1
|
Therapeutic Role of Fibroblast Growth Factor 21 (FGF21) in the Amelioration of Chronic Diseases. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09820-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Zhang H, Xiao W. TNFR1 and TNFR2 differentially mediate TNF-α-induced inflammatory responses in rheumatoid arthritis fibroblast-like synoviocytes. Cell Biol Int 2017; 41:415-422. [PMID: 28150360 DOI: 10.1002/cbin.10735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/29/2017] [Indexed: 11/09/2022]
Abstract
TNF-α has long been implicated in the progression of rheumatoid arthritis (RA). However, how the receptors of TNF-α, namely TNFR1 and TNFR2, mediate TNF-α-induced inflammatory responses in fibroblast-like synoviocytes (FLS) in RA has not been elucidated. In the present study, primary FLS cells were isolated from RA patients and treated with TNF-α in vitro. The exogenous TNF-α induced the expression and release of endogenous TNF-α in FLS. In addition, TNF-α led to gradual downregulation of TNFR1 following 1 h treatment. By contrast, the expression of TNFR2 was markedly upregulated after 12 h treatment with TNF-α. Moreover, following TNF-α treatment, the expression of interleukin (IL)-2, IL-6, and IL-8 was gradually increased with time, but their mRNA levels dropped significantly at 48 h. We further investigated the differential functions of TNFR1 and TNFR2 in FLS by conducting siRNA-mediated knockdown. The TNF-α autocrine was inhibited to a greater extent in TNFR1-silenced FLS compared with TNFR2-silenced FLS. Silencing of TNFR1, not TNFR2, activated intrinsic apoptosis and inhibited TNF-α-induced cytokine production in FLS. These results suggest that TNFR1 is the major pro-inflammatory mediator of TNF-α in FLS, whereas TNFR2, which is upregulated in response to prolonged TNF-α stimulation, may act as an immunosuppressor in FLS for the prevention of overwhelming inflammatory reactions.
Collapse
Affiliation(s)
- Hongfeng Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Weiguo Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| |
Collapse
|
3
|
Wardill HR, Mander KA, Van Sebille YZA, Gibson RJ, Logan RM, Bowen JM, Sonis ST. Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction. Int J Cancer 2016; 139:2635-2645. [PMID: 27367824 DOI: 10.1002/ijc.30252] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Neurotoxicity is a common side effect of chemotherapy treatment, with unclear molecular mechanisms. Clinical studies suggest that the most frequent neurotoxic adverse events affect memory and learning, attention, concentration, processing speeds and executive function. Emerging preclinical research points toward direct cellular toxicity and induction of neuroinflammation as key drivers of neurotoxicity and subsequent cognitive impairment. Emerging data now show detectable levels of some chemotherapeutic agents within the CNS, indicating potential disruption of blood brain barrier integrity or transport mechanisms. Blood brain barrier disruption is a key aspect of many neurocognitive disorders, particularly those characterized by a proinflammatory state. Importantly, many proinflammatory mediators able to modulate the blood brain barrier are generated by tissues and organs that are targets for chemotherapy-associated toxicities. This review therefore aims to explore the hypothesis that peripherally derived inflammatory cytokines disrupt blood brain barrier permeability, thereby increasing direct access of chemotherapeutic agents into the CNS to facilitate neuroinflammation and central neurotoxicity.
Collapse
Affiliation(s)
- Hannah R Wardill
- School of Medicine, University of Adelaide, South Australia. .,Centre for Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia.
| | - Kimberley A Mander
- School of Medicine, University of Adelaide, South Australia.,Adelaide Centre for Neuroscience Research and Discipline of Anatomy and Pathology, University of Adelaide, Adelaide, South Australia
| | | | - Rachel J Gibson
- Division of Health Sciences, University of South Australia, Australia
| | - Richard M Logan
- School of Dentistry, University of Adelaide, Adelaide, South Australia
| | - Joanne M Bowen
- School of Medicine, University of Adelaide, South Australia
| | - Stephen T Sonis
- Brigham and Women's Hospital, Boston, MA.,Biomodels, LLC, Watertown, MA
| |
Collapse
|
4
|
Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ. Cytokine signaling modulates blood-brain barrier function. Curr Pharm Des 2013; 17:3729-40. [PMID: 21834767 DOI: 10.2174/138161211798220918] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) provides a vast interface for cytokines to affect CNS function. The BBB is a target for therapeutic intervention. It is essential, therefore, to understand how cytokines interact with each other at the level of the BBB and how secondary signals modulate CNS functions beyond the BBB. The interactions between cytokines and lipids, however, have not been fully addressed at the level of the BBB. Here, we summarize current understanding of the localization of cytokine receptors and transporters in specific membrane microdomains, particularly lipid rafts, on the luminal (apical) surface of the microvascular endothelial cells composing the BBB. We then illustrate the clinical context of cytokine effects on the BBB by neuroendocrine regulation and amplification of inflammatory signals. Two unusual aspects discussed are signaling crosstalk by different classes of cytokines and genetic regulation of drug efflux transporters. We also introduce a novel area of focus on how cytokines may act through nuclear hormone receptors to modulate efflux transporters and other targets. A specific example discussed is the ATP-binding cassette transporter-1 (ABCA-1) that regulates lipid metabolism. Overall, cytokine signaling at the level of the BBB is a crucial feature of the dynamic regulation that can rapidly change BBB function and affect brain health and disease.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | |
Collapse
|
5
|
Fallahi-Sichani M, Schaller MA, Kirschner DE, Kunkel SL, Linderman JJ. Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma. PLoS Comput Biol 2010; 6:e1000778. [PMID: 20463877 PMCID: PMC2865521 DOI: 10.1371/journal.pcbi.1000778] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 04/02/2010] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) granulomas are organized collections of immune cells comprised of macrophages, lymphocytes and other cells that form in the lung as a result of immune response to Mycobacterium tuberculosis (Mtb) infection. Formation and maintenance of granulomas are essential for control of Mtb infection and are regulated in part by a pro-inflammatory cytokine, tumor necrosis factor-α (TNF). To characterize mechanisms that control TNF availability within a TB granuloma, we developed a multi-scale two compartment partial differential equation model that describes a granuloma as a collection of immune cells forming concentric layers and includes TNF/TNF receptor binding and trafficking processes. We used the results of sensitivity analysis as a tool to identify experiments to measure critical model parameters in an artificial experimental model of a TB granuloma induced in the lungs of mice following injection of mycobacterial antigen-coated beads. Using our model, we then demonstrated that the organization of immune cells within a TB granuloma as well as TNF/TNF receptor binding and intracellular trafficking are two important factors that control TNF availability and may spatially coordinate TNF-induced immunological functions within a granuloma. Further, we showed that the neutralization power of TNF-neutralizing drugs depends on their TNF binding characteristics, including TNF binding kinetics, ability to bind to membrane-bound TNF and TNF binding stoichiometry. To further elucidate the role of TNF in the process of granuloma development, our modeling and experimental findings on TNF-associated molecular scale aspects of the granuloma can be incorporated into larger scale models describing the immune response to TB infection. Ultimately, these modeling and experimental results can help identify new strategies for TB disease control/therapy. Tuberculosis is a common and deadly infectious disease caused by a highly successful bacterium, Mycobacterium tuberculosis (Mtb). Multiple host immune factors control the formation of a self-organizing aggregate of immune cells termed a granuloma in the lungs after inhalation of Mtb. One such factor, tumor necrosis factor-α (TNF), is a protein that regulates inflammatory immune responses. Availability of TNF within a TB granuloma has been proposed to have a critical role in the protective immunity against TB. However, direct measurement of the level of TNF in a granuloma is not experimentally feasible. Therefore, we develop a mathematical model based on an experimental model of granuloma developed in mice to predict TNF availability in a granuloma. We measure values of critical model parameters and explore mechanisms that influence TNF availability in the granuloma. We find that cellular organization in a granuloma and intracellular trafficking of TNF control TNF availability in a granuloma. Further, our model analysis also highlights anti-TNF drug properties that determine their TNF neutralization power. Our findings complement and extend those of recent studies on the role of TNF in the immune response against TB.
Collapse
Affiliation(s)
- Mohammad Fallahi-Sichani
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthew A. Schaller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
6
|
Tu H, Hsuchou H, Kastin AJ, Wu X, Pan W. Unique leptin trafficking by a tailless receptor. FASEB J 2010; 24:2281-91. [PMID: 20223942 DOI: 10.1096/fj.09-143487] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Impairment in blood-to-brain transport of leptin is a major cause as well as consequence of obesity. Leptin crosses the blood-brain barrier by transcytosis rather than undergoing intracellular degradation. Results from previous studies have indicated that the membrane juxtapositional cytoplasmic sequence of the leptin receptor ObR is responsible for leptin transport. To identify the specific structural domains, we generated a series of ObR truncates with different lengths of the intracellular sequence, overexpressed them in 3 types of mammalian cells including cerebral endothelia, and quantified leptin binding and endocytosis. All mutant ObRs were able to bind and mediate the internalization of leptin. Surprisingly, ObR860, a construct with no cytoplasmic sequence, could act like the classical ObRa transporter in internalizing leptin. There were some cell type-dependent variations in the intracellular trafficking of Alexa-labeled leptin when mediated by ObR860 or ObRa because of differential involvement of membrane microdomains, as shown by use of the clathrin inhibitor chlorpromazine and the dynamin inhibitor Dynasore. The clathrin- and dynamin-mediated endocytosis of leptin contrasts with the lack of effect of the caveolae inhibitors nystatin and filipin. Thus, leptin-induced internalization of the ligand-receptor complex can occur without specific sorting signals in the cytoplasmic region of ObR. This novel finding may have significant implications for leptin transport.
Collapse
Affiliation(s)
- Hong Tu
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
7
|
Pan W, Yu C, Hsuchou H, Khan RS, Kastin AJ. Cerebral microvascular IL15 is a novel mediator of TNF action. J Neurochem 2009; 111:819-27. [PMID: 19719822 DOI: 10.1111/j.1471-4159.2009.06371.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The blood-brain barrier is a gatekeeper and modulatory interface for the CNS. Cerebral endothelial cells are the major component of the blood-brain barrier, and they modify inflammatory signals from the circulation to the CNS by production and secretion of secondary substances. The inflammatory mediators induced by tumor necrosis factor alpha (TNF) were determined by microarray analysis of RBE4 cerebral endothelial cells, at 0, 6, 12, or 24 h after TNF treatment. Interleukin (IL)-15 and its receptors were among the most robustly up-regulated genes. This was confirmed by real-time RT-PCR and western blotting. The three subunits of the IL15 receptor complex (IL15Ralpha, IL2Rbeta, and IL2Rgamma) showed differential regulation by TNF in their time course and amplitude of increased expression. Consistent with increased expression of the specific high affinity receptor IL15Ralpha, TNF increased cellular uptake of (125)I-IL15 and enhanced the fluorescent intensity of Alexa568-IL15 in RBE4 cells. TNF treatment in mice also increased the level of expression of IL15 receptors in enriched cerebral microvessels. We conclude that the cerebral microvascular IL15 system is a novel inflammatory mediator that transduces the actions of TNF.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Spinal cord injury (SCI) induces dynamic changes of the blood-spinal cord barrier and even the more distant blood-brain barrier. Besides an immediate increase of paracellular permeability resulting from the direct impact of the injury, the transport systems for selective cytokines undergo regulatory changes. Since many of the transported molecules play essential roles in neuroregeneration, we propose that this altered peripheral tissue / CNS interaction benefits remodeling of the spinal cord and functional recovery after SCI. This review examines the transport of cytokines and neurotrophic factors into the spinal cord, emphasizing the upregulation of two cytokines--tumor necrosis factor alpha (TNF) and leukemia inhibitory factor (LIF)--during the course of SCI. The increased transport of TNF and LIF after SCI remains saturable and does not coincide with generalized BBB disruption, highlighting a pivotal regulatory role for the blood-spinal cord barrier.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
9
|
Kastin AJ, Pan W. Blood-brain barrier and feeding: regulatory roles of saturable transport systems for ingestive peptides. Curr Pharm Des 2008; 14:1615-9. [PMID: 18673203 DOI: 10.2174/138161208784705423] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The two main ways for peptides in the peripheral body to enter the brain are by either saturable transport or passive diffusion across the blood-brain barrier (BBB). Saturable transport systems have the advantage of being responsive to physiological and pathological stimuli. Since saturable systems can regulate peptide entry into the brain, they have the potential to play controlling roles in feeding behavior. For therapeutic applications, however, saturable systems have the disadvantage of functioning as a threshold to limit access of large amounts of peptides into the brain. This pharmacological problem presumably would not be encountered for peptides crossing the BBB by passive diffusion, a process dependent on physicochemical properties. Thus, the gatekeeper function of the BBB can be expanded to a primary governing role, especially for entry of ingestive peptides subject to their respective saturable transport systems.
Collapse
Affiliation(s)
- Abba J Kastin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
10
|
Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides 2007; 28:2382-6. [PMID: 17996984 PMCID: PMC2151924 DOI: 10.1016/j.peptides.2007.10.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 11/21/2022]
Abstract
FGF21 recently has been proposed as a missing link in the biology of fasting, raising the question of whether it directly reaches the brain. We used multiple time-regression analysis to quantify the influx rate of this polypeptide across the blood-brain barrier (BBB), size-exclusion chromatography to examine degradation, capillary depletion to differentiate entry into brain parenchyma from retention in the microvasculature, and measurement of efflux rate to determine a possible confounding effect on measurement of entry. FGF21 was 94% intact in serum and 75% in brain 10 min after intravenous bolus delivery. Its influx rate was 0.23+/-0.12 microl/g-min, nearly four times faster than that of the vascular marker albumin. At 10 min, about 0.5% of the administered FGF21 was present in a gram of brain tissue. Of this, 70% reached the parenchyma of the brain. Co-injection of excess FGF21 failed to inhibit the influx, showing a lack of saturation. Efflux, which occurred at the same rate as the bulk reabsorption of cerebrospinal fluid, also was not saturable. In summary, FGF21 shows significant, non-saturable, unidirectional influx across the BBB.
Collapse
Affiliation(s)
| | - Weihong Pan
- *Corresponding author: Weihong Pan, MD, PhD, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA, Tel. 1-225-763-2707, Fax 1-225-763-0261, e-mail:
| | | |
Collapse
|
11
|
Pan W, Hsuchou H, Kastin AJ. Nesfatin-1 crosses the blood-brain barrier without saturation. Peptides 2007; 28:2223-8. [PMID: 17950952 DOI: 10.1016/j.peptides.2007.09.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 12/30/2022]
Abstract
Nesfatin-1 is an 82 amino acid peptide that suppresses food intake after intracerebroventricular injection. Nesfatin-1 and its precursor NUCB2 were identified by subtraction cloning in cell lines of both neuronal and adipocytic origin. This provides a strong basis for studies to determine how peripherally derived nesfatin-1 permeates the blood-brain barrier (BBB) to participate in its CNS actions and whether pharmacological delivery by the peripheral route is feasible. In this study, nesfatin-1 remained stable in blood at least 20 min after intravenous injection and permeated the BBB by a non-saturable mechanism. The influx rate of nesfatin-1 after intravenous delivery was 0.27+/-0.11 microl/g-min, and 0.3% of nesfatin-1 reached brain parenchyma 10 min after injection. The lack of saturation of influx was shown by use of excess unlabeled nesfatin-1 in multiple-time regression analysis, capillary depletion, and in situ brain perfusion. After intracerebroventricular injection, nesfatin-1 had a half-time disappearance of 23.8 min, which was not significantly different from that of albumin. This indicates that nesfatin-1 exited the brain by bulk absorption of cerebrospinal fluid without a specific efflux transport system. We conclude that the permeation of nesfatin-1 is a non-saturable process in either the blood-to-brain or brain-to-blood direction. Thus, the limited penetration under physiological conditions does not limit the pharmacological delivery of this satiety peptide as a potential therapeutic agent.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|
12
|
Pan W, Kastin AJ. Tumor necrosis factor and stroke: role of the blood-brain barrier. Prog Neurobiol 2007; 83:363-74. [PMID: 17913328 PMCID: PMC2190541 DOI: 10.1016/j.pneurobio.2007.07.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/30/2007] [Accepted: 07/26/2007] [Indexed: 01/22/2023]
Abstract
The progression and outcome of stroke is affected by the intricate relationship between the blood-brain barrier (BBB) and tumor necrosis factor alpha (TNFalpha). TNFalpha crosses the intact BBB by a receptor-mediated transport system that is upregulated by CNS trauma and inflammation. In this review, we discuss intracellular trafficking and transcytosis of TNFalpha, regulation of TNFalpha transport after stroke, and the effects of TNFalpha on stroke preconditioning. TNFalpha can activate cytoprotective pathways by pretreatment or persistent exposure to low doses. This explains the paradoxical observation that transport of this proinflammatory cytokine improves the survival and function of hypoxic cells and of mice with stroke. The dual effects of TNFalpha may be related to differential regulation of TNFalpha trafficking downstream to TNFR1 and TNFR2 receptors. As we better understand how peripheral TNFalpha affects its own transport and modulates neuroregeneration, we may be in a better position to pharmacologically manipulate its regulatory transport system to treat stroke.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, United States.
| | | |
Collapse
|
13
|
Abstract
Just as the blood-brain barrier (BBB) is not a static barrier, the adipocytes are not inert storage depots. Adipokines are peptides or polypeptides produced by white adipose tissue; they play important roles in normal physiology as well as in the metabolic syndrome. Adipokines secreted into the circulation can interact with the BBB and exert potent CNS effects. The specific transport systems for two important adipokines, leptin and tumor necrosis factor alpha, have been characterized during the past decade. By contrast, transforming growth factor beta-1 and adiponectin do not show specific permeation across the BBB, but modulate endothelial functions. Still others, like interleukin-6, may reach the brain but are rapidly degraded. This review summarizes current knowledge and recent findings of the rapidly growing family of adipokines and their interactions with the BBB.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, United States.
| | | |
Collapse
|