1
|
Zhang JJ, Fu H, Lin R, Zhou J, Haider A, Fang W, Elghazawy NH, Rong J, Chen J, Li Y, Ran C, Collier TL, Chen Z, Liang SH. Imaging Cholinergic Receptors in the Brain by Positron Emission Tomography. J Med Chem 2023; 66:10889-10916. [PMID: 37583063 PMCID: PMC10461233 DOI: 10.1021/acs.jmedchem.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/17/2023]
Abstract
Cholinergic receptors represent a promising class of diagnostic and therapeutic targets due to their significant involvement in cognitive decline associated with neurological disorders and neurodegenerative diseases as well as cardiovascular impairment. Positron emission tomography (PET) is a noninvasive molecular imaging tool that has helped to shed light on the roles these receptors play in disease development and their diverse functions throughout the central nervous system (CNS). In recent years, there has been a notable advancement in the development of PET probes targeting cholinergic receptors. The purpose of this review is to provide a comprehensive overview of the recent progress in the development of these PET probes for cholinergic receptors with a specific focus on ligand structure, radiochemistry, and pharmacology as well as in vivo performance and applications in neuroimaging. The review covers the structural design, pharmacological properties, radiosynthesis approaches, and preclinical and clinical evaluations of current state-of-the-art PET probes for cholinergic receptors.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hualong Fu
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruofan Lin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ahmed Haider
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Weiwei Fang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Nehal H. Elghazawy
- Department
of Pharmaceutical, Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Jian Rong
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02114, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Myslivecek J. Multitargeting nature of muscarinic orthosteric agonists and antagonists. Front Physiol 2022; 13:974160. [PMID: 36148314 PMCID: PMC9486310 DOI: 10.3389/fphys.2022.974160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Muscarinic receptors (mAChRs) are typical members of the G protein-coupled receptor (GPCR) family and exist in five subtypes from M1 to M5. Muscarinic receptor subtypes do not sufficiently differ in affinity to orthosteric antagonists or agonists; therefore, the analysis of receptor subtypes is complicated, and misinterpretations can occur. Usually, when researchers mainly specialized in CNS and peripheral functions aim to study mAChR involvement in behavior, learning, spinal locomotor networks, biological rhythms, cardiovascular physiology, bronchoconstriction, gastrointestinal tract functions, schizophrenia, and Parkinson's disease, they use orthosteric ligands and they do not use allosteric ligands. Moreover, they usually rely on manufacturers' claims that could be misleading. This review aimed to call the attention of researchers not deeply focused on mAChR pharmacology to this fact. Importantly, limited selective binding is not only a property of mAChRs but is a general attribute of most neurotransmitter receptors. In this review, we want to give an overview of the most common off-targets for established mAChR ligands. In this context, an important point is a mention the tremendous knowledge gap on off-targets for novel compounds compared to very well-established ligands. Therefore, we will summarize reported affinities and give an outline of strategies to investigate the subtype's function, thereby avoiding ambiguous results. Despite that, the multitargeting nature of drugs acting also on mAChR could be an advantage when treating such diseases as schizophrenia. Antipsychotics are a perfect example of a multitargeting advantage in treatment. A promising strategy is the use of allosteric ligands, although some of these ligands have also been shown to exhibit limited selectivity. Another new direction in the development of muscarinic selective ligands is functionally selective and biased agonists. The possible selective ligands, usually allosteric, will also be listed. To overcome the limited selectivity of orthosteric ligands, the recommended process is to carefully examine the presence of respective subtypes in specific tissues via knockout studies, carefully apply "specific" agonists/antagonists at appropriate concentrations and then calculate the probability of a specific subtype involvement in specific functions. This could help interested researchers aiming to study the central nervous system functions mediated by the muscarinic receptor.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Ozenil M, Aronow J, Millard M, Langer T, Wadsak W, Hacker M, Pichler V. Update on PET Tracer Development for Muscarinic Acetylcholine Receptors. Pharmaceuticals (Basel) 2021; 14:530. [PMID: 34199622 PMCID: PMC8229778 DOI: 10.3390/ph14060530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
The muscarinic cholinergic system regulates peripheral and central nervous system functions, and, thus, their potential as a therapeutic target for several neurodegenerative diseases is undoubted. A clinically applicable positron emission tomography (PET) tracer would facilitate the monitoring of disease progression, elucidate the role of muscarinic acetylcholine receptors (mAChR) in disease development and would aid to clarify the diverse natural functions of mAChR regulation throughout the nervous system, which still are largely unresolved. Still, no mAChR PET tracer has yet found broad clinical application, which demands mAChR tracers with improved imaging properties. This paper reviews strategies of mAChR PET tracer design and summarizes the binding properties and preclinical evaluation of recent mAChR tracer candidates. Furthermore, this work identifies the current major challenges in mAChR PET tracer development and provides a perspective on future developments in this area of research.
Collapse
Affiliation(s)
- Marius Ozenil
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Jonas Aronow
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marlon Millard
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| |
Collapse
|
4
|
Naganawa M, Nabulsi N, Henry S, Matuskey D, Lin SF, Slieker L, Schwarz AJ, Kant N, Jesudason C, Ruley K, Navarro A, Gao H, Ropchan J, Labaree D, Carson RE, Huang Y. First-in-Human Assessment of 11C-LSN3172176, an M1 Muscarinic Acetylcholine Receptor PET Radiotracer. J Nucl Med 2020; 62:553-560. [PMID: 32859711 DOI: 10.2967/jnumed.120.246967] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/09/2020] [Indexed: 01/25/2023] Open
Abstract
This was a first-in-human study of the PET radiotracer 11C-LSN3172176 for the muscarinic acetylcholine receptor subtype M1. The objectives of the study were to determine the appropriate kinetic model to quantify binding of the tracer to M1 receptors, and the reliability of the chosen quantification method. Methods: Six healthy subjects completed the test-retest protocol, and 5 healthy subjects completed the baseline-scopolamine blocking protocol. Multiple modeling methods were applied to calculate total distribution volume (V T) and nondisplaceable binding potential (BP ND) in various brain regions. The reference region was selected from the blocking study. The occupancy plot was applied to compute receptor occupancy by scopolamine and nondisplaceable distribution volume. Results: Tracer uptake was highest in the striatum, followed by neocortical regions and white matter, and lowest in the cerebellum. Regional time-activity curves were fitted well by all models. The 2-tissue-compartment (2TC) model fits were good, but the 2TC parameters often could not be reliably estimated. Because V T correlated well between the 2TC and 1-tissue-compartment (1TC) models after exclusion of unreliable estimates, the 1TC model was chosen as the most appropriate. The cerebellum showed the lowest V T, consistent with preclinical studies showing little to no specific binding in the region. Further, cerebellar V T did not change between baseline and blocking scans, indicating that the cerebellum is a suitable reference region. The simplified reference tissue model (SRTM) slightly underestimated 1TC BP ND, and the simplified reference tissue model 2 (SRTM2) improved BP ND estimation. An 80-min scan was sufficient to quantify V T and BP ND The test-retest study showed excellent absolute test-retest variability for 1TC V T (≤5%) and BP ND (≤10%). In the baseline and blocking studies, occupancy values were lower in the striatum than in nonstriatal regions, as may be attributed to differences in regional acetylcholine concentrations. Conclusion: The 1TC and SRTM2 models are appropriate for quantitative analysis of 11C-LSN3172176 imaging data. 11C-LSN3172176 displayed excellent test-retest reproducibility and is a highly promising ligand to quantify M1 receptors in the human brain.
Collapse
Affiliation(s)
- Mika Naganawa
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Nabeel Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Shannan Henry
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - David Matuskey
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Shu-Fei Lin
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | | | | | - Nancy Kant
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - Kevin Ruley
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - Hong Gao
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Jim Ropchan
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - David Labaree
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
5
|
Mogg AJ, Eessalu T, Johnson M, Wright R, Sanger HE, Xiao H, Crabtree MG, Smith A, Colvin EM, Schober D, Gehlert D, Jesudason C, Goldsmith PJ, Johnson MP, Felder CC, Barth VN, Broad LM. In Vitro Pharmacological Characterization and In Vivo Validation of LSN3172176 a Novel M1 Selective Muscarinic Receptor Agonist Tracer Molecule for Positron Emission Tomography. J Pharmacol Exp Ther 2018; 365:602-613. [PMID: 29643252 DOI: 10.1124/jpet.117.246454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
In the search for improved symptomatic treatment options for neurodegenerative and neuropsychiatric diseases, muscarinic acetylcholine M1 receptors (M1 mAChRs) have received significant attention. Drug development efforts have identified a number of novel ligands, some of which have advanced to the clinic. However, a significant issue for progressing these therapeutics is the lack of robust, translatable, and validated biomarkers. One valuable approach to assessing target engagement is to use positron emission tomography (PET) tracers. In this study we describe the pharmacological characterization of a selective M1 agonist amenable for in vivo tracer studies. We used a novel direct binding assay to identify nonradiolabeled ligands, including LSN3172176, with the favorable characteristics required for a PET tracer. In vitro functional and radioligand binding experiments revealed that LSN3172176 was a potent partial agonist (EC50 2.4-7.0 nM, Emax 43%-73%), displaying binding selectivity for M1 mAChRs (Kd = 1.5 nM) that was conserved across species (native tissue Kd = 1.02, 2.66, 8, and 1.03 at mouse, rat, monkey, and human, respectively). Overall selectivity of LSN3172176 appeared to be a product of potency and stabilization of the high-affinity state of the M1 receptor, relative to other mAChR subtypes (M1 > M2, M4, M5 > M3). In vivo, use of wild-type and mAChR knockout mice further supported the M1-preferring selectivity profile of LSN3172176 for the M1 receptor (78% reduction in cortical occupancy in M1 KO mice). These findings support the development of LSN3172176 as a potential PET tracer for assessment of M1 mAChR target engagement in the clinic and to further elucidate the function of M1 mAChRs in health and disease.
Collapse
Affiliation(s)
- Adrian J Mogg
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Thomas Eessalu
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Megan Johnson
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Rebecca Wright
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Helen E Sanger
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Hongling Xiao
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Michael G Crabtree
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Alex Smith
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Ellen M Colvin
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Douglas Schober
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Donald Gehlert
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Cynthia Jesudason
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Paul J Goldsmith
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Michael P Johnson
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Christian C Felder
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Vanessa N Barth
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Lisa M Broad
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| |
Collapse
|
6
|
Abstract
Xanomeline (1) is an orthosteric muscarinic acetylcholine receptor (mAChR) agonist, often referred to as M1/M4-preferring, that received widespread attention for its clinical efficacy in schizophrenia and Alzheimer's disease (AD) patients. Despite the compound's promising initial clinical results, dose-limiting side effects limited further clinical development. While xanomeline, and related orthosteric muscarinic agonists, have yet to receive approval from the FDA for the treatment of these CNS disorders, interest in the compound's unique M1/M4-preferring mechanism of action is ongoing in the field of chemical neuroscience. Specifically, the promising cognitive and behavioral effects of xanomeline in both schizophrenia and AD have spurred a renewed interest in the development of safer muscarinic ligands with improved subtype selectivity for either M1 or M4. This Review will address xanomeline's overall importance in the field of neuroscience, with a specific focus on its chemical structure and synthesis, pharmacology, drug metabolism and pharmacokinetics (DMPK), and adverse effects.
Collapse
Affiliation(s)
- Aaron M. Bender
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
7
|
Declercq LD, Vandenberghe R, Van Laere K, Verbruggen A, Bormans G. Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Front Pharmacol 2016; 7:88. [PMID: 27065872 PMCID: PMC4814730 DOI: 10.3389/fphar.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.
Collapse
Affiliation(s)
- Lieven D Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
8
|
Rosas-Ballina M, Valdés-Ferrer SI, Dancho ME, Ochani M, Katz D, Cheng KF, Olofsson PS, Chavan SS, Al-Abed Y, Tracey KJ, Pavlov VA. Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation. Brain Behav Immun 2015; 44:19-27. [PMID: 25063706 PMCID: PMC4624331 DOI: 10.1016/j.bbi.2014.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/07/2014] [Accepted: 07/15/2014] [Indexed: 01/09/2023] Open
Abstract
Inflammatory conditions characterized by excessive immune cell activation and cytokine release, are associated with bidirectional immune system-brain communication, underlying sickness behavior and other physiological responses. The vagus nerve has an important role in this communication by conveying sensory information to the brain, and brain-derived immunoregulatory signals that suppress peripheral cytokine levels and inflammation. Brain muscarinic acetylcholine receptor (mAChR)-mediated cholinergic signaling has been implicated in this regulation. However, the possibility of controlling inflammation by peripheral administration of centrally-acting mAChR agonists is unexplored. To provide insight we used the centrally-acting M1 mAChR agonist xanomeline, previously developed in the context of Alzheimer's disease and schizophrenia. Intraperitoneal administration of xanomeline significantly suppressed serum and splenic TNF levels, alleviated sickness behavior, and increased survival during lethal murine endotoxemia. The anti-inflammatory effects of xanomeline were brain mAChR-mediated and required intact vagus nerve and splenic nerve signaling. The anti-inflammatory efficacy of xanomeline was retained for at least 20h, associated with alterations in splenic lymphocyte, and dendritic cell proportions, and decreased splenocyte responsiveness to endotoxin. These results highlight an important role of the M1 mAChR in a neural circuitry to spleen in which brain cholinergic activation lowers peripheral pro-inflammatory cytokines to levels favoring survival. The therapeutic efficacy of xanomeline was also manifested by significantly improved survival in preclinical settings of severe sepsis. These findings are of interest for strategizing novel therapeutic approaches in inflammatory diseases.
Collapse
Affiliation(s)
- Mauricio Rosas-Ballina
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sergio I Valdés-Ferrer
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Meghan E Dancho
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Mahendar Ochani
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - David Katz
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Kai Fan Cheng
- Laboratory of Medicinal Chemistry, Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Peder S Olofsson
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Yousef Al-Abed
- Laboratory of Medicinal Chemistry, Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Kevin J Tracey
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Valentin A Pavlov
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States.
| |
Collapse
|
9
|
Buiter HJ, Windhorst AD, Huisman MC, Yaqub M, Knol DL, Fisher A, Lammertsma AA, Leysen JE. [11C]AF150(S), an agonist PET ligand for M1 muscarinic acetylcholine receptors. EJNMMI Res 2013; 3:19. [PMID: 23514539 PMCID: PMC3623648 DOI: 10.1186/2191-219x-3-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/07/2013] [Indexed: 01/17/2023] Open
Abstract
Background The M1 muscarinic acetylcholine receptor (M1ACh-R) is a G protein-coupled receptor that can occur in interconvertible coupled and uncoupled states. It is enriched in the basal ganglia, hippocampus, olfactory bulb, and cortical areas, and plays a role in motor and cognitive functions. Muscarinic M1 agonists are potential therapeutic agents for cognitive disorders. The aim of this study was to evaluate [11C]AF150(S) as a putative M1ACh-R agonist PET ligand, which, owing to its agonist properties, could provide a tool to explore the active G protein-coupled receptor. Methods Regional kinetics of [11C]AF150(S) in rat brain were measured using a high-resolution research tomograph, both under baseline conditions and following pre-treatment with various compounds or co-administration of non-radioactive AF150(S). Data were analysed by calculating standard uptake values and by applying the simplified reference tissue model (SRTM). Results [11C]AF150(S) was rapidly taken up in the brain, followed by a rapid clearance from all brain regions. Analysis of PET data using SRTM revealed a binding potential (BPND) of 0.25 for the striatum, 0.20 for the hippocampus, 0.16 for the frontal cortical area and 0.15 for the posterior cortical area, all regions rich in M1ACh-R. BPND values were significantly reduced following pre-treatment with M1ACh-R antagonists. BPND values were not affected by pre-treatment with a M3ACh-R antagonist. Moreover, BPND was significantly reduced after pre-treatment with haloperidol, a dopamine D2 receptor blocker that causes an increase in extracellular acetylcholine (ACh). The latter may compete with [11C]AF150(S) for binding to the M1ACh-R; further pharmacological agents were applied to investigate this possibility. Upon injection of the highest dose (49.1 nmol kg−1) of [11C]AF150(S) diluted with non-radioactive AF150(S), brain concentration of AF150(S) reached 100 nmol L−1 at peak level. At this concentration, no sign of saturation in binding to M1ACh-R was observed. Conclusions The agonist PET ligand [11C]AF150(S) was rapidly taken up in the brain and showed an apparent specific M1ACh-R-related signal in brain areas that are rich in M1ACh-R. Moreover, binding of the agonist PET ligand [11C]AF150(S) appears to be sensitive to changes in extracellular ACh levels. Further studies are needed to evaluate the full potential of [11C]AF150(S) for imaging the active pool of M1ACh-R in vivo.
Collapse
Affiliation(s)
- Hans Jc Buiter
- Department of Nuclear Medicine & PET Research, VU University Medical Center, PO Box 7057, Amsterdam, , 1007 MB, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Reid AE, Ding YS, Eckelman WC, Logan J, Alexoff D, Shea C, Xu Y, Fowler JS. Comparison of the pharmacokinetics of different analogs of 11C-labeled TZTP for imaging muscarinic M2 receptors with PET. Nucl Med Biol 2008; 35:287-98. [PMID: 18355684 DOI: 10.1016/j.nucmedbio.2008.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/03/2008] [Accepted: 01/06/2008] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The only radiotracer available for the selective imaging of muscarinic M2 receptors in vivo is 3-(3-(3-[18F]fluoropropyl)thio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine) ([18F]FP-TZTP). We have prepared and labeled 3-(3-(3-fluoropropylthio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridne (FP-TZTP, 3) and two other TZTP derivatives with 11C at the methylpyridine moiety to explore the potential of using 11C-labeled FP-TZTP for positron emission tomography imaging of M2 receptors and to compare the effect of small structural changes on tracer pharmacokinetics (PK) in brain and peripheral organs. METHODS 11C-radiolabeled FP-TZTP, 3-(3-propylthio)-TZTP (6) and 3,3,3-(3-(3-trifluoropropyl)-TZTP (10) were prepared, and log D, plasma protein binding (PPB), affinity constants, time-activity curves (TACs), area under the curve (AUC) for arterial plasma, distribution volumes (DV) and pharmacological blockade in baboons were compared. RESULTS Values for log D, PPB and affinity constants were similar for 3, 6 and 10. The fraction of parent radiotracer in the plasma was higher and the AUC lower for 10 than for 3 and 6. TACs for brain regions were similar for 3 and 6, which showed PK similar to the 18F tracer, while 10 showed slower uptake and little clearance over 90 min. DVs for 3 and 6 were similar to the 18F tracer but higher for 10. Uptake of the three tracers was significantly reduced by coinjection of unlabeled 3 and 6. CONCLUSION Small structural variations on the TZTP structure greatly altered the PK in brain and behavior in blood with little change in the log D, PPB or affinity. The study suggests that 11C-radiolabeled 3 will be a suitable alternative to [18F]FP-TZTP for translational studies in humans.
Collapse
Affiliation(s)
- Alicia E Reid
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mirza NR, Peters D, Sparks RG. Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS DRUG REVIEWS 2003; 9:159-86. [PMID: 12847557 PMCID: PMC6741650 DOI: 10.1111/j.1527-3458.2003.tb00247.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Binding studies initially suggested that the muscarinic agonist, xanomeline, was a subtype selective muscarinic M(1) receptor agonist, and a potential new treatment for Alzheimer's disease. However, later in vitro and in vivo functional studies suggest that this compound is probably better described as a subtype selective M(1)/M(4) muscarinic receptor agonist. This subtype selectivity profile has been claimed to explain the limited classical cholinomimetic side effects, particularly gastrointestinal, seen with xanomeline in animals. However, in both healthy volunteers and Alzheimer's patients many of these side effects have been reported for xanomeline and in the patient population this led to a >50% discontinuation rate. Clearly, the preclinical studies have not been able to predict this adverse profile of xanomeline, and this suggests that either xanomeline is not as subtype selective as predicted from preclinical research or that there are differences between humans and animals with regard to muscarinic receptors. Nevertheless, in Alzheimer's patients xanomeline dose-dependently improves aspects of behavioral disturbance and social behavior including a reduction in hallucinations, agitation, delusions, vocal outbursts and suspiciousness. The effects on cognition are not as robust and mainly seen at the highest doses tested. These effects in Alzheimer's patients have given impetus to the suggestion that muscarinic agonists have potential antipsychotic effects. The current review assesses the antipsychotic profile of xanomeline within the framework of the limited clinical studies with cholinergic agents in man, and the preclinical research on xanomeline using various models commonly used for the assessment of new antipsychotic drugs. In general, xanomeline has an antipsychotic-like profile in various dopamine models of psychosis and this agrees with the known interactions between the cholinergic and dopaminergic systems in the brain. Moreover, current data suggests that the actions of xanomeline at the M(4) muscarinic receptor subtype might mediate its antidopaminergic effects. Particularly intriguing are studies showing that xanomeline, even after acute administration, selectively inhibits the firing of mesolimbic dopamine cells relative to dopamine cell bodies projecting to the striatum. This data suggest that xanomeline would have a faster onset of action compared to current antipsychotics and would not induce extrapyramidal side effects. The preclinical data on the whole are promising for an antipsychotic-like profile. If in a new formulation (i.e., transdermal) xanomeline has less adverse effects, this drug may be valuable in the treatment of patients with psychosis.
Collapse
Affiliation(s)
- Naheed R Mirza
- Department of Pharmacology, NeuroSearch A/S, 93 Pederstrupvej, Ballerup, Denmark.
| | | | | |
Collapse
|