1
|
von Rauchhaupt E, Klaus M, Ribeiro A, Honarpisheh M, Li C, Liu M, Köhler P, Adamowicz K, Schmaderer C, Lindenmeyer M, Steiger S, Anders HJ, Lech M. GDF-15 Suppresses Puromycin Aminonucleoside-Induced Podocyte Injury by Reducing Endoplasmic Reticulum Stress and Glomerular Inflammation. Cells 2024; 13:637. [PMID: 38607075 PMCID: PMC11011265 DOI: 10.3390/cells13070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
GDF15, also known as MIC1, is a member of the TGF-beta superfamily. Previous studies reported elevated serum levels of GDF15 in patients with kidney disorder, and its association with kidney disease progression, while other studies identified GDF15 to have protective effects. To investigate the potential protective role of GDF15 on podocytes, we first performed in vitro studies using a Gdf15-deficient podocyte cell line. The lack of GDF15 intensified puromycin aminonucleoside (PAN)-triggered endoplasmic reticulum stress and induced cell death in cultivated podocytes. This was evidenced by elevated expressions of Xbp1 and ER-associated chaperones, alongside AnnexinV/PI staining and LDH release. Additionally, we subjected mice to nephrotoxic PAN treatment. Our observations revealed a noteworthy increase in both GDF15 expression and secretion subsequent to PAN administration. Gdf15 knockout mice displayed a moderate loss of WT1+ cells (podocytes) in the glomeruli compared to wild-type controls. However, this finding could not be substantiated through digital evaluation. The parameters of kidney function, including serum BUN, creatinine, and albumin-creatinine ratio (ACR), were increased in Gdf15 knockout mice as compared to wild-type mice upon PAN treatment. This was associated with an increase in the number of glomerular macrophages, neutrophils, inflammatory cytokines, and chemokines in Gdf15-deficient mice. In summary, our findings unveil a novel renoprotective effect of GDF15 during kidney injury and inflammation by promoting podocyte survival and regulating endoplasmic reticulum stress in podocytes, and, subsequently, the infiltration of inflammatory cells via paracrine effects on surrounding glomerular cells.
Collapse
Affiliation(s)
- Ekaterina von Rauchhaupt
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Martin Klaus
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Andrea Ribeiro
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Mohsen Honarpisheh
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Chenyu Li
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Min Liu
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Paulina Köhler
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, 30-387 Krakow, Poland;
| | - Christoph Schmaderer
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Maja Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Stefanie Steiger
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Hans-Joachim Anders
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Maciej Lech
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| |
Collapse
|
2
|
Tofteng SS, Nilsson L, Mogensen AK, Nørregaard R, Nüsing R, Diatchikhine M, Lund L, Bistrup C, Jensen BL, Madsen K. Increased COX-2 after ureter obstruction attenuates fibrosis and is associated with EP 2 receptor upregulation in mouse and human kidney. Acta Physiol (Oxf) 2022; 235:e13828. [PMID: 35543087 PMCID: PMC9542224 DOI: 10.1111/apha.13828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022]
Abstract
AIM Cyclooxygenase-2 (COX-2) activity protects against oxidative stress and apoptosis early in experimental kidney injury. The present study was designed to test the hypothesis that COX-2 activity attenuates fibrosis and preserves microvasculature in injured kidney. The murine unilateral ureteral-obstruction (UUO) model of kidney fibrosis was employed and compared with human nephrectomy tissue with and without chronic hydronephrosis. METHODS Fibrosis and angiogenic markers were quantified in kidney tissue from wild-type and COX-2-/- mice subjected to UUO for 7 days and in human kidney tissue. COX-enzymes, prostaglandin (PG) synthases, PG receptors, PGE2 , and thromboxane were determined in human tissue. RESULTS COX-2 immunosignal was observed in interstitial fibroblasts at baseline and after UUO. Fibronectin, collagen I, III, alpha-smooth muscle actin, and fibroblast specific protein-1 mRNAs increased significantly more after UUO in COX-2-/- vs wild-type mice. In vitro, fibroblasts from COX-2-/- kidneys showed higher matrix synthesis. Compared to control, human hydronephrotic kidneys showed (i) fibrosis, (ii) no significant changes in COX-2, COX-1, PGE2 -, and prostacyclin synthases, and prostacyclin and thromboxane receptor mRNAs, (iii) increased mRNA and protein of PGE2 -EP2 receptor level but unchanged PGE2 tissue concentration, and (iv) two- to threefold increased thromboxane synthase mRNA and protein levels, and increased thromboxane B2 tissue concentration in cortex and outer medulla. CONCLUSION COX-2 protects in the early phase against obstruction-induced fibrosis and maintains angiogenic factors. Increased PGE2 -EP2 receptor in obstructed human and murine kidneys could contribute to protection.
Collapse
Affiliation(s)
- Signe S. Tofteng
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Line Nilsson
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Amalie K. Mogensen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | | | - Rolf Nüsing
- Institute of Clinical PharmacologyGoethe UniversityFrankfurtGermany
| | | | - Lars Lund
- Department of UrologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Claus Bistrup
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of NephrologyOdense University HospitalOdenseDenmark
| | - Boye L. Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark,Department of PathologyOdense University HospitalOdenseDenmark
| |
Collapse
|
3
|
Nie X, Chanley MA, Pengal R, Thomas DB, Agrawal S, Smoyer WE. Pharmacological and genetic inhibition of downstream targets of p38 MAPK in experimental nephrotic syndrome. Am J Physiol Renal Physiol 2017; 314:F602-F613. [PMID: 29187369 DOI: 10.1152/ajprenal.00207.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nie X, Chanley MA, Pengal R, Thomas DB, Agrawal S, Smoyer WE. Pharmacological and genetic inhibition of downstream targets of p38 MAPK in experimental nephrotic syndrome. Am J Physiol Renal Physiol 314: F602-F613, 2018. First published November 29, 2017; doi: 10.1152/ajprenal.00207.2017 .-The p38 MAPK pathway plays a crucial role in various glomerulopathies, with activation being associated with disease and inhibition being associated with disease amelioration. We hypothesized that the downstream targets of p38 MAPK, MAPK-activated protein kinase 2 and/or 3 (MK2 and/or MK3), play an important role in mediating injury in experimental nephrotic syndrome via their actions on their downstream substrates heat shock protein B1 (HSPB1) and cyclooxygenase-2 (COX-2). To test this hypothesis, the effects of both pharmacological and genetic inhibition of MK2 and MK3 were examined in mouse adriamycin (ADR) and rat puromycin aminonucleoside (PAN) nephropathy models. MK2-/-, MK3-/-, and MK2-/-MK3-/- mice were generated in the Sv129 background and subjected to ADR-induced nephropathy. MK2 and MK3 protein expression was completely abrogated in the respective knockout genotypes, and massive proteinuria and renal histopathological changes developed after ADR treatment. Furthermore, renal cortical HSPB1 was induced in all four genotypes by day 21, but HSPB1 was activated only in the wild-type and MK3-/- mice. Expression of the stress proteins HSPB8 and glucose-regulated protein 78 (GRP78) remained unaltered across all genotypes. Finally, while MK2 and/or MK3-knockout downregulated the proinflammatory enzyme COX-2, ADR significantly induced renal cortical COX-2 only in MK2-/- mice. Additionally, pharmacological MK2 inhibition with PF-318 during PAN-induced nephropathy did not result in significant proteinuria reduction in rats. Together, these data suggest that while the inhibition of MK2 and/or MK3 regulates the renal stress response, our currently available approaches are not yet able to safely and effectively reduce proteinuria in experimental nephrotic syndrome and that other p38MAPK downstream targets should also be considered to improve the future treatment of glomerular disease.
Collapse
Affiliation(s)
- Xiaojing Nie
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, Fuzhou Dongfang Hospital, Xiamen University , Fuzhou , China
| | - Melinda A Chanley
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Ruma Pengal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - David B Thomas
- University of Miami Miller School of Medicine , Miami, Florida
| | - Shipra Agrawal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, College of Medicine, The Ohio State University , Columbus, Ohio
| | - William E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, College of Medicine, The Ohio State University , Columbus, Ohio
| |
Collapse
|
4
|
Qu G, Shi H, Wang B, Li S, Zhang A, Gan W. Alterations in the long non‑coding RNA transcriptome in mesangial cells treated with aldosterone in vitro. Mol Med Rep 2017; 16:6004-6012. [PMID: 28849035 PMCID: PMC5865792 DOI: 10.3892/mmr.2017.7313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/23/2017] [Indexed: 12/14/2022] Open
Abstract
Clinical and experimental reports indicate that aldosterone (ALD) contributes to the progression of renal failure independent of its hemodynamic effects. However, the mechanisms remain to be completely elucidated. The aim of the present study was to investigate the alterations of long non-coding RNA (lncRNA) in mesangial cells (MCs) treated with ALD. The present study used MCs treated with 10−6 M ALD as experimental cells. Microarray techniques performed by Agilent Technologies were used to identify the profiles of differentially expressed lncRNAs between the ALD group and the control group. Pathway and gene ontology analysis were applied to determine the roles of the differentially expressed lncRNAs. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to quantify the differentially expressed lncRNAs. A total of 8,459 lncRNA and 13,214 mRNAs with differential expression between MCs treated with and without ALD were identified. The expression of lncRNAs was confirmed by RT-qPCR and the results were consistent with the lncRNA array. The biological functions of lncRNAs are associated with responding to external stimuli, positive regulation of biological and apoptotic processes, cell division, mitosis and nuclear division. The pathways include cell cycle and peroxisome proliferator-activated receptor signaling pathways. The present study revealed distinct sets of lncRNA expressed in MCs treated with ALD, suggesting that this class of transcripts may be involved in the pathogenesis of chronic kidney diseases.
Collapse
Affiliation(s)
- Gaoting Qu
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Huimin Shi
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Bin Wang
- Division of Nephrology, Huashan Hospital and Institute of Nephrology, Fudan University, Shanghai 200040, P.R. China
| | - Shanwen Li
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Aiqing Zhang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Weihua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| |
Collapse
|
5
|
Eid S, Boutary S, Braych K, Sabra R, Massaad C, Hamdy A, Rashid A, Moodad S, Block K, Gorin Y, Abboud HE, Eid AA. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes. Antioxid Redox Signal 2016; 25:703-719. [PMID: 27393154 PMCID: PMC5079418 DOI: 10.1089/ars.2015.6562] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. We explored the hypothesis that mammalian target of rapamycin complex 2 (mTORC2) mediates podocyte injury in diabetes. RESULTS High glucose (HG)-induced podocyte injury reflected by alterations in the slit diaphragm protein podocin and podocyte depletion/apoptosis. This was paralleled by activation of the Rictor/mTORC2/Akt pathway. HG also increased the levels of Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using small interfering RNA (siRNA)-targeting Rictor in vitro decreased HG-induced Nox1 and Nox4, NADPH oxidase activity, restored podocin levels, and reduced podocyte depletion/apoptosis. Inhibition of mTORC2 had no effect on mammalian target of rapamycin complex 1 (mTORC1) activation, described by our group to be increased in diabetes, suggesting that the mTORC2 activation by HG could mediate podocyte injury independently of mTORC1. In isolated glomeruli of OVE26 mice, there was a similar activation of the Rictor/mTORC2/Akt signaling pathway with increase in Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using antisense oligonucleotides targeting Rictor restored podocin levels, reduced podocyte depletion/apoptosis, and attenuated glomerular injury and albuminuria. INNOVATION Our data provide evidence for a novel function of mTORC2 in NADPH oxidase-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. CONCLUSION mTORC2 and/or NADPH oxidase inhibition may represent a therapeutic modality for diabetic kidney disease. Antioxid. Redox Signal. 25, 703-719.
Collapse
Affiliation(s)
- Stéphanie Eid
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon .,2 UMR-S 1124 INSERM, Paris Descartes University, Sorbonne Paris Cite University , Centre Interdisciplinaire Chimie Biology, Paris, France
| | - Suzan Boutary
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Kawthar Braych
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Ramzi Sabra
- 3 Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Charbel Massaad
- 2 UMR-S 1124 INSERM, Paris Descartes University, Sorbonne Paris Cite University , Centre Interdisciplinaire Chimie Biology, Paris, France
| | - Ahmed Hamdy
- 4 Department of Nephrology, Hamad Medical Corporation , Doha, Qatar
| | - Awad Rashid
- 4 Department of Nephrology, Hamad Medical Corporation , Doha, Qatar
| | - Sarah Moodad
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Karen Block
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Yves Gorin
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Hanna E Abboud
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Assaad A Eid
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| |
Collapse
|
6
|
Zhu J, Chaki M, Lu D, Ren C, Wang SS, Rauhauser A, Li B, Zimmerman S, Jun B, Du Y, Vadnagara K, Wang H, Elhadi S, Quigg RJ, Topham MK, Mohan C, Ozaltin F, Zhou XJ, Marciano DK, Bazan NG, Attanasio M. Loss of diacylglycerol kinase epsilon in mice causes endothelial distress and impairs glomerular Cox-2 and PGE2 production. Am J Physiol Renal Physiol 2016; 310:F895-908. [PMID: 26887830 DOI: 10.1152/ajprenal.00431.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/23/2016] [Indexed: 12/12/2022] Open
Abstract
Thrombotic microangiopathy (TMA) is a disorder characterized by microvascular occlusion that can lead to thrombocytopenia, hemolytic anemia, and glomerular damage. Complement activation is the central event in most cases of TMA. Primary forms of TMA are caused by mutations in genes encoding components of the complement or regulators of the complement cascade. Recently, we and others have described a genetic form of TMA caused by mutations in the gene diacylglycerol kinase-ε (DGKE) that encodes the lipid kinase DGKε (Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi MR, Tang WH, Le Quintrec M, Fakhouri F, Taque S, Nobili F, Martinez F, Ji WZ, Overton JD, Mane SM, Nurnberg G, Altmuller J, Thiele H, Morin D, Deschenes G, Baudouin V, Llanas B, Collard L, Majid MA, Simkova E, Nurnberg P, Rioux-Leclerc N, Moeckel GW, Gubler MC, Hwa J, Loirat C, Lifton RP. Nat Genet 45: 531-536, 2013; Ozaltin F, Li BH, Rauhauser A, An SW, Soylemezoglu O, Gonul II, Taskiran EZ, Ibsirlioglu T, Korkmaz E, Bilginer Y, Duzova A, Ozen S, Topaloglu R, Besbas N, Ashraf S, Du Y, Liang CY, Chen P, Lu DM, Vadnagara K, Arbuckle S, Lewis D, Wakeland B, Quigg RJ, Ransom RF, Wakeland EK, Topham MK, Bazan NG, Mohan C, Hildebrandt F, Bakkaloglu A, Huang CL, Attanasio M. J Am Soc Nephrol 24: 377-384, 2013). DGKε is unrelated to the complement pathway, which suggests that unidentified pathogenic mechanisms independent of complement dysregulation may result in TMA. Studying Dgke knockout mice may help to understand the pathogenesis of this disease, but no glomerular phenotype has been described in these animals so far. Here we report that Dgke null mice present subclinical microscopic anomalies of the glomerular endothelium and basal membrane that worsen with age and develop glomerular capillary occlusion when exposed to nephrotoxic serum. We found that induction of cyclooxygenase-2 and of the proangiogenic prostaglandin E2 are impaired in Dgke null kidneys and are associated with reduced expression of the antithrombotic cell adhesion molecule platelet endothelial cell adhesion molecule-1/CD31 in the glomerular endothelium. Notably, prostaglandin E2 supplementation was able to rescue motility defects of Dgke knockdown cells in vitro and to restore angiogenesis in a test in vivo. Our results unveil an unexpected role of Dgke in the induction of cyclooxygenase-2 and in the regulation of glomerular prostanoids synthesis under stress.
Collapse
Affiliation(s)
- Jili Zhu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Nephrology, Renmin Hospital, Wuhan University, Hubei, Wuhan, China
| | - Moumita Chaki
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dongmei Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chongyu Ren
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shan-Shan Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alysha Rauhauser
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Binghua Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Susan Zimmerman
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bokkyoo Jun
- Department of Neuroscience, Louisiana State University, New Orleans, Louisiana
| | - Yong Du
- Biomedical Engineering, University of Houston, Houston, Texas
| | - Komal Vadnagara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hanquin Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Institute of Basic Medical Sciences, Hubei University of Medicine, Hubei, Shiyan, China
| | - Sarah Elhadi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Richard J Quigg
- Department of Medicine, University of Buffalo, Buffalo, New York
| | - Matthew K Topham
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Chandra Mohan
- Biomedical Engineering, University of Houston, Houston, Texas
| | - Fatih Ozaltin
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Ankara, Turkey; Nephrogenetics Laboratory, Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Xin J Zhou
- Renal Path Diagnostics, Pathologist BioMedical Laboratories and Department of Pathology, Baylor University Medical Center, Dallas, Texas; and
| | - Denise K Marciano
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicolas G Bazan
- Department of Neuroscience, Louisiana State University, New Orleans, Louisiana
| | - Massimo Attanasio
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Eugene McDermott Center for Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
7
|
Role of the prostaglandin E2/E-prostanoid 2 receptor signalling pathway in TGFβ-induced mice mesangial cell damage. Biosci Rep 2014; 34:e00159. [PMID: 25327961 PMCID: PMC4266927 DOI: 10.1042/bsr20140130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prostaglandin E2 receptor, EP2 (E-prostanoid 2), plays an important role in mice glomerular MCs (mesangial cells) damage induced by TGFβ1 (transforming growth factor-β1); however, the molecular mechanisms for this remain unknown. The present study examined the role of the EP2 signalling pathway in TGFβ1-induced MCs proliferation, ECM (extracellular matrix) accumulation and expression of PGES (prostaglandin E2 synthase). We generated primary mice MCs. Results showed MCs proliferation promoted by TGFβ1 were increased; however, the production of cAMP and PGE2 (prostaglandin E2) was decreased. EP2 deficiency in these MCs augmented FN (fibronectin), Col I (collagen type I), COX2 (cyclooxygenase-2), mPGES-1 (membrane-associated prostaglandin E1), CTGF (connective tissue growth factor) and CyclinD1 expression stimulated by TGFβ1. Silencing of EP2 also strengthened TGFβ1-induced p38MAPK (mitogen-activated protein kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2) and CREB1 (cAMP responsive element-binding protein 1) phosphorylation. In contrast, Adenovirus-mediated EP2 overexpression reversed the effects of EP2-siRNA (small interfering RNA). Collectively, the investigation indicates that EP2 may block p38MAPK, ERK1/2 and CREB1 phosphorylation via activation of cAMP production and stimulation of PGE2 through EP2 receptors which prevent TGFβ1-induced MCs damage. Our findings also suggest that pharmacological targeting of EP2 receptors may provide new inroads to antagonize the damage induced by TGFβ1.
Collapse
|
8
|
Yang GX, Xu YY, Fan YP, Wang J, Chen XL, Zhang YD, Wu JH. A maladaptive role for EP4 receptors in mouse mesangial cells. PLoS One 2014; 9:e104091. [PMID: 25122504 PMCID: PMC4133176 DOI: 10.1371/journal.pone.0104091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 07/09/2014] [Indexed: 12/22/2022] Open
Abstract
Roles of the prostaglandin E2 E-prostanoid 4 receptor (EP4) on extracellular matrix (ECM) accumulation induced by TGF-β1 in mouse glomerular mesangial cells (GMCs) remain unknown. Previously, we have identified that TGF-β1 stimulates the expression of FN and Col I in mouse GMCs. Here we asked whether stimulation of EP4 receptors would exacerbate renal fibrosis associated with enhanced glomerular ECM accumulation. We generated EP4Flox/Flox and EP4+/− mice, cultured primary WT, EP4Flox/Flox and EP4+/− GMCs, AD-EP4 transfected WT GMCs (EP4 overexpression) and AD-Cre transfected EP4Flox/Flox GMCs (EP4 deleted). We found that TGF-β1-induced cAMP and PGE2 synthesis decreased in EP4 deleted GMCs and increased in EP4 overexpressed GMCs. Elevated EP4 expression in GMCs augmented the coupling of TGF-β1 to FN, Col I expression and COX2/PGE2 signaling, while TGF-β1 induced FN, Col I expression and COX2/PGE2 signaling were down-regulated in EP4 deficiency GMCs. 8 weeks after 5/6 nephrectomy (Nx), WT and EP4+/− mice exhibited markedly increased accumulation of ECM compared with sham-operated controls. Albuminuria, blood urea nitrogen and creatinine (BUN and Cr) concentrations were significantly increased in WT mice as compared to those of EP4+/− mice. Urine osmotic pressure was dramatically decreased after 5/6 Nx surgery in WT mice as compared to EP4+/− mice. The pathological changes in kidney of EP4+/− mice was markedly alleviated compared with WT mice. Immunohistochemical analysis showed significant reductions of Col I and FN in the kidney of EP4+/− mice compared with WT mice. Collectively, this investigation established EP4 as a potent mediator of the pro-TGF-β1 activities elicited by COX2/PGE2 in mice GMCs. Our findings suggested that prostaglandin E2, acting via EP4 receptors contributed to accumulation of ECM in GMCs and promoted renal fibrosis.
Collapse
Affiliation(s)
- Guang-xia Yang
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
- Department of Rheumatology, Affiliated Hospital of Jiangnan University (Wuxi 4th People's Hospital), Wuxi, Jiangsu, China
| | - Yu-yin Xu
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
| | - Ya-ping Fan
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
| | - Jing Wang
- Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiao-lan Chen
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
- * E-mail:
| | - Yi-de Zhang
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
| | - Jian-hua Wu
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
| |
Collapse
|
9
|
Yang SM, Chan YL, Hua KF, Chang JM, Chen HL, Tsai YJ, Hsu YJ, Chao LK, Feng-Ling Y, Tsai YL, Wu SH, Wang YF, Tsai CL, Chen A, Ka SM. Osthole improves an accelerated focal segmental glomerulosclerosis model in the early stage by activating the Nrf2 antioxidant pathway and subsequently inhibiting NF-κB-mediated COX-2 expression and apoptosis. Free Radic Biol Med 2014; 73:260-9. [PMID: 24858719 DOI: 10.1016/j.freeradbiomed.2014.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/03/2014] [Accepted: 05/06/2014] [Indexed: 01/06/2023]
Abstract
Inflammatory reactions and oxidative stress are implicated in the pathogenesis of focal segmental glomerulosclerosis (FSGS), a common chronic kidney disease with relatively poor prognosis and unsatisfactory treatment regimens. Previously, we showed that osthole, a coumarin compound isolated from the seeds of Cnidium monnieri, can inhibit reactive oxygen species generation, NF-κB activation, and cyclooxygenase-2 expression in lipopolysaccharide-activated macrophages. In this study, we further evaluated its renoprotective effect in a mouse model of accelerated FSGS (acFSGS), featuring early development of proteinuria, followed by impaired renal function, glomerular epithelial cell hyperplasia lesions (a sensitive sign that precedes the development of glomerular sclerosis), periglomerular inflammation, and glomerular hyalinosis/sclerosis. The results show that osthole significantly prevented the development of the acFSGS model in the treated group of mice. The mechanisms involved in the renoprotective effects of osthole on the acFSGS model were mainly a result of an activated Nrf2-mediated antioxidant pathway in the early stage (proteinuria and ischemic collapse of the glomeruli) of acFSGS, followed by a decrease in: (1) NF-κB activation and COX-2 expression as well as PGE2 production, (2) podocyte injury, and (3) apoptosis. Our data support that targeting the Nrf2 antioxidant pathway may justify osthole being established as a candidate renoprotective compound for FSGS.
Collapse
Affiliation(s)
- Shun-Min Yang
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Yi-Lin Chan
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan, Republic of China
| | - Jia-Ming Chang
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Hui-Ling Chen
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Yung-Jen Tsai
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital; National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Louis Kuoping Chao
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan, Republic of China
| | - Yang Feng-Ling
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Ling Tsai
- Graduate Institute of Life Sciences; and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yih-Fuh Wang
- Graduate Institute of Electrical Engineering and Computer Science, National Penghu University of Science and Technology, Penghu, Taiwan, Republic of China
| | - Change-Ling Tsai
- Graduate Institute of Electrical Engineering and Computer Science, National Penghu University of Science and Technology, Penghu, Taiwan, Republic of China
| | - Ann Chen
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, School of Medicine; National Defense Medical Center, Taipei 114, Taiwan, Republic of China.
| |
Collapse
|
10
|
Albumin-induced podocyte injury and protection are associated with regulation of COX-2. Kidney Int 2014; 86:1150-60. [PMID: 24918154 PMCID: PMC4245399 DOI: 10.1038/ki.2014.196] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/26/2014] [Accepted: 04/03/2014] [Indexed: 01/11/2023]
Abstract
Albuminuria is both a hallmark and a risk factor for progressive glomerular disease, and results in increased exposure of podocytes to serum albumin with its associated factors. Here in vivo and in vitro models of serum albumin overload were used to test the hypothesis that albumin-induced proteinuria and podocyte injury directly correlate with COX-2 induction. Albumin induced COX-2, MCP-1, CXCL1 and the stress protein HSP25 in both rat glomeruli and cultured podocytes, while B7-1 and HSP70i were also induced in podocytes. Podocyte exposure to albumin induced both mRNA and protein and enhanced the mRNA stability of COX-2, a key regulator of renal hemodynamics and inflammation, which renders podocytes susceptible to injury. Podocyte exposure to albumin also stimulated several kinases (p38 MAPK, MK2, JNK/SAPK and ERK1/2), inhibitors of which (except JNK/SAPK) down-regulated albumin-induced COX-2. Inhibition of AMPK, PKC and NFκB also down-regulated albumin-induced COX-2. Critically, albumin-induced COX-2 was also inhibited by glucocorticoids and thiazolidinediones, both of which directly protect podocytes against injury. Furthermore, specific albumin-associated fatty acids were identified as important contributors to COX-2 induction, podocyte injury and proteinuria. Thus, COX-2 is associated with podocyte injury during albuminuria, as well as with the known podocyte protection imparted by glucocorticoids and thiazolidinediones. Moreover, COX-2 induction, podocyte damage and albuminuria appear mediated largely by serum albumin-associated fatty acids.
Collapse
|
11
|
Abstract
In the mammalian kidney, prostaglandins (PGs) are important mediators of physiologic processes, including modulation of vascular tone and salt and water. PGs arise from enzymatic metabolism of free arachidonic acid (AA), which is cleaved from membrane phospholipids by phospholipase A2 activity. The cyclooxygenase (COX) enzyme system is a major pathway for metabolism of AA in the kidney. COX are the enzymes responsible for the initial conversion of AA to PGG2 and subsequently to PGH2, which serves as the precursor for subsequent metabolism by PG and thromboxane synthases. In addition to high levels of expression of the "constitutive" rate-limiting enzyme responsible for prostanoid production, COX-1, the "inducible" isoform of cyclooxygenase, COX-2, is also constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. PGs and thromboxane A2 exert their biological functions predominantly through activation of specific 7-transmembrane G-protein-coupled receptors. COX metabolites have been shown to exert important physiologic functions in maintenance of renal blood flow, mediation of renin release and regulation of sodium excretion. In addition to physiologic regulation of prostanoid production in the kidney, increases in prostanoid production are also seen in a variety of inflammatory renal injuries, and COX metabolites may serve as mediators of inflammatory injury in renal disease.
Collapse
Affiliation(s)
- Raymond C Harris
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | | |
Collapse
|
12
|
Chronic administration of EP4-selective agonist exacerbates albuminuria and fibrosis of the kidney in streptozotocin-induced diabetic mice through IL-6. J Transl Med 2013; 93:933-45. [PMID: 23817085 PMCID: PMC3941981 DOI: 10.1038/labinvest.2013.85] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 01/11/2023] Open
Abstract
Diabetic nephropathy is currently the most common cause of end-stage renal disease in the western world. Exacerbated inflammation of the kidney is known to contribute acceleration of nephropathy. Despite increased COX-2-mediated production of prostanoid metabolite PGE2, knowledge on its involvement in the progression of diabetic kidney disease is not complete. Here, we show the cross talk of the PGE2-EP4 pathways and IL-6 in inducing albuminuria and fibrosis in an animal model of type 1 diabetes. Hyperglycemia causes enhanced COX-2 expression and PGE2 production. Administration of PGE2 receptor EP4-selective agonist ONO-AE1-329 for 12 weeks exacerbated fibrosis and albuminuria. Diabetes-induced expression of inflammatory cytokines TNFα and TGFβ1 was enhanced in EP4 agonist-treated mice kidney. In addition, urinary excretion of cytokines (TNFα and IL-6) and chemokines (MCP-1 and IP-10) were significantly more in EP4-treated mice than vehicle-treated diabetes. Diabetes-induced collagen I and CTGF expression were also significantly higher in EP4-treated mice. However, EP4 agonist did not alter macrophage infiltration but increased cytokine and chemokine production in RAW264.7 cells. Interestingly, EP4-induced IL-6 expression in the kidney was localized in proximal and distal tubular epithelial cells. To confirm further whether EP4 agonist increases fibrosis and albuminuria through an increase in IL-6 expression, IL-6-knockout mice were administered with EP4 agonist. IL-6-knockout mice were resistant to EP4-induced exacerbation of albuminuria and diabetes and EP4-induced fibrosis. Our data suggest that EP4 agonist through IL-6 induces glomerulosclerosis and interstitial fibrosis, and IL-6 represents a new factor in the EP4 pathway.
Collapse
|
13
|
Eid AA, Ford BM, Bhandary B, de Cassia Cavaglieri R, Block K, Barnes JL, Gorin Y, Choudhury GG, Abboud HE. Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 2013; 62:2935-47. [PMID: 23557706 PMCID: PMC3717863 DOI: 10.2337/db12-1504] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Pharmacological doses of the mammalian target of rapamycin (mTOR) inhibitor rapamycin reduce albuminuria in diabetes. We explored the hypothesis that mTOR mediates podocyte injury in diabetes. High glucose (HG) induces apoptosis of podocytes, inhibits AMP-activated protein kinase (AMPK) activation, inactivates tuberin, and activates mTOR. HG also increases the levels of Nox4 and Nox1 and NADPH oxidase activity. Inhibition of mTOR by low-dose rapamycin decreases HG-induced Nox4 and Nox1, NADPH oxidase activity, and podocyte apoptosis. Inhibition of mTOR had no effect on AMPK or tuberin phosphorylation, indicating that mTOR is downstream of these signaling molecules. In isolated glomeruli of OVE26 mice, there is a similar decrease in the activation of AMPK and tuberin and activation of mTOR with increase in Nox4 and NADPH oxidase activity. Inhibition of mTOR by a small dose of rapamycin reduces podocyte apoptosis and attenuates glomerular injury and albuminuria. Our data provide evidence for a novel function of mTOR in Nox4-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. Thus, mTOR and/or NADPH oxidase inhibition may represent a therapeutic modality of diabetic kidney disease.
Collapse
Affiliation(s)
- Assaad A Eid
- Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Blackburn AC, Coggan M, Shield AJ, Cappello J, Theodoratos A, Murray TP, Rooke M, Larter CZ, Koina ME, Dahlstrom JE, Matthaei KI, Board PG. Glutathione transferase kappa deficiency causes glomerular nephropathy without overt oxidative stress. J Transl Med 2011; 91:1572-83. [PMID: 21826057 DOI: 10.1038/labinvest.2011.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glutathione transferase kappa (GSTK1-1) is a highly conserved, mitochondrial enzyme potentially involved in redox reactions. GSTK1-1-deficient mice were generated to further study the enzyme's biological role. Reduced and total glutathione levels in liver and kidney were unchanged by GSTK1-1 deficiency and NADPH quinone oxidoreductase 1 expression was not elevated indicating that there is no general underlying oxidative stress in Gstk1(-/-) mice. Electron microscopy of liver and kidney showed no changes in mitochondrial morphology with GSTK1-1 deficiency. The death of a number of Gstk1(-/-) males with urinary tract problems prompted close examination of the kidneys. Electron microscopy revealed glomerular basement membrane changes at 3 months, accompanied by detectable microalbuminuria in male mice (albumin:creatinine ratio of 2.66±0.83 vs 1.13±0.20 mg/mmol for Gstk1(-/-) and wild-type (WT), respectively, P=0.001). This was followed by significant foot process effacement (40-55% vs 10% for Gstk1(-/-) and WT, respectively) at 6 months of age in all Gstk1(-/-) mice examined. Kidney tubules were ultrastructurally normal. Compared with human disease, the Gstk1(-/-) kidneys show changes seen in glomerulopathies causing nephrotic syndrome. Gstk1(-/-) mice may offer insights into the early development of glomerular nephropathies.
Collapse
Affiliation(s)
- Anneke C Blackburn
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cheng H, Fan X, Moeckel GW, Harris RC. Podocyte COX-2 exacerbates diabetic nephropathy by increasing podocyte (pro)renin receptor expression. J Am Soc Nephrol 2011; 22:1240-51. [PMID: 21737546 DOI: 10.1681/asn.2010111149] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) increases podocyte cyclooxygenase-2 (COX-2) expression, and COX-2 inhibition reduces proteinuria and glomerular injury in animal models of diabetes. To investigate the role of podocyte COX-2 in development of diabetic nephropathy, we employed a streptozotocin model of diabetic mellitus in wild-type and transgenic mice expressing COX-2 selectively in podocytes. Progressive albuminuria developed only in diabetic COX-2 transgenic mice despite hyperglycemia, BP, and GFR being similar to those in wild-type mice. Transgenic mice also manifested significant foot-process effacement, moderate mesangial expansion, and segmental thickening of the glomerular basement membrane. In cultured podocytes overexpressing COX-2, high glucose induced cell injury and increased both expression of the pro(renin) receptor and activation of the renin-angiotensin system. Downregulation of the (pro)renin receptor attenuated the injury induced by high glucose. In vivo, podocyte pro(renin) receptor expression increased in diabetic COX-2-transgenic mice, and treatment with a COX-2 inhibitor abrogated the upregulation of (pro)renin receptor and reduced albuminuria, foot-process effacement, and mesangial matrix expansion. In summary, these results demonstrate that increased expression of podocyte COX-2 predisposes to diabetic glomerular injury and that the (pro)renin receptor may be one mediator for this increased susceptibility to injury.
Collapse
Affiliation(s)
- Huifang Cheng
- George M. O’Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
16
|
Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 2010; 285:37503-12. [PMID: 20861022 DOI: 10.1074/jbc.m110.136796] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diabetes and high glucose (HG) increase the generation of NADPH oxidase-derived reactive oxygen species and induce apoptosis of glomerular epithelial cells (podocytes). Loss of podocytes contributes to albuminuria, a major risk factor for progression of kidney disease. Here, we show that HG inactivates AMP-activated protein kinase (AMPK), up-regulates Nox4, enhances NADPH oxidase activity, and induces podocyte apoptosis. Activation of AMPK blocked HG-induced expression of Nox4, NADPH oxidase activity, and apoptosis. We also identified the tumor suppressor protein p53 as a mediator of podocyte apoptosis in cells exposed to HG. Inactivation of AMPK by HG up-regulated the expression and phosphorylation of p53, and p53 acted downstream of Nox4. To investigate the mechanism of podocyte apoptosis in vivo, we used OVE26 mice, a model of type 1 diabetes. Glomeruli isolated from these mice showed decreased phosphorylation of AMPK and enhanced expression of Nox4 and p53. Pharmacologic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-riboside in OVE26 mice attenuated Nox4 and p53 expression. Administration of 5-aminoimidazole-4-carboxamide-1-riboside also prevented renal hypertrophy, glomerular basement thickening, foot process effacement, and podocyte loss, resulting in marked reduction in albuminuria. Our results uncover a novel function of AMPK that integrates metabolic input to Nox4 and provide new insight for activation of p53 to induce podocyte apoptosis. The data indicate the potential therapeutic utility of AMPK activators to block Nox4 and reactive oxygen species generation and to reduce urinary albumin excretion in type 1 diabetes.
Collapse
Affiliation(s)
- Assaad A Eid
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sparks MA, Coffman TM. The EP4 receptor for prostaglandin E2 in glomerular disease: a good receptor turned bad? J Am Soc Nephrol 2010; 21:1597-9. [PMID: 20829404 DOI: 10.1681/asn.2010080870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
18
|
Stitt-Cavanagh EM, Faour WH, Takami K, Carter A, Vanderhyden B, Guan Y, Schneider A, Breyer MD, Kennedy CRJ. A maladaptive role for EP4 receptors in podocytes. J Am Soc Nephrol 2010; 21:1678-90. [PMID: 20671216 DOI: 10.1681/asn.2009121234] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inhibition of p38 mitogen-activated protein kinase and cyclooxygenase-2 reduces albuminuria in models of chronic kidney disease marked by podocyte injury. Previously, we identified a feedback loop in podocytes whereby an in vitro surrogate for glomerular capillary pressure (i.e., mechanical stretch) along with prostaglandin E(2) stimulation of its EP4 receptor induced cyclooxygenase-2 in a p38-dependent manner. Here we asked whether stimulation of EP4 receptors would exacerbate glomerulopathies associated with enhanced glomerular capillary pressure. We generated mice with either podocyte-specific overexpression or depletion of the EP4 receptor (EP4(pod+) and EP4(pod-/-), respectively). Glomerular prostaglandin E(2)-stimulated cAMP levels were eightfold greater for EP4(pod+) mice compared with nontransgenic (non-TG) mice. In contrast, EP4 mRNA levels were >50% lower, and prostaglandin E(2)-induced cAMP synthesis was absent in podocytes isolated from EP4(pod-/-) mice. Non-TG and EP4(pod+) mice underwent 5/6 nephrectomy and exhibited similar increases in systolic BP (+25 mmHg) by 4 weeks compared with sham-operated controls. Two weeks after nephrectomy, the albumin-creatinine ratio of EP4(pod+) mice (3438 μg/mg) was significantly higher than that of non-TG mice (773 μg/mg; P < 0.0001). Consistent with more severe renal injury, the survival rate for nephrectomized EP4(pod+) mice was significantly lower than that for non-TG mice (14 versus 67%). In contrast, 6 weeks after nephrectomy, the albumin-creatinine ratio of EP4(pod-/-) mice (753 μg/mg) was significantly lower than that of non-TG mice (2516 μg/mg; P < 0.05). These findings suggest that prostaglandin E(2), acting via EP4 receptors contributes to podocyte injury and compromises the glomerular filtration barrier.
Collapse
Affiliation(s)
- Erin M Stitt-Cavanagh
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Brideau G, Doucet A. Over-expression of adenosine deaminase in mouse podocytes does not reverse puromycin aminonucleoside resistance. BMC Nephrol 2010; 11:15. [PMID: 20649959 PMCID: PMC2915970 DOI: 10.1186/1471-2369-11-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 07/22/2010] [Indexed: 12/02/2022] Open
Abstract
Background Edema in nephrotic syndrome results from renal retention of sodium and alteration of the permeability properties of capillaries. Nephrotic syndrome induced by puromycin aminonucleoside (PAN) in rats reproduces the biological and clinical signs of the human disease, and has been widely used to identify the cellular mechanisms of sodium retention. Unfortunately, mice do not develop nephrotic syndrome in response to PAN, and we still lack a good mouse model of the disease in which the genetic tools necessary for further characterizing the pathophysiological pathway could be used. Mouse resistance to PAN has been attributed to a defect in glomerular adenosine deaminase (ADA), which metabolizes PAN. We therefore attempted to develop a mouse line sensitive to PAN through induction of normal adenosine metabolism in their podocytes. Methods A mouse line expressing functional ADA under the control of the podocyte-specific podocin promoter was generated by transgenesis. The effect of PAN on urinary excretion of sodium and proteins was compared in rats and in mice over-expressing ADA and in littermates. Results We confirmed that expression of ADA mRNAs was much lower in wild type mouse than in rat glomerulus. Transgenic mice expressed ADA specifically in the glomerulus, and their ADA activity was of the same order of magnitude as in rats. Nonetheless, ADA transgenic mice remained insensitive to PAN treatment in terms of both proteinuria and sodium retention. Conclusions Along with previous results, this study shows that adenosine deaminase is necessary but not sufficient to confer PAN sensitivity to podocytes. ADA transgenic mice could be used as a background strain for further transgenesis.
Collapse
Affiliation(s)
- Gaëlle Brideau
- Université Pierre et Marie Curie, Institut National de la Santé et de la Recherche Médicale, Centre National de Recherche Scientifique, Paris, France
| | | |
Collapse
|
20
|
Cheng H, Harris RC. The glomerulus--a view from the outside--the podocyte. Int J Biochem Cell Biol 2010; 42:1380-7. [PMID: 20542138 DOI: 10.1016/j.biocel.2010.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/12/2010] [Accepted: 05/30/2010] [Indexed: 01/11/2023]
Abstract
In the past decade, podocyte research has been greatly aided by the development of powerful new molecular, cellular and animal tools, leading to elucidation of an increasing number of proteins involved in podocyte function and identification of mutated genes in hereditary glomerulopathies. Accumulating evidence indicates that podocyte disorders may not only underlie these hereditary glomerulopathies but also play crucial role in a broad spectrum of acquired glomerular diseases. Genetic susceptibility, environmental influence and systemic responses are all involved in the mediation of the pathogenesis of podocytopathies. Injured podocytes may predisopose to further injury of other podocytes and other adjacent/distant renal cells in a vicious cycle, leading to inexorable progression of glomerular injury. The classic view is that podocytes have a limited ability to proliferate in the normal mature kidney. However, recent research in rodents has provided suggestive evidence for podocyte regeneration resulting from differentiation of progenitor cells within Bowman's capsule.
Collapse
Affiliation(s)
- Huifang Cheng
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2372, USA.
| | | |
Collapse
|
21
|
Cytochrome-P450 2B1 gene silencing attenuates puromycin aminonucleoside-induced cytotoxicity in glomerular epithelial cells. Kidney Int 2010; 78:182-90. [PMID: 20407477 DOI: 10.1038/ki.2010.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Previously, we demonstrated that cytochrome P450 2B1 (CYP2B1) can generate reactive oxygen species in puromycin aminonucleoside (PAN)-induced nephrotic syndrome, an animal model of minimal-change disease in humans. In this study we found that overexpression of CYP2B1 in rat glomerular epithelial cells in vitro significantly increased PAN-induced reactive oxygen species generation, cytotoxicity, cell death, and collapse of the actin cytoskeleton. All of these pathological changes were markedly attenuated by siRNA-induced CYP2B1 silencing. The cellular CYP2B1 protein content was significantly decreased whereas its mRNA level was markedly increased, suggesting regulation by protein degradation rather than transcriptional inhibition in the PAN-treated glomerular epithelial cells. This degradation of CYP2B1 was accompanied by the induction of heme oxygenase-1, an important indicator of heme-induced oxidative stress. In PAN-treated CYP2B1-silenced glomerular epithelial cells the induction of heme oxygenase-1 and caspase-3 activity were significantly decreased. Further, cleavage of the stress-induced pro-apoptotic endoplasmic reticulum-specific pro-caspase-12 was prevented in the silenced cells. Our results support a pivotal role of CYP2B1 for reactive oxygen species production in the endoplasmic reticulum in PAN-induced cytotoxicity.
Collapse
|
22
|
Cheng H, Fan X, Guan Y, Moeckel GW, Zent R, Harris RC. Distinct roles for basal and induced COX-2 in podocyte injury. J Am Soc Nephrol 2009; 20:1953-62. [PMID: 19643929 DOI: 10.1681/asn.2009010039] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transgenic mice that overexpress cyclooxygenase-2 (COX-2) selectively in podocytes are more susceptible to glomerular injury by adriamycin and puromycin (PAN). To investigate the potential roles of COX-2 metabolites, we studied mice with selective deletion of prostanoid receptors and generated conditionally immortalized podocyte lines from mice with either COX-2 deletion or overexpression. Podocytes that overexpressed COX-2 were virtually indistinguishable from wild-type podocytes but were significantly more sensitive to PAN-induced injury, produced more prostaglandin E(2) and thromboxane B(2), and had greater expression of prostaglandin E(2) receptor subtype 4 (EP(4)) and thromboxane receptor (TP). Treatment of COX-2-overexpressing podocytes with a TP antagonist reduced apoptosis, but treatment with an EP(4) antagonist did not. In contrast, podocytes from COX-2-knockout mice exhibited increased apoptosis, markedly decreased cell adhesion, and prominent stress fibers. In vivo, selective deletion of podocyte EP(4) did not alter the increased sensitivity to adriamycin-induced injury observed in mice overexpressing podocyte COX-2. In contrast, genetic deletion of TP in these mice prevented adriamycin-induced injury, with attenuated albuminuria and foot process effacement. These results suggest that basal COX-2 may be important for podocyte survival, but overexpression of podocyte COX-2 increases susceptibility to podocyte injury, which is mediated, in part, by activation of the thromboxane receptor.
Collapse
Affiliation(s)
- Huifang Cheng
- Division of Nephrology, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
23
|
Eid AA, Gorin Y, Fagg BM, Maalouf R, Barnes JL, Block K, Abboud HE. Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes 2009; 58:1201-11. [PMID: 19208908 PMCID: PMC2671039 DOI: 10.2337/db08-1536] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE We investigated the role of cytochrome P450 of the 4A family (CYP4A), its metabolites, and NADPH oxidases both in reactive oxygen species (ROS) production and apoptosis of podocytes exposed to high glucose and in OVE26 mice, a model of type 1 diabetes. RESEARCH DESIGN AND METHODS Apoptosis, albuminuria, ROS generation, NADPH superoxide generation, CYP4A and Nox protein expression, and mRNA levels were measured in vitro and in vivo. RESULTS Exposure of mouse podocytes to high glucose resulted in apoptosis, with approximately one-third of the cells being apoptotic by 72 h. High-glucose treatment increased ROS generation and was associated with sequential upregulation of CYP4A and an increase in 20-hydroxyeicosatetraenoic acid (20-HETE) and Nox oxidases. This is consistent with the observation of delayed induction of NADPH oxidase activity by high glucose. The effects of high glucose on NADPH oxidase activity, Nox proteins and mRNA expression, and apoptosis were blocked by N-hydroxy-N'-(4-butyl-2-methylphenol) formamidine (HET0016), an inhibitor of CYP4A, and were mimicked by 20-HETE. CYP4A and Nox oxidase expression was upregulated in glomeruli of type 1 diabetic OVE26 mice. Treatment of OVE26 mice with HET0016 decreased NADPH oxidase activity and Nox1 and Nox4 protein expression and ameliorated apoptosis and albuminuria. CONCLUSIONS Generation of ROS by CYP4A monooxygenases, 20-HETE, and Nox oxidases is involved in podocyte apoptosis in vitro and in vivo. Inhibition of selected cytochrome P450 isoforms prevented podocyte apoptosis and reduced proteinuria in diabetes.
Collapse
Affiliation(s)
- Assaad A. Eid
- University of Texas Health Science Center, Department of Medicine, San Antonio, Texas; and the
| | - Yves Gorin
- University of Texas Health Science Center, Department of Medicine, San Antonio, Texas; and the
| | - Bridget M. Fagg
- University of Texas Health Science Center, Department of Medicine, San Antonio, Texas; and the
| | - Rita Maalouf
- University of Texas Health Science Center, Department of Medicine, San Antonio, Texas; and the
| | - Jeffrey L. Barnes
- University of Texas Health Science Center, Department of Medicine, San Antonio, Texas; and the
- South Texas Veterans Healthcare System, San Antonio, Texas
| | - Karen Block
- University of Texas Health Science Center, Department of Medicine, San Antonio, Texas; and the
- South Texas Veterans Healthcare System, San Antonio, Texas
| | - Hanna E. Abboud
- University of Texas Health Science Center, Department of Medicine, San Antonio, Texas; and the
- South Texas Veterans Healthcare System, San Antonio, Texas
- Corresponding author: Hanna E. Abboud,
| |
Collapse
|
24
|
Smith JP, Pozzi A, Dhawan P, Singh AB, Harris RC. Soluble HB-EGF induces epithelial-to-mesenchymal transition in inner medullary collecting duct cells by upregulating Snail-2. Am J Physiol Renal Physiol 2009; 296:F957-65. [PMID: 19244405 DOI: 10.1152/ajprenal.90490.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animal models of acute renal injury suggest that the epidermal growth factor receptor (EGFR) axis may have a beneficial role in the recovery from acute renal injury, but recent reports describe detrimental effects of EGFR activation in chronic renal injury. Expression of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) increases following renal injury, but the effects of this sustained upregulation have not been well studied. Here, stable overexpression of soluble HB-EGF (sHB-EGF) in mouse inner medullary collecting duct (IMCD) cells led to marked phenotypic changes: sHB-EGF-expressing cells demonstrated a fibroblast-like morphology, did not form epithelial sheets, exhibited cytoplasmic projections, decreased expression of epithelial markers, and increased expression of fibroblast-specific protein-1. They also demonstrated anchorage-independent growth and formed tumors when injected subcutaneously into nude mice. Quantitative RT-PCR and a luciferase reporter assay suggested that sHB-EGF repressed transcription of E-cadherin, and a concomitant TGF-beta-independent upregulation of the E-cadherin repressor Snail-2 was observed. Stable downregulation of Snail-2 in sHB-EGF-overexpressing cells restored epithelial characteristics (E-cadherin and cytokeratin expression) but did not alter their anchorage-independent growth. In summary, sustained exposure to sHB-EGF induces epithelial-to-mesenchymal transition of IMCD cells, in part by upregulating the E-cadherin transcriptional repressor Snail-2.
Collapse
Affiliation(s)
- James P Smith
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
25
|
Faour WH, Gomi K, Kennedy CRJ. PGE(2) induces COX-2 expression in podocytes via the EP(4) receptor through a PKA-independent mechanism. Cell Signal 2008; 20:2156-64. [PMID: 18762248 DOI: 10.1016/j.cellsig.2008.08.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/23/2008] [Accepted: 08/11/2008] [Indexed: 01/11/2023]
Abstract
Cyclooxygenase-2 (COX-2)-dependent prostaglandin E(2) (PGE(2)) synthesis correlates with the onset of proteinuria and increased glomerular capillary pressure (P(gc)) glomerular disease models. We previously showed that an in vitro surrogate for P(gc) (cyclical mechanical stretch) upregulates the expression of both COX-2 and the PGE(2) responsive E-Prostanoid receptor, EP(4) in cultured mouse podocytes. In the present study we further delineate the signaling pathways regulating podocyte COX-2 induction. Time course experiments carried out in conditionally-immortalized mouse podocytes revealed that PGE(2) transiently increased phosphorylated p38 MAPK levels at 10 min, and induced COX-2 protein expression at 4 h. siRNA-mediated knockdown of EP(4) receptor expression, unlike treatment with the EP(1) receptor antagonist SC 19220, completely abrogated PGE(2)-induced p38 phosphorylation and COX-2 upregulation suggesting the involvement of the EP(4) receptor subtype. PGE(2)-induced COX-2 induction was abrogated by inhibition of either p38 MAPK or AMP activated protein kinase (AMPK), and was mimicked by AICAR, a selective AMPK activator, and by the cAMP-elevating agents, forskolin (FSK) and IBMX. Surprisingly, neither PGE(2) nor FSK/IBMX-dependent p38 activation and COX-2 expression were blocked by PKA inhibitors or mimicked by 8-cPT-cAMP a selective EPAC activator, but were instead abrogated by Compound C, suggesting the involvement of AMPK. These results indicate that in addition to mechanical stretch, PGE(2) initiates a positive feedback loop in podocytes that drives p38 MAPK activity and COX-2 expression through a cAMP/AMPK-dependent, but PKA-independent signaling cascade. This PGE(2)-induced signaling network activated by increased P(gc) could be detrimental to podocyte health and glomerular filtration barrier integrity.
Collapse
Affiliation(s)
- Wissam H Faour
- Kidney Research Centre, Division of Nephrology, Department of Medicine, the Ottawa Hospital, Ottawa, Ontario, Canada K1H 8M5.
| | | | | |
Collapse
|
26
|
Sharma K, RamachandraRao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L, Falkner B, Goldstein BJ. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 2008; 118:1645-56. [PMID: 18431508 PMCID: PMC2323186 DOI: 10.1172/jci32691] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 02/20/2008] [Indexed: 12/13/2022] Open
Abstract
Increased albuminuria is associated with obesity and diabetes and is a risk factor for cardiovascular and renal disease. However, the link between early albuminuria and adiposity remains unclear. To determine whether adiponectin, an adipocyte-derived hormone, is a communication signal between adipocytes and the kidney, we performed studies in a cohort of patients at high risk for diabetes and kidney disease as well as in adiponectin-knockout (Ad(-/-)) mice. Albuminuria had a negative correlation with plasma adiponectin in obese patients, and Ad(-/-) mice exhibited increased albuminuria and fusion of podocyte foot processes. In cultured podocytes, adiponectin administration was associated with increased activity of AMPK, and both adiponectin and AMPK activation reduced podocyte permeability to albumin and podocyte dysfunction, as evidenced by zona occludens-1 translocation to the membrane. These effects seemed to be caused by reduction of oxidative stress, as adiponectin and AMPK activation both reduced protein levels of the NADPH oxidase Nox4 in podocytes. Ad(-/-) mice treated with adiponectin exhibited normalization of albuminuria, improvement of podocyte foot process effacement, increased glomerular AMPK activation, and reduced urinary and glomerular markers of oxidant stress. These results suggest that adiponectin is a key regulator of albuminuria, likely acting through the AMPK pathway to modulate oxidant stress in podocytes.
Collapse
Affiliation(s)
- Kumar Sharma
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Satish RamachandraRao
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gang Qiu
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hitomi Kataoka Usui
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yanqing Zhu
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stephen R. Dunn
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Raogo Ouedraogo
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kelly Hough
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peter McCue
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lawrence Chan
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bonita Falkner
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Barry J. Goldstein
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|