1
|
Jackson LM, Woodruff BK, Tremblay C, Shill HA, Beach TG, Serrano GE, Adler CH. Parkinson's Disease Associated with G2019S LRRK2 Mutations without Lewy Body Pathology. Mov Disord Clin Pract 2024; 11:874-878. [PMID: 38757351 PMCID: PMC11233835 DOI: 10.1002/mdc3.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The G2019S leucine-rich repeat kinase 2 (LRRK2) gene mutation is an important and commonly found genetic determinant of Parkinson's disease (PD). The neuropathological findings associated with this mutation have thus far been varied but are most often associated with Lewy body (LB) pathology. OBJECTIVE Describe a case of clinical Parkinson's disease with levodopa responsiveness found to have LRRK2 mutations and the absence of Lewy bodies. METHOD We present an 89-year-old man with a 10-year history of slowly progressive parkinsonism suspected to be secondary to Parkinson's disease. RESULTS Neuropathological evaluation revealed nigral degeneration without Lewy bodies or Lewy neurites, but there were frequent tau-immunopositive neurites and astrocytes in the putamen and substantia nigra, neocortical glial tau positive astrocytes associated with aging-related tau astrogliopathy (ARTAG), as well as neurofibrillary tangles, beta amyloid plaques, and amyloid angiopathy typical of advanced Alzheimer's disease. G2019S LRRK2 homozygous mutations were found. CONCLUSION This case illustrates that levodopa-responsive clinical PD caused by G2019S LRRK2 mutations can occur without Lewy bodies.
Collapse
Affiliation(s)
| | | | - Cecilia Tremblay
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Holly A Shill
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Geidy E Serrano
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, USA
| |
Collapse
|
2
|
Cao R, Chen C, Wen J, Zhao W, Zhang C, Sun L, Yuan L, Wu C, Shan L, Xi M, Sun H. Recent advances in targeting leucine-rich repeat kinase 2 as a potential strategy for the treatment of Parkinson's disease. Bioorg Chem 2023; 141:106906. [PMID: 37837728 DOI: 10.1016/j.bioorg.2023.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Several single gene mutations involved in PD have been identified such as leucine-rich repeat kinase 2 (LRRK2), the most common cause of sporadic and familial PD. Its mutations have attracted much attention to therapeutically targeting this kinase. To date, many compounds including small chemical molecules with diverse scaffolds and RNA agents have been developed with significant amelioration in preclinical PD models. Currently, five candidates, DNL201, DNL151, WXWH0226, NEU-723 and BIIB094, have advanced to clinical trials for PD treatment. In this review, we describe the structure, pathogenic mutations and the mechanism of LRRK2, and summarize the development of LRRK2 inhibitors in preclinical and clinical studies, trying to provide an insight into targeting LRRK2 for PD intervention in future.
Collapse
Affiliation(s)
- Ruiwei Cao
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Caiping Chen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Jing Wen
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Weihe Zhao
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | | | - Longhui Sun
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Liyan Yuan
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Lei Shan
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Wang W, Wang X, Tang G, Zhu C, Xiang M, Xiao Q, Zhang ZM, Gao L, Yao SQ. Multitarget inhibitors/probes that target LRRK2 and AURORA A kinases noncovalently and covalently. Chem Commun (Camb) 2023; 59:10789-10792. [PMID: 37594149 DOI: 10.1039/d3cc03530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Herein, we report a salicylaldehyde-based, reversible covalent inhibitor (A2) that possesses moderate cellular activity against AURKA with a prolonged residence time and shows significant non-covalent inhibition towards LRRK2. Our results indicated that this multitarget kinase inhibitor may be used as the starting point for future development of more potent, selective and dual-targeting covalent kinase inhibitors against AURKA and LRRK2 for mitophagy.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
4
|
Banerjee R, Raj A, Potdar C, Pal PK, Yadav R, Kamble N, Holla V, Datta I. Astrocytes Differentiated from LRRK2-I1371V Parkinson's-Disease-Induced Pluripotent Stem Cells Exhibit Similar Yield but Cell-Intrinsic Dysfunction in Glutamate Uptake and Metabolism, ATP Generation, and Nrf2-Mediated Glutathione Machinery. Cells 2023; 12:1592. [PMID: 37371062 PMCID: PMC10297190 DOI: 10.3390/cells12121592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Owing to the presence of multiple enzymatic domains, LRRK2 has been associated with a diverse set of cellular functions and signaling pathways. It also has several pathological mutant-variants, and their incidences show ethnicity biases and drug-response differences with expression in dopaminergic-neurons and astrocytes. Here, we aimed to assess the cell-intrinsic effect of the LRRK2-I1371V mutant variant, prevalent in East Asian populations, on astrocyte yield and biology, involving Nrf2-mediated glutathione machinery, glutamate uptake and metabolism, and ATP generation in astrocytes derived from LRRK2-I1371V PD patient iPSCs and independently confirmed in LRRK2-I1371V-overexpressed U87 cells. Astrocyte yield (GFAP-immunopositive) was comparable between LRRK2-I1371V and healthy control (HC) populations; however, the astrocytic capability to mitigate oxidative stress in terms of glutathione content was significantly reduced in the mutant astrocytes, along with a reduction in the gene expression of the enzymes involved in glutathione machinery and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Simultaneously, a significant decrease in glutamate uptake was observed in LRRK2-I1371V astrocytes, with lower gene expression of glutamate transporters SLC1A2 and SLC1A3. The reduction in the protein expression of SLC1A2 was also directly confirmed. Enzymes catalyzing the generation of γ glutamyl cysteine (precursor of glutathione) from glutamate and the metabolism of glutamate to enter the Krebs cycle (α-ketoglutaric acid) were impaired, with significantly lower ATP generation in LRRK2-I1371V astrocytes. De novo glutamine synthesis via the conversion of glutamate to glutamine was also affected, indicating glutamate metabolism disorder. Our data demonstrate for the first time that the mutation in the LRRK2-I1371V allele causes significant astrocytic dysfunction with respect to Nrf2-mediated antioxidant machinery, AT -generation, and glutamate metabolism, even with comparable astrocyte yields.
Collapse
Affiliation(s)
- Roon Banerjee
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Aishwarya Raj
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Chandrakanta Potdar
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Vikram Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| |
Collapse
|
5
|
Kim S, Pajarillo E, Nyarko-Danquah I, Aschner M, Lee E. Role of Astrocytes in Parkinson's Disease Associated with Genetic Mutations and Neurotoxicants. Cells 2023; 12:622. [PMID: 36831289 PMCID: PMC9953822 DOI: 10.3390/cells12040622] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and the aggregation of Lewy bodies in the basal ganglia, resulting in movement impairment referred to as parkinsonism. However, the etiology of PD is not well known, with genetic factors accounting only for 10-15% of all PD cases. The pathogenetic mechanism of PD is not completely understood, although several mechanisms, such as oxidative stress and inflammation, have been suggested. Understanding the mechanisms of PD pathogenesis is critical for developing highly efficacious therapeutics. In the PD brain, dopaminergic neurons degenerate mainly in the basal ganglia, but recently emerging evidence has shown that astrocytes also significantly contribute to dopaminergic neuronal death. In this review, we discuss the role of astrocytes in PD pathogenesis due to mutations in α-synuclein (PARK1), DJ-1 (PARK7), parkin (PARK2), leucine-rich repeat kinase 2 (LRRK2, PARK8), and PTEN-induced kinase 1 (PINK1, PARK6). We also discuss PD experimental models using neurotoxins, such as paraquat, rotenone, 6-hydroxydopamine, and MPTP/MPP+. A more precise and comprehensive understanding of astrocytes' modulatory roles in dopaminergic neurodegeneration in PD will help develop novel strategies for effective PD therapeutics.
Collapse
Affiliation(s)
- Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
6
|
Modeling Parkinson's disease in LRRK2 mice: focus on synaptic dysfunction and the autophagy-lysosomal pathway. Biochem Soc Trans 2022; 50:621-632. [PMID: 35225340 DOI: 10.1042/bst20211288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/18/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD), for which the LRRK2 locus itself represents a risk factor. Idiopathic and LRRK2-related PD share the main clinical and neuropathological features, thus animals harboring the most common LRRK2 mutations, i.e. G2019S and R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathological mechanisms. Most LRRK2 rodent models, however, fail to show the main neuropathological hallmarks of the disease i.e. the degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of Lewy bodies or Lewy body-like aggregates of α-synuclein, lacking face validity. Rather, they manifest dysregulation in cellular pathways and functions that confer susceptibility to a variety of parkinsonian toxins/triggers and model the presymptomatic/premotor stages of the disease. Among such susceptibility factors, dysregulation of synaptic activity and proteostasis are evident in LRRK2 mutants. These abnormalities are also manifest in the PD brain and represent key events in the development and progression of the pathology. The present minireview covers recent articles (2018-2021) investigating the role of LRRK2 and LRRK2 mutants in the regulation of synaptic activity and autophagy-lysosomal pathway. These articles confirm a perturbation of synaptic vesicle endocytosis and glutamate release in LRRK2 mutants. Likewise, LRRK2 mutants show a marked impairment of selective forms of autophagy (i.e. mitophagy and chaperone-mediated autophagy) and lysosomal function, with minimal perturbations of nonselective autophagy. Thus, LRRK2 rodents might help understand the contribution of these pathways to PD.
Collapse
|
7
|
Nasri A, Kacem I, Farhat N, Gharbi A, Sakka S, Souissi A, Zidi S, Damak M, Bendjebara M, Gargouri A, Mhiri C, Gouider R. Heart rate variability and sympathetic skin response for the assessment of autonomic dysfunction in leucine-rich repeat kinase 2 associated Parkinson's disease. Neurophysiol Clin 2022; 52:81-93. [DOI: 10.1016/j.neucli.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
|
8
|
Konstantinidou M, Oun A, Pathak P, Zhang B, Wang Z, Ter Brake F, Dolga AM, Kortholt A, Dömling A. The tale of proteolysis targeting chimeras (PROTACs) for Leucine-Rich Repeat Kinase 2 (LRRK2). ChemMedChem 2020; 16:959-965. [PMID: 33278061 PMCID: PMC8048960 DOI: 10.1002/cmdc.202000872] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Indexed: 11/11/2022]
Abstract
Here we present the rational design and synthetic methodologies towards proteolysis‐targeting chimeras (PROTACs) for the recently‐emerged target leucine‐rich repeat kinase 2 (LRRK2). Two highly potent, selective, brain‐penetrating kinase inhibitors were selected, and their structure was appropriately modified to assemble a cereblon‐targeting PROTAC. Biological data show strong kinase inhibition and the ability of the synthesized compounds to enter the cells. However, data regarding the degradation of the target protein are inconclusive. The reasons for the inefficient degradation of the target are further discussed.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department of Pharmacy, Group of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Asmaa Oun
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Pragya Pathak
- Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Bidong Zhang
- Department of Pharmacy, Group of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Zefeng Wang
- Department of Pharmacy, Group of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Frans Ter Brake
- Department of Pharmacy, Group of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,YETEM-Innovative Technologies Application and Research Centre Suleyman Demirel University, West Campus, 32260, Isparta, Turkey
| | - Alexander Dömling
- Department of Pharmacy, Group of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
9
|
Chelban V, Vichayanrat E, Schottlaende L, Iodice V, Houlden H. Autonomic dysfunction in genetic forms of synucleinopathies. Mov Disord 2019; 33:359-371. [PMID: 29508456 DOI: 10.1002/mds.27343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/01/2018] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Abstract
The discovery of genetic links between alpha-synuclein and PD has opened unprecedented opportunities for research into a new group of diseases, now collectively known as synucleinopathies. Autonomic dysfunction, including cardiac sympathetic denervation, has been reported in familial forms of synucleinopathies that have Lewy bodies at the core of their pathogenesis. SNCA mutations and multiplications, LRRK2 disease with Lewy bodies as well as other common, sporadic forms of idiopathic PD, MSA, pure autonomic failure, and dementia with Lewy bodies have all been associated with dysautonomia. By contrast, in familial cases of parkinsonism without Lewy bodies, such as in PARK2, the autonomic profile remains normal throughout the course of the disease. The degeneration of the central and peripheral autonomic systems in genetic as well as sporadic forms of neurodegenerative synucleinopathies correlates with the accumulation of alpha-synuclein immunoreactive-containing inclusions. Given that dysautonomia has a significant impact on the quality of life of sufferers and autonomic symptoms are generally treatable, a prompt diagnostic testing and treatment should be provided. Moreover, new evidence suggests that autonomic dysfunction can be used as an outcome prediction factor in some forms of synucleinopathies or premotor diagnostic markers that could be used in the future to define further research avenues. In this review, we describe the autonomic dysfunction of genetic synucleinopathies in comparison to the dysautonomia of sporadic forms of alpha-synuclein accumulation and provide the reader with an up-to-date overview of the current understanding in this fast-growing field. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom, and National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Ekawat Vichayanrat
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, United Kingdom
| | - Lucia Schottlaende
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom, and National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Valeria Iodice
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, United Kingdom.,Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom, and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
10
|
Wu CX, Liao J, Park Y, Reed X, Engel VA, Hoang NC, Takagi Y, Johnson SM, Wang M, Federici M, Nichols RJ, Sanishvili R, Cookson MR, Hoang QQ. Parkinson's disease-associated mutations in the GTPase domain of LRRK2 impair its nucleotide-dependent conformational dynamics. J Biol Chem 2019; 294:5907-5913. [PMID: 30796162 DOI: 10.1074/jbc.ra119.007631] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
Mutation in leucine-rich repeat kinase 2 (LRRK2) is a common cause of familial Parkinson's disease (PD). Recently, we showed that a disease-associated mutation R1441H rendered the GTPase domain of LRRK2 catalytically less active and thereby trapping it in a more persistently "on" conformation. However, the mechanism involved and characteristics of this on conformation remained unknown. Here, we report that the Ras of complex protein (ROC) domain of LRRK2 exists in a dynamic dimer-monomer equilibrium that is oppositely driven by GDP and GTP binding. We also observed that the PD-associated mutations at residue 1441 impair this dynamic and shift the conformation of ROC to a GTP-bound-like monomeric conformation. Moreover, we show that residue Arg-1441 is critical for regulating the conformational dynamics of ROC. In summary, our results reveal that the PD-associated substitutions at Arg-1441 of LRRK2 alter monomer-dimer dynamics and thereby trap its GTPase domain in an activated state.
Collapse
Affiliation(s)
- Chun-Xiang Wu
- From the Departments of Biochemistry and Molecular Biology, Indianapolis, Indiana 46202; The Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jingling Liao
- From the Departments of Biochemistry and Molecular Biology, Indianapolis, Indiana 46202; The Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Public Health, Wuhan University of Science and Technology School of Medicine, 430081 Wuhan, China
| | - Yangshin Park
- From the Departments of Biochemistry and Molecular Biology, Indianapolis, Indiana 46202; The Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xylena Reed
- the Laboratory of Neurogenetics, National Institutes of Health, Bethesda, Maryland 20892
| | - Victoria A Engel
- From the Departments of Biochemistry and Molecular Biology, Indianapolis, Indiana 46202; The Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Neo C Hoang
- From the Departments of Biochemistry and Molecular Biology, Indianapolis, Indiana 46202; The Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yuichiro Takagi
- From the Departments of Biochemistry and Molecular Biology, Indianapolis, Indiana 46202
| | - Steven M Johnson
- From the Departments of Biochemistry and Molecular Biology, Indianapolis, Indiana 46202
| | - Mu Wang
- From the Departments of Biochemistry and Molecular Biology, Indianapolis, Indiana 46202; the Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123 China
| | | | - R Jeremy Nichols
- the Department of Pathology, Stanford University, Stanford, California 94305
| | - Ruslan Sanishvili
- the X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Mark R Cookson
- the Laboratory of Neurogenetics, National Institutes of Health, Bethesda, Maryland 20892
| | - Quyen Q Hoang
- From the Departments of Biochemistry and Molecular Biology, Indianapolis, Indiana 46202; The Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
11
|
Kalinderi K, Papaliagkas V, Fidani L. Pharmacogenetics and levodopa induced motor complications. Int J Neurosci 2018; 129:384-392. [DOI: 10.1080/00207454.2018.1538993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kallirhoe Kalinderi
- Department of General Biology, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Papaliagkas
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki AHEPA University Hospital, Thessaloniki, Greece
| | - Liana Fidani
- Department of General Biology, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Bae EJ, Kim DK, Kim C, Mante M, Adame A, Rockenstein E, Ulusoy A, Klinkenberg M, Jeong GR, Bae JR, Lee C, Lee HJ, Lee BD, Di Monte DA, Masliah E, Lee SJ. LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nat Commun 2018; 9:3465. [PMID: 30150626 PMCID: PMC6110743 DOI: 10.1038/s41467-018-05958-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Propagation of α-synuclein aggregates has been suggested as a contributing factor in Parkinson's disease (PD) progression. However, the molecular mechanisms underlying α-synuclein aggregation are not fully understood. Here, we demonstrate in cell culture, nematode, and rodent models of PD that leucine-rich repeat kinase 2 (LRRK2), a PD-linked kinase, modulates α-synuclein propagation in a kinase activity-dependent manner. The PD-linked G2019S mutation in LRRK2, which increases kinase activity, enhances propagation efficiency. Furthermore, we show that the role of LRRK2 in α-synuclein propagation is mediated by RAB35 phosphorylation. Constitutive activation of RAB35 overrides the reduced α-synuclein propagation phenotype in lrk-1 mutant C. elegans. Finally, in a mouse model of synucleinopathy, administration of an LRRK2 kinase inhibitor reduced α-synuclein aggregation via enhanced interaction of α-synuclein with the lysosomal degradation pathway. These results suggest that LRRK2-mediated RAB35 phosphorylation is a potential therapeutic target for modifying disease progression.
Collapse
Affiliation(s)
- Eun-Jin Bae
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dong-Kyu Kim
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Mante
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anthony Adame
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Edward Rockenstein
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Michael Klinkenberg
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Ga Ram Jeong
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jae Ryul Bae
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Cheolsoon Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - Byung-Dae Lee
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seung-Jae Lee
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
13
|
Giesert F, Glasl L, Zimprich A, Ernst L, Piccoli G, Stautner C, Zerle J, Hölter SM, Vogt Weisenhorn DM, Wurst W. The pathogenic LRRK2 R1441C mutation induces specific deficits modeling the prodromal phase of Parkinson's disease in the mouse. Neurobiol Dis 2017; 105:179-193. [PMID: 28576705 DOI: 10.1016/j.nbd.2017.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/13/2017] [Accepted: 05/29/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to further explore the in vivo function of the Leucine-rich repeat kinase 2 (LRRK2)-gene, which is mutated in certain familial forms of Parkinson's disease (PD). We generated a mouse model harboring the disease-associated point mutation R1441C in the GTPase domain of the endogenous murine LRRK2 gene (LRRK2 R1441C line) and performed a comprehensive analysis of these animals throughout lifespan in comparison with an existing knockdown line of LRRK2 (LRRK2 knockdown line). Animals of both lines do not exhibit severe motor dysfunction or pathological signs of neurodegeneration neither at young nor old age. However, at old age the homozygous LRRK2 R1441C animals exhibit clear phenotypes related to the prodromal phase of PD such as impairments in fine motor tasks, gait, and olfaction. These phenotypes are only marginally observable in the LRRK2 knockdown animals, possibly due to activation of compensatory mechanisms as suggested by in vitro studies of synaptic transmission. Thus, at the organismal level the LRRK2 R1441C mutation does not emerge as a loss of function of the protein, but induces mutation specific deficits. Furthermore, judged by the phenotypes presented, the LRRK2-R1441C knock-in line is a valid preclinical model for the prodromal phase of PD.
Collapse
Affiliation(s)
- F Giesert
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - L Glasl
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - A Zimprich
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - L Ernst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - G Piccoli
- Center for Integrative Biology (CIBIO), University of Trento and Dulbecco Telethon Institute Trento, Italy
| | - C Stautner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - J Zerle
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - S M Hölter
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - D M Vogt Weisenhorn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - W Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Feodor-Lynen-Str. 17, 81377 München, Germany.
| |
Collapse
|
14
|
Schwab AJ, Ebert AD. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports 2016; 5:1039-1052. [PMID: 26651604 PMCID: PMC4682343 DOI: 10.1016/j.stemcr.2015.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/15/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most-common genetic determinants of Parkinson’s disease (PD). The G2019S mutation is detected most frequently and is associated with increased kinase activity. Whereas G2019S mutant dopamine neurons exhibit neurite elongation deficits, the effect of G2019S on other neuronal subtypes is unknown. As PD patients also suffer from non-motor symptoms that may be unrelated to dopamine neuron loss, we used induced pluripotent stem cells (iPSCs) to assess morphological and functional properties of peripheral sensory neurons. LRRK2 G2019S iPSC-derived sensory neurons exhibited normal neurite length but had large microtubule-containing neurite aggregations. Additionally, LRRK2 G2019S iPSC-derived sensory neurons displayed altered calcium dynamics. Treatment with LRRK2 kinase inhibitors resulted in significant, but not complete, morphological and functional rescue. These data indicate a role for LRRK2 kinase activity in sensory neuron structure and function, which when disrupted, may lead to sensory neuron deficits in PD. LRRK2 iPSC sensory neurons show neurite aggregations and abnormal calcium dynamics LRRK2 iPSC sensory neuron defects are distinct from the dopamine neuron defects Kinase inhibition of LRRK2 partially restored sensory neuron structure and function Abnormal sensory neuron phenotypes may relate to non-motor symptoms observed in PD
Collapse
Affiliation(s)
- Andrew J Schwab
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
15
|
Liu J, Li T, Thomas JM, Pei Z, Jiang H, Engelender S, Ross CA, Smith WW. Synphilin-1 attenuates mutant LRRK2-induced neurodegeneration in Parkinson's disease models. Hum Mol Genet 2016; 25:672-80. [PMID: 26744328 DOI: 10.1093/hmg/ddv504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 11/12/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal-dominant Parkinsonism with pleomorphic pathology including deposits of aggregated protein and neuronal degeneration. The pathogenesis of LRRK2-linked Parkinson's disease (PD) is not fully understood. Here, using co-immunoprecipitation, we found that LRRK2 interacted with synphilin-1 (SP1), a cytoplasmic protein that interacts with α-synuclein and has implications in PD pathogenesis. LRRK2 interacted with the N-terminus of SP1 whereas SP1 predominantly interacted with the C-terminus of LRRK2, including kinase domain. Co-expression of SP1 with LRRK2 increased LRRK2-induced cytoplasmic aggregation in cultured cells. Moreover, SP1 also attenuated mutant LRRK2-induced toxicity and reduced LRRK2 kinase activity in cultured cells. Knockdown of SP1 by siRNA enhanced LRRK2 neuronal toxicity. In vivo Drosophila studies, co-expression of SP1 and mutant G2019S-LRRK2 in double transgenic Drosophila increased survival and improved locomotor activity. Expression of SP1 protects against G2019S-LRRK2-induced dopamine neuron loss and reduced LRRK2 phosphorylation in double transgenic fly brains. Our findings demonstrate that SP1 attenuates mutant LRRK2-induced PD-like phenotypes and plays a neural protective role.
Collapse
Affiliation(s)
- Jingnan Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Joseph M Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Zhong Pei
- Division of Neurobiology, Department of Psychiatry
| | | | - Simone Engelender
- Department of Pharmacology, The B. Rappaport Institute of Medical Research, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Departments of Neuroscience, Neurology, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA and
| | - Wanli W Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA,
| |
Collapse
|
16
|
Jones S, Uusna J, Langel Ü, Howl J. Intracellular Target-Specific Accretion of Cell Penetrating Peptides and Bioportides: Ultrastructural and Biological Correlates. Bioconjug Chem 2015; 27:121-9. [DOI: 10.1021/acs.bioconjchem.5b00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sarah Jones
- Research
Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, United Kingdom
| | - Julia Uusna
- Institute
of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Ülo Langel
- Institute
of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - John Howl
- Research
Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
17
|
Li T, Yang D, Zhong S, Thomas JM, Xue F, Liu J, Kong L, Voulalas P, Hassan HE, Park JS, MacKerell AD, Smith WW. Novel LRRK2 GTP-binding inhibitors reduced degeneration in Parkinson's disease cell and mouse models. Hum Mol Genet 2014; 23:6212-22. [PMID: 24993787 DOI: 10.1093/hmg/ddu341] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause autosomal-dominant Parkinson's disease (PD) and contribute to sporadic PD. LRRK2 contains Guanosine-5'-triphosphate (GTP) binding, GTPase and kinase activities that have been implicated in the neuronal degeneration of PD pathogenesis, making LRRK2, a potential drug target. To date, there is no disease-modifying drug to slow the neuronal degeneration of PD and no published LRRK2 GTP domain inhibitor. Here, the biological functions of two novel GTP-binding inhibitors of LRRK2 were examined in PD cell and mouse models. Through a combination of computer-aided drug design (CADD) and LRRK2 bio-functional screens, two novel compounds, 68: and 70: , were shown to reduce LRRK2 GTP binding and to inhibit LRRK2 kinase activity in vitro and in cultured cell assays. Moreover, these two compounds attenuated neuronal degeneration in human SH-SY5Y neuroblastoma cells and mouse primary neurons expressing mutant LRRK2 variants. Although both compounds inhibited LRRK2 kinase activity and reduced neuronal degeneration, solubility problems with 70: prevented further testing in mice. Thus, only 68: was tested in a LRRK2-based lipopolysaccharide (LPS)-induced pre-inflammatory mouse model. 68: reduced LRRK2 GTP-binding activity and kinase activity in brains of LRRK2 transgenic mice after intraperitoneal injection. Moreover, LPS induced LRRK2 upregulation and microglia activation in mouse brains. These findings suggest that disruption of GTP binding to LRRK2 represents a potential novel therapeutic approach for PD intervention and that these novel GTP-binding inhibitors provide both tools and lead compounds for future drug development.
Collapse
Affiliation(s)
- Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Dejun Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Shijun Zhong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Joseph M Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jingnan Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Lingbo Kong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Pamela Voulalas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Hazem E Hassan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jae-Sung Park
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Wanli W Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Parkinson disease-associated mutation R1441H in LRRK2 prolongs the "active state" of its GTPase domain. Proc Natl Acad Sci U S A 2014; 111:4055-60. [PMID: 24591621 DOI: 10.1073/pnas.1323285111] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mutation in leucine-rich-repeat kinase 2 (LRRK2) is a common cause of Parkinson disease (PD). A disease-causing point mutation R1441H/G/C in the GTPase domain of LRRK2 leads to overactivation of its kinase domain. However, the mechanism by which this mutation alters the normal function of its GTPase domain [Ras of complex proteins (Roc)] remains unclear. Here, we report the effects of R1441H mutation (RocR1441H) on the structure and activity of Roc. We show that Roc forms a stable monomeric conformation in solution that is catalytically active, thus demonstrating that LRRK2 is a bona fide self-contained GTPase. We further show that the R1441H mutation causes a twofold reduction in GTPase activity without affecting the structure, thermal stability, and GDP-binding affinity of Roc. However, the mutation causes a twofold increase in GTP-binding affinity of Roc, thus suggesting that the PD-causing mutation R1441H traps Roc in a more persistently activated state by increasing its affinity for GTP and, at the same time, compromising its GTP hydrolysis.
Collapse
|
19
|
Pchelina SN, Emelyanov AK, Usenko TS. Molecular basis of Parkinsons’s disease linked to LRRK2 mutations. Mol Biol 2014. [DOI: 10.1134/s0026893314010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
LRRK2 phosphorylates novel tau epitopes and promotes tauopathy. Acta Neuropathol 2013; 126:809-27. [PMID: 24113872 PMCID: PMC3830748 DOI: 10.1007/s00401-013-1188-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/27/2013] [Indexed: 01/02/2023]
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of familial Parkinson's disease (PD). The neuropathology of LRRK2-related PD is heterogeneous and can include aberrant tau phosphorylation or neurofibrillary tau pathology. Recently, LRRK2 has been shown to phosphorylate tau in vitro; however, the major epitopes phosphorylated by LRRK2 and the physiological or pathogenic consequences of these modifications in vivo are unknown. Using mass spectrometry, we identified multiple sites on recombinant tau that are phosphorylated by LRRK2 in vitro, including pT149 and pT153, which are phospho-epitopes that to date have been largely unexplored. Importantly, we demonstrate that expression of transgenic LRRK2 in a mouse model of tauopathy increased the aggregation of insoluble tau and its phosphorylation at T149, T153, T205, and S199/S202/T205 epitopes. These findings indicate that tau can be a LRRK2 substrate and that this interaction can enhance salient features of human disease.
Collapse
|
21
|
Golde TE, Borchelt DR, Giasson BI, Lewis J. Thinking laterally about neurodegenerative proteinopathies. J Clin Invest 2013; 123:1847-55. [PMID: 23635781 DOI: 10.1172/jci66029] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and frontotemporal dementia, are proteinopathies that are associated with the aggregation and accumulation of misfolded proteins. While remarkable progress has been made in understanding the triggers of these conditions, several challenges have hampered the translation of preclinical therapies targeting pathways downstream of the initiating proteinopathies. Clinical trials in symptomatic patients using therapies directed toward initiating trigger events have met with little success, prompting concerns that such therapeutics may be of limited efficacy when used in advanced stages of the disease rather than as prophylactics. Herein, we discuss gaps in our understanding of the pathological processes downstream of the trigger and potential strategies to identify common features of the downstream degenerative cascade in multiple CNS proteinopathies, which could potentially lead to the development of common therapeutic targets for multiple disorders.
Collapse
Affiliation(s)
- Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|
22
|
Cho HJ, Liu G, Jin SM, Parisiadou L, Xie C, Yu J, Sun L, Ma B, Ding J, Vancraenenbroeck R, Lobbestael E, Baekelandt V, Taymans JM, He P, Troncoso JC, Shen Y, Cai H. MicroRNA-205 regulates the expression of Parkinson's disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 2012; 22:608-20. [PMID: 23125283 DOI: 10.1093/hmg/dds470] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent genome-wide association studies indicate that a simple alteration of Leucine-rich repeat kinase 2 (LRRK2) gene expression may contribute to the etiology of sporadic Parkinson's disease (PD). However, the expression and regulation of LRRK2 protein in the sporadic PD brains remain to be determined. Here, we found that the expression of LRRK2 protein was enhanced in the sporadic PD patients using the frontal cortex tissue from a set of 16 PD patients and 7 control samples. In contrast, no significant difference was detected in the level of LRRK2 mRNA expression between the control and PD cases, suggesting a potential post-transcriptional modification of the LRRK2 protein expression in the sporadic PD brains. Indeed, it was identified that microRNA-205 (miR-205) suppressed the expression of LRRK2 protein through a conserved-binding site at the 3'-untranslated region (UTR) of LRRK2 gene. Interestingly, miR-205 expression was significantly downregulated in the brains of patients with sporadic PD, showing the enhanced LRRK2 protein levels. Also, in vitro studies in the cell lines and primary neuron cultures further established the role of miR-205 in modulating the expression of LRRK2 protein. In addition, introduction of miR-205 prevented the neurite outgrowth defects in the neurons expressing a PD-related LRRK2 R1441G mutant. Together, these findings suggest that downregulation of miR-205 may contribute to the potential pathogenic elevation of LRRK2 protein in the brains of patients with sporadic PD, while overexpression of miR-205 may provide an applicable therapeutic strategy to suppress the abnormal upregulation of LRRK2 protein in PD.
Collapse
Affiliation(s)
- Hyun Jin Cho
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang D, Li T, Liu Z, Arbez N, Yan J, Moran TH, Ross CA, Smith WW. LRRK2 kinase activity mediates toxic interactions between genetic mutation and oxidative stress in a Drosophila model: Suppression by curcumin. Neurobiol Dis 2012; 47:385-92. [DOI: 10.1016/j.nbd.2012.05.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/29/2012] [Accepted: 05/24/2012] [Indexed: 11/16/2022] Open
|
24
|
Houlden H, Singleton AB. The genetics and neuropathology of Parkinson's disease. Acta Neuropathol 2012; 124:325-38. [PMID: 22806825 PMCID: PMC3589971 DOI: 10.1007/s00401-012-1013-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 06/22/2012] [Accepted: 07/01/2012] [Indexed: 10/28/2022]
Abstract
There has been tremendous progress toward understanding the genetic basis of Parkinson's disease and related movement disorders. We summarize the genetic, clinical and pathological findings of autosomal dominant disease linked to mutations in SNCA, LRRK2, ATXN2, ATXN3, MAPT, GCH1, DCTN1 and VPS35. We then discuss the identification of mutations in PARK2, PARK7, PINK1, ATP13A2, FBXO7, PANK2 and PLA2G6 genes. In particular we discuss the clinical and pathological characterization of these forms of disease, where neuropathology has been important in the likely coalescence of pathways highly relevant to typical PD. In addition to the identification of the causes of monogenic forms of PD, significant progress has been made in defining genetic risk loci for PD; we discuss these here, including both risk variants at LRRK2 and GBA, in addition to discussing the results of recent genome-wide association studies and their implications for PD. Finally, we discuss the likely path of genetic discovery in PD over the coming period and the implications of these findings from a clinical and etiological perspective.
Collapse
Affiliation(s)
- Henry Houlden
- Molecular Neuroscience Department, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, Queen Square, London, UK
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA,
| |
Collapse
|
25
|
Kramer T, Lo Monte F, Göring S, Okala Amombo GM, Schmidt B. Small molecule kinase inhibitors for LRRK2 and their application to Parkinson's disease models. ACS Chem Neurosci 2012; 3:151-60. [PMID: 22860184 PMCID: PMC3369800 DOI: 10.1021/cn200117j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/18/2012] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Several single gene mutations have been linked to this disease. Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) indicate LRRK2 as promising therapeutic target for the treatment of PD. LRRK2 mutations were observed in sporadic as well as familial PD patients and have been investigated intensively. LRRK2 is a large and complex protein, with multiple enzymatic and protein-interaction domains, each of which is effected by mutations. The most common mutation in PD patients is G2019S. Several LRRK2 inhibitors have been reported already, although the crystal structure of LRRK2 has not yet been determined. This review provides a summary of known LRRK2 inhibitors and will discuss recent in vitro and in vivo results of these inhibitors.
Collapse
Affiliation(s)
| | | | - Stefan Göring
- Clemens Schöpf - Institute
of Organic Chemistry
and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ghislaine Marlyse Okala Amombo
- Clemens Schöpf - Institute
of Organic Chemistry
and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Boris Schmidt
- Clemens Schöpf - Institute
of Organic Chemistry
and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
26
|
Sibley CR, Wood MJA. Identification of allele-specific RNAi effectors targeting genetic forms of Parkinson's disease. PLoS One 2011; 6:e26194. [PMID: 22031823 PMCID: PMC3198729 DOI: 10.1371/journal.pone.0026194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 09/22/2011] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disorder affecting an estimated 5-10 million people worldwide. Recent evidence has implicated several genes that directly cause or increase susceptibility to PD. As well as advancing understanding of the genetic aetiology of PD these findings suggest new ways to modify the disease course, in some cases through genetic manipulation. Here we generated a 'walk-through' series of RNA Pol III-expressed shRNAs targeting both the α-synuclein A30P and LRRK2 G2019S PD-associated mutations. Allele-specific discrimination of the α-synuclein A30P mutation was achieved with alignments at position 10, 13 and 14 in two model systems, including a heterozygous model mimicking the disease setting, whilst 5'RACE was used to confirm stated alignments. Discrimination of the most common PD-linked LRRK2 G2019S mutation was assessed in hemizygous dual-luciferase assays and showed that alignment of the mutation opposite position 4 of the antisense species produced robust discrimination of alleles at all time points studied. Discrimination at this position was subsequently confirmed using siRNAs, where up to 10-fold discrimination was seen. The results suggest that RNAi-mediated silencing of PD-associated autosomal dominant genes could be a novel therapeutic approach for the treatment of the relevant clinical cases of PD in future.
Collapse
Affiliation(s)
- Christopher R. Sibley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Matthew J. A. Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Gan-Or Z, Bar-Shira A, Mirelman A, Gurevich T, Giladi N, Orr-Urtreger A. The age at motor symptoms onset in LRRK2-associated Parkinson's disease is affected by a variation in the MAPT locus: a possible interaction. J Mol Neurosci 2011; 46:541-4. [PMID: 21898123 DOI: 10.1007/s12031-011-9641-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/24/2011] [Indexed: 11/25/2022]
Abstract
The current paradigm on Parkinson's disease (PD) pathogenesis and course suggests the involvement of multiple genes and the interaction between them. Recently, it was reported that a variation (rs2435207) in the MAPT gene region influenced the age of motor symptoms onset (AO) in 44 PD patients from 19 families, carriers of leucine-rich repeat kinase 2 (LRRK2) mutations, all of European and North American origin. To examine whether genetic factors within the MAPT locus exert a similar effect on AO in a different population of LRRK2-associated PD patients, 99 unrelated Ashkenazi patients with the LRRK2 p.G2019S mutation were analyzed. Three SNPs in the MAPT region were studied, rs393152, rs2435207, and rs11079727; the latter is located in the first intron of MAPT. Among carriers of the single LRRK2 p.G2019S mutation that did not carry a founder Ashkenazi GBA mutation too (n = 84), the AO in minor rs11079727 A allele carriers (C/A genotype) was significantly older (62.5 ± 10.6 years) compared to the AO (55.7 ± 11.6) among carriers of the C/C genotype (p = 0.025). Our results further support a possible interaction between genetic factors in the MAPT region and the LRRK2 gene, which influence the clinical course of PD patients.
Collapse
Affiliation(s)
- Ziv Gan-Or
- The Genetic Institute, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, 64239, Israel
| | | | | | | | | | | |
Collapse
|
28
|
Covy JP, Giasson BI. α-Synuclein, leucine-rich repeat kinase-2, and manganese in the pathogenesis of Parkinson disease. Neurotoxicology 2011; 32:622-9. [PMID: 21238487 DOI: 10.1016/j.neuro.2011.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/29/2010] [Accepted: 01/07/2011] [Indexed: 01/14/2023]
Abstract
Parkinson disease (PD) is the most common movement disorder. It is characterized by bradykinesia, postural instability, resting tremor, and rigidity associated with the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Another pathological hallmark of PD is the presence of α-synuclein proteiniacous inclusions, known as Lewy bodies and Lewy neurites, in some of the remaining dopaminergic neurons. Mounting evidence indicates that both genetic and environmental factors contribute to the etiology of PD. For example, genetic mutations (duplications, triplications or missense mutations) in the α-synuclein gene can lead to PD, but even in these patients, age-dependent physiological changes or environmental exposures appear to be involved in disease presentation. Several additional alterations in many other genes have been established to either cause or increase the risk of parkinson disease. More specifically, autosomal dominant missense mutations in the gene for leucine-rich repeat kinase 2 (LRRK2/PARK8) are the most common known cause of PD. Recently it was shown that G2019S, the most common diseasing-causing mutant of LRRK2, has dramatic effects on the kinase activity of LRRK2: while activity of wild-type LRRK2 is inhibited by manganese, the G2019S mutation abrogates this inhibition. Based on the in vitro kinetic properties of LRRK2 in the presence of manganese, we proposed that LRRK2 may be a sensor of cytoplasmic manganese levels and that the G2019S mutant has lost this function. This finding, alongside a growing number of studies demonstrating an interaction between PD-associated proteins and manganese, suggest that dysregulation of neuronal manganese homeostasis over a lifetime can play an important role in the etiology of PD.
Collapse
Affiliation(s)
- Jason P Covy
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
29
|
Identification and characterization of a leucine-rich repeat kinase 2 (LRRK2) consensus phosphorylation motif. PLoS One 2010; 5:e13672. [PMID: 21060682 PMCID: PMC2965117 DOI: 10.1371/journal.pone.0013672] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/05/2010] [Indexed: 01/01/2023] Open
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) have been identified as major genetic determinants of Parkinson's disease (PD). The most prevalent mutation, G2019S, increases LRRK2's kinase activity, therefore understanding the sites and substrates that LRRK2 phosphorylates is critical to understanding its role in disease aetiology. Since the physiological substrates of this kinase are unknown, we set out to reveal potential targets of LRRK2 G2019S by identifying its favored phosphorylation motif. A non-biased screen of an oriented peptide library elucidated F/Y-x-T-x-R/K as the core dependent substrate sequence. Bioinformatic analysis of the consensus phosphorylation motif identified several novel candidate substrates that potentially function in neuronal pathophysiology. Peptides corresponding to the most PD relevant proteins were efficiently phosphorylated by LRRK2 in vitro. Interestingly, the phosphomotif was also identified within LRRK2 itself. Autophosphorylation was detected by mass spectrometry and biochemical means at the only F-x-T-x-R site (Thr 1410) within LRRK2. The relevance of this site was assessed by measuring effects of mutations on autophosphorylation, kinase activity, GTP binding, GTP hydrolysis, and LRRK2 multimerization. These studies indicate that modification of Thr1410 subtly regulates GTP hydrolysis by LRRK2, but with minimal effects on other parameters measured. Together the identification of LRRK2's phosphorylation consensus motif, and the functional consequences of its phosphorylation, provide insights into downstream LRRK2-signaling pathways.
Collapse
|
30
|
Covy JP, Giasson BI. The G2019S pathogenic mutation disrupts sensitivity of leucine-rich repeat kinase 2 to manganese kinase inhibition. J Neurochem 2010; 115:36-46. [PMID: 20626563 DOI: 10.1111/j.1471-4159.2010.06894.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in leucine-rich repeat kinase-2 (LRRK2) are the most common cause of late-onset Parkinson disease. Previously, we showed that the G2019S pathogenic mutation can cause a dramatic increase (approximately 10-fold) in kinase activity, far above other published studies. A notable experimental difference was the use of Mn-ATP as a substrate. Therefore, the effects of metal cation-ATP cofactors on LRRK2 kinase activity were investigated. It is shown, using several divalent metal cations, that only Mg(2+) or Mn(2+) can support LRRK2 kinase activity. However, for wild-type, I2020T, and R1441C LRRK2, Mn(2+) was significantly less effective at supporting kinase activity. In sharp contrast, both Mn(2+) and Mg(2+) were effective at supporting the activity of G2019S LRRK2. These divergent effects associated with divalent cation usage and the G2019S mutation were predominantly because of differences in catalytic rates. However, LRRK2 was shown to have much lower (approximately 40-fold) ATP K(m) for Mn-ATP compared with Mg-ATP. Consequently, sub-stoichiometric concentrations of Mn(2+) can act to inhibit the kinase activity of wild-type, but not G2019S LRRK2 in the presence of Mg(2+) . From these findings, a new model is proposed for a possible function of LRRK2 and the consequence of the G2019S LRRK2 pathogenic mutation.
Collapse
Affiliation(s)
- Jason P Covy
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | |
Collapse
|
31
|
Bardien S, Marsberg A, Keyser R, Lombard D, Lesage S, Brice A, Carr J. LRRK2 G2019S mutation: frequency and haplotype data in South African Parkinson's disease patients. J Neural Transm (Vienna) 2010; 117:847-53. [PMID: 20544233 DOI: 10.1007/s00702-010-0423-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most significant genetic cause of Parkinson's disease (PD). The exact function of LRRK2 is currently unknown but the presence of multiple protein interaction domains including WD40 and ankyrin indicates that it may act a scaffold for assembly of a multi-protein signaling complex. The G2019S mutation in LRRK2 represents the most clinically relevant PD-causing mutation and has been found in both familial and sporadic forms of the disorder. This mutation is situated in the highly conserved kinase MAPKKK domain, and has been found in up to 40% of PD patients from North African Arabic, 30% of Ashkenazi Jewish and approximately 10% of Portuguese and Spanish populations. Although extensively investigated in numerous European and North American populations, studies on the frequency of G2019S in African countries have been rare. The present study is the first on the South African population. High-resolution melt analysis was used to identify the G2019S mutation and it was found in 2% (4/205) of the patients studied. G2019S was not found in any of the Black PD patients screened. In all four G2019S-positive probands the mutation was shown to be present on the common haplotype referred to as haplotype 1. This reveals that the four South African G2019S-positive probands (three Caucasian and one of mixed ancestry) share a common ancestor with the other haplotype 1-associated families reported worldwide.
Collapse
Affiliation(s)
- Soraya Bardien
- Division of Molecular Biology and Human Genetics, University of Stellenbosch, 4th Floor Fisan Building, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa.
| | | | | | | | | | | | | |
Collapse
|
32
|
Lesage S, Patin E, Condroyer C, Leutenegger AL, Lohmann E, Giladi N, Bar-Shira A, Belarbi S, Hecham N, Pollak P, Ouvrard-Hernandez AM, Bardien S, Carr J, Benhassine T, Tomiyama H, Pirkevi C, Hamadouche T, Cazeneuve C, Basak AN, Hattori N, Dürr A, Tazir M, Orr-Urtreger A, Quintana-Murci L, Brice A. Parkinson's disease-related LRRK2 G2019S mutation results from independent mutational events in humans. Hum Mol Genet 2010; 19:1998-2004. [PMID: 20197411 DOI: 10.1093/hmg/ddq081] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene have been identified in families with autosomal dominant Parkinson's disease (PD) and in sporadic cases; the G2019S mutation is the single most frequent. Intriguingly, the frequency of this mutation in PD patients varies greatly among ethnic groups and geographic origins: it is present at <0.1% in East Asia, approximately 2% in European-descent patients and can reach frequencies of up to 15-40% in PD Ashkenazi Jews and North African Arabs. To ascertain the evolutionary dynamics of the G2019S mutation in different populations, we genotyped 74 markers spanning a 16 Mb genomic region around G2019S, in 191 individuals carrying the mutation from 126 families of different origins. Sixty-seven families were of North-African Arab origin, 18 were of North/Western European descent, 37 were of Jewish origin, mostly from Eastern Europe, one was from Japan, one from Turkey and two were of mixed origins. We found the G2019S mutation on three different haplotypes. Network analyses of the three carrier haplotypes showed that G2019S arose independently at least twice in humans. In addition, the population distribution of the intra-allelic diversity of the most widespread carrier haplotype, together with estimations of the age of G2019S determined by two different methods, suggests that one of the founding G2019S mutational events occurred in the Near East at least 4000 years ago.
Collapse
|
33
|
Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 2009; 29:13971-80. [PMID: 19890007 DOI: 10.1523/jneurosci.3799-09.2009] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) functions as a putative protein kinase of ezrin, radixin, and moesin (ERM) family proteins. A Parkinson's disease-related G2019S substitution in the kinase domain of LRRK2 further enhances the phosphorylation of ERM proteins. The phosphorylated ERM (pERM) proteins are restricted to the filopodia of growing neurites in which they tether filamentous actin (F-actin) to the cytoplasmic membrane and regulate the dynamics of filopodia protrusion. Here, we show that, in cultured neurons derived from LRRK2 G2019S transgenic mice, the number of pERM-positive and F-actin-enriched filopodia was significantly increased, and this correlates with the retardation of neurite outgrowth. Conversely, deletion of LRRK2, which lowered the pERM and F-actin contents in filopodia, promoted neurite outgrowth. Furthermore, inhibition of ERM phosphorylation or actin polymerization rescued the G2019S-dependent neuronal growth defects. These data support a model in which the G2019S mutation of LRRK2 causes a gain-of-function effect that perturbs the homeostasis of pERM and F-actin in sprouting neurites critical for neuronal morphogenesis.
Collapse
|
34
|
Waxman EA, Covy JP, Bukh I, Li X, Dawson TM, Giasson BI. Leucine-rich repeat kinase 2 expression leads to aggresome formation that is not associated with alpha-synuclein inclusions. J Neuropathol Exp Neurol 2009; 68:785-96. [PMID: 19535993 DOI: 10.1097/nen.0b013e3181aaf4fd] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mutations in leucine-rich repeat kinase-2 (LRRK2) are the most common known cause of Parkinson disease, but how this protein results in the pathobiology of Parkinson disease is unknown. Moreover, there is variability in pathology among cases, and alpha-synuclein (alpha-syn) neuronal inclusions are often present, but whether LRRK2 is present in these pathological inclusions is controversial. This study characterizes novel LRRK2 antibodies, some of which preferentially recognize an aggregated form of LRRK2, as observed in cell culture models. Large perinuclear aggregates containing LRRK2 were promoted by proteasome inhibition and prevented by microtubule polymerization inhibition. Furthermore, they were vimentin- and gamma-tubulin- but not lamp1-immunoreactive, suggesting that these structures fit the definition of aggresomes. Inhibition of heat shock protein 90 led to the degradation of only the soluble/cytosolic pool of LRRK2, suggesting that the aggresomes formed independent of the stability provided by the heat shock protein 90. Although these novel anti-LRRK2 antibodies identified aggregates in model cell systems, they did not immunostain pathological inclusions in human brains. Furthermore, coexpression of LRRK2 and alpha-syn did not recruit alpha-syn into aggresomes in cultured cells, even in the presence of proteasome inhibition. Thus, although LRRK2 is a model system for aggresome formation, LRRK2 is not present in alpha-syn pathological inclusions.
Collapse
Affiliation(s)
- Elisa A Waxman
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | | | | | |
Collapse
|
35
|
Genetic factors influencing age at onset in LRRK2-linked Parkinson disease. Parkinsonism Relat Disord 2009; 15:539-41. [DOI: 10.1016/j.parkreldis.2008.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/21/2008] [Accepted: 10/24/2008] [Indexed: 11/18/2022]
|
36
|
Ding X, Goldberg MS. Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP. PLoS One 2009; 4:e5949. [PMID: 19536328 PMCID: PMC2694275 DOI: 10.1371/journal.pone.0005949] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 04/27/2009] [Indexed: 11/21/2022] Open
Abstract
Dominantly inherited mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common cause of familial Parkinson's disease (PD) and have also been identified in individuals with sporadic PD. Although the exact cellular function of LRRK2 remains unknown, most PD-linked mutations appear to be toxic to cells in culture via mechanisms that depend on the kinase activity of LRRK2 or on the formation of cytoplasmic inclusions. Here we show that the E3 ubiquitin ligase CHIP physically associates with LRRK2 and regulates the cellular abundance of LRRK2. We further show that LRRK2 forms a complex with overexpressed and endogenous CHIP and Hsp90. Our data indicates that the destabilization of LRRK2 by CHIP is due to ubiquitination and proteasome-dependent degradation. Hsp90 can attenuate CHIP-mediated degradation and this can be blocked by the Hsp90 inhibitor geldanamycin. These findings provide important insight into the cellular regulation of LRRK2 stability and may lead to the development of therapeutics to treat PD based on controlling LRRK2 stability.
Collapse
Affiliation(s)
- Xiaodong Ding
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Matthew S. Goldberg
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
LRRK2 and neurodegeneration. Acta Neuropathol 2009; 117:227-46. [PMID: 19142648 DOI: 10.1007/s00401-008-0478-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 12/24/2008] [Accepted: 12/24/2008] [Indexed: 10/21/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 gene (PARK8/LRRK2) encoding the protein Lrrk2 are causative of inherited and sporadic Parkinson's disease (PD) with phenotypic manifestations of frontotemporal lobar degeneration, corticobasal degeneration and associated motor neuron disease in some patients, and with variable penetrance. Neuropathology is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta in all cases with accompanying Lewy pathology, or tau pathology or without intraneuronal inclusions, thus indicating that mutations in LRRK2 are not always manifested as Lewy body disease (LBD) or as alpha-synucleinopathy. Molecular studies have not disclosed clear association between nerve cell degeneration and modifications in the kinase activity of Lrrk2, and the pathogenesis of LRRK2 mutations remains unknown. Several morphological studies have suggested that Lrrk2 is a component of Lewy bodies and aberrant neurites in sporadic PD and Dementia with Lewy bodies, whereas other studies have indicated that Lrrk2 does not participate in Lewy body composition. Likewise, some studies have shown Lrrk2 immunoreactivity in hyper-phosphorylated tau inclusions in Alzheimer's disease (AD) and other tauopathies, whereas other studies did not find Lrrk2 in hyper-phosphorylated tau inclusions. We have used three currently used anti-Lrrk2 antibodies (NB-300-268, NB-300-267 and AP7099b) and concluded that these differences are largely dependent on the antibodies used and, particularly, on the interpretation of the origin of the multiple bands of low molecular weight species, in addition to the band corresponding to full-length Lrrk2, that recognize the majority of these antibodies. A review of the available data and our results indicate that full-length Lrrk2 is not a major component of Lewy bodies in LBDs, and of hyper-phosphorylated tau inclusions in AD and tauopathies. Bands of low molecular weight are probably not the result of post-mortem artefacts as they are also present in cultured cells processed under optimal conditions. Truncated forms of Lrrk2 and additional transcripts related with LRRK2, in the absence of spliced forms of Lrrk2 may account for Lrrk2 immunoreactivity in distinct intraneuronal inclusions.
Collapse
|
38
|
Anand VS, Reichling LJ, Lipinski K, Stochaj W, Duan W, Kelleher K, Pungaliya P, Brown EL, Reinhart PH, Somberg R, Hirst WD, Riddle SM, Braithwaite SP. Investigation of leucine-rich repeat kinase 2 : enzymological properties and novel assays. FEBS J 2009; 276:466-78. [PMID: 19076219 DOI: 10.1111/j.1742-4658.2008.06789.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) comprise the leading cause of autosomal dominant Parkinson's disease, with age of onset and symptoms identical to those of idiopathic forms of the disorder. Several of these pathogenic mutations are thought to affect its kinase activity, so understanding the roles of LRRK2, and modulation of its kinase activity,may lead to novel therapeutic strategies for treating Parkinson's disease. In this study, highly purified, baculovirus-expressed proteins have been used,for the first time providing large amounts of protein that enable a thorough enzymatic characterization of the kinase activity of LRRK2.Although LRRK2 undergoes weak autophosphorylation, it exhibits high activity towards the peptidic substrate LRRKtide, suggesting that it is a catalytically efficient kinase. We have also utilized a time-resolved fluorescence resonance energy transfer (TR-FRET) assay format (Lantha-ScreenTM) to characterize LRRK2 and test the effects of nonselective kinase inhibitors. Finally, we have used both radiometric and TR-FRETassays to assess the role of clinical mutations affecting LRRK2's kinase activity. Our results suggest that only the most prevalent clinical mutation,G2019S, results in a robust enhancement of kinase activity with LRRKtideas the substrate. This mutation also affects binding of ATP to LRRK2,with wild-type binding being tighter (Km,app of 57 lm) than with theG2019S mutant (Km,app of 134 lm). Overall, these studies delineate the catalytic efficiency of LRRK2 as a kinase and provide strategies by which a therapeutic agent for Parkinson's disease may be identified.
Collapse
Affiliation(s)
- Vasanti S Anand
- Wyeth Research, Discovery Neuroscience, Princeton, NJ 08543, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Covy JP, Giasson BI. Identification of compounds that inhibit the kinase activity of leucine-rich repeat kinase 2. Biochem Biophys Res Commun 2008; 378:473-7. [PMID: 19027715 DOI: 10.1016/j.bbrc.2008.11.048] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 11/14/2008] [Indexed: 11/16/2022]
Abstract
Mutations in leucine-repeat rich kinase 2 (LRRK2) are the most common known cause of late-onset Parkinson's disease. In this study, a novel system to purify active recombinant LRRK2 expressed in mammalian cells was generated. This recombinant enzyme was used to characterize the specificity of LRRK2 and identify small compounds that can inhibit the kinase activity. Recombinant LRRK2 was shown to autophosphorylate and phosphorylate MBP and a peptide (LRRKtide) corresponding to the T558 [corrected] site in moesin. A series of well-characterized kinase peptide substrates was not modified by LRRK2 demonstrating remarkable specificity. G2019S, the most common disease-causing mutation in LRRK2, increased kinase activity more dramatically than previously appreciated ( approximately 10-fold). Several small molecules sharing a basic indolocarbazole structure (Gö6976, K-252a, and staurosporine) where identified as potent inhibitors of LRRK2 kinase activity. These findings provide important insights and tools to study the mechanisms of LRRK2 pathobiology, and could lead to therapeutic applications.
Collapse
Affiliation(s)
- Jason P Covy
- Department of Pharmacology, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, 125 John Morgan Building, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
40
|
Pienaar IS, Daniels WMU, Götz J. Neuroproteomics as a promising tool in Parkinson's disease research. J Neural Transm (Vienna) 2008; 115:1413-30. [PMID: 18523721 PMCID: PMC2862282 DOI: 10.1007/s00702-008-0070-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 05/14/2008] [Indexed: 12/21/2022]
Abstract
Despite the vast number of studies on Parkinson's disease (PD), its effective diagnosis and treatment remains unsatisfactory. Hence, the relentless search for an optimal cure continues. The emergence of neuroproteomics, with its sophisticated techniques and non-biased ability to quantify proteins, provides a methodology with which to study the changes in neurons that are associated with neurodegeneration. Neuroproteomics is an emerging tool to establish disease-associated protein profiles, while also generating a greater understanding as to how these proteins interact and undergo post-translational modifications. Furthermore, due to the advances made in bioinformatics, insight is created concerning their functional characteristics. In this review, we first summarize the most prominent proteomics techniques and then discuss the major advances in the fast-growing field of neuroproteomics in PD. Ultimately, it is hoped that the application of this technology will lead towards a presymptomatic diagnosis of PD, and the identification of risk factors and new therapeutic targets at which pharmacological intervention can be aimed.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Department of Medical Physiology, University of Stellenbosch, Matieland, South Africa.
| | | | | |
Collapse
|
41
|
Abstract
Small guanosine triphosphatases (GTPases) have long been known to control the activities of downstream protein kinases. Some members of a rather new multidomain protein family contain not only a GTPase domain of the ROC (Ras of complex protein) subtype but also a protein kinase domain, and both domains seem to cooperate with each other in the same polypeptide. Data now show that the kinase activity of one of these ROCO proteins depends on whether guanosine diphosphate or guanosine triphosphate (GTP) is bound and that the activity is controlled by the adjacent GTPase, which suggests a novel mechanism of intrinsic control. This ROCO family member, leucine-rich repeat kinase 2 (LRRK2), is of special interest because mutations within both its protein kinase and its GTPase domains are associated with Parkinson's disease (PD). These mutations lead to abnormally enhanced protein kinase activity, which is believed to cause or at least contribute to neuronal damage. The crystal structure of the GTPase domain of LRRK2 has now been resolved and shows that the ROC GTPase domain is responsible for LRRK2 homodimerization in a surprising way. The structure not only offers insights into the molecular effects of some of the PD-associated mutations of LRRK2, but may also help to improve our understanding of the intrinsic control mechanism between a GTPase and a protein kinase within the same protein.
Collapse
Affiliation(s)
- Bertram Weiss
- Target Research, Bayer Schering Pharma AG13342, Berlin, Germany.
| |
Collapse
|