1
|
Villani V, Frank CN, Cravedi P, Hou X, Bin S, Kamitakahara A, Barbati C, Buono R, Da Sacco S, Lemley KV, De Filippo RE, Lai S, Laviano A, Longo VD, Perin L. A kidney-specific fasting-mimicking diet induces podocyte reprogramming and restores renal function in glomerulopathy. Sci Transl Med 2024; 16:eadl5514. [PMID: 39475573 DOI: 10.1126/scitranslmed.adl5514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/24/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Cycles of a fasting-mimicking diet (FMD) promote regeneration and reduce damage in the pancreases, blood, guts, and nervous systems of mice, but their effect on kidney disease is unknown. In addition, a FMD has not been tested in rats. Here, we show that cycles of a newly developed low-salt FMD (LS-FMD) restored normal proteinuria and nephron structure and function in rats with puromycin-induced nephrosis compared with that in animals with renal damage that did not receive the dietary intervention. LS-FMD induced modulation of a nephrogenic gene program, resembling renal developmental processes in multiple kidney structures. LS-FMD also activated podocyte-lineage reprogramming pathways and promoted a quiescent state in mature podocytes in the rat kidney damage model. In a pilot clinical study in patients with chronic kidney disease, FMD cycles of 5 days each month for 3 months promoted renoprotection, including reduction of proteinuria and improved endothelial function, compared with that in patients who did not receive the FMD cycles. These results show that FMD cycles, which promote the reprogramming of multiple renal cell types and lead to glomerular damage reversal in rats, should be tested further for the treatment of progressive kidney diseases.
Collapse
Affiliation(s)
- Valentina Villani
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
| | - Camille Nicolas Frank
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Paolo Cravedi
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Xiaogang Hou
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
| | - Sofia Bin
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna 40126, Italy
| | - Anna Kamitakahara
- Division of Neurology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cristiani Barbati
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Italian National Institute of Health, Rome 00185, Italy
| | - Roberta Buono
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Stefano Da Sacco
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kevin V Lemley
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Roger E De Filippo
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Silvia Lai
- Department of Translational and Precision Medicine, Nephrology Unit, Sapienza University of Rome, Rome 00185, Italy
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University, Rome 00185, Italy
| | - Valter D Longo
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Laura Perin
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Min L, Chen Y, Zhong F, Gu L, Lee K, He JC. Role and Mechanisms of Tyro3 in Podocyte Biology and Glomerular Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:398-406. [PMID: 39430290 PMCID: PMC11488836 DOI: 10.1159/000540452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 10/22/2024]
Abstract
Background Podocyte loss occurs in both primary and secondary glomerular diseases, leading to the progression of kidney disease. A large body of evidence suggests that apoptosis and detachment are the mechanisms mediating the reduction in podocyte numbers in glomerular diseases. Recent studies demonstrate a renal protective effect of protein S (PS) through the activation of Tyro3, one of the TAM receptors. Tyro3 is predominantly expressed in podocytes within the kidney, and its expression increases in early diabetic kidney disease (DKD) but decreases in patients with progressive DKD and focal segmental glomerulosclerosis (FSGS). Glomerular expression of Tyro3 also correlates with the progression of DKD and predicts the progression of primary glomerular diseases. High glucose increases Tyro3 expression, while TNF-α suppresses the expression of PS and Tyro3. PS has anti-inflammatory and antiapoptotic effects in podocytes, likely via the activation of the Akt pathway and the inhibition of NF-kB activation. In vivo, the knockout of PS or Tyro3 exacerbates podocyte loss and glomerular disease, while the overexpression of PS and Tyro3 attenuates the injury in mice with DKD and FSGS. Tyro3 agonists have also been shown to protect podocytes from injury in these animal models. Summary Tyro3 plays a critical role in podocyte biology and glomerular disease. Tyro3 agonists could potentially be developed as a new therapy for glomerular disease. Key Message The aim of this review article was to summarize the role and mechanisms mediating the protective effects of Tyro3 in podocyte biology and glomerular disease. Additionally, we discuss the possibility of developing Tyro3 agonists as potential treatment for glomerular diseases.
Collapse
Affiliation(s)
- Lulin Min
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yixin Chen
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Renal Section, James J Peters Veterans Affair Medical Center, Bronx, NY, USA
| |
Collapse
|
3
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
4
|
Little MH, Humphreys BD. Regrow or Repair: An Update on Potential Regenerative Therapies for the Kidney. J Am Soc Nephrol 2022; 33:15-32. [PMID: 34789545 PMCID: PMC8763179 DOI: 10.1681/asn.2021081073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fifteen years ago, this journal published a review outlining future options for regenerating the kidney. At that time, stem cell populations were being identified in multiple tissues, the concept of stem cell recruitment to a site of injury was of great interest, and the possibility of postnatal renal stem cells was growing in momentum. Since that time, we have seen the advent of human induced pluripotent stem cells, substantial advances in our capacity to both sequence and edit the genome, global and spatial transcriptional analysis down to the single-cell level, and a pandemic that has challenged our delivery of health care to all. This article will look back over this period of time to see how our view of kidney development, disease, repair, and regeneration has changed and envision a future for kidney regeneration and repair over the next 15 years.
Collapse
Affiliation(s)
- Melissa H. Little
- Murdoch Children’s Research Institute, Parkville, Melbourne, Victoria, Australia,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, Missouri,Department of Developmental Biology, Washington University in St. Louis School of Medicine, Missouri
| |
Collapse
|
5
|
Song H, Zhuang L, Xu X, Shi J, Hu W, Liu Z, Shi S. MCC Regulator of WNT Signaling Pathway (MCC) Is a Podocyte Essential Gene. Front Med (Lausanne) 2021; 8:777563. [PMID: 34926519 PMCID: PMC8674659 DOI: 10.3389/fmed.2021.777563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Podocytes are an integral part of the glomerular filtration barrier. Many genes are already known to be essential for podocyte survival, structure and function, but there are more podocyte essential genes to be identified. By single-cell RNA-seq of mouse podocytes, we detected the expression of gene encoding MCC regulator of WNT signaling pathway (MCC) in majority of the podocytes and speculated that MCC is essential for podocytes. We confirmed MCC expression in mouse podocytes and further showed its expression in human podocytes. To experimentally prove the essentiality of MCC for podocytes, we knocked down MCC in cultured podocytes and found marked morphological change of cell shape, cytoskeletal F-actin stress fiber disruption, increased apoptosis, and downregulation of podocyte essential genes, CD2AP and WT1, demonstrating that MCC is essential for podocytes. Since MCC has been implicated in cell cycle and β-catenin signaling, we examined the expression of cell cycle related genes and activity of β-catenin in the MCC knockdown podocytes, but did not find significant changes. To further explore the mechanism underlying the role of MCC in podocytes, we performed RNA-sequencing and bioinformatics analysis of MCC knockdown podocytes and found a significant enrichment of the regulated genes in lamellipodia formation. Consistently, we found that MCC is present in lamellipodia and MCC knockdown resulted in loss of lamellipodia in the cells. Lastly, we found that MCC was downregulated in podocytes treated with puromycin aminonucleosides and in glomeruli of diabetic mice and FSGS patients, implicating MCC is involved in the development of podocytopathy and proteinuria. In conclusion, MCC is potentially essential for podocytes and its downregulation may be involved in podocytopathy.
Collapse
Affiliation(s)
- Hui Song
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lulu Zhuang
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaodong Xu
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingsong Shi
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weixin Hu
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shaolin Shi
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Wang S, Yang Y, He X, Yang L, Wang J, Xia S, Liu D, Liu S, Yang L, Liu W, Duan H. Cdk5-Mediated Phosphorylation of Sirt1 Contributes to Podocyte Mitochondrial Dysfunction in Diabetic Nephropathy. Antioxid Redox Signal 2021; 34:171-190. [PMID: 32660255 DOI: 10.1089/ars.2020.8038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: Mitochondrial dysfunction contributes to podocyte injury, which is the leading cause of proteinuria in diabetic nephropathy (DN). In this study, we explored the role of cyclin-dependent kinase 5 (Cdk5) in mitochondrial dysfunction of podocytes under diabetic conditions. Results: Our results showed that the expression and activity of Cdk5 were significantly upregulated in vivo and in vitro under diabetic conditions, accompanied by the downregulation of synaptopodin and nephrin, as well as structural and functional mitochondrial dysfunction. Inhibition of Cdk5 with roscovitine or dominant-negative Cdk5 led to the attenuation of podocyte injury by upregulating synaptopodin and nephrin. The inhibition of Cdk5 also ameliorated mitochondrial dysfunction by decreasing reactive oxygen species levels and cytochrome c release, while increasing adenosine triphosphate production. Sirt1, an NAD+-dependent deacetylase, was decreased in podocytes with high glucose (HG) treatment; however, its phosphorylation level at S47 was significantly upregulated. We demonstrated that HG levels cause overactive Cdk5 to phosphorylate Sirt1 at S47. Suppression of Cdk5 reduced Sirt1 phosphorylation levels and mutation of S47 to nonphosphorable alanine (S47A), significantly attenuated podocyte injury and mitochondrial dysfunction in diabetic condition in vivo and in vitro. Innovation and Conclusion: Our study has demonstrated the role of Cdk5 in regulating mitochondrial function through Sirt1 phosphorylation and thus can potentially be a new therapeutic target for DN treatment. IRB number: 20190040. Antioxid. Redox Signal. 34, 171-190.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China.,Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yakun Yang
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China.,Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Xingyu He
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China.,Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Lin Yang
- Department of Nephrology and Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianrong Wang
- Department of Nephrology and Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shunjie Xia
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China.,Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Dan Liu
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China.,Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Shuxia Liu
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China.,Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Li Yang
- Department of Cardiac Ultrasound, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Liu
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China.,Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Huijun Duan
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China.,Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Infante B, Rossini M, Leo S, Troise D, Netti GS, Ranieri E, Gesualdo L, Castellano G, Stallone G. Recurrent Glomerulonephritis after Renal Transplantation: The Clinical Problem. Int J Mol Sci 2020; 21:ijms21175954. [PMID: 32824988 PMCID: PMC7504691 DOI: 10.3390/ijms21175954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Glomerulonephritis (GN) continues to be one of the main causes of end-stage kidney disease (ESKD) with an incidence rating from 10.5% to 38.2%. Therefore, recurrent GN, previously considered to be a minor contributor to graft loss, is the third most common cause of graft failure 10 years after renal transplantation. However, the incidence, pathogenesis, and natural course of recurrences are still not completely understood. This review focuses on the most frequent diseases that recur after renal transplantation, analyzing rate of recurrence, epidemiology and risk factors, pathogenesis and bimolecular mechanisms, clinical presentation, diagnosis, and therapy, taking into consideration the limited data available in the literature. First of all, the risk for recurrence depends on the type of glomerulonephritis. For example, recipient patients with anti-glomerular basement membrane (GBM) disease present recurrence rarely, but often exhibit rapid graft loss. On the other hand, recipient patients with C3 glomerulonephritis present recurrence in more than 50% of cases, although the disease is generally slowly progressive. It should not be forgotten that every condition that can lead to chronic graft dysfunction should be considered in the differential diagnosis of recurrence. Therefore, a complete workup of renal biopsy, including light, immunofluorescence and electron microscopy study, is essential to provide the diagnosis, excluding alternative diagnosis that may require different treatment. We will examine in detail the biomolecular mechanisms of both native and transplanted kidney diseases, monitoring the risk of recurrence and optimizing the available treatment options.
Collapse
Affiliation(s)
- Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| | - Michele Rossini
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (M.R.); (G.S.N.); (E.R.)
| | - Serena Leo
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| | - Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (M.R.); (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (M.R.); (G.S.N.); (E.R.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy;
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
- Correspondence: ; Tel.: +39-0881732610; Fax: +39-0881736001
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| |
Collapse
|
8
|
Yes-associated protein regulates podocyte cell cycle re-entry and dedifferentiation in adriamycin-induced nephropathy. Cell Death Dis 2019; 10:915. [PMID: 31801948 PMCID: PMC6892849 DOI: 10.1038/s41419-019-2139-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/02/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023]
Abstract
Podocytes are terminally differentiated cells with little proliferative capacity. The high expression levels of cell cycle inhibitory proteins, including p21, p27, and p57, play an important role in maintaining the low level of proliferation of mature podocytes. In the present study, we aimed to explore the role of yes-associated protein (YAP) signalling in adriamycin-induced podocyte re-entry into the cell cycle and dedifferentiation. Proliferating cell nuclear antigen (PCNA)-, cyclin-dependent kinase 4 (CDK4)-, and Cyclin D1-positive podocytes were found in mice with adriamycin-induced nephropathy. In vitro, adriamycin administration increased the percentage of cells in S phase and the upregulation of mesenchymal-related marker proteins. CDK4 and cyclin D1 were significantly up-regulated after incubation with adriamycin. Overexpression of YAP in podocytes promoted their entry into the cell cycle; up-regulated cyclin D1, desmin, and snail2 expression and down-regulated Wilms’ tumour 1 (WT1) and nephrin production. Recombinant murine FGF-basic induced podocytes to re-enter the cell cycle, inhibited WT1 and nephrin, and increased desmin and snail2 expression. Pretreating podocytes with verteporfin, an inhibitor of YAP/ TEA domain transcription factor (TEAD), decreased the adriamycin-induced overexpression of cyclin D1 and reduced the ratio of S-phase podocytes. This result was further verified by knocking down YAP expression using RNA interference. In conclusion, adriamycin induced podocytes to re-enter the cell cycle via upregulation of CDK4 and cyclin D1 expression, which was at least partly mediated by YAP signalling. Re-entry into the cell cycle induced the over-expression of mesenchymal markers in podocytes.
Collapse
|
9
|
tRNA-derived fragments (tRFs) contribute to podocyte differentiation. Biochem Biophys Res Commun 2019; 521:1-8. [PMID: 31629473 DOI: 10.1016/j.bbrc.2019.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022]
Abstract
Loss of glomerular podocytes is the crucial event in the progression of chronic kidney disease (CKD). tRNA-derived fragments (tRFs), a newfangled branch of small non-coding RNA (sncRNA), recently reported to play a vital part in several diseases. In present study, we aimed to detect and reveal the role of tRFs in podocyte differentiation. The expression levels of tRFs between undifferentiated and differentiated podocytes were sequenced by illumina nextseq 500, and further verified by quantitative RT-PCR. 69 upregulated and 70 downregulated tRFs in total were singled out (Fold change > 2, P < 0.05). Gene ontology (GO) analysis indicated they are involved in the biological processes of transcription, DNA-templated, positive regulation of transcription from RNA polymerase II promoter, angiogenesis, cell adhesion. Besides, KEGG analysis suggested that these differentially tRFs are associated with PI3K-Akt signaling pathway, Rap1 signaling pathway, Ras signaling pathway, MAPK signaling pathway, and Wnt signaling pathway. Therefore, the differentially tRFs might regulate the differentiation of podocyte and the process of CKD. The functions and mechanisms of tRFs in podocytes are needed to be further explored.
Collapse
|
10
|
Mühldorfer J, Pfister E, Büttner-Herold M, Klewer M, Amann K, Daniel C. Bi-nucleation of podocytes is uniformly accompanied by foot processes widening in renal disease. Nephrol Dial Transplant 2019; 33:796-803. [PMID: 29106627 DOI: 10.1093/ndt/gfx201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/28/2017] [Indexed: 01/13/2023] Open
Abstract
Background Podocytes are terminally differentiated glomerular cells expressing a highly complex architecture and lacking the ability to proliferate. However, during renal injury or stress these cells can re-enter into the cell cycle but fail to divide. As a consequence, bi- and multi-nucleated podocytes can be identified in renal biopsies from patients with various kidney diseases. It is still unclear whether the occurrence of such cells is dependent on or correlates with renal damage and if bi- or multi-nucleation results in ultrastructural alterations such as e.g. foot process effacement. Therefore, we investigated the frequency, correlation with clinical parameters and morphological consequences of podocyte bi- or multi-nucleation in a cohort of 377 patients suffering from different renal diseases. Methods Renal biopsies from patients with minimal change disease (MCD; n = 93), IgA-glomerulonephritis (IgA-GN, n = 95), lupus nephritis (LN; n = 90) and diabetic nephropathy (DN; n = 99) were investigated for the occurrence of bi-nucleated or multi-nucleated podocytes using semi-thin sections and light-microscopy at 1000× magnification. The frequency of bi-nucleation and multi-nucleation in podocytes was correlated with clinical parameters and markers of renal injury. In addition, ultrastructural morphological features associated with podocyte bi- or multi-nucleation were analysed by scanning transmission electron microscopy at various magnifications. Results Ultrastructural analysis of podocyte nuclear morphology revealed a broad spectrum of nuclear appearances. Therefore, podocytes were classified in cells with mono-nucleated, lobulated, potential bi-nucleated, symmetrically bi-nucleated, asymmetrically bi-nucleated and multi-nucleated nuclear morphology. In 65-80% of all investigated glomeruli only mono-nuclear podocytes were identified. The highest frequency of bi-nucleated podocytes was found in patients with IgA-GN (18.6%) and the lowest in patients with DN (5.6%). The proportion of bi-nucleated podocytes with asymmetric nuclear morphology was about 50% of all bi-nucleated podocytes and independent of the underlying renal disease. In addition, ultrastructural analysis by electron microscopy showed significant widening of foot processes in bi-nucleated compared with mono-nucleated podocytes. Interestingly, foot process width of podocytes with lobulated nuclei was also significantly increased compared with podocytes with normal mono-nuclear morphology. Furthermore, podocyte density per glomerular area was significantly lower in glomeruli with bi-nucleated podocytes. Due to the relatively low frequency of bi- and multi-nucleated podocytes, correlations with clinical parameters were weak and dependent on renal disease. Conclusions The frequency of bi-nucleated podocytes was highest in IgA-GN but can also be observed in all investigated renal diseases. In podocytes with altered nuclear morphology particularly in bi- and multi-nucleated podocytes ultrastructural analysis of podocytes revealed significant widening of foot processes as a potential maladaptive structural consequence.
Collapse
Affiliation(s)
- Johanna Mühldorfer
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Pfister
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Monika Klewer
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Lei XY, Chen XX, Sun YH, Gao MD, Hu XX, Suo YH. Hepatitis B virus X protein decreases nephrin expression and induces podocyte apoptosis via activating STAT3. Exp Ther Med 2019; 17:4223-4229. [PMID: 31007753 DOI: 10.3892/etm.2019.7453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
The gene for hepatitis B virus X protein (HBx) comprises the smallest open reading frame in the HBV genome, and the protein product can activate various cell signaling pathways and regulate apoptosis, among other effects. However, in different cell types and under different external conditions, its mechanism of action differs. In the present study, the effect of HBx on the viability and apoptosis of mouse podocyte clone 5 (MPC5) cells was investigated. The cells were transfected with the HBx gene using pEX plasmid, and real-time quantitative PCR and western blot analysis were used to test the transfection efficiency and assess related protein expression. The highest expression of HBx occurred at 48 h after MPC5 cells were transfected with HBx. The expression of nephrin protein in the HBx transfection group was lower than that in blank and negative control groups. Following transfection of the HBx gene, podocyte viability was suppressed, while the rate of cell apoptosis was increased; moreover, the expression of signal transducer and activator of transcription 3 (STAT3) and phospho-STAT3 was increased compared with in the control groups. The present study suggests that STAT3 activation may be involved in the pathogenic mechanism of renal injuries caused by HBV injection. Thus STAT3 is a potential molecular target in the treatment of HBV-GN.
Collapse
Affiliation(s)
- Xiao-Yan Lei
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xing-Xing Chen
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yong-Hong Sun
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Ming-Dong Gao
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiao-Xia Hu
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yan-Hong Suo
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
12
|
Zoja C, Buelli S, Morigi M. Shiga toxin triggers endothelial and podocyte injury: the role of complement activation. Pediatr Nephrol 2019; 34:379-388. [PMID: 29214442 DOI: 10.1007/s00467-017-3850-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/12/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) is the offending agent in post-diarrhea-associated hemolytic uremic syndrome (HUS), a disorder characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute kidney failure, with thrombi occluding the renal microvasculature. Endothelial dysfunction has been recognized as the trigger event in the development of microangiopathic processes. Glomerular endothelial cells are susceptible to the toxic effects of Stxs that, via nuclear factor kappa B (NF-κB) activation, induce the expression of genes encoding for adhesion molecules and chemokines, culminating in leukocyte adhesion and platelet thrombus formation on the activated endothelium. Complement activation via the alternative pathway has been seen in patients during the acute phase of STEC-associated HUS. Experimental evidence has highlighted the role of complement proteins in driving glomerular endothelium toward a thrombogenic phenotype. At the glomerular level, podocytes are also an important target of Stx-induced complement activation. Glomerular injury as a consequence of podocyte dysfunction and loss is thus a mechanism that might affect long-term renal outcomes in the disease. New approaches to targeting the complement system may be useful therapeutic options for patients with STEC-HUS.
Collapse
Affiliation(s)
- Carlamaria Zoja
- Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Stezzano, 87, 24126, Bergamo, Italy.
| | - Simona Buelli
- Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Stezzano, 87, 24126, Bergamo, Italy
| | - Marina Morigi
- Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Stezzano, 87, 24126, Bergamo, Italy
| |
Collapse
|
13
|
Buelli S, Zoja C, Remuzzi G, Morigi M. Complement Activation Contributes to the Pathophysiology of Shiga Toxin-Associated Hemolytic Uremic Syndrome. Microorganisms 2019; 7:microorganisms7010015. [PMID: 30634669 PMCID: PMC6352217 DOI: 10.3390/microorganisms7010015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections have become a threat to public health globally because of the severe illnesses that they can trigger, such as hemorrhagic colitis and the post-diarrheal hemolytic uremic syndrome (HUS), characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney failure. Glomerular endothelial cells are primary targets of Stx which, after binding to its specific receptor globotriaosylceramide, upregulates proinflammatory proteins involved both in the recruitment and adhesion of leukocytes and thrombus formation at the site of endothelial injury. In this review, we discuss the role of complement activation in promoting glomerular microvascular dysfunction, providing evidence from experimental models and patients with STEC-HUS. Within the glomerulus, an important target for Stx-induced complement activation is the podocyte, a cell type that is in close contact with endothelial cells and participates in maintaining the filtration barrier. Recently, podocyte injury and loss have been indicated as potential risk factors for long-term renal sequelae in patients with STEC-HUS. Therapeutic approaches targeting the complement system, that may be useful options for patients with STEC-HUS, will also be discussed.
Collapse
Affiliation(s)
- Simona Buelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
- L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy.
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| |
Collapse
|
14
|
Han W, Luo M, He M, Zhu Y, Zhong Y, Ding H, Hu G, Liu L, Chen Q, Lu Y. HBx gene transfection affects the cycle of primary renal tubular epithelial cells through regulating cyclin expression. Mol Med Rep 2018; 18:1947-1954. [PMID: 29956780 PMCID: PMC6072163 DOI: 10.3892/mmr.2018.9197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 02/27/2018] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus X protein (HBx) has been previously demonstrated to be associated with the regulation of cell proliferation; however, the exact mechanisms underlying this effect remain unclear. The present study aimed to investigate the regulatory mechanism of HBx on the cycle progression of primary renal tubular epithelial cells. Primary renal tubular epithelial cells of Sprague Dawley (SD) rats were separated and cultured. The morphology of cultured cells was characterized by immunohistochemical analysis and the results demonstrated that primary renal tubular epithelial cells with the expected morphology and distribution were successfully separated and cultured from SD rats. HBx gene pcDNA3.1/myc vector and empty vector were constructed and transfected into cells as HBx and empty groups, respectively. Following transfection, the mRNA and protein levels of HBx, cyclin A, cyclin D1 and cyclin E in cells were determined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. The results demonstrated that following HBx gene transfection, the mRNA and protein levels of HBx, cyclin A, cyclin D1 and cyclin E in cells were significantly upregulated, compared with the empty control group (P<0.05). Furthermore, cell apoptosis and the cell cycle were evaluated by Annexin V‑fluorescein isothiocyanate/propidium iodide staining and flow cytometry. HBx gene transfection significantly inhibited the cell apoptosis (P<0.05), promoted cell cycle progression from the G1 to S phase and arrested the cell cycle in the S phase. Therefore, the results of the present study indicated that HBx gene transfection may regulate the apoptosis and cell cycle of primary renal tubular epithelial cells by affecting the expression of cyclins. The results of the present study may improve the understanding of pathogenesis associated with HBV‑associated glomerulonephritis, and may also provide insight and theoretical support for the future design and development of drugs for the treatment of hepatitis B virus.
Collapse
Affiliation(s)
- Wenlun Han
- Department of Nephrology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Meiliang Luo
- Department of Nephrology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Mengying He
- Department of Nephrology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Yunyun Zhu
- Department of Nephrology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Yu Zhong
- Department of Nephrology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Huideng Ding
- Department of Nephrology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Gang Hu
- Department of Nephrology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Liansheng Liu
- Department of Nephrology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Qin Chen
- Department of Nephrology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Ying Lu
- Department of Nephrology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Podocytes are critical components of the nephron filtration barrier and are depleted in many kidney injuries and disease states. Terminally differentiated adult podocytes are highly specialized, postmitotic cells, raising the question of whether the body has any ability to regenerate lost podocytes. This timely question has recently been illuminated by a series of innovative studies. Here, we review recent progress on this topic of significant interest and debate. RECENT FINDINGS The innovation of genetic labeling techniques enables fate tracing of individual podocytes, providing the strongest evidence yet that podocytes can be replaced by nearby progenitor cells. In particular, two progenitor pools have recently been identified in multiple studies: parietal epithelial cells and cells of renin lineage. These studies furthermore suggest that podocyte regeneration can be enhanced using ex-vivo or pharmacological interventions. SUMMARY Recent studies indicate that the podocyte compartment is more dynamic than previously believed. Bidirectional exchange with neighboring cellular compartments provides a mechanism for podocyte replacement. Based on these findings, we propose a set of criteria for evaluating podocyte regeneration and suggest that restoration of podocyte number to a subsclerotic threshold be targeted as a potentially achievable clinical goal.
Collapse
|
16
|
Liu T, Chen XM, Sun JY, Jiang XS, Wu Y, Yang S, Huang HZ, Ruan XZ, Du XG. Palmitic Acid-Induced Podocyte Apoptosis via the Reactive Oxygen Species-Dependent Mitochondrial Pathway. Kidney Blood Press Res 2018; 43:206-219. [PMID: 29490300 DOI: 10.1159/000487673] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Chronic kidney disease (CKD) is often accompanied by hyperlipidemia, which accelerates progression of the disease. Podocyte injury can lead to dysfunction of the glomerular filtration barrier, which is associated with proteinuria, a risk marker for the progression of CKD. Our previous studies demonstrated that palmitic acid (PA) can induce podocyte apoptosis; however, the underlying mechanisms are unclear. In the present study, we investigated the specific molecular mechanisms of PA-induced apoptosis in cultured podocytes. METHODS We cultured mouse podocytes and treated them with PA. Then, cell viability was measured using the Cell Counting Kit-8 colorimetric assay, lipid uptake was assessed by Oil Red O staining and boron-dipyrromethene staining, apoptosis was measured by flow cytometry, mitochondrial injury was assessed by JC-1 staining and transmission electron microscopy, and mitochondrial production of reactive oxygen species (ROS) was evaluated by fluorescence microscopy using the MitoSOX Red reagent. The effects of PA on the mitochondria-mediated caspase activation pathway were investigated by examining the expression of caspase-8, cleaved caspase-9, cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), B-cell lymphoma 2 (Bcl-2), Bax, Bid, cytochrome c, and Fas-associated protein with death domain (FADD) using western blotting. The translocation of Bax and cytochrome c were detected by immunofluorescence. RESULTS PA treatment significantly increased lipid accumulation and induced podocyte apoptosis. We investigated whether the two primary apoptosis signaling pathways (death receptor-mediated pathway and mitochondria-mediated pathway) were involved in the execution of PA-induced podocyte apoptosis, and found that the levels of FADD, caspase-8, and Bid did not significantly change during this process. Meanwhile, PA treatment induced an increase in Bax protein expression and a decrease in Bcl-2 protein expression, with Bax translocation to the mitochondria. Furthermore, PA treatment induced mitochondrial impairment, and triggered the release of cytochrome c from the mitochondria to cytosol, with a concomitant dose-dependent increase in the levels of cleaved caspase-9, cleaved caspase-3, and PARP. Meanwhile, PA treatment increased mitochondrial production of ROS, and the mitochondria-targeted antioxidant mitoTEMPO significantly ameliorated PA-induced podocyte apoptosis. CONCLUSION Our findings indicated that PA induced caspase-dependent podocyte apoptosis through the mitochondrial pathway, and mitochondrial ROS production participated in this process, thus potentially contributing to podocyte injury.
Collapse
Affiliation(s)
- Ting Liu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xue-Mei Chen
- Emergency Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ji-Ye Sun
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu-Shun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Yang
- Emergency Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui-Zhe Huang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong-Zhong Ruan
- Centre for Nephrology, Royal Free and University College Medical School, University College London, Royal Free Campus, London, United Kingdom.,Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiao-Gang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Disease, Chongqing, China
| |
Collapse
|
17
|
Meliambro K, Wong JS, Ray J, Calizo RC, Towne S, Cole B, El Salem F, Gordon RE, Kaufman L, He JC, Azeloglu EU, Campbell KN. The Hippo pathway regulator KIBRA promotes podocyte injury by inhibiting YAP signaling and disrupting actin cytoskeletal dynamics. J Biol Chem 2017; 292:21137-21148. [PMID: 28982981 DOI: 10.1074/jbc.m117.819029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
Kidney podocytes represent a key constituent of the glomerular filtration barrier. Identifying the molecular mechanisms of podocyte injury and survival is important for better understanding and management of kidney diseases. KIBRA (kidney brain protein), an upstream regulator of the Hippo signaling pathway encoded by the Wwc1 gene, shares the pro-injury properties of its putative binding partner dendrin and antagonizes the pro-survival signaling of the downstream Hippo pathway effector YAP (Yes-associated protein) in Drosophila and MCF10A cells. We recently identified YAP as an essential component of the glomerular filtration barrier that promotes podocyte survival by inhibiting dendrin pro-apoptotic function. Despite these recent advances, the signaling pathways that mediate podocyte injury remain poorly understood. Here we tested the hypothesis that, similar to its role in other model systems, KIBRA promotes podocyte injury. We found increased expression of KIBRA and phosphorylated YAP protein in glomeruli of patients with biopsy-proven focal segmental glomerulosclerosis (FSGS). KIBRA/WWc1 overexpression in murine podocytes promoted LATS kinase phosphorylation, leading to subsequent YAP Ser-127 phosphorylation, YAP cytoplasmic sequestration, and reduction in YAP target gene expression. Functionally, KIBRA overexpression induced significant morphological changes in podocytes, including disruption of the actin cytoskeletal architecture and reduction of focal adhesion size and number, all of which were rescued by subsequent YAP overexpression. Conversely, constitutive KIBRA knockout mice displayed reduced phosphorylated YAP and increased YAP expression at baseline. These mice were protected from acute podocyte foot process effacement following protamine sulfate perfusion. KIBRA knockdown podocytes were also protected against protamine-induced injury. These findings suggest an important role for KIBRA in the pathogenesis of podocyte injury and the progression of proteinuric kidney disease.
Collapse
Affiliation(s)
| | | | | | | | - Sara Towne
- Department of Pharmacological Sciences, and
| | | | - Fadi El Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | | | - John C He
- From the Division of Nephrology.,Department of Pharmacological Sciences, and
| | | | | |
Collapse
|
18
|
Loss of the podocyte glucocorticoid receptor exacerbates proteinuria after injury. Sci Rep 2017; 7:9833. [PMID: 28852159 PMCID: PMC5575043 DOI: 10.1038/s41598-017-10490-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Nephrotic syndrome is a common disorder in adults and children whose etiology is largely unknown. Glucocorticoids remain the mainstay of therapy in most cases, though their mechanism of action remains poorly understood. Emerging evidence suggests that immunomodulatory therapies used in nephrotic syndrome directly target the podocytes. To study how steroids directly affect the podocytes in the treatment of proteinuria, we created a mouse model with podocyte-specific deletion of the glucocorticoid receptor. The podocyte-specific glucocorticoid receptor (GR) knockout mice had similar renal function and protein excretion compared to wild type. However, after glomerular injury induced by either LPS or nephrotoxic serum, the podocyte GR knockout mice demonstrated worsened proteinuria compared to wild type. Ultrastructural examination of podocytes confirmed more robust foot process effacement in the knockout animals. Expression of several key slit diaphragm protein was down regulated in pGR KO mice. Primary podocytes isolated from wild type and podocyte GR knockout mice showed similar actin stress fiber staining patterns in unstimulated conditions. Yet, when exposed to LPS, GR knockout podocytes demonstrated fewer stress fibers and impaired migration compared to wild type podocytes. We conclude that the podocyte glucocorticoid receptor is important for limiting proteinuria in settings of podocyte injury.
Collapse
|
19
|
Marshall CB. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol Renal Physiol 2016; 311:F831-F843. [PMID: 27582102 DOI: 10.1152/ajprenal.00313.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/21/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease in the United States and is a major cause of cardiovascular disease and death. DN develops insidiously over a span of years before clinical manifestations, including microalbuminuria and declining glomerular filtration rate (GFR), are evident. During the clinically silent period, structural lesions develop, including glomerular basement membrane (GBM) thickening, mesangial expansion, and glomerulosclerosis. Once microalbuminuria is clinically apparent, structural lesions are often considerably advanced, and GFR decline may then proceed rapidly toward end-stage kidney disease. Given the current lack of sensitive biomarkers for detecting early DN, a shift in focus toward examining the cellular and molecular basis for the earliest structural change in DN, i.e., GBM thickening, may be warranted. Observed within one to two years following the onset of diabetes, GBM thickening precedes clinically evident albuminuria. In the mature glomerulus, the podocyte is likely key in modifying the GBM, synthesizing and assembling matrix components, both in physiological and pathological states. Podocytes also secrete matrix metalloproteinases, crucial mediators in extracellular matrix turnover. Studies have shown that the critical podocyte-GBM interface is disrupted in the diabetic milieu. Just as healthy podocytes are essential for maintaining the normal GBM structure and function, injured podocytes likely have a fundamental role in upsetting the balance between the GBM's synthetic and degradative pathways. This article will explore the biological significance of GBM thickening in DN by reviewing what is known about the GBM's formation, its maintenance during health, and its disruption in DN.
Collapse
Affiliation(s)
- Caroline B Marshall
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
20
|
Morigi M, Locatelli M, Rota C, Buelli S, Corna D, Rizzo P, Abbate M, Conti D, Perico L, Longaretti L, Benigni A, Zoja C, Remuzzi G. A previously unrecognized role of C3a in proteinuric progressive nephropathy. Sci Rep 2016; 6:28445. [PMID: 27345360 PMCID: PMC4921969 DOI: 10.1038/srep28445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022] Open
Abstract
Podocyte loss is the initial event in the development of glomerulosclerosis, the structural hallmark of progressive proteinuric nephropathies. Understanding mechanisms underlying glomerular injury is the key challenge for identifying novel therapeutic targets. In mice with protein-overload induced by bovine serum albumin (BSA), we evaluated whether the alternative pathway (AP) of complement mediated podocyte depletion and podocyte-dependent parietal epithelial cell (PEC) activation causing glomerulosclerosis. Factor H (Cfh−/−) or factor B-deficient mice were studied in comparison with wild-type (WT) littermates. WT+BSA mice showed podocyte depletion accompanied by glomerular complement C3 and C3a deposits, PEC migration to capillary tuft, proliferation, and glomerulosclerosis. These changes were more prominent in Cfh−/− +BSA mice. The pathogenic role of AP was documented by data that factor B deficiency preserved glomerular integrity. In protein-overload mice, PEC dysregulation was associated with upregulation of CXCR4 and GDNF/c-Ret axis. In vitro studies provided additional evidence of a direct action of C3a on proliferation and CXCR4-related migration of PECs. These effects were enhanced by podocyte-derived GDNF. In patients with proteinuric nephropathy, glomerular C3/C3a paralleled PEC activation, CXCR4 and GDNF upregulation. These results indicate that mechanistically uncontrolled AP complement activation is not dispensable for podocyte-dependent PEC activation resulting in glomerulosclerosis.
Collapse
Affiliation(s)
- Marina Morigi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Monica Locatelli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Cinzia Rota
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Simona Buelli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Daniela Corna
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Paola Rizzo
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Mauro Abbate
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Debora Conti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Luca Perico
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Lorena Longaretti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy.,Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Hagen M, Pfister E, Kosel A, Shankland S, Pippin J, Amann K, Daniel C. Cell cycle re-entry sensitizes podocytes to injury induced death. Cell Cycle 2016; 15:1929-37. [PMID: 27232327 DOI: 10.1080/15384101.2016.1191710] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Podocytes are terminally differentiated renal cells, lacking the ability to regenerate by proliferation. However, during renal injury, podocytes re-enter into the cell cycle but fail to divide. Earlier studies suggested that re-entry into cell cycle results in loss of podocytes, but a direct evidence for this is lacking. Therefore, we established an in vitro model to test the consequences of re-entry into the cell cycle on podocyte survival. A mouse immortalized podocyte cell line was differentiated to non-permissive podocytes and stimulated with e.g. growth factors. Stimulated cells were analyzed for mRNA-expression or stained for cell cycle analysis using flow cytometry and immunocytofluorescence microscopy. After stimulation to re-entry into cell cycle, podocytes were stressed with puromycin aminonucleoside (PAN) and analyzed for survival. During permissive stage more than 40% of immortalized podocytes were in the S-phase. In contrast, S-phase in non-permissive differentiated podocytes was reduced to 5%. Treatment with b-FGF dose dependently induced re-entry into cell cycle increasing the number of podocytes in the S-phase to 10.7% at an optimal bFGF dosage of 10 ng/ml. Forty eight hours after stimulation with bFGF the number of bi-nucleated podocytes significantly increased. A secondary injury stimulus significantly reduced podocyte survival preferentially in bi-nucleated podocytes In conclusion, stimulation of podocytes using bFGF was able to induce re-entry of podocytes into the cell cycle and to sensitize the cells for cell death by secondary injuries. Therefore, this model is appropriate for testing new podocyte protective substances that can be used for therapy.
Collapse
Affiliation(s)
- Manuel Hagen
- a Department of Nephropathology , Friedrich-Alexander University (FAU) Erlangen-Nürnberg , Erlangen , Germany
| | - Eva Pfister
- a Department of Nephropathology , Friedrich-Alexander University (FAU) Erlangen-Nürnberg , Erlangen , Germany
| | - Andrea Kosel
- a Department of Nephropathology , Friedrich-Alexander University (FAU) Erlangen-Nürnberg , Erlangen , Germany
| | - Stuart Shankland
- b Department of Nephrology , University of Washington , Seattle , WA , USA
| | - Jeffrey Pippin
- b Department of Nephrology , University of Washington , Seattle , WA , USA
| | - Kerstin Amann
- a Department of Nephropathology , Friedrich-Alexander University (FAU) Erlangen-Nürnberg , Erlangen , Germany
| | - Christoph Daniel
- a Department of Nephropathology , Friedrich-Alexander University (FAU) Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
22
|
Kaverina NV, Eng DG, Schneider RRS, Pippin JW, Shankland SJ. Partial podocyte replenishment in experimental FSGS derives from nonpodocyte sources. Am J Physiol Renal Physiol 2016; 310:F1397-413. [PMID: 27076646 DOI: 10.1152/ajprenal.00369.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 04/12/2016] [Indexed: 12/29/2022] Open
Abstract
The current studies used genetic fate mapping to prove that adult podocytes can be partially replenished following depletion. Inducible NPHS2-rtTA/tetO-Cre/RS-ZsGreen-R reporter mice were generated to permanently label podocytes with the ZsGreen reporter. Experimental focal segmental glomerulosclerosis (FSGS) was induced with a cytotoxic podocyte antibody. On FSGS day 7, immunostaining for the podocyte markers p57, synaptopodin, and podocin were markedly decreased by 44%, and this was accompanied by a decrease in ZsGreen fluorescence. The nuclear stain DAPI was absent in segments of reduced ZsGreen and podocyte marker staining, which is consistent with podocyte depletion. Staining for p57, synaptopodin, podocin, and DAPI increased at FSGS day 28 and was augmented by the ACE inhibitor enalapril, which is consistent with a partial replenishment of podocytes. In contrast, ZsGreen fluorescence did not return and remained significantly low at day 28, indicating replenishment was from a nonpodocyte origin. Despite administration of bromodeoxyuridine (BrdU) thrice weekly throughout the course of disease, BrdU staining was not detected in podocytes, which is consistent with an absence of proliferation. Although ZsGreen reporting was reduced in the tuft at FSGS day 28, labeled podocytes were detected along the Bowman's capsule in a subset of glomeruli, which is consistent with migration from the tuft. Moreover, more than half of the migrated podocytes coexpressed the parietal epithelial cell (PEC) proteins claudin-1, SSeCKS, and PAX8. These results show that although podocytes can be partially replenished following abrupt depletion, a process augmented by ACE inhibition, the source or sources are nonpodocyte in origin and are independent of proliferation. Furthermore, a subset of podocytes migrate to the Bowman's capsule and begin to coexpress PEC markers.
Collapse
Affiliation(s)
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington
| | | | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | | |
Collapse
|
23
|
Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int 2015; 88:999-1012. [PMID: 25993321 PMCID: PMC4654724 DOI: 10.1038/ki.2015.152] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/02/2023]
Abstract
Since adult podocytes cannot adequately proliferate following depletion in disease states there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine if parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PECrtTA/LC1/R26 reporter mice. In normal mice, labeled PECs were confined to Bowman's capsule, while in disease (cytotoxic sheep anti-podocyte antibody), labeled PECs were found in the glomerular tuft in progressively higher numbers by days 7, 14 and 28. Early in disease, the majority of PECs in the tuft co-expressed CD44. By day 28, when podocyte numbers were significantly higher and disease severity was significantly lower, the majority of labeled PECs co-expressed podocyte proteins but not CD44. Neither labeled PECs on the tuft, nor podocytes stained for the proliferation marker BrdU. The de novo expression of phospho-ERK colocalized to CD44 expressing PECs, but not to PECs expressing podocyte markers. Thus, in a mouse model of focal segmental glomerulosclerosis typified by abrupt podocyte depletion followed by regeneration, PECs undergo two phenotypic changes once they migrate to the glomerular tuft. Initially these cells are predominantly activated CD44 expressing cells coinciding with glomerulosclerosis, and later they predominantly exhibit a podocyte phenotype which is likely reparative.
Collapse
|
24
|
Yang S, Liu L, Xu P, Yang Z. MKL1 inhibits cell cycle progression through p21 in podocytes. BMC Mol Biol 2015; 16:1. [PMID: 25888165 PMCID: PMC4330937 DOI: 10.1186/s12867-015-0029-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The glomerular podocyte is a highly specialized cell type with the ability to ultrafilter blood and support glomerular capillary pressure. However, little is known about the genetic programs leading to this functionality or the final phenotype. RESULTS In the current study, we found that the expression of a myocardin/MKL family member, MKL1, was significantly upregulated during cell cycle arrest induced by a temperature switch in murine podocyte clone 5 (MPC5) cells. Further investigation demonstrated that overexpression of MKL1 led to inhibition of cell proliferation by decreasing the number of cells in S phase of the cell cycle. In contrast, MKL1 knockdown by RNA interference had the opposite effect, highlighting a potential role of MKL1 in blocking G1/S transition of the cell cycle in MPC5 cells. Additionally, using an RT(2) Profiler PCR Array, p21 was identified as a direct target of MKL1. We further revealed that MKL1 activated p21 transcription by recruitment to the CArG element in its promoter, thus resulting in cell cycle arrest. In addition, the expression of MKL1 is positively correlated with that of p21 in podocytes in postnatal mouse kidney and significantly upregulated during the morphological switch of podocytes from proliferation to differentiation. CONCLUSIONS Our observations demonstrate that MKL1 has physiological roles in the maturation and development of podocytes, and thus its misregulation might lead to glomerular and renal dysfunction.
Collapse
Affiliation(s)
- Shuang Yang
- Medical School, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Lingjia Liu
- Medical School, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Zhuo Yang
- Medical School, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
25
|
Puelles VG, Douglas-Denton RN, Cullen-McEwen LA, Li J, Hughson MD, Hoy WE, Kerr PG, Bertram JF. Podocyte Number in Children and Adults: Associations with Glomerular Size and Numbers of Other Glomerular Resident Cells. J Am Soc Nephrol 2015; 26:2277-88. [PMID: 25568174 DOI: 10.1681/asn.2014070641] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/02/2014] [Indexed: 11/03/2022] Open
Abstract
Increases in glomerular size occur with normal body growth and in many pathologic conditions. In this study, we determined associations between glomerular size and numbers of glomerular resident cells, with a particular focus on podocytes. Kidneys from 16 male Caucasian-Americans without overt renal disease, including 4 children (≤3 years old) to define baseline values of early life and 12 adults (≥18 years old), were collected at autopsy in Jackson, Mississippi. We used a combination of immunohistochemistry, confocal microscopy, and design-based stereology to estimate individual glomerular volume (IGV) and numbers of podocytes, nonepithelial cells (NECs; tuft cells other than podocytes), and parietal epithelial cells (PECs). Podocyte density was calculated. Data are reported as medians and interquartile ranges (IQRs). Glomeruli from children were small and contained 452 podocytes (IQR=335-502), 389 NECs (IQR=265-498), and 146 PECs (IQR=111-206). Adult glomeruli contained significantly more cells than glomeruli from children, including 558 podocytes (IQR=431-746; P<0.01), 1383 NECs (IQR=998-2042; P<0.001), and 367 PECs (IQR=309-673; P<0.001). However, large adult glomeruli showed markedly lower podocyte density (183 podocytes per 10(6) µm(3)) than small glomeruli from adults and children (932 podocytes per 10(6) µm(3); P<0.001). In conclusion, large adult glomeruli contained more podocytes than small glomeruli from children and adults, raising questions about the origin of these podocytes. The increased number of podocytes in large glomeruli does not match the increase in glomerular size observed in adults, resulting in relative podocyte depletion. This may render hypertrophic glomeruli susceptible to pathology.
Collapse
Affiliation(s)
- Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | | | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Michael D Hughson
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wendy E Hoy
- Centre for Chronic Disease, The University of Queensland, Brisbane, Australia
| | - Peter G Kerr
- Department of Nephrology, Monash Medical Centre, Melbourne, Australia; and Department of Medicine, Monash University, Melbourne, Australia
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia;
| |
Collapse
|
26
|
Zhang Y, Chen Y, Yang F, Zhou J. HBx transfection limits proliferative capacity of podocytes through cell cycle regulation. Acta Biochim Biophys Sin (Shanghai) 2014; 46:1016-23. [PMID: 25395163 DOI: 10.1093/abbs/gmu102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our previous studies have shown that podocyte number is significantly decreased in glomeruli of children with hepatitis B virus (HBV)-associated glomerulonephritis. In this study, we aimed to explore whether exogenous expression of HBx protein could directly inhibit podocyte proliferation in vitro, and to investigate its role in cell cycle regulation. HBx gene was delivered into cultured mouse podocytes through an adenovirus-based vector. Cell morphology was evaluated with Wright-Giemsa staining. Cell growth and proliferation were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5,6-carboxyfluorescein diacetate, succinimidyl ester (CFSE)-based proliferation assays. Cell cycle phase was analyzed by flow cytometry, and the expression of cell cycle regulatory proteins was examined by western blot analysis. It was found that the aberrant nuclear changes like double and multiple micronuclei, which reflect mitotic catastrophe, accumulated in podocytes after 5 days post-infection. MTT assay showed that Ad.HBx-infected podocytes grew much more slowly than controls at day 4 post-infection and thereafter. Furthermore, CFSE-based proliferation assay also showed that the proliferation of HBx-expressing podocytes was significantly inhibited than that of controls at 3-day post-infection, and that the difference became much more obvious at day 5 post-infection. Cell cycle analysis showed that the transfection of HBx resulted in significant up-regulation of both cyclin B1 and CDK-inhibitor p21 expression and G2/M phase arrest, and slight down-regulation of cyclin A expression. These results demonstrated that exogenous expression of HBx might limit the proliferative capacity of podocytes through cell cycle regulation, thus suggesting that HBx may play a role in podocyte injuries in HBV-associated glomerulonephritis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fengjie Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
27
|
Naito S, Pippin JW, Shankland SJ. The glomerular parietal epithelial cell's responses are influenced by SM22 alpha levels. BMC Nephrol 2014; 15:174. [PMID: 25376243 PMCID: PMC4247743 DOI: 10.1186/1471-2369-15-174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/22/2014] [Indexed: 12/17/2022] Open
Abstract
Background Studies have shown in several diseases initially affecting podocytes, that the neighboring glomerular parietal epithelial cells (PECs) are secondarily involved. The PEC response might be reparative under certain circumstances, yet injurious under others. The factors governing these are not well understood. We have shown that SM22α, an actin-binding protein considered a marker of smooth muscle differentiation, is upregulated in podocytes and PECs in several models of podocyte disease. However, the impact of SM22α levels on PECs is not known. Methods Experimental glomerular disease, characterized by primary podocyte injury, was induced in aged-matched SM22α +/+ and SM22α -/- mice by intraperitoneal injection of sheep anti-rabbit glomeruli antibody. Immunostaining methods were employed on days 7 and 14 of disease. Results The number of PEC transition cells, defined as cells co-expressing a PEC protein (PAX2) and podocyte protein (Synaptopodin) was higher in diseased SM22α -/- mice compared with SM22α +/+ mice. WT1 staining along Bowman’s capsule is higher in diseased SM22α -/- mice. This was accompanied by increased PEC proliferation (measured by ki-67 staining), and an increase in immunostaining for the progenitor marker NCAM, in a subpopulation of PECs in diseased SM22α -/- mice. In addition, immunostaining for vimentin and alpha smooth muscle actin, markers of epithelial-to-mesenchymal transition (EMT), was lower in diseased SM22α -/- mice compared to diseased SM22α+/+ mice. Conclusion SM22α levels may impact how PECs respond following a primary podocyte injury in experimental glomerular disease. Absent/lower levels favor an increase in PEC transition cells and PECs expressing a progenitor marker, and a lower EMT rate compared to SM22α +/+ mice, where SM22 levels are markedly increased in PECs.
Collapse
Affiliation(s)
| | | | - Stuart J Shankland
- Division of Nephrology Department of Medicine, University of Washington School of Medicine, Box 356521, 1959 NE Pacific St,, Seattle, WA 98195-6521, USA.
| |
Collapse
|
28
|
Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 2014; 26:258-69. [PMID: 25060060 DOI: 10.1681/asn.2014030278] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Loss of podocytes underlies progression of CKD. Detachment of podocytes from the glomerular basement membrane (GBM) rather than apoptosis or necrosis seems to be the major mechanism of podocyte loss. Such detachment of viable podocytes may be caused by increased mechanical distending and shear forces and/or impaired adhesion to the GBM. This review considers the mechanical challenges that may lead to podocyte loss by detachment from the GBM under physiologic and pathophysiologic conditions, including glomerular hypertension, hyperfiltration, hypertrophy, and outflow of filtrate from subpodocyte spaces. Furthermore, we detail the cellular mechanisms by which podocytes respond to these challenges, discuss the protective effects of angiotensin blockade, and note the questions that must be addressed to better understand the relationship between podocyte detachment and progression of CKD.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Institutes of Transfusion Medicine and Immunology and Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; and
| | - Kevin V Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, California; and Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
29
|
Lohmann F, Sachs M, Meyer TN, Sievert H, Lindenmeyer MT, Wiech T, Cohen CD, Balabanov S, Stahl RAK, Meyer-Schwesinger C. UCH-L1 induces podocyte hypertrophy in membranous nephropathy by protein accumulation. Biochim Biophys Acta Mol Basis Dis 2014; 1842:945-58. [PMID: 24583340 DOI: 10.1016/j.bbadis.2014.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 11/18/2022]
Abstract
Podocytes are terminally differentiated cells of the glomerular filtration barrier that react with hypertrophy in the course of injury such as in membranous nephropathy (MGN). The neuronal deubiquitinase ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed and activated in podocytes of human and rodent MGN. UCH-L1 regulates the mono-ubiquitin pool and induces accumulation of poly-ubiquitinated proteins in affected podocytes. Here, we investigated the role of UCH-L1 in podocyte hypertrophy and in the homeostasis of the hypertrophy associated "model protein" p27(Kip1). A better understanding of the basic mechanisms leading to podocyte hypertrophy is crucial for the development of specific therapies in MGN. In human and rat MGN, hypertrophic podocytes exhibited a simultaneous up-regulation of UCH-L1 and of cytoplasmic p27(Kip1) content. Functionally, inhibition of UCH-L1 activity and knockdown or inhibition of UCH-L1 attenuated podocyte hypertrophy by decreasing the total protein content in isolated glomeruli and in cultured podocytes. In contrast, UCH-L1 levels and activity increased podocyte hypertrophy and total protein content in culture, specifically of cytoplasmic p27(Kip1). UCH-L1 enhanced cytoplasmic p27(Kip1) levels by nuclear export and decreased poly-ubiquitination and proteasomal degradation of p27(Kip1). In parallel, UCH-L1 increased podocyte turnover, migration and cytoskeletal rearrangement, which are associated with known oncogenic functions of cytoplasmic p27(Kip1) in cancer. We propose that UCH-L1 induces podocyte hypertrophy in MGN by increasing the total protein content through altered degradation and accumulation of proteins such as p27(Kip1) in the cytoplasm of podocytes. Modification of both UCH-L1 activity and levels could be a new therapeutic avenue to podocyte hypertrophy in MGN.
Collapse
Affiliation(s)
- Frithjof Lohmann
- Department of Internal Medicine, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Sachs
- Department of Internal Medicine, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias N Meyer
- Department of Internal Medicine, Nephrology, Asklepios Klinikum Barmbek, Hamburg, Germany
| | - Henning Sievert
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- Institute of Physiology and Division of Nephrology, University of Zurich, Switzerland
| | - Thorsten Wiech
- Department of Pathology, Division of Renal Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D Cohen
- Institute of Physiology and Division of Nephrology, University of Zurich, Switzerland
| | | | - R A K Stahl
- Department of Internal Medicine, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
30
|
Sadek EM, Afifi NM, Elfattah LIA, Mohsen MAAE. Histological study on effect of mesenchymal stem cell therapy on experimental renal injury induced by ischemia/reperfusion in male albino rat. Int J Stem Cells 2013; 6:55-66. [PMID: 24298374 DOI: 10.15283/ijsc.2013.6.1.55] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Acute kidney injury (AKI) represents a major clinical problem with high mortality and limited treatment protocols. This study was planned to evaluate the therapeutic effectiveness of bone marrow - derived mesenchymal stem cells (BM-MSCs) in a rat model of ischemia/reperfusion (I/R) AKI. METHODS AND RESULTS This study was carried out on thirty adult male albino rats. Animals were divided equally into three groups. Group I (control sham-operated group) (n=10), were subdivided equally into two subgroups; Ia and Ib. The experimental group (n=20) were all subjected to I/R injury by clamping both renal pedicles for 40 minutes. Half of the I/R animals did not receive MSC therapy (group II) [non-MSC treated group]. The other half of the I/R animals received single intravenous injection of PKH26 labelled BM-MSCs immediately after removal of the clamps and visual confirmation of reflow (group III) [MSC treated group]. Animals were sacrificed 24 hrs (subgroups IIa & IIIa) and 72 hrs (subgroups IIb & IIIb) after intervention. Serological measurements included serum urea and creatinine. Kidney specimens were processed for H&E, PAS and PCNA. Mean % of renal corpuscles with affected glomeruli, mean % of affected tubules, mean area % of PAS-positive reaction and mean area % of PCNA immunoreactivity were measured by histomorphometric studies and statistically compared. MSCs-treated group exhibited protection against renal injury serologically and histologically. CONCLUSIONS Results of the present study suggest a potential reno-protective capacity of MSCs which could be of considerable therapeutic promise for cell-based management of clinical AKI.
Collapse
Affiliation(s)
- Eman Mostafa Sadek
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
31
|
PodNet, a protein-protein interaction network of the podocyte. Kidney Int 2013; 84:104-15. [PMID: 23552858 DOI: 10.1038/ki.2013.64] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023]
Abstract
Interactions between proteins crucially determine cellular structure and function. Differential analysis of the interactome may help elucidate molecular mechanisms during disease development; however, this analysis necessitates mapping of expression data on protein-protein interaction networks. These networks do not exist for the podocyte; therefore, we built PodNet, a literature-based mouse podocyte network in Cytoscape format. Using database protein-protein interactions, we expanded PodNet to XPodNet with enhanced connectivity. In order to test the performance of XPodNet in differential interactome analysis, we examined podocyte developmental differentiation and the effect of cell culture. Transcriptomes of podocytes in 10 different states were mapped on XPodNet and analyzed with the Cytoscape plugin ExprEssence, based on the law of mass action. Interactions between slit diaphragm proteins are most significantly upregulated during podocyte development and most significantly downregulated in culture. On the other hand, our analysis revealed that interactions lost during podocyte differentiation are not regained in culture, suggesting a loss rather than a reversal of differentiation for podocytes in culture. Thus, we have developed PodNet as a valuable tool for differential interactome analysis in podocytes, and we have identified established and unexplored regulated interactions in developing and cultured podocytes.
Collapse
|
32
|
Chen CA, Cheng YC, Hwang JC, Chang JM, Guh JY, Chen HC. Cyclin D1 expression in podocytes: regulated by mitogens in collaboration with integrin-extracellular matrix interaction through extracellular signal-regulated kinase. Exp Biol Med (Maywood) 2012; 237:516-23. [PMID: 22678010 DOI: 10.1258/ebm.2012.011156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cyclin D1 plays significant roles in cell cycle entry and migration. We have documented that both integrin α3β1 expressions and the number of podocytes were reduced in focal segmental glomerulosclerosis. We wondered whether integrin-extracellular matrix (ECM) interaction was involved in the regulation of cyclin D1 expression, and the possible signaling pathways in mitogen-stimulating podocytes. Cultured podocytes were divided into serum (mitogens/growth factors)-starved and serum-stimulated groups. Reverse transcription polymerase chain reaction was used to detect cyclin D1 mRNA, and Western blot analysis was used to measure protein concentrations of cyclin D1 and extracellular signal-regulated kinase (ERK) activation (p-ERK/ERK). The integrin-ECM interaction was blocked by anti-β1-integrin monoclonal antibody or RGDS (Arg-Gly-Asp-Ser). The MEK inhibitor, U0126, was used to inhibit ERK activation. The results showed that there was little cyclin D1 protein in serum-starved groups, but it was abundant in serum-stimulated groups. Both cyclin D1 mRNA and protein levels were reduced in serum-stimulated podocytes after blocking integrin-ECM interaction. ERK activation in serum-stimulated podocytes was significantly decreased after blocking integrin-ECM interaction. Cyclin D1 mRNA and protein concentrations in serum-stimulated podocytes were reduced after blocking ERK activation by U0126. We demonstrate that integrin-ECM interaction collaborates with mitogens to activate ERK/mitogen-activated protein kinase pathways which are essential for cyclin D1 expression in podocytes.
Collapse
Affiliation(s)
- Chien-An Chen
- Division of Nephrology, Tainan Sinlau Hospital, Tainan 70142, Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
SSeCKS sequesters cyclin D1 in glomerular parietal epithelial cells and influences proliferative injury in the glomerulus. J Transl Med 2012; 92:499-510. [PMID: 22249313 DOI: 10.1038/labinvest.2011.199] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Glomerular parietal epithelial cells (PECs) are precursors to podocytes in mature glomeruli; however, as progenitors, the distinct intrinsic mechanisms that allow for repeated periods of cell-cycle arrest and re-entry of PECs after glomerulogenesis are unknown. Here, we show that the Src-suppressed protein kinase C substrate (SSeCKS), a multivalent scaffolding A kinase anchoring protein, sequesters cyclin D1 in the cytoplasm of quiescent PECs. SSeCKS expression is induced in embryonic PECs, but not in embryonic podocytes, starting at the S phase of glomerulogenesis, and is constitutively expressed postnatally by PECs, but not podocytes, in normal glomeruli. Cyclin D1 was immunoprecipitated with SSeCKS from capsulated glomeruli containing PECs, whereas decapsulated glomeruli without PECs lacked SSeCKS and cyclin D1. Cell-cell contact inhibition of proliferation in cultured PECs induced SSeCKS expression and binding of cyclin D1 by SSeCKS in the cytoplasm, whereas phosphorylation of SSeCKS by activated protein kinase C disrupted binding, resulting in nuclear translocation of cyclin D1. SSeCKS(-/-) mice showed hyperplasia of PECs in otherwise normal glomeruli and developed significantly worse proteinuric glomerular disease, marked by increased PEC proliferation and expression of nuclear cyclin D1, from nephrotoxic nephritis. These results suggest that SSeCKS controls the localization and activity of cyclin D1 in PECs and influences proliferative injury in the glomerulus.
Collapse
|
34
|
Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nat Med 2011; 18:111-9. [PMID: 22138751 PMCID: PMC3272332 DOI: 10.1038/nm.2550] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/09/2011] [Indexed: 01/23/2023]
Abstract
Mechanisms of epithelial cell renewal remain poorly understood in the mammalian kidney, particularly in the glomerulus, a site of cellular damage in chronic kidney disease. Within the glomerulus, podocytes--differentiated epithelial cells crucial for filtration--are thought to lack substantial capacity for regeneration. Here we show that podocytes rapidly lose differentiation markers and enter the cell cycle in adult mice in which the telomerase protein component TERT is conditionally expressed. Transgenic TERT expression in mice induces marked upregulation of Wnt signaling and disrupts glomerular structure, resulting in a collapsing glomerulopathy resembling those in human disease, including HIV-associated nephropathy (HIVAN). Human and mouse HIVAN kidneys show increased expression of TERT and activation of Wnt signaling, indicating that these are general features of collapsing glomerulopathies. Silencing transgenic TERT expression or inhibiting Wnt signaling through systemic expression of the Wnt inhibitor Dkk1 in either TERT transgenic mice or in a mouse model of HIVAN results in marked normalization of podocytes, including rapid cell-cycle exit, re-expression of differentiation markers and improved filtration barrier function. These data reveal an unexpected capacity of podocytes to reversibly enter the cell cycle, suggest that podocyte renewal may contribute to glomerular homeostasis and implicate the telomerase and Wnt-β-catenin pathways in podocyte proliferation and disease.
Collapse
|
35
|
Takagi-Akiba M, Asanuma K, Tanida I, Tada N, Oliva Trejo JA, Nonaka K, Asanuma E, Kominami E, Ueno T, Tomino Y. Doxorubicin-induced glomerulosclerosis with proteinuria in GFP-GABARAP transgenic mice. Am J Physiol Renal Physiol 2011; 302:F380-9. [PMID: 22049402 DOI: 10.1152/ajprenal.00502.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autophagy is a process of cellular degradation, and its dysfunction elicits many pathological symptoms. However, the contribution of autophagy to kidney glomerular function has not been fully clarified. We previously reported that LC3, a promising executor of autophagy, played an important role in recovery from podocyte damage in an experimental nephrosis model (Asanuma K, Tanida I, Shirato I, Ueno T, Takahara H, Nishitani T, Kominami E, Tomino Y. FASEB J 17: 1165-1167, 2003). γ-Aminobutyric acid A receptor-associated protein (GABARAP), has recently been characterized as another homolog of LC3, although its precise role in autophagy remains unclear. We recently generated green fluorescent protein (GFP)-GABARAP transgenic mice, in which GFP-GABARAP is abundantly expressed in glomerular podocytes. We found that the transgenic mice showed no obvious phenotype, and podocytes isolated from these mice manifested autophagic activity almost equivalent to that of wild-type mice when measured in vitro. Surprisingly, a single injection of doxorubicin caused a greater increase in proteinuria and sclerotic glomeruli in transgenic mice compared with wild-type mice. Under these conditions, neither GFP-GABARAP nor endogenous GABARAP appeared to be recruited to autophagosomes, and both remained in the cytosol. Moreover, the cytosolic GFP-GABARAP was significantly colocalized with p62 to form aggregates. These results indicate that the GFP-GABARAP/p62 complex is responsible for impairment of glomerular function and that it retards recovery from the effects of doxorubicin.
Collapse
Affiliation(s)
- Miyuki Takagi-Akiba
- Div. of Nephrology, Dept. of Internal Medicine, Juntendo Univ., Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The role of podocytes in the early detection of pre-eclampsia. Pregnancy Hypertens 2011; 2:43-7. [PMID: 26104989 DOI: 10.1016/j.preghy.2011.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Pre-eclampsia is a significant cause of maternal and neonatal mortality and morbidity in resource constrained countries. Because the exact aetiology is unknown, treatment of preeclampsia is empiric. Therefore, researchers have been investigating biomarkers for early detection of the syndrome to take steps to prevent complications. The kidney is reported to be affected by the preeclamptic process before clinical signs appear. Podocytes have been suggested as possible markers for this syndrome. However there is debate as to which is the best way to measure the amount of podocyturia. OBJECTIVE To determine the best method to estimate podocyturia as a biomarker. METHODS Midstream urine specimens were collected from 18 normotensive healthy primigravidae at their first antenatal visit. Urinary podocyte immunolabelling was performed by two techniques viz., culture and cytospin on urine from normotensive and clinically healthy pregnant women. MAIN OUTCOME MEASURED Are the podocyte specific proteins, podocalyxin, podocin, nephrin and synaptopodin able to detect pre-eclampsia prior to the development of clinical signs as measured by two separate techniques. RESULTS The results suggest that the expression of podocyte specific proteins, podocalyxin, podocin, nephrin and synaptopodin, is identifiable and quantifiable from midstream urine in healthy normotensive pregnant women. Cytospin was more efficient in determining the podocyte specific protein expression levels and podocalyxin was the most sensitive marker, with a Kappa coefficient of 0.23. CONCLUSIONS These findings suggest that immuno-expression of podocyturia are best detected by the cytospin method.
Collapse
|
37
|
Shimizu A, Higo S, Fujita E, Mii A, Kaneko T. Focal segmental glomerulosclerosis after renal transplantation. Clin Transplant 2011; 25 Suppl 23:6-14. [PMID: 21623907 DOI: 10.1111/j.1399-0012.2011.01452.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a clinicopathologic syndrome of proteinuria, usually of nephrotic range, associated with focal and segmental sclerotic glomerular lesions. Therefore, FSGS is diagnosed by clinical features and histopathological examination of renal biopsy. The natural history of the condition varies, and although it may respond to treatment, FSGS is an important disease in the etiology of end-stage renal disease (ESRD). Furthermore, after kidney transplantation, approximately 30% of patients with FSGS develop recurrent FSGS. The risk factors for recurrence of FSGS include childhood onset and age <15 yr, rapid progression of the primary FSGS to ESRD, recurrence of FSGS in a previous allograft, diffuse mesangial hypercellularity in the native kidney, collapsing FSGS, and podocin gene mutation. In addition, after kidney transplantation, de novo FSGS also develops in approximately 10-20% of allografts, associated with a complication of hyperfiltration injury, chronic transplant glomerulopathy, and calcineurin inhibitor toxicity. FSGS is considered a podocyte disease, and the pathology is characterized by segmental FSGS lesion with glomerular epithelial hypercellularity. The pathological diagnosis of FSGS is based on the 2004 Columbia classification system. In the present minireview, we discuss the pathology of recurrence and de novo FSGS after kidney transplantation.
Collapse
Affiliation(s)
- Akira Shimizu
- Department of Pathology (Analytic Human Pathology), Nippon Medical School, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
38
|
Nguyen ANT, Jansson K, Sánchez G, Sharma M, Reif GA, Wallace DP, Blanco G. Ouabain activates the Na-K-ATPase signalosome to induce autosomal dominant polycystic kidney disease cell proliferation. Am J Physiol Renal Physiol 2011; 301:F897-906. [PMID: 21697238 DOI: 10.1152/ajprenal.00095.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Na-K-ATPase is part of a cell signaling complex, the Na-K-ATPase signalosome, which upon activation by the hormone ouabain regulates the function of different cell types. We previously showed that ouabain induces proliferation of epithelial cells derived from renal cysts of patients with autosomal dominant polycystic kidney disease (ADPKD cells). Here, we investigated the signaling pathways responsible for mediating the effects of ouabain in these cells. Incubation of ADPKD cells with ouabain, in concentrations similar to those found in blood, stimulated phosphorylation of the epidermal growth factor receptor (EGFR) and promoted its association to the Na-K-ATPase. In addition, ouabain activated the kinase Src, but not the related kinase Fyn. Tyrphostin AG1478 and PP2, inhibitors of EGFR and Src, respectively, blocked ouabain-dependent ADPKD cell proliferation. Treatment of ADPKD cells with ouabain also caused phosphorylation of the caveolar protein caveolin-1, and disruption of cell caveolae with methyl-β-cyclodextrin prevented Na-K-ATPase-EGFR interaction and ouabain-induced proliferation of the cells. Downstream effects of ouabain in ADPKD cells included activation of B-Raf and MEK and phosphorylation of the extracellular regulated kinase ERK, which translocated into the ADPKD cell nuclei. Finally, ouabain reduced expression of the cyclin-dependent kinase inhibitors p21 and p27, which are suppressors of cell proliferation. Different from ADPKD cells, ouabain showed no significant effect on B-Raf, p21, and p27 in normal human kidney epithelial cells. Altogether, these results identify intracellular pathways of ouabain-dependent Na-K-ATPase-mediated signaling in ADPKD cells, including EGFR-Src-B-Raf-MEK/ERK, and establish novel mechanisms involved in ADPKD cell proliferation.
Collapse
Affiliation(s)
- Anh-Nguyet T Nguyen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Schönenberger E, Ehrich JH, Haller H, Schiffer M. The podocyte as a direct target of immunosuppressive agents. Nephrol Dial Transplant 2010; 26:18-24. [PMID: 20937691 DOI: 10.1093/ndt/gfq617] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Podocytes play a key role in maintaining the blood-urine barrier for high-molecular-weight proteins. They are considered to be terminally differentiated, and podocyte loss cannot be compensated by regenerative proliferation. Various diseases leading to podocyte damage and loss result in proteinuria and cause nephrotic syndrome. Therefore, direct therapeutical strategies to protect podocytes in disease situations are a logical concept to prevent disease or to delay disease progression. Acquired podocytopathies like idiopathic focal segmental glomerulosclerosis and minimal change disease are historically considered as immunological diseases. Therefore, immunosuppressive agents such as steroids and calcineurin inhibitors are the commonly used treatment strategies. However, the causative disease mechanisms behind these treatment strategies remain elusive. Recent evidence shows that immunosuppressive agents, in addition to the effect on the immune system, directly influence the unique structure and function of podocytes. In this context, the actin cytoskeleton of the podocyte and cytokines such as vascular endothelial growth factor play a pivotal role. In this review, we summarize the direct effects on podocytes obtained in vivo and in vitro after treatment with calcineurin inhibitors, mTOR inhibitors and glucocorticoids. These direct effects could play a key role in the treatment concepts of podocytopathies with an important impact on the long-term renal function in patients with pharmacological immunosuppression.
Collapse
|
40
|
Lindenmeyer MT, Eichinger F, Sen K, Anders HJ, Edenhofer I, Mattinzoli D, Kretzler M, Rastaldi MP, Cohen CD. Systematic analysis of a novel human renal glomerulus-enriched gene expression dataset. PLoS One 2010; 5:e11545. [PMID: 20634963 PMCID: PMC2902524 DOI: 10.1371/journal.pone.0011545] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/16/2010] [Indexed: 02/04/2023] Open
Abstract
Glomerular diseases account for the majority of cases with chronic renal failure. Several genes have been identified with key relevance for glomerular function. Quite a few of these genes show a specific or preferential mRNA expression in the renal glomerulus. To identify additional candidate genes involved in glomerular function in humans we generated a human renal glomerulus-enriched gene expression dataset (REGGED) by comparing gene expression profiles from human glomeruli and tubulointerstitium obtained from six transplant living donors using Affymetrix HG-U133A arrays. This analysis resulted in 677 genes with prominent overrepresentation in the glomerulus. Genes with 'a priori' known prominent glomerular expression served for validation and were all found in the novel dataset (e.g. CDKN1, DAG1, DDN, EHD3, MYH9, NES, NPHS1, NPHS2, PDPN, PLA2R1, PLCE1, PODXL, PTPRO, SYNPO, TCF21, TJP1, WT1). The mRNA expression of several novel glomerulus-enriched genes in REGGED was validated by qRT-PCR. Gene ontology and pathway analysis identified biological processes previously not reported to be of relevance in glomeruli of healthy human adult kidneys including among others axon guidance. This finding was further validated by assessing the expression of the axon guidance molecules neuritin (NRN1) and roundabout receptor ROBO1 and -2. In diabetic nephropathy, a prevalent glomerulopathy, differential regulation of glomerular ROBO2 mRNA was found.In summary, novel transcripts with predominant expression in the human glomerulus could be identified using a comparative strategy on microdissected nephrons. A systematic analysis of this glomerulus-specific gene expression dataset allows the detection of target molecules and biological processes involved in glomerular biology and renal disease.
Collapse
Affiliation(s)
- Maja T. Lindenmeyer
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Institute of Physiology with Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Felix Eichinger
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kontheari Sen
- Institute of Physiology with Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Ilka Edenhofer
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Matthias Kretzler
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Maria P. Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Clemens D. Cohen
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Institute of Physiology with Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Aasebø W, Strøm EH, Hovig T, Undset LH, Heiberg A, Jenssen T. Fabry disease in donor kidneys with 3- and 12-year follow-up after transplantation. NDT Plus 2010; 3:303-305. [PMID: 28657066 PMCID: PMC5477959 DOI: 10.1093/ndtplus/sfq036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 01/06/2010] [Accepted: 03/01/2010] [Indexed: 11/12/2022] Open
Abstract
Enzyme replacement therapy (ERT) has been introduced for Fabry disease and has been reported to clear some renal cell types of accumulated glycolipids and to reduce the accumulation in other cell types. We describe two patients without Fabry disease who were transplanted with kidney allografts from a male donor with Fabry disease. Biopsies were taken at transplantation and after 3 years in the first case and after 12 years in the second case. Even though these Fabry kidney allografts for many years had been exposed to normal levels of circulating α-galactosidase A (α-gal-A), the amount of accumulated lysosomal deposits in the podocytes remained unchanged. Additionally, small deposits were also found in tubular cells and glomerular endothelial cells as long as 12 years after transplantation.
Collapse
Affiliation(s)
- Willy Aasebø
- Section of Nephrology, Rikshospitalet, Oslo University Hospital, 0027, Oslo, Norway.,Section of Nephrology, Akerhus University Hospital, Sykehusveien 25, 1474 Norbyhagen, Norway
| | - Erik H Strøm
- Division of Pathology, Rikshospitalet, Oslo University Hospital, 0027, Oslo, Norway
| | - Torstein Hovig
- Division of Pathology, Rikshospitalet, Oslo University Hospital, 0027, Oslo, Norway
| | - Liv H Undset
- Section of Nephrology, Rikshospitalet, Oslo University Hospital, 0027, Oslo, Norway
| | - Arvid Heiberg
- Division of Genetics, Rikshospitalet, Oslo University Hospital, 0027, Oslo, Norway
| | - Trond Jenssen
- Section of Nephrology, Rikshospitalet, Oslo University Hospital, 0027, Oslo, Norway.,Institute of Clinical Medicine, University of Tromsø, 9037, Tromsø, Norway
| |
Collapse
|
42
|
Marshall CB, Krofft RD, Pippin JW, Shankland SJ. CDK inhibitor p21 is prosurvival in adriamycin-induced podocyte injury, in vitro and in vivo. Am J Physiol Renal Physiol 2010; 298:F1140-51. [PMID: 20130121 DOI: 10.1152/ajprenal.00216.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In response to injury, the highly specialized and terminally differentiated glomerular visceral epithelial cell, or podocyte, may undergo several cell fates, including dedifferentiation and proliferation, persistent cell cycle arrest, hypertrophy, apoptosis, or necrosis. Common to these potential outcomes of injury is their ultimate regulation at the level of the cell cycle. There is now a large body of literature confirming the importance of cell cycle regulatory proteins in the cellular response to injury. Although CDK inhibitor p21 levels increase in podocytes following injury, the role of p21 is unclear in focal segmental glomerulosclerosis (FSGS), in part because its function depends heavily on the cytotoxic stimulus and the cellular context. Adriamycin (ADR) is a podocyte toxin used to induce experimental FSGS. The purpose of this study was to define the role of p21 in ADR-induced podocyte injury. BALB/c mice, a strain carrying the recessive ADR susceptibility gene, were backcrossed against c57B6 p21-/- mice to yield a 12th generation BALB/c p21-/- strain. Experimental FSGS was induced by injection of ADR 12 mg/kg × 2 doses (n = 8/group), with mice killed at 1, 2, 8, and 11 wk. Diseased p21-/- mice demonstrated worse albuminuria, more widespread glomerulosclerosis, and higher blood urea nitrogen compared with diseased p21+/+ mice. In diseased p21-/- mice vs. p21+/+ mice, apoptosis [measured by TdT-mediated dUTP nick end labeling (TUNEL) assay] was increased, and podocyte number (measured by WT-1 immunostaining) was decreased. To validate these findings in vitro, we utilized differentiated mouse podocytes, p21-/- and p21+/+, exposed to 0.125 μg/ml ADR. Apoptosis, measured by Hoechst 33342 staining and TUNEL assay, was greater in cultured p21-/- podocytes compared with p21+/+ podocytes. Reconstitution of p21 via retroviral transfection rescued the p21-/- podocytes from apoptosis. We conclude that p21 is prosurvival in the podocyte's response to ADR-induced injury. Ongoing studies are defining the mechanisms of this protective effect as it relates to DNA damage and apoptosis.
Collapse
Affiliation(s)
- Caroline B Marshall
- Division of Nephrology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
43
|
|
44
|
|
45
|
Dessapt C, Baradez MO, Hayward A, Dei Cas A, Thomas SM, Viberti G, Gnudi L. Mechanical forces and TGFbeta1 reduce podocyte adhesion through alpha3beta1 integrin downregulation. Nephrol Dial Transplant 2009; 24:2645-55. [PMID: 19420102 DOI: 10.1093/ndt/gfp204] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Podocyturia is a marker of diabetic nephr- opathy, a possible determinant of its progression and a powerful risk factor for cardiovascular disease. A reduction in podocyte adhesion to the glomerular basement membrane (GBM) via downregulation of alpha3beta1 integrin expression, the main podocyte anchoring dimer to the GBM, may represent one of the mechanisms of podocyturia in glomerular disease. This study investigated the role of mechanical forces and transforming growth factor beta1 (TGFbeta1) in podocyte adhesion and integrin expression. METHODS Conditionally immortalized murine podocytes were exposed to mechanical stretch and/or TGFbeta1 for 48 h. Podocyte adhesion, apoptosis and alpha3beta1 integrin expression were assessed. RESULTS Stretch and TGFbeta1 significantly reduced podocyte adhesion and alpha3beta1 integrin expression, events paralleled by increased apoptosis. Blockade of beta1 integrin, with a specific antibody, demonstrated a reduced podocyte adhesion indicating that beta1 integrin downregulation was required for the loss of podocyte adhesion. This was linked to an increase in podocyte apoptosis. The role of apoptosis in podocyte adhesion was further investigated using caspase-3 inhibitors. Podocyte apoptosis inhibition did not affect stretch- and TGFbeta1-mediated integrin downregulation and the loss of podocyte adhesion, suggesting that alpha3beta1 integrin downregulation is sufficient to alter cell adhesion. Although stretch significantly increased podocyte TGFbeta type I, II and III receptors but not podocyte TGFbeta1 secretion, the combination of stretch and TGFbeta1 did not show any additive or synergistic effects on podocyte adhesion and alpha3beta1 integrin expression. CONCLUSIONS These results suggest that downregulation of alpha3beta1 integrin expression, by mechanical forces or TGFbeta1, is per se sufficient to reduce podocyte adhesion. Apoptosis may represent a parallel important determinant of the podocyte loss from the GBM.
Collapse
|
46
|
The association of cell cycle checkpoint 2 variants and kidney function: findings of the Family Blood Pressure Program and the Atherosclerosis Risk In Communities study. Am J Hypertens 2009; 22:552-8. [PMID: 19265784 DOI: 10.1038/ajh.2009.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent experimental evidence suggests that DNA damage and cell cycle regulatory proteins are involved in kidney injury and apoptosis. The checkpoint 2 gene (CHEK2) is an important transducer in DNA damage signaling pathways in response to injury, and therefore, CHEK2 variants may affect susceptibility to kidney disease. METHODS We used tag-single-nucleotide polymorphisms (tag-SNPs) to evaluate the association of the CHEK2 with kidney function (estimated glomerular filtration rate, eGFR) in 1,549 African-American and 1,423 white Hypertension Genetic Epidemiology Network (HyperGEN) participants. We performed replication analyses in the Genetic Epidemiology Network of Arteriopathy (GENOA) participants (1,746 African Americans and 1,418 whites), GenNet participants (706 whites), and Atherosclerosis Risk in Communities (ARIC) study participants (3,783 African Americans and 10,936 whites). All analyses were race-stratified and used additive genetic models with adjustments for covariates and for family structure, if needed. RESULTS One tag-SNP, rs5762764, was associated with eGFR in HyperGEN (P = 0.003) and GENOA white participants (P = 0.009), and it was significantly associated with eGFR in meta-analyses (P = 0.002). The associations were independent of type 2 diabetes. CONCLUSIONS These results suggest that CHEK2 variants may influence eGFR in the context of hypertension.
Collapse
|
47
|
Macconi D, Sangalli F, Bonomelli M, Conti S, Condorelli L, Gagliardini E, Remuzzi G, Remuzzi A. Podocyte repopulation contributes to regression of glomerular injury induced by ACE inhibition. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:797-807. [PMID: 19164508 DOI: 10.2353/ajpath.2009.080227] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Angiotensin-converting enzyme (ACE) inhibition induces glomerular repair in the Munich Wistar Frömter (MWF) rat, a model of spontaneous glomerular injury. In this study, we investigated whether this effect is related to changes in glomerular cell number, particularly of podocytes, which are progressively lost with age. MWF rats with advanced nephropathy were studied at both 40 weeks and after 20 weeks of observation either with or without treatment with the ACE inhibitor lisinopril. Forty-week-old Wistar rats were used as controls. In untreated MWF rats, proteinuria, hypertension, glomerulosclerosis, and renal function worsened, while lisinopril induced regression of both functional and structural changes. Despite glomerular hypercellularity in untreated MWF rats, the number of endothelial cells per glomerulus did not change, and podocyte number even decreased. ACE inhibition halted the progressive increase in glomerular cell number and enhanced endothelial cell volume density. Surprisingly, lisinopril not only halted age-related podocyte loss but also increased the number of glomerular podocytes above baseline, which was associated with an increased number of proliferating Wilms tumor 1-positive cells, loss of cyclin-dependent kinase inhibitor p27 expression, and increased number of parietal podocytes. These data indicate that ACE inhibition restructures glomerular capillary, primarily by restoring the podocyte population in this model of glomerular injury. Increased parietal podocyte number in lisinopril-treated MWF rats suggests that the remodeling of Bowman's capsule epithelial cells contributes to this effect.
Collapse
Affiliation(s)
- Daniela Macconi
- Mario Negri Institute for Pharmacological Research, Department of Biomedical Engineering, Laboratory of Renal Biophysics, Via Gavazzeni, 11, 24125 Bergamo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Focal segmental glomerulosclerosis (FSGS) is a disease with diverse histologic patterns and etiologic associations. Genetic, toxic, infectious and inflammatory mediators have been identified. This review will focus on new evidence supporting the potential mechanistic basis underlying the histologic variants and their clinical relevance. RECENT FINDINGS Evidence from animal models and in-vitro studies suggests that injury inherent within or directed to the podocyte is a central pathogenetic factor. Disruption of signaling from any of the podocyte's specialized membrane domains, including slit diaphragm, apical and basal membranes, or originating at the level of the actin cytoskeleton, may promote the characteristic response of foot process effacement. Irreversible podocyte stress leading to podocyte depletion through apoptosis or detachment is a critical mechanism in most forms of FSGS. In the collapsing variant, podocyte dysregulation leads to podocyte dedifferentiation and glomerular epithelial cell proliferation. SUMMARY Translation studies in humans and new evidence from animal models have provided mechanistic insights into the diverse phenotypes of FSGS.
Collapse
|
49
|
Ruster C, Bondeva T, Franke S, Forster M, Wolf G. Advanced glycation end-products induce cell cycle arrest and hypertrophy in podocytes. Nephrol Dial Transplant 2008; 23:2179-91. [DOI: 10.1093/ndt/gfn085] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|