |
Collapse
|
10
|
Nies DH. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans. Metallomics 2017; 8:481-507. [PMID: 27065183 DOI: 10.1039/c5mt00320b] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Germany.
| |
Collapse
|
11
|
Abstract
The Planctomycetes genus Gemmata is represented by both uncultured organisms and cultured Gemmata obscuriglobus and 'Gemmata massiliana' organisms. Their plasmidless 9.2 Mb genomes encode a complex cell plan, cell signaling capacities, antibiotic and trace metal resistance and multidrug resistance efflux pumps. As they lack iron metabolism pathways, they are fastidious. Gemmata spp. are mainly found in aquatic and soil environments but have also been found in hospital water networks in close proximity to patients, in animals, on human skin, the gut microbiota and in the blood of aplastic leukemic patients. Due to their panoply of attack and defense mechanisms and their recently demonstrated association with humans, the potential of Gemmata organisms to behave as opportunistic pathogens should be more widely recognized.
Collapse
Affiliation(s)
- Rita Aghnatios
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. Faculté de Médecine, Marseille 13005, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. Faculté de Médecine, Marseille 13005, France
| |
Collapse
|
12
|
Vandecraen J, Monsieurs P, Mergeay M, Leys N, Aertsen A, Van Houdt R. Zinc-Induced Transposition of Insertion Sequence Elements Contributes to Increased Adaptability of Cupriavidus metallidurans. Front Microbiol 2016; 7:359. [PMID: 27047473 PMCID: PMC4803752 DOI: 10.3389/fmicb.2016.00359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Bacteria can respond to adverse environments by increasing their genomic variability and subsequently facilitating adaptive evolution. To demonstrate this, the contribution of Insertion Sequence (IS) elements to the genetic adaptation of Cupriavidus metallidurans AE126 to toxic zinc concentrations was determined. This derivative of type strain CH34, devoid of its main zinc resistance determinant, is still able to increase its zinc resistance level. Specifically, upon plating on medium supplemented with a toxic zinc concentration, resistant variants arose in which a compromised cnrYX regulatory locus caused derepression of CnrH sigma factor activity and concomitant induction of the corresponding RND-driven cnrCBA efflux system. Late-occurring zinc resistant variants likely arose in response to the selective conditions, as they were enriched in cnrYX disruptions caused by specific IS elements whose transposase expression was found to be zinc-responsive. Interestingly, deletion of cnrH, and consequently the CnrH-dependent adaptation potential, still enabled adaptation by transposition of IS elements (ISRme5 and IS1086) that provided outward-directed promoters driving cnrCBAT transcription. Finally, adaptation to zinc by IS reshuffling can also enhance the adaptation to subsequent environmental challenges. Thus, transposition of IS elements can be induced by stress conditions and play a multifaceted, pivotal role in the adaptation to these and subsequent stress conditions.
Collapse
Affiliation(s)
- Joachim Vandecraen
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium; Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Pieter Monsieurs
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Max Mergeay
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Natalie Leys
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven Leuven, Belgium
| | - Rob Van Houdt
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| |
Collapse
|
13
|
A TonB-Dependent Transporter Is Responsible for Methanobactin Uptake by Methylosinus trichosporium OB3b. Appl Environ Microbiol 2016; 82:1917-1923. [PMID: 26773085 DOI: 10.1128/aem.03884-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 11/20/2022] Open
Abstract
Methanobactin, a small modified polypeptide synthesized by methanotrophs for copper uptake, has been found to be chromosomally encoded. The gene encoding the polypeptide precursor of methanobactin, mbnA, is part of a gene cluster that also includes several genes encoding proteins of unknown function (but speculated to be involved in methanobactin formation) as well as mbnT, which encodes a TonB-dependent transporter hypothesized to be responsible for methanobactin uptake. To determine if mbnT is truly responsible for methanobactin uptake, a knockout was constructed in Methylosinus trichosporium OB3b using marker exchange mutagenesis. The resulting M. trichosporium mbnT::Gm(r) mutant was found to be able to produce methanobactin but was unable to internalize it. Further, if this mutant was grown in the presence of copper and exogenous methanobactin, copper uptake was significantly reduced. Expression of mmoX and pmoA, encoding polypeptides of the soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), respectively, also changed significantly when methanobactin was added, which indicates that the mutant was unable to collect copper under these conditions. Copper uptake and gene expression, however, were not affected in wild-type M. trichosporium OB3b, indicating that the TonB-dependent transporter encoded by mbnT is responsible for methanobactin uptake and that methanobactin is a key mechanism used by methanotrophs for copper uptake. When the mbnT::Gm(r) mutant was grown under a range of copper concentrations in the absence of methanobactin, however, the phenotype of the mutant was indistinguishable from that of wild-type M. trichosporium OB3b, indicating that this methanotroph has multiple mechanisms for copper uptake.
Collapse
|
14
|
Herzberg M, Bauer L, Kirsten A, Nies DH. Interplay between seven secondary metal uptake systems is required for full metal resistance of Cupriavidus metallidurans. Metallomics 2016; 8:313-26. [DOI: 10.1039/c5mt00295h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Monsieurs P, Hobman J, Vandenbussche G, Mergeay M, Van Houdt R. Response of Cupriavidus metallidurans CH34 to Metals. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20594-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
16
|
Cation Diffusion Facilitator family: Structure and function. FEBS Lett 2015; 589:1283-95. [PMID: 25896018 DOI: 10.1016/j.febslet.2015.04.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 01/13/2023]
Abstract
The Cation Diffusion Facilitators (CDFs) form a family of membrane-bound proteins capable of transporting zinc and other heavy metal ions. Involved in metal tolerance/resistance by efflux of ions, CDF proteins share a two-modular architecture consisting of a transmembrane domain (TMD) and C-terminal domain (CTD) that protrudes into the cytoplasm. Discovery of a Zn²⁺ and Cd²⁺ CDF transporter from a marine bacterium Maricaulis maris that does not possess the CTD questions current perceptions regarding this family of proteins. This article describes a new, CTD-lacking subfamily of CDFs and our current knowledge about this family of proteins in the view of these findings.
Collapse
|
17
|
Musiani F, Zambelli B, Bazzani M, Mazzei L, Ciurli S. Nickel-responsive transcriptional regulators. Metallomics 2015; 7:1305-18. [DOI: 10.1039/c5mt00072f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structural features, metal coordination modes and metal binding thermodynamics of known Ni(ii)-dependent transcriptional regulators are highlighted and discussed.
Collapse
Affiliation(s)
- Francesco Musiani
- Laboratory of Bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- 40127 Bologna, Italy
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- 40127 Bologna, Italy
| | - Micaela Bazzani
- Laboratory of Bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- 40127 Bologna, Italy
| | - Luca Mazzei
- Laboratory of Bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- 40127 Bologna, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- 40127 Bologna, Italy
| |
Collapse
|
18
|
Herzberg M, Schüttau M, Reimers M, Große C, Hans-Günther-Schlegel HGS, Nies DH. Synthesis of nickel–iron hydrogenase in Cupriavidus metallidurans is controlled by metal-dependent silencing and un-silencing of genomic islands. Metallomics 2015; 7:632-49. [DOI: 10.1039/c4mt00297k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Trepreau J, Grosse C, Mouesca JM, Sarret G, Girard E, Petit-Haertlein I, Kuennemann S, Desbourdes C, de Rosny E, Maillard AP, Nies DH, Covès J. Metal sensing and signal transduction by CnrX from Cupriavidus metallidurans CH34: role of the only methionine assessed by a functional, spectroscopic, and theoretical study. Metallomics 2014; 6:263-73. [PMID: 24154823 DOI: 10.1039/c3mt00248a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
When CnrX, the periplasmic sensor protein in the CnrYXH transmembrane signal transduction complex of Cupriavidus metallidurans CH34, binds the cognate metal ions Ni(II) or Co(II), the ECF-type sigma factor CnrH is made available in the cytoplasm for the RNA-polymerase to initiate transcription at the cnrYp and cnrCp promoters. Ni(II) or Co(II) are sensed by a metal-binding site with a N3O2S coordination sphere with octahedral geometry, where S stands for the thioether sulfur of the only methionine (Met123) residue of CnrX. The M123A-CnrX derivative has dramatically reduced signal propagation in response to metal sensing while the X-ray structure of Ni-bound M123A-CnrXs showed that the metal-binding site was not affected by the mutation. Ni(II) remained six-coordinate in M123A-CnrXs, with a water molecule replacing the sulfur as the sixth ligand. H32A-CnrXs, the soluble model of the wild-type membrane-anchored CnrX, was compared to the double mutants H32A-M123A-CnrXs and H32A-M123C-CnrXs to spectroscopically evaluate the role of this unique ligand in the binding site of Ni or Co. The Co- and Ni-bound forms of the protein display unusually blue-shifted visible spectra. TD-DFT calculations using structure-based models allowed identification and assignment of the electronic transitions of Co-bound form of the protein and its M123A derivative. Among them, the signature of the S-Co transition is distinguishable in the shoulder at 530 nm. In vitro affinity measurements point out the crucial role of Met123 in the selectivity for Ni or Co, and in vivo data support the conclusion that Met123 is a trigger of the signal transduction.
Collapse
Affiliation(s)
- Juliette Trepreau
- Institut de Biologie Structurale, UMR 5075 CNRS-CEA-UJF-Grenoble-1, 6 Rue Jules Horowitz, 38042 Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Herzberg M, Dobritzsch D, Helm S, Baginsky S, Nies DH. The zinc repository of Cupriavidus metallidurans. Metallomics 2014; 6:2157-65. [DOI: 10.1039/c4mt00171k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
FurC regulates expression of zupT for the central zinc importer ZupT of Cupriavidus metallidurans. J Bacteriol 2014; 196:3461-71. [PMID: 25049092 DOI: 10.1128/jb.01713-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zinc importer ZupT is required for the efficient allocation of zinc to zinc-dependent proteins in the metal-resistant bacterium Cupriavidus metallidurans but not for zinc import per se. The expression of zupT is upregulated under conditions of zinc starvation. C. metallidurans contains three members of the Fur family of regulators that qualify as candidates for the zupT regulator. The expression of a zupT-lacZ reporter gene fusion was strongly upregulated in a ΔfurC mutant but not in a ΔfurA or ΔfurB mutant. Expression of the genes for transition-metal importers (pitA, corA1, corA2, and corA3) was not changed in this pattern in all three Δfur mutants, but they were still downregulated under conditions of elevated zinc concentrations, indicating the presence of another zinc-dependent regulator. FurA was a central regulator of the iron metabolism in C. metallidurans, and furA was constitutively expressed under the conditions tested. Expression of furB was upregulated under conditions of iron starvation, and FurB could be an iron starvation Fur connecting general metal and iron homeostasis, as indicated by the phenotype of a ΔfurB ΔfurC double mutant. FurC was purified as a Strep-tagged protein and retarded the electrophoretic mobility of a DNA fragment upstream of zupT. Binding of FurC to this operator region was influenced by the presence of zinc ions and EDTA. Thus, FurC is the main zinc uptake regulator (Zur) of C. metallidurans and represses synthesis of the central zinc importer ZupT when sufficient zinc is present.
Collapse
|
22
|
Maillard AP, Girard E, Ziani W, Petit-Härtlein I, Kahn R, Covès J. The crystal structure of the anti-σ factor CnrY in complex with the σ factor CnrH shows a new structural class of anti-σ factors targeting extracytoplasmic function σ factors. J Mol Biol 2014; 426:2313-27. [PMID: 24727125 DOI: 10.1016/j.jmb.2014.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/19/2014] [Accepted: 04/03/2014] [Indexed: 11/25/2022]
Abstract
Gene expression in bacteria is regulated at the level of transcription initiation, a process driven by σ factors. The regulation of σ factor activity proceeds from the regulation of their cytoplasmic availability, which relies on specific inhibitory proteins called anti-σ factors. With anti-σ factors regulating their availability according to diverse cues, extracytoplasmic function σ factors (σ(ECF)) form a major signal transduction system in bacteria. Here, structure:function relationships have been characterized in an emerging class of minimal-size transmembrane anti-σ factors, using CnrY from Cupriavidus metallidurans CH34 as a model. This study reports the 1.75-Å-resolution structure of CnrY cytosolic domain in complex with CnrH, its cognate σ(ECF), and identifies a small hydrophobic knob in CnrY as the major determinant of this interaction in vivo. Unsuspected structural similarity with the molecular switch regulating the general stress response in α-proteobacteria unravels a new class of anti-σ factors targeting σ(ECF). Members of this class carry out their function via a 30-residue stretch that displays helical propensity but no canonical structure on its own.
Collapse
Affiliation(s)
- Antoine P Maillard
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France.
| | - Eric Girard
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Widade Ziani
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Isabelle Petit-Härtlein
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Richard Kahn
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Jacques Covès
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| |
Collapse
|
23
|
Herzberg M, Bauer L, Nies DH. Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34. Metallomics 2014; 6:421-36. [DOI: 10.1039/c3mt00267e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Jarosławiecka A, Piotrowska-Seget Z. Lead resistance in micro-organisms. Microbiology (Reading) 2014; 160:12-25. [DOI: 10.1099/mic.0.070284-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lead (Pb) is an element present in the environment that negatively affects all living organisms. To diminish its high toxicity, micro-organisms have developed several mechanisms that allow them to survive exposure to Pb(II). The main mechanisms of lead resistance involve adsorption by extracellular polysaccharides, cell exclusion, sequestration as insoluble phosphates, and ion efflux to the cell exterior. This review describes the various lead resistance mechanisms, and the regulation of their expression by lead binding regulatory proteins. Special attention is given to the Pbr system from Cupriavidus metallidurans CH34, which involves a unique mechanism combining efflux and lead precipitation.
Collapse
Affiliation(s)
- Anna Jarosławiecka
- Department of Microbiology, University of Silesia, Jagiellońska Street 28, Katowice 40-032, Poland
| | - Zofia Piotrowska-Seget
- Department of Microbiology, University of Silesia, Jagiellońska Street 28, Katowice 40-032, Poland
| |
Collapse
|
25
|
Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans strain CH34. J Bacteriol 2013; 195:2298-308. [PMID: 23475973 DOI: 10.1128/jb.01951-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cupriavidus metallidurans is associated with gold grains and may be involved in their formation. Gold(III) complexes influence the transcriptome of C. metallidurans (F. Reith et al., Proc. Natl. Acad. Sci. U. S. A. 106:17757-17762, 2009), leading to the upregulation of genes involved in the detoxification of reactive oxygen species and metal ions. In a systematic study, the involvement of these systems in gold transformation was investigated. Treatment of C. metallidurans cells with Au(I) complexes, which occur in this organism's natural environment, led to the upregulation of genes similar to those observed for treatment with Au(III) complexes. The two indigenous plasmids of C. metallidurans, which harbor several transition metal resistance determinants, were not involved in resistance to Au(I/III) complexes nor in their transformation to metallic nanoparticles. Upregulation of a cupA-lacZ fusion by the MerR-type regulator CupR with increasing Au(III) concentrations indicated the presence of gold ions in the cytoplasm. A hypothesis stating that the Gig system detoxifies gold complexes by the uptake and reduction of Au(III) to Au(I) or Au(0) reminiscent to detoxification of Hg(II) was disproven. ZupT and other secondary uptake systems for transition metal cations influenced Au(III) resistance but not the upregulation of the cupA-lacZ fusion. The two copper-exporting P-type ATPases CupA and CopF were also not essential for gold resistance. The copABCD determinant on chromosome 2, which encodes periplasmic proteins involved in copper resistance, was required for full gold resistance in C. metallidurans. In conclusion, biomineralization of gold particles via the reduction of mobile Au(I/III) complexes in C. metallidurans appears to primarily occur in the periplasmic space via copper-handling systems.
Collapse
|
26
|
Kohler C, Lourenço RF, Avelar GM, Gomes SL. Extracytoplasmic function (ECF) sigma factor σF is involved in Caulobacter crescentus response to heavy metal stress. BMC Microbiol 2012; 12:210. [PMID: 22985357 PMCID: PMC3511200 DOI: 10.1186/1471-2180-12-210] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/10/2012] [Indexed: 11/26/2022] Open
Abstract
Background The α-proteobacterium Caulobacter crescentus inhabits low-nutrient environments and can tolerate certain levels of heavy metals in these sites. It has been reported that C. crescentus responds to exposure to various heavy metals by altering the expression of a large number of genes. Results In this work, we show that the ECF sigma factor σF is one of the regulatory proteins involved in the control of the transcriptional response to chromium and cadmium. Microarray experiments indicate that σF controls eight genes during chromium stress, most of which were previously described as induced by heavy metals. Surprisingly, σF itself is not strongly auto-regulated under metal stress conditions. Interestingly, σF-dependent genes are not induced in the presence of agents that generate reactive oxygen species. Promoter analyses revealed that a conserved σF-dependent sequence is located upstream of all genes of the σF regulon. In addition, we show that the second gene in the sigF operon acts as a negative regulator of σF function, and the encoded protein has been named NrsF (Negative regulator of sigma F). Substitution of two conserved cysteine residues (C131 and C181) in NrsF affects its ability to maintain the expression of σF-dependent genes at basal levels. Furthermore, we show that σF is released into the cytoplasm during chromium stress and in cells carrying point mutations in both conserved cysteines of the protein NrsF. Conclusion A possible mechanism for induction of the σF-dependent genes by chromium and cadmium is the inactivation of the putative anti-sigma factor NrsF, leading to the release of σF to bind RNA polymerase core and drive transcription of its regulon.
Collapse
Affiliation(s)
- Christian Kohler
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av, Prof, Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
27
|
Van Houdt R, Monsieurs P, Mijnendonckx K, Provoost A, Janssen A, Mergeay M, Leys N. Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans. BMC Genomics 2012; 13:111. [PMID: 22443515 PMCID: PMC3384475 DOI: 10.1186/1471-2164-13-111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/23/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Different Cupriavidus metallidurans strains isolated from metal-contaminated and other anthropogenic environments were genotypically and phenotypically compared with C. metallidurans type strain CH34. The latter is well-studied for its resistance to a wide range of metals, which is carried for a substantial part by its two megaplasmids pMOL28 and pMOL30. RESULTS Comparative genomic hybridization (CGH) indicated that the extensive arsenal of determinants involved in metal resistance was well conserved among the different C. metallidurans strains. Contrary, the mobile genetic elements identified in type strain CH34 were not present in all strains but clearly showed a pattern, although, not directly related to a particular biotope nor location (geographical). One group of strains carried almost all mobile genetic elements, while these were much less abundant in the second group. This occurrence was also reflected in their ability to degrade toluene and grow autotrophically on hydrogen gas and carbon dioxide, which are two traits linked to separate genomic islands of the Tn4371-family. In addition, the clear pattern of genomic islands distribution allowed to identify new putative genomic islands on chromosome 1 and 2 of C. metallidurans CH34. CONCLUSIONS Metal resistance determinants are shared by all C. metallidurans strains and their occurrence is apparently irrespective of the strain's isolation type and place. Cupriavidus metallidurans strains do display substantial differences in the diversity and size of their mobile gene pool, which may be extensive in some (including the type strain) while marginal in others.
Collapse
Affiliation(s)
- Rob Van Houdt
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Pieter Monsieurs
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Kristel Mijnendonckx
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Ann Provoost
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Ann Janssen
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Max Mergeay
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Natalie Leys
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| |
Collapse
|
28
|
Abstract
The dramatic changes in the environmental conditions that organisms encountered during evolution and adaptation to life in specific niches, have influenced intracellular and extracellular metal ion contents and, as a consequence, the cellular ability to sense and utilize different metal ions. This metal-driven differentiation is reflected in the specific panels of metal-responsive transcriptional regulators found in different organisms, which finely tune the intracellular metal ion content and all metal-dependent processes. In order to understand the processes underlying this complex metal homeostasis network, the study of the molecular processes that determine the protein-metal ion recognition, as well as how this event is transduced into a transcriptional output, is necessary. This chapter describes how metal ion binding to specific proteins influences protein interaction with DNA and how this event can influence the fate of genetic expression, leading to specific transcriptional outputs. The features of representative metal-responsive transcriptional regulators, as well as the molecular basis of metal-protein and protein-DNA interactions, are discussed on the basis of the structural information available. An overview of the recent advances in the understanding of how these proteins choose specific metal ions among the intracellular metal ion pool, as well as how they allosterically respond to their effector binding, is given.
Collapse
|
29
|
Molina TL, Patel R, Molina DD, Persans MW, Lowe KL. Isolation of a naturally-occurring nickel resistance plasmid from a rare hypersaline estuary (Laguna Madre, Texas, USA) for potential use as a bio-indicator of metal contamination. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals 2011; 24:1133-51. [DOI: 10.1007/s10534-011-9473-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|
31
|
Trepreau J, Girard E, Maillard AP, de Rosny E, Petit-Haertlein I, Kahn R, Covès J. Structural basis for metal sensing by CnrX. J Mol Biol 2011; 408:766-79. [PMID: 21414325 DOI: 10.1016/j.jmb.2011.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 11/19/2022]
Abstract
CnrX is the metal sensor and signal modulator of the three-protein transmembrane signal transduction complex CnrYXH of Cupriavidus metallidurans CH34 that is involved in the setup of cobalt and nickel resistance. We have determined the atomic structure of the soluble domain of CnrX in its Ni-bound, Co-bound, or Zn-bound form. Ni and Co ions elicit a biological response, while the Zn-bound form is inactive. The structures presented here reveal the topology of intraprotomer and interprotomer interactions and the ability of metal-binding sites to fine-tune the packing of CnrX dimer as a function of the bound metal. These data suggest an allosteric mechanism to explain how the complex is switched on and how the signal is modulated by Ni or Co binding. These results provide clues to propose a model for signal propagation through the membrane in the complex.
Collapse
Affiliation(s)
- Juliette Trepreau
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, CNRS-CEA-UJF Grenoble 1, 41, rue Jules Horowitz, 38027 Grenoble Cedex, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Olsson-Francis K, VAN Houdt R, Mergeay M, Leys N, Cockell CS. Microarray analysis of a microbe-mineral interaction. GEOBIOLOGY 2010; 8:446-456. [PMID: 20718869 DOI: 10.1111/j.1472-4669.2010.00253.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The weathering of volcanic minerals makes a significant contribution to the global silicate weathering budget, influencing carbon dioxide drawdown and long-term climate control. Basalt rocks may account for over 30% of the global carbon dioxide drawdown in silicate weathering. Micro-organisms are known to play a role in rock weathering yet the genomics and genetics of biological rock weathering are unknown. We apply DNA microarray technology to determine putative genes involved in weathering using the heavy metal-resistant organism, Cupriavidus metallidurans CH34; in particular we investigate the sequestering of iron. The results show that the bacterium does not depend on siderophores. Instead, the up-regulation of porins and transporters which are employed concomitantly with genes associated with biofilm formation suggests that novel passive and active iron uptake systems are involved. We hypothesize that these mechanisms induce rock weathering by changes in chemical equilibrium at the microbe-mineral interface, reducing the saturation state of iron. We also demonstrate that low concentrations of metals in the basalt induce heavy metal-resistant genes. Some of the earliest environments on the Earth were volcanic. Therefore, these results not only elucidate the mechanisms by which micro-organisms might have sequestered nutrients on the early Earth but also provide an explanation for the evolution of multiple heavy metal resistance genes long before the creation of contaminated industrial biotopes by human activity.
Collapse
|
33
|
Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Médigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 2010; 5:e10433. [PMID: 20463976 PMCID: PMC2864759 DOI: 10.1371/journal.pone.0010433] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022] Open
Abstract
Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.
Collapse
Affiliation(s)
- Paul J Janssen
- Molecular and Cellular Biology, Belgian Nuclear Research Center SCK*CEN, Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Petit-Haertlein I, Girard E, Sarret G, Hazemann JL, Gourhant P, Kahn R, Covès J. Evidence for conformational changes upon copper binding to Cupriavidus metallidurans CzcE. Biochemistry 2010; 49:1913-22. [PMID: 20112954 DOI: 10.1021/bi100001z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CzcE is a periplasmic protein from Cupriavidus metallidurans CH34 that can bind four copper atoms per dimer. We have crystallized the apo form of the protein and determined its structure at 1.85 A resolution. Three Cu atoms were localized by soaking apo-CzcE crystals into a CuCl(2) solution. We identified His24 as a Cu(II) ligand in each protomer and Asp100 as a key residue for Cu binding at the interface of the dimer. The role of these amino acids was confirmed by site-directed mutagenesis and UV-visible spectroscopy. The fourth Cu atom was not located. The oxidized form of CzcE contains four Cu(II) atoms, while the reduced form contains four Cu(I) atoms. Average coordination spheres of four N or O atoms for Cu(II) and of one N or O atom and two S atoms for Cu(I) were determined by X-ray absorption spectroscopy. As there is no evidence for preformed metal-binding sites in apo-CzcE, we suggest that different conformational changes occurred upon Cu(II) or Cu(I) binding. These changes were further demonstrated by digestion experiments that gave different proteolysis patterns depending not only on the presence of the metal but also on its speciation. The ability of CzcE to bind copper and to adapt its conformation to different copper oxidation states could be related to a role in copper sensing for this protein.
Collapse
Affiliation(s)
- Isabelle Petit-Haertlein
- Institut de Biologie Structurale-Jean-Pierre Ebel, UMR 5075 CNRS-CEA-UJF, 41, rue Jules Horowitz, 38027 Grenoble Cedex, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Osman D, Cavet JS. Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors. Nat Prod Rep 2010; 27:668-80. [PMID: 20442958 DOI: 10.1039/b906682a] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Detecting deficiency and excess of different metal ions is fundamental for every organism. Our understanding of how metals are detected by bacteria is exceptionally well advanced, and multiple families of cytoplasmic DNA-binding, metal-sensing transcriptional regulators have been characterised(ArsR-SmtB, MerR, CsoR-RcnR, CopY, DtxR, Fur, NikR). Some of the sensors regulate a single gene while others act globally controlling transcription of regulons. They not only modulate the expression of genes directly associated with metal homeostasis, but can also alter metabolism to reduce the cellular demand for metals in short supply. Different representatives of each of the sensor families can regulate gene expression in response to different metals, and the residues that form the sensory metal-binding sites have been defined in a number of these proteins. Indeed, in the case of theArsR-SmtB family, multiple distinct metal-sensing motifs (and one non-metal-sensing motif) have been identified which correlate with the detection of different metals. This review summarises the different families of bacterial metal-sensing transcriptional regulators and discusses current knowledge regarding the mechanisms of metal-regulated gene expression and the structural features of sensory metal-binding sites focusing on the ArsR-SmtB family. In addition, recent progress in understanding the principles governing the ability of the sensors to detect specific metals within a cell and the coordination of the different sensors to control cellular metal levels is discussed.
Collapse
Affiliation(s)
- Deenah Osman
- University of Manchester, Manchester, M13 9PT, UK
| | | |
Collapse
|
36
|
Site-directed mutagenesis reveals a conservation of the copper-binding site and the crucial role of His24 in CopH from Cupriavidus metallidurans CH34. J Inorg Biochem 2009; 103:1721-8. [DOI: 10.1016/j.jinorgbio.2009.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 09/07/2009] [Accepted: 09/25/2009] [Indexed: 11/21/2022]
|
37
|
Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci U S A 2009; 106:17757-62. [PMID: 19815503 DOI: 10.1073/pnas.0904583106] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the role of microorganisms as main drivers of metal mobility and mineral formation under Earth surface conditions is now widely accepted, the formation of secondary gold (Au) is commonly attributed to abiotic processes. Here we report that the biomineralization of Au nanoparticles in the metallophillic bacterium Cupriavidus metallidurans CH34 is the result of Au-regulated gene expression leading to the energy-dependent reductive precipitation of toxic Au(III)-complexes. C. metallidurans, which forms biofilms on Au grains, rapidly accumulates Au(III)-complexes from solution. Bulk and microbeam synchrotron X-ray analyses revealed that cellular Au accumulation is coupled to the formation of Au(I)-S complexes. This process promotes Au toxicity and C. metallidurans reacts by inducing oxidative stress and metal resistances gene clusters (including a Au-specific operon) to promote cellular defense. As a result, Au detoxification is mediated by a combination of efflux, reduction, and possibly methylation of Au-complexes, leading to the formation of Au(I)-C-compounds and nanoparticulate Au(0). Similar particles were observed in bacterial biofilms on Au grains, suggesting that bacteria actively contribute to the formation of Au grains in surface environments. The recognition of specific genetic responses to Au opens the way for the development of bioexploration and bioprocessing tools.
Collapse
|
38
|
Staroń A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol Microbiol 2009; 74:557-81. [PMID: 19737356 DOI: 10.1111/j.1365-2958.2009.06870.x] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of a bacterial cell to monitor and adaptively respond to its environment is crucial for survival. After one- and two-component systems, extracytoplasmic function (ECF) sigma factors - the largest group of alternative sigma factors - represent the third fundamental mechanism of bacterial signal transduction, with about six such regulators on average per bacterial genome. Together with their cognate anti-sigma factors, they represent a highly modular design that primarily facilitates transmembrane signal transduction. A comprehensive analysis of the ECF sigma factor protein family identified more than 40 distinct major groups of ECF sigma factors. The functional relevance of this classification is supported by the sequence similarity and domain architecture of cognate anti-sigma factors, genomic context conservation, and potential target promoter motifs. Moreover, this phylogenetic analysis revealed unique features indicating novel mechanisms of ECF-mediated signal transduction. This classification, together with the web tool ECFfinder and the information stored in the Microbial Signal Transduction (MiST) database, provides a comprehensive resource for the analysis of ECF sigma factor-dependent gene regulation.
Collapse
Affiliation(s)
- Anna Staroń
- KIT Research Group 11-1, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Scherer J, Nies DH. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 2009; 73:601-21. [PMID: 19602147 DOI: 10.1111/j.1365-2958.2009.06792.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cupriavidus metallidurans CH34 possesses a multitude of metal efflux systems. Here, the function of the novel P(IB4)-type ATPase CzcP is characterized, which belongs to the plasmid pMOL30-mediated cobalt-zinc-cadmium (Czc) resistance system. Contribution of CzcP to transition metal resistance in C. metallidurans was compared with that of three P(IB2)-type ATPases (CadA, ZntA, PrbA) and to other efflux proteins by construction and characterization of multiple deletion mutants. These data also yielded additional evidence for an export of metal cations from the periplasm to the outside of the cell rather than from the cytoplasm to the outside. Moreover, metal-sensitive Escherichia coli strains were functionally substituted in trans with CzcP and the three P(IB2)-type ATPases. Metal transport kinetics performed with inside-out vesicles identified the main substrates for these four exporters, the K(m) values and apparent turn-over numbers. In combination with the mutant data, transport kinetics indicated that CzcP functions as 'resistance enhancer': this P(IB4)-type ATPase exports transition metals Zn(2+), Cd(2+) and Co(2+) much more rapidly than the three P(IB2)-type proteins. However, a basic resistance level has to be provided by the P(IB2)-type efflux pumps because CzcP may not be able to reach all different speciations of these metals in the cytoplasm.
Collapse
Affiliation(s)
- Judith Scherer
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University, Halle-Wittenberg, Germany
| | | |
Collapse
|
40
|
Summers AO. Damage control: regulating defenses against toxic metals and metalloids. Curr Opin Microbiol 2009; 12:138-44. [PMID: 19282236 DOI: 10.1016/j.mib.2009.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 11/16/2022]
Abstract
Some elements are essential for life and others closely related to them are very toxic. In exploiting unique ecological niches many prokaryotes have evolved the means to defend themselves against and even to derive energy from deleterious elements. Toxic metal defense systems are related to those providing homeostasis of essential metals and metalloid elements. Expression of these multiprotein systems is costly but they must respond rapidly and, so, all are well controlled. Seven diverse families of metalloregulators are presently recognized for essential metal homeostasis in prokaryotes. Two of these, the ArsR and MerR families, figure more often than the others in controlling responses to toxic transition metals and metalloids. This review emphasizes recent advances in these two metalloregulator families and highlights emerging regulatory motifs of other types.
Collapse
Affiliation(s)
- Anne O Summers
- Department of Microbiology, The University of Georgia, Athens, 30602-2605, USA.
| |
Collapse
|
41
|
Mergeay M, Monchy S, Janssen P, Houdt RV, Leys N. Megaplasmids in Cupriavidus Genus and Metal Resistance. MICROBIAL MEGAPLASMIDS 2009. [DOI: 10.1007/978-3-540-85467-8_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Pompidor G, Maillard AP, Girard E, Gambarelli S, Kahn R, Covès J. X-ray structure of the metal-sensor CnrX in both the apo- and copper-bound forms. FEBS Lett 2008; 582:3954-8. [PMID: 18992246 DOI: 10.1016/j.febslet.2008.10.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/17/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|
43
|
Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, van der Lelie D. Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie van Leeuwenhoek 2008; 96:171-82. [DOI: 10.1007/s10482-008-9289-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 10/02/2008] [Indexed: 11/29/2022]
|
44
|
Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie van Leeuwenhoek 2008; 96:115-39. [DOI: 10.1007/s10482-008-9284-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
45
|
Biostructural analysis of the metal-sensor domain of CnrX from Cupriavidus metallidurans CH34. Antonie van Leeuwenhoek 2008; 96:141-8. [PMID: 18825506 DOI: 10.1007/s10482-008-9283-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
In Cupriavidus metallidurans CH34, the proteins CnrX, CnrY, and CnrH regulate the expression of the cnrCBA operon that codes for a cation-efflux pump involved in cobalt and nickel resistance. The periplasmic part of CnrX can be defined as the metal sensor in the signal transduction complex composed of the membrane-bound anti-sigma factor CnrY and the extra-cytoplasmic function sigma factor CnrH. A soluble form of CnrX was overproduced and purified. This protein behaves as a dimer in solution as judged from gel filtration, sedimentation velocity experiments, and NMR. Native crystals diffracting to 2.3 A using synchrotron radiation were obtained using the hanging-drop vapor-diffusion method. They belong to the primitive monoclinic space group P2(1), with unit cell parameters a = 31.87, b = 74.80, c = 93.67 A, beta = 90.107 degrees. NMR data and secondary structure prediction suggest that this protein is essentially formed by helices.
Collapse
|