1
|
Zhao Z, Teoh HK, Carpenter J, Nemon F, Kardon B, Cohen I, Goldberg JH. Anterior forebrain pathway in parrots is necessary for producing learned vocalizations with individual signatures. Curr Biol 2023; 33:5415-5426.e4. [PMID: 38070505 PMCID: PMC10799565 DOI: 10.1016/j.cub.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/30/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Parrots have enormous vocal imitation capacities and produce individually unique vocal signatures. Like songbirds, parrots have a nucleated neural song system with distinct anterior (AFP) and posterior forebrain pathways (PFP). To test if song systems of parrots and songbirds, which diverged over 50 million years ago, have a similar functional organization, we first established a neuroscience-compatible call-and-response behavioral paradigm to elicit learned contact calls in budgerigars (Melopsittacus undulatus). Using variational autoencoder-based machine learning methods, we show that contact calls within affiliated groups converge but that individuals maintain unique acoustic features, or vocal signatures, even after call convergence. Next, we transiently inactivated the outputs of AFP to test if learned vocalizations can be produced by the PFP alone. As in songbirds, AFP inactivation had an immediate effect on vocalizations, consistent with a premotor role. But in contrast to songbirds, where the isolated PFP is sufficient to produce stereotyped and acoustically normal vocalizations, isolation of the budgerigar PFP caused a degradation of call acoustic structure, stereotypy, and individual uniqueness. Thus, the contribution of AFP and the capacity of isolated PFP to produce learned vocalizations have diverged substantially between songbirds and parrots, likely driven by their distinct behavioral ecology and neural connectivity.
Collapse
Affiliation(s)
- Zhilei Zhao
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Han Kheng Teoh
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Julie Carpenter
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Frieda Nemon
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Brian Kardon
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Walløe S, Chakraborty M, Balsby TJS, Jarvis ED, Dabelsteen T, Pakkenberg B. A Relationship between the Characteristics of the Oval Nucleus of the Mesopallium and Parrot Vocal Response to Playback. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:37-48. [PMID: 34284396 DOI: 10.1159/000517489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 05/02/2021] [Indexed: 11/19/2022]
Abstract
Correlations between differences in animal behavior and brain structures have been used to infer function of those structures. Brain region size has especially been suggested to be important for an animal's behavioral capability, controlled by specific brain regions. The oval nucleus of the mesopallium (MO) is part of the anterior forebrain vocal learning pathway in the parrot brain. Here, we compare brain volume and total number of neurons in MO of three parrot species (the peach-fronted conure, Eupsittula aurea, the peach-faced lovebird, Agapornis roseicollis, and the budgerigar, Melopsittacus undulatus), relating the total neuron numbers with the vocal response to playbacks of each species. We find that individuals with the highest number of neurons in MO had the shortest vocal latency. The peach-fronted conures showed the shortest vocal latency and largest number of MO neurons, the peach-faced lovebird had intermediary levels of both, and the budgerigar had the longest latency and least number of neurons. These findings indicate the MO nucleus as one candidate region that may be part of what controls the vocal capacity of parrots.
Collapse
Affiliation(s)
- Solveig Walløe
- Behavioural Ecology Group, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Mukta Chakraborty
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Laboratory of Neurogenetics of Language, Rockefeller University, New York, New York, USA
| | | | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Laboratory of Neurogenetics of Language, Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Torben Dabelsteen
- Behavioural Ecology Group, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
3
|
Garcia-Calero E, Martinez S. FoxP1 Protein Shows Differential Layer Expression in the Parahippocampal Domain among Bird Species. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:242-51. [PMID: 27394721 DOI: 10.1159/000446601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022]
Abstract
Different bird orders show diversity in neural capabilities supported by variations in brain morphology. The parahippocampal domain in the medial pallium, together with the hippocampus proper, plays an important role in memory skills. In the present work, we analyze the expression pattern of the FoxP1 protein in the parahippocampal area of four different bird species: the nonvocal learner birds quail and chicken (Galliformes) and two vocal learner birds, i.e. the zebra finch (Passeriformes) and the budgerigar (Psittaciformes), at different developmental and adult stages. We also analyze the expression of the calbindin protein in quails and zebra finches. We observed differences in the FoxP1 parahippocampal layer among bird species. In quails, chickens, and budgerigar, FoxP1 cells were located in the outer layers of the lateral and caudolateral parahippocampal sectors. In contrast, FoxP1 immunoreactive cells appeared in the inner layer of the same sectors in the zebra finch parahippocampal domain. These differences suggest two possibilities: either the FoxP1-positive cells described in quails, chickens, and budgerigars are a different population than the one described in the zebra finch, or there are changes in the pattern of radial migration in the parahippocampal area among birds. In the present study, we show that FoxP1 expression is more similar between quails, chickens, and budgerigars than between budgerigars and zebra finches in the parahippocampal area. This result contrasts with previous data in other telencephalic structures, like the calbindin-positive projection neurons described in the striatum of budgerigars and zebra finches but not in quails and chickens. All of these data point to diversity in the evolution of different morphological characters and, therefore, a mosaic model for telencephalic evolution in birds.
Collapse
|
4
|
Wirthlin M, Lovell PV, Jarvis ED, Mello CV. Comparative genomics reveals molecular features unique to the songbird lineage. BMC Genomics 2014; 15:1082. [PMID: 25494627 PMCID: PMC4377847 DOI: 10.1186/1471-2164-15-1082] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/09/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Songbirds (oscine Passeriformes) are among the most diverse and successful vertebrate groups, comprising almost half of all known bird species. Identifying the genomic innovations that might be associated with this success, as well as with characteristic songbird traits such as vocal learning and the brain circuits that underlie this behavior, has proven difficult, in part due to the small number of avian genomes available until recently. Here we performed a comparative analysis of 48 avian genomes to identify genomic features that are unique to songbirds, as well as an initial assessment of function by investigating their tissue distribution and predicted protein domain structure. RESULTS Using BLAT alignments and gene synteny analysis, we curated a large set of Ensembl gene models that were annotated as novel or duplicated in the most commonly studied songbird, the Zebra finch (Taeniopygia guttata), and then extended this analysis to 47 additional avian and 4 non-avian genomes. We identified 10 novel genes uniquely present in songbird genomes. A refined map of chromosomal synteny disruptions in the Zebra finch genome revealed that the majority of these novel genes localized to regions of genomic instability associated with apparent chromosomal breakpoints. Analyses of in situ hybridization and RNA-seq data revealed that a subset of songbird-unique genes is expressed in the brain and/or other tissues, and that 2 of these (YTHDC2L1 and TMRA) are highly differentially expressed in vocal learning-associated nuclei relative to the rest of the brain. CONCLUSIONS Our study reveals novel genes unique to songbirds, including some that may subserve their unique vocal control system, substantially improves the quality of Zebra finch genome annotations, and contributes to a better understanding of how genomic features may have evolved in conjunction with the emergence of the songbird lineage.
Collapse
Affiliation(s)
| | | | | | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97214, USA.
| |
Collapse
|
5
|
Garcia-Calero E, Bahamonde O, Martinez S. Differences in number and distribution of striatal calbindin medium spiny neurons between a vocal-learner (Melopsittacus undulatus) and a non-vocal learner bird (Colinus virginianus). Front Neuroanat 2013; 7:46. [PMID: 24391552 PMCID: PMC3867642 DOI: 10.3389/fnana.2013.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022] Open
Abstract
Striatal projecting neurons, known as medium spiny neurons (MSNs), segregate into two compartments called matrix and striosome in the mammalian striatum. The matrix domain is characterized by the presence of calbindin immunopositive (CB+) MSNs, not observed in the striosome subdivision. The existence of a similar CB+ MSN population has recently been described in two striatal structures in male zebra finch (a vocal learner bird): the striatal capsule and the Area X, a nucleus implicated in song learning. Female zebra finches show a similar pattern of CB+ MSNs than males in the developing striatum but loose these cells in juveniles and adult stages. In the present work we analyzed the existence and allocation of CB+ MSNs in the striatal domain of the vocal learner bird budgerigar (representative of psittaciformes order) and the non-vocal learner bird quail (representative of galliformes order). We studied the co-localization of CB protein with FoxP1, a transcription factor expressed in vertebrate striatal MSNs. We observed CB+ MSNs in the medial striatal domain of adult male and female budgerigars, although this cell type was missing in the potentially homologous nucleus for Area X in budgerigar. In quail, we observed CB+ cells in the striatal domain at developmental and adult stages but they did not co-localize with the MSN marker FoxP1. We also described the existence of the CB+ striatal capsule in budgerigar and quail and compared these results with the CB+ striatal capsule observed in juvenile zebra finches. Together, these results point out important differences in CB+ MSN distribution between two representative species of vocal learner and non-vocal learner avian orders (respectively the budgerigar and the quail), but also between close vocal learner bird families.
Collapse
Affiliation(s)
- Elena Garcia-Calero
- Department of Experimental Embryology, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas San Juan, Alicante, Spain
| | - Olga Bahamonde
- Department of Experimental Embryology, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas San Juan, Alicante, Spain ; Fundación Investigación Clínico de Valencia-Instituto de Investigación Sanitaria Valencia, Spain
| | - Salvador Martinez
- Department of Experimental Embryology, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas San Juan, Alicante, Spain
| |
Collapse
|
6
|
Atoji Y, Wild JM. Afferent and efferent projections of the mesopallium in the pigeon (Columba livia). J Comp Neurol 2012; 520:717-41. [DOI: 10.1002/cne.22763] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Matsunaga E, Suzuki K, Kobayashi T, Okanoya K. Comparative analysis of mineralocorticoid receptor expression among vocal learners (Bengalese finch and budgerigar) and non-vocal learners (quail and ring dove) has implications for the evolution of avian vocal learning. Dev Growth Differ 2011; 53:961-70. [PMID: 22010640 DOI: 10.1111/j.1440-169x.2011.01302.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mineralocorticoid receptor is the receptor for corticosteroids such as corticosterone or aldosterone. Previously, we found that mineralocorticoid receptor was highly expressed in song nuclei of a songbird, Bengalese finch (Lonchura striata var. domestica). Here, to examine the relationship between mineralocorticoid receptor expression and avian vocal learning, we analyzed mineralocorticoid receptor expression in the developing brain of another vocal learner, budgerigar (Melopsittacus undulatus) and non-vocal learners, quail (Coturnix japonica) and ring dove (Streptopelia capicola). Mineralocorticoid receptor showed vocal control area-related expressions in budgerigars as Bengalese finches, whereas no such mineralocorticoid receptor expressions were seen in the telencephalon of non-vocal learners. Thus, these results suggest the possibility that mineralocorticoid receptor plays a role in vocal development of parrots as songbirds and that the acquisition of mineralocorticoid receptor expression is involved in the evolution of avian vocal learning.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako 351-0198 Japan.
| | | | | | | |
Collapse
|
8
|
Matsunaga E, Okanoya K. Comparative gene expression analysis among vocal learners (bengalese finch and budgerigar) and non-learners (quail and ring dove) reveals variable cadherin expressions in the vocal system. Front Neuroanat 2011; 5:28. [PMID: 21541260 PMCID: PMC3083831 DOI: 10.3389/fnana.2011.00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 04/07/2011] [Indexed: 11/13/2022] Open
Abstract
Birds use various vocalizations to communicate with one another, and some are acquired through learning. So far, three families of birds (songbirds, parrots, and hummingbirds) have been identified as having vocal learning ability. Previously, we found that cadherins, a large family of cell-adhesion molecules, show vocal control-area-related expression in a songbird, the Bengalese finch. To investigate the molecular basis of evolution in avian species, we conducted comparative analysis of cadherin expressions in the vocal and other neural systems among vocal learners (Bengalese finch and budgerigar) and a non-learner (quail and ring dove). The gene expression analysis revealed that cadherin expressions were more variable in vocal and auditory areas compared to vocally unrelated areas such as the visual areas among these species. Thus, it appears that such diverse cadherin expressions might have been related to generating species diversity in vocal behavior during the evolution of avian vocal learning.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako Saitama, Japan
| | | |
Collapse
|
9
|
Matsunaga E, Okanoya K. Evolution and diversity in avian vocal system: An Evo-Devo model from the morphological and behavioral perspectives. Dev Growth Differ 2009; 51:355-67. [DOI: 10.1111/j.1440-169x.2009.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Pinaud R, Saldanha CJ, Wynne RD, Lovell PV, Mello CV. The excitatory thalamo-"cortical" projection within the song control system of zebra finches is formed by calbindin-expressing neurons. J Comp Neurol 2008; 504:601-18. [PMID: 17722049 DOI: 10.1002/cne.21457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The learning and production of vocalizations in songbirds are controlled by a system of interconnected brain nuclei organized into a direct vocal motor pathway and an anterior forebrain (pallium-basal ganglia-thalamo-pallial) loop. Here we show that the thalamo-pallial ("thalamo-cortical") projection (from the medial part of the dorsolateral thalamic nucleus to the lateral magnocellular nucleus of the anterior nidopallium--DLM to LMAN) within the anterior forebrain loop is composed of cells positive for the calcium-binding protein calbindin. We show that the vast majority of cells within DLM express calbindin, based both on immunocytochemistry (ICC) for calbindin protein and in situ hybridization for calb mRNA. Using a combination of tract-tracing and ICC we show that the neurons that participate in the DLM-to-LMAN projection are calbindin-positive. We also demonstrate that DLM is devoid of cells expressing mRNA for the GABAergic marker zGAD65. This observation confirms that the calbindin-expressing cells in DLM are not GABAergic, in accordance with previous electrophysiological data indicating that the DLM-to-LMAN projection is excitatory. Furthermore, we use ICC to determine the trajectory of the fibers within the DLM-to-LMAN projection, and to demonstrate a sex difference in calbindin expression levels in the fibers of the DLM-to-LMAN projection. Our findings provide a clear-cut neurochemical signature for a critical projection in the songbird vocal control pathways that enable song learning.
Collapse
Affiliation(s)
- Raphael Pinaud
- Neurological Sciences Institute, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
11
|
Watanabe A, Eda-Fujiwara H, Kimura T. Auditory feedback is necessary for long-term maintenance of high-frequency sound syllables in the song of adult male budgerigars (Melopsittacus undulatus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 193:81-97. [PMID: 17031653 DOI: 10.1007/s00359-006-0173-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 07/24/2006] [Accepted: 09/03/2006] [Indexed: 10/24/2022]
Abstract
Among avian species that communicate using vocalization, songbirds (oscine Passeriformes), hummingbirds (Trochiliformes), and parrots (Psittaciformes) are vocal learners. Early studies showed that songbirds require auditory feedback for song development in young and maintenance in adults. To determine whether auditory feedback is also necessary for adult song maintenance in non-passerine species, we deprived adult male budgerigars (Psittaciformes) of auditory input by surgical cochlear removal. Songs of the deafened birds changed within 6 months after auditory deprivation. In postoperative songs, high narrowband syllables, which comprised frequency-modulated narrowband elements with relatively high fundamental frequencies of 2-4 kHz, decreased significantly. High harmonic broadband syllables, with fundamental frequencies >/=2 kHz, also decreased. The altered proportions of syllables were subsequently retained, and maintained 12 months after deafening. The sequence linearity score, a parameter representing the stereotypy of the syllable sequence, was higher than that before deafening. The inter-syllable silence was prolonged. Little change was observed in the songs of intact and sham-operated birds. The significant decrease in high-frequency syllables and song alteration followed by stabilization resembled the results with songbirds, although song stabilization took a long time in budgerigars. Therefore, our results suggest that psittacine budgerigars and oscine songbirds require auditory feedback similarly for adult song maintenance.
Collapse
Affiliation(s)
- Aiko Watanabe
- Department of Chemical and Biological Sciences, Japan Women's University, Bunkyo, Tokyo, 112-8681, Japan.
| | | | | |
Collapse
|
12
|
Suárez J, Dávila JC, Real MA, Guirado S, Medina L. Calcium-binding proteins, neuronal nitric oxide synthase, and GABA help to distinguish different pallial areas in the developing and adult chicken. I. Hippocampal formation and hyperpallium. J Comp Neurol 2006; 497:751-71. [PMID: 16786551 DOI: 10.1002/cne.21004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To better understand the formation and adult organization of the avian pallium, we studied the expression patterns of gamma-aminobutyric acid (GABA), calbindin (CB), calretinin (CR), and neuronal nitric oxide synthase (nNOS) in the hippocampal formation and hyperpallium of developing and adult chicks. Each marker showed a specific spatiotemporal expression pattern and was expressed in a region (area)-specific but dynamic manner during development. The combinatorial expression of these markers was very useful for identifying and following the development of subdivisions of the chicken hippocampal formation and hyperpallium. In the hyperpallium, three separate radially arranged subdivisions were present since early development showing distinct expression patterns: the apical hyperpallium (CB-rich); the intercalated hyperpallium (nNOS-rich, CB-poor); the dorsal hyperpallium (nNOS-poor, CB-moderate). Furthermore, a novel division was identified (CB-rich, CR-rich), interposed between hyper- and mesopallium and related to the lamina separating both, termed laminar pallial nucleus. This gave rise at its surface to part of the lateral hyperpallium. Later in development, the interstitial nucleus of the apical hyperpallium became visible as a partition of the apical hyperpallium. In the hippocampal formation, at least five radial divisions were observed, and these were compared with the divisions proposed recently in adult pigeons. Of note, the corticoid dorsolateral area (sometimes referred as caudolateral part of the parahippocampal area) contained CB immunoreactivity patches coinciding with Nissl-stained cell aggregates, partially resembling the patches described in the mammalian entorhinal cortex. Each neurochemical marker was present in specific neuronal subpopulations and axonal networks, providing insights into the functional maturation of the chicken pallium.
Collapse
Affiliation(s)
- Juan Suárez
- Department of Cell Biology, Genetics, and Physiology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | | | | | | | | |
Collapse
|
13
|
Brauth SE, Liang W, Amateau SK, Roberts TF, Robert TF. Sexual dimorphism of vocal control nuclei in budgerigars (Melopsittacus undulatus) revealed with Nissl and NADPH-d staining. J Comp Neurol 2005; 484:15-27. [PMID: 15717302 DOI: 10.1002/cne.20458] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nissl staining and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry were used to explore the existence of sexual dimorphism in vocal control nuclei of adult budgerigars (Melopsittacus undulatus), a parrot species capable of lifelong vocal learning. Behavioral studies indicate that adult males possess larger vocal repertoires than adult females and learn new calls more quickly. The results of the present study show that the volumes of all vocal nuclei, as measured using both Nissl-stained and NADPH-d-stained material, as well as the total numbers of NADPH-d neurons, were 35-110% greater in males. Furthermore, all vocal nuclei exhibit conspicuous NADPH-d staining compared to surrounding fields in both adult males and females. Nevertheless, there were no significant gender differences in either the intensity of neuropil staining or the densities of NADPH-d neurons in vocal nuclei. Moreover NADPH-d neuron somal shapes were similar in males and females. Diameters of NADPH-d neurons in vocal nuclei were 8.5-32% larger in males than in females. Greater size of NADPH-d neuronal somata in males may be a general property of this cell type in budgerigars because a similar gender difference was found in a visual nucleus, the entopallium, which is not directly associated with the vocal control system and does not exhibit sexual dimorphism in total volume or total NADPH-d neuron numbers. Taken together, the results of the present study favor the hypothesis that superior lifelong vocal learning ability in male budgerigars rests largely on larger volumes of vocal control nuclei in males rather than on sexual dimorphism in the internal composition of vocal nuclei.
Collapse
Affiliation(s)
- Steven E Brauth
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
14
|
Iwaniuk AN, Dean KM, Nelson JE. Interspecific Allometry of the Brain and Brain Regions in Parrots (Psittaciformes): Comparisons with Other Birds and Primates. BRAIN, BEHAVIOR AND EVOLUTION 2004; 65:40-59. [PMID: 15467290 DOI: 10.1159/000081110] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 06/01/2004] [Indexed: 11/19/2022]
Abstract
Despite significant progress in understanding the evolution of the mammalian brain, relatively little is known of the patterns of evolutionary change in the avian brain. In particular, statements regarding which avian taxa have relatively larger brains and brain regions are based on small sample sizes and statistical analyses are generally lacking. We tested whether psittaciforms (parrots, cockatoos and lorikeets) have larger brains and forebrains than other birds using both conventional and phylogenetically based methods. In addition, we compared the psittaciforms to primates to determine if cognitive similarities between the two groups were reflected by similarities in brain and telencephalic volumes. Overall, psittaciforms have relatively larger brains and telencephala than most other non-passerine orders. No significant difference in relative brain or telencephalic volume was detected between psittaciforms and passerines. Comparisons of other brain region sizes between psittaciforms and other birds, however, exhibited conflicting results depending upon whether body mass or a brain volume remainder (total brain volume - brain region volume) was used as a scaling variable. When compared to primates, psittaciforms possessed similar relative brain and telencephalic volumes. The only exception to this was that in some analyses psittaciforms had significantly larger telencephala than primates of similar brain volume. The results therefore provide empirical evidence for previous claims that psittaciforms possess relatively large brains and telencephala. Despite the variability in the results, it is clear that psittaciforms tend to possess large brains and telencephala relative to non-passerines and are similar to primates in this regard. Although it could be suggested that this reflects the advanced cognitive abilities of psittaciforms, similar studies performed in corvids and other avian taxa will be required before this claim can be made with any certainty.
Collapse
Affiliation(s)
- Andrew N Iwaniuk
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
15
|
Abstract
Vocal learning, the substrate for human language, is a rare trait found to date in only three distantly related groups of mammals (humans, bats, and cetaceans) and three distantly related groups of birds (parrots, hummingbirds, and songbirds). Brain pathways for vocal learning have been studied in the three bird groups and in humans. Here I present a hypothesis on the relationships and evolution of brain pathways for vocal learning among birds and humans. The three vocal learning bird groups each appear to have seven similar but not identical cerebral vocal nuclei distributed into two vocal pathways, one posterior and one anterior. Humans also appear to have a posterior vocal pathway, which includes projections from the face motor cortex to brainstem vocal lower motor neurons, and an anterior vocal pathway, which includes a strip of premotor cortex, the anterior basal ganglia, and the anterior thalamus. These vocal pathways are not found in vocal non-learning birds or mammals, but are similar to brain pathways used for other types of learning. Thus, I argue that if vocal learning evolved independently among birds and humans, then it did so under strong genetic constraints of a pre-existing basic neural network of the vertebrate brain.
Collapse
Affiliation(s)
- Erich D Jarvis
- Department of Neurology, Duke University Medical Center, Box 3209, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Montagnese CM, Székely AD, Adám A, Csillag A. Efferent connections of septal nuclei of the domestic chick (Gallus domesticus): An anterograde pathway tracing study with a bearing on functional circuits. J Comp Neurol 2004; 469:437-56. [PMID: 14730592 DOI: 10.1002/cne.11018] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Small iontophoretic injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were placed in different subregions of the septum of domestic chicks. The main targets of septal projections comprised the ipsi- and contralateral septal nuclei, including the nucleus of the diagonal band, basal ganglia, including the ventral paleostriatum, lobus parolfactorius, nucleus accumbens, and olfactory tubercle, archistriatum, piriform cortex, and anterior neostriatum. Further diencephalic and mesencephalic septal projections were observed in the ipsilateral preoptic region, hypothalamus (the main regions of afferentation comprising the lateral hypothalamic nuclei, ventromedial, paraventricular and periventricular nuclei, and the mammillary region), dorsal thalamus, medial habenular and subhabenular nuclei, midbrain central gray, and ventral tegmental area. Contralateral projections were also encountered in the septal nuclei, ventral paleostriatum, periventricular and anteromedial hypothalamic nuclei, suprachiasmatic nucleus, and the lateral hypothalamic area. Avian septal efferents are largely similar to those of mammals, the main differences being a relatively modest hippocampal projection arising mainly from the nucleus of the diagonal band (as confirmed by a specific experiment with the retrograde pathway tracer True blue), the lack of interpeduncular projection, and a greater contingent of amygdalar efferents arising from the lateral septum rather than the nucleus of the diagonal band. This pattern of connectivity is likely to reflect an important role of the avian septal nuclei in the coordination of limbic circuits and the integration of a wide variety of information sources modulating the appropriate behavioral responses: attention and arousal level, memory formation, hormonally mediated behaviors, and their affective components (such as ingestive, reproductive, and parental behaviors), social interaction, locomotor modulation, and circadian rhythm.
Collapse
|
17
|
Montagnese CM, Mezey SE, Csillag A. Efferent connections of the dorsomedial thalamic nuclei of the domestic chick (Gallus domesticus). J Comp Neurol 2003; 459:301-26. [PMID: 12655512 DOI: 10.1002/cne.10612] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small iontophoretic injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were placed in the thalamic anterior dorsomedial nucleus (DMA) of domestic chicks. The projections of the DMA covered the rostrobasal forebrain, ventral paleostriatum, nucleus accumbens, septal nuclei, Wulst, hyperstriatum ventrale, neostriatal areas, archistriatal subdivisions, dorsolateral corticoid area, numerous hypothalamic nuclei, and dorsal thalamic nuclei. The rostral DMA projects preferentially on the hypothalamus, whereas the caudal part is connected mainly to the dorsal thalamus. The DMA is also connected to the periaqueductal gray, deep tectum opticum, intercollicular nucleus, ventral tegmental area, substantia nigra, locus coeruleus, dorsal lateral mesencephalic nucleus, lateral reticular formation, nucleus papillioformis, and vestibular and cranial nerve nuclei. This pattern of connectivity is likely to reflect an important role of the avian DMA in the regulation of attention and arousal, memory formation, fear responses, affective components of pain, and hormonally mediated behaviors.
Collapse
|
18
|
Roberts TF, Hall WS, Brauth SE. Organization of the avian basal forebrain: chemical anatomy in the parrot (Melopsittacus undulatus). J Comp Neurol 2002; 454:383-408. [PMID: 12455005 DOI: 10.1002/cne.10456] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hodological, electrophysiological, and ablation studies indicate a role for the basal forebrain in telencephalic vocal control; however, to date the organization of the basal forebrain has not been extensively studied in any nonmammal or nonhuman vocal learning species. To this end the chemical anatomy of the avian basal forebrain was investigated in a vocal learning parrot, the budgerigar (Melopsittacus undulatus). Immunological and histological stains, including choline acetyltransferase, acetylcholinesterase, tyrosine hydroxylase, dopamine and cAMP-regulated phosphoprotein (DARPP)-32, the calcium binding proteins calbindin D-28k and parvalbumin, calcitonin gene-related peptide, iron, substance P, methionine enkephalin, nicotinamide adenine dinucleotide phosphotase diaphorase, and arginine vasotocin were used in the present study. We conclude that the ventral paleostriatum (cf. Kitt and Brauth [1981] Neuroscience 6:1551-1566) and adjacent archistriatal regions can be subdivided into several distinct subareas that are chemically comparable to mammalian basal forebrain structures. The nucleus accumbens is histochemically separable into core and shell regions. The nucleus taeniae (TN) is theorized to be homologous to the medial amygdaloid nucleus. The archistriatum pars ventrolateralis (Avl; comparable to the pigeon archistriatum pars dorsalis) is theorized to be a possible homologue of the central amygdaloid nucleus. The TN and Avl are histochemically continuous with the medial aspects of the bed nucleus of the stria terminalis and the ventromedial striatum, forming an avian analogue of the extended amygdala. The apparent counterpart in budgerigars of the mammalian nucleus basalis of Meynert consists of a field of cholinergic neurons spanning the basal forebrain. The budgerigar septal region is theorized to be homologous as a field to the mammalian septum. Our results are discussed with regard to both the evolution of the basal forebrain and its role in vocal learning processes.
Collapse
Affiliation(s)
- Todd Freeman Roberts
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
19
|
Plummer TK, Striedter GF. Brain lesions that impair vocal imitation in adult budgerigars. JOURNAL OF NEUROBIOLOGY 2002; 53:413-28. [PMID: 12382268 DOI: 10.1002/neu.10120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vocal imitation is a complex form of imitative learning that is well developed only in humans, dolphins, and birds. Among birds, only some species are able to imitate sounds in adulthood. Of these, the budgerigar (Melopsittacus undulatus) has been studied in most detail. Previous studies suggested that the vocal motor system in budgerigars receives auditory information from the lateral frontal neostriatum (NFl). In the present study, we confirm this hypothesis by showing that infusions of the GABA agonist muscimol into NFl reduce the strength of auditory responses in a telencephalic vocal motor nucleus, the central nucleus of the lateral neostriatum (NLc). To test whether the auditory information conveyed from NFl to NLc plays a role in vocal imitation, we lesioned parts of NFl and the overlying ventral hyperstriatum (HVl) in seven adult male budgerigars and then examined whether the lesioned males would imitate the calls of females with whom they were paired. We found that, compared to sham-lesioned controls, the lesioned birds were significantly impaired in their imitation of female calls. Yet, the lesioned males were clearly not deaf (e.g., their previously learned calls did not degrade as they do after deafening). Therefore, the data suggest that NFl/HVl lesions impair vocal imitation by reducing the amount of auditory information that reaches the vocal motor system. Interestingly, the females that were paired with lesioned males displayed more vocal plasticity than the females in the control group, and some even imitated their male's prepairing calls.
Collapse
Affiliation(s)
- Thane K Plummer
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California at Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4450, USA
| | | |
Collapse
|
20
|
Brauth S, Liang W, Roberts TF, Scott LL, Quinlan EM. Contact call-driven Zenk protein induction and habituation in telencephalic auditory pathways in the Budgerigar (Melopsittacus undulatus): implications for understanding vocal learning processes. Learn Mem 2002; 9:76-88. [PMID: 11992018 PMCID: PMC155933 DOI: 10.1101/lm.40802] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2001] [Accepted: 03/19/2002] [Indexed: 12/22/2022]
Abstract
Expression of the immediate early gene protein Zenk (zif 268, egr-1, NGF1A, Krox24) was induced in forebrain auditory nuclei in a vocal learning parrot species, the budgerigar (Melopsittacus undulatus), when the subjects either listened to playbacks of an unfamiliar contact call or to a contact call with which they had been familiarized previously. Auditory nuclei included the Field L complex (L1, L2a, and L3), the neostriatum intermedium pars ventrolateralis (NIVL), the neostriatum adjacent to caudal nucleus basalis (peri-basalis or pBas), an area in the frontal lateral neostriatum (NFl), the supracentral nucleus of the lateral neostriatum (NLs), and the ventromedial hyperstriatum ventrale (HVvm). The latter three nuclei are main sources of auditory input to the vocal system. Two patterns of nuclear staining were induced by contact call stimulation-staining throughout cell nuclei, which was exhibited by at least some neurons in all areas examined except L2a and perinucleolar staining, which was the only kind of staining exhibited in field L2a. The different patterns of Zenk staining indicate that auditory stimulation may regulate the Zenk-dependent transcription of different subsets of genes in different auditory nuclei. The numbers of neurons expressing Zenk staining increased from seven- to 43-fold over control levels when the birds listened to a repeating unfamiliar call. Familiarization of the subjects with the call stimulus, through repeated playbacks, greatly reduced the induction of Zenk expression to the call when it was presented again after an intervening 24-h interval. To determine if neurons exhibiting contact call-driven Zenk expression project to the vocal control system, call stimulation was coupled with dextran amines pathway tracing. The results indicated that tracer injections in the vocal nucleus HVo (oval nucleus of the hyperstriatum ventrale), in fields lateral to HVo and in NLs labeled many Zenk-positive neurons in HVvm, NFl, and NLs. These results support the idea that, in these neurons, egr-1 couples auditory stimulation to the synthesis of proteins involved in either the storing of new perceptual engrams for vocal learning or the processing of novel and/or meaningful acoustic stimuli related to vocal learning or the context in which it occurs.
Collapse
Affiliation(s)
- Steven Brauth
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
21
|
Chapter IV Immediate-early gene (IEG) expression mapping of vocal communication areas in the avian brain. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Roberts TF, Brauth SE, Hall WS. Distribution of iron in the parrot brain: conserved (pallidal) and derived (nigral) labeling patterns. Brain Res 2001; 921:138-49. [PMID: 11720720 DOI: 10.1016/s0006-8993(01)03110-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The distribution of iron in the brain of a vocal learning parrot, the budgerigar (Melopsittacus undulatus), was examined using iron histochemistry. In mammals, iron is a highly specific stain for the dorsal and ventral pallidal subdivision as well as specific cell groups in the brainstem, including the substantia nigra pars reticulata [Neuroscience 11 (1984) 595-603]. The purpose of this study was to compare the distribution of iron in the mammalian and avian brain focusing on pallidal and nigral cell groups. The results show that in the avian brain, iron stains oligodendrocytes, neurons and the neuropil. Cell staining changes dramatically along the rostrocaudal axis, with neuronal labeling confined to regions caudal to the thalamus and oligodendrocyte labeling denser in regions rostral to the dorsal thalamus. Many sensory forebrain regions contain appreciable iron labeling, including telencephalic vocal control nuclei. The dorsal and ventral subdivision of the avian pallidum, along with the basal ganglia component of the vocal control circuit, the magnicellular nucleus of the lobus parolfactorius, stain heavily for iron. Several brainstem regions, including nucleus rotundus, the medial spiriform nucleus (SpM), the principle nucleus of the trigeminal nerve, nucleus laminaris and scattered cell groups throughout the isthmus and pontine reticular formation stain intensely for iron. Within SpM neuronal labeling is more intense in the medial division while oligodendrocyte labeling is more intense in the lateral division. surprisingly no nigral iron staining was observed. Our results imply that iron is a conserved marker for the pallidum in birds and mammals, but that patterns of nigral staining have diverged in birds and mammals. Differences in iron staining patterns between birds and mammals may also reflect the relatively greater importance of the collothalamic visual pathways, pretectal-cerebellar pathways and specialized vocal learning circuitry in avian sensory and motor processing.
Collapse
Affiliation(s)
- T F Roberts
- Sensori-Neural and Perceptual Processes Program, Department of Psychology, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
23
|
Roberts TF, Cookson KK, Heaton KJ, Hall WS, Brauth SE. Distribution of tyrosine hydroxylase-containing neurons and fibers in the brain of the budgerigar (Melopsittacus undulatus): general patterns and labeling in vocal control nuclei. J Comp Neurol 2001; 429:436-54. [PMID: 11116230 DOI: 10.1002/1096-9861(20010115)429:3<436::aid-cne6>3.0.co;2-h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The distribution of tyrosine hydroxylase (TH) was mapped out in cells and fibers of the budgerigar (Melopsittacus undulatus) brain. Special attention was given to vocal control and auditory nuclei because budgerigars are a psittacine species in which both males and females are capable of lifelong vocal learning (Farabaugh et al. [1994] J. Comp. Psychol 108:81-92). The results show that TH staining in the central nucleus of the anterior archistriatum (AAc) resembled that of surrounding archistriatal fields, except for portions of the ventral archistriatum, which exhibited substantially more TH+ fibers. Fewer fibers and fiber baskets are present in the central nucleus of the lateral neostriatum (NLc) than in surrounding fields. Both the oval nuclei of the ventral hyperstriatum (HVo) and anterior neostriatum (NAo) exhibit less fiber staining than surrounding fields whereas fiber staining in the medial NAo (NAom) and magnicellular nucleus of the parolfactory lobe (LPOm) resemble that of surrounding fields. Staining in primary telencephalic auditory nuclei was extremely low. The only sex difference observed was slightly increased TH staining in LPOm of females compared with surrounding fields on some tissue sections. These findings are in contrast to previous findings in zebra finch (Poephila guttata), a close ended vocal learning songbird in which TH staining in vocal nuclei increases during development and remains greater than surrounding fields throughout adulthood. The present results therefore support the view that catecholamines act to inhibit vocal plasticity in adult vocal learning species. Several unique features of TH-immunoreactive (ir) cell groups were observed in the brainstem including sparsely scattered TH-ir somata immediately adjacent to the third ventricle, within the tectum, basal forebrain, archistriatum, and caudal neostriatum, and in the hippocampus. These latter populations have not been described in other avian species and resemble features of the catecholamine system generally found in either reptiles or mammals.
Collapse
Affiliation(s)
- T F Roberts
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
24
|
Redies C, Medina L, Puelles L. Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. J Comp Neurol 2001. [DOI: 10.1002/cne.1315] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Brauth SE, Liang W, Roberts TF. Projections of the oval nucleus of the hyperstriatum ventrale in the budgerigar: Relationships with the auditory system. J Comp Neurol 2001. [DOI: 10.1002/cne.1115] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Heaton JT, Brauth SE. Effects of lesions of the central nucleus of the anterior archistriatum on contact call and warble song production in the budgerigar (Melopsittacus undulatus). Neurobiol Learn Mem 2000; 73:207-42. [PMID: 10775493 DOI: 10.1006/nlme.1999.3930] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effects of both unilateral and bilateral lesions of the central nucleus of the anterior archistriatum (AAc) on the production of contact calls and warble song in adult male and female budgerigars. Birds were sorted into three experimental groups based on the percentage of AAc destroyed and whether lesions were unilateral or bilateral. The experimental groups were Unilateral Lesion (N = 8), Partial Bilateral Lesion (N = 5), and Bilateral Lesion birds (N = 12). Each group contained both sexes. Unilateral lesions had no demonstrable effects on contact call or warble song production. Bilateral lesions resulted in immediate and permanent disruption of all learned temporal and spectral characteristics of contact calls, although call initiation was not dependent on the AAc. Partial bilateral lesion effects varied with lesion size and location. At least 20-30% sparing of the AAc, including sparing portions of both the dorsal (AAcd) and ventral (AAcv) subdivisions on the same side of the brain, is necessary for production of prelesion contact call patterns. Warble song was absent in birds with complete bilateral destruction. Two birds with large yet incomplete lesions of the AAc sang after surgery, although the warble song of these birds was extremely impoverished and contained only a few of the typical warble song elements. Lesion results indicate that the AAc mediates the production of learned vocal features in male and female budgerigars, with each hemisphere capable of supporting a normal vocal repertoire.
Collapse
Affiliation(s)
- J T Heaton
- Department of Psychology, University of Maryland, College Park, Maryland, 20742-4411, USA
| | | |
Collapse
|
27
|
Heaton JT, Brauth SE. Telencephalic nuclei control late but not early nestling calls in the budgerigar. Behav Brain Res 2000; 109:129-35. [PMID: 10699664 DOI: 10.1016/s0166-4328(99)00157-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bilateral lesions targeting the central nucleus of the anterior archistriatum (AAc) were placed in nestling budgerigars (Melopsittacus undulatus) aged 5, 9, 13, 22, 26, and 33 days post-hatch in order to evaluate the role of the telencephalon in producing nestling vocalizations in this species. In budgerigars, AAc is the final common pathway from telencephalic vocal control nuclei to brainstem respiratory and syringeal motorneuron pools. The results show that lesions destroying AAc bilaterally in addition to surrounding archistriatum and neostriatum do not alter the production of early simple patterned foodbegging calls but do prevent both the normal transition at 3-4 weeks post-hatch to more complex begging calls as well as the emergence of individually-distinctive contact calls around the time of fledging. These vocal results are strikingly similar to those obtained in previous studies in which early deafening of nestlings (Heaton and Brauth, 1999) and early lesioning of auditory areas in the anterior telencephalon (Hall WS, Brauth SE, Heaton JT. Comparison of the effects of lesions in nucleus basalis and field 'L' on vocal control learning and performance in the budgerigar (M. undulatus), Brain Behav. Evol., 1994;44:133-148) did not affect call production until 3-4 weeks post-hatch. These data combined support the idea that neither auditory feedback nor telencephalic sensorimotor circuits are necessary for the production of nestling calls before 3 weeks post-hatch.
Collapse
Affiliation(s)
- J T Heaton
- Voice and Speech Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA. james_heaton@ meei.harvard.edu
| | | |
Collapse
|
28
|
Abstract
Auditory and vocal regulation of gene expression occurs in separate discrete regions of the songbird brain. Here we demonstrate that regulated gene expression also occurs during vocal communication in a parrot, belonging to an order whose ability to learn vocalizations is thought to have evolved independently of songbirds. Adult male budgerigars (Melopsittacus undulatus) were stimulated to vocalize with playbacks of conspecific vocalizations (warbles), and their brains were analyzed for expression of the transcriptional regulator ZENK. The results showed that there was distinct separation of brain areas that had hearing- or vocalizing-induced ZENK expression. Hearing warbles resulted in ZENK induction in large parts of the caudal medial forebrain and in 1 midbrain region, with a pattern highly reminiscent of that observed in songbirds. Vocalizing resulted in ZENK induction in nine brain structures, seven restricted to the lateral and anterior telencephalon, one in the thalamus, and one in the midbrain, with a pattern partially reminiscent of that observed in songbirds. Five of the telencephalic structures had been previously described as part of the budgerigar vocal control pathway. However, functional boundaries defined by the gene expression patterns for some of these structures were much larger and different in shape than previously reported anatomical boundaries. Our results provide the first functional demonstration of brain areas involved in vocalizing and auditory processing of conspecific sounds in budgerigars. They also indicate that, whether or not vocal learning evolved independently, some of the gene regulatory mechanisms that accompany learned vocal communication are similar in songbirds and parrots.
Collapse
Affiliation(s)
- E D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
29
|
Guirado S, D�vila JC, Real M�, Medina L. Light and electron microscopic evidence for projections from the thalamic nucleus rotundus to targets in the basal ganglia, the dorsal ventricular ridge, and the amygdaloid complex in a lizard. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000821)424:2<216::aid-cne3>3.0.co;2-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Kröner S, Güntürkün O. Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): a retro- and anterograde pathway tracing study. J Comp Neurol 1999; 407:228-60. [PMID: 10213093 DOI: 10.1002/(sici)1096-9861(19990503)407:2<228::aid-cne6>3.0.co;2-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The avian caudolateral neostriatum (NCL) was first identified on the basis of its dense dopaminergic innervation. This fact and data from lesion studies have led to the notion that NCL might be the avian equivalent of prefrontal cortex (PFC). A key feature of the PFC is the ability to integrate information from all modalities needed for the generation of motor plans. By using antero- and retrograde pathway tracing techniques, we investigated the organization of sensory afferents to the NCL and the connections with limbic and somatomotor centers in the basal ganglia and archistriatum. Data from all tracing experiments were compared with the distribution of tyrosine-hydroxylase (TH)-immunoreactive fibers, serving as a marker of dopaminergic innervation. The results show that NCL is reciprocally connected with the secondary sensory areas of all modalities and with at least two parasensory areas. Retrograde tracing also demonstrated further afferents from the deep layers of the Wulst and from the frontolateral neostriatum as well as the sources of thalamic input. Efferents of NCL project onto parts of the avian basal ganglia considered to serve somatomotor or limbic functions. Projections to the archistriatum are mainly directed to the somatomotor part of the intermediate archistriatum. In addition, cells in caudal NCL were found to be connected with the ventral and posterior archistriatum, which are considered avian equivalents of mammalian amygdala. All afferents and projection neurons were confined to the plexus of densest TH innervation. Our results show that the NCL is positioned to amalgamate information from all modalities and to exert control over limbic and somatomotor areas. This organization might comprise the neural basis for such complex behaviours as working memory or spatial orientation.
Collapse
Affiliation(s)
- S Kröner
- AE Biopsychologie, Fakultät für Psychologie, Ruhr-Universität Bochum, Germany.
| | | |
Collapse
|
31
|
Metzger M, Jiang S, Braun K. Organization of the dorsocaudal neostriatal complex: A retrograde and anterograde tracing study in the domestic chick with special emphasis on pathways relevant to imprinting. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980808)395:3<380::aid-cne8>3.0.co;2-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
|
33
|
|
34
|
Cohen YE, Miller GL, Knudsen EI. Forebrain pathway for auditory space processing in the barn owl. J Neurophysiol 1998; 79:891-902. [PMID: 9463450 DOI: 10.1152/jn.1998.79.2.891] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway.
Collapse
Affiliation(s)
- Y E Cohen
- Department of Neurobiology, Stanford University School of Medicine, Stanford University, Stanford, California 94305-5401, USA
| | | | | |
Collapse
|
35
|
Abstract
This article reviews the organization of the forebrain nuclei of the avian song system. Particular emphasis is placed on recent physiologic recordings from awake behaving adult birds while they sing, call, and listen to broadcasts of acoustic stimuli. The neurons in the descending motor pathway (HVc and RA) are organized in a hierarchical arrangement of temporal units of song production, with HVc neurons representing syllables and RA neurons representing notes. The nuclei Uva and NIf, which are afferent to HVc, may help organize syllables into larger units of vocalization. HVc and RA are also active during production of all calls. The patterns of activity associated with calls differ between learned calls and those that are innately specified, and give insight into the interactions between the forebrain and midbrain during calling, as well as into the evolutionary origins of the song system. Neurons in Area X, the first part of the anterior forebrain pathway leading from HVc to RA, are also active during singing. Many HVc neurons are also auditory, exhibiting selectivity for learned acoustic parameters of the individual bird's own song (BOS). Similar auditory responses are also observed in RA and Area X in anesthetized birds. In contrast to HVc, however, auditory responses in RA are very weak or absent in awake birds under our experimental paradigm, but are uncovered when birds are anesthetized. Thus, the roles of both pathways beyond HVc in adult birds is under review. In particular, theories hypothesizing a role for the descending motor pathway (RA and below) in adult song perception do not appear to obtain. The data also suggest that the anterior forebrain pathway has a greater motor role than previously considered. We suggest that a major role of the anterior forebrain pathway is to resolve the timing mismatch between motor program readout and sensory feedback, thereby facilitating motor programming during birdsong learning. Pathways afferent to HVc may participate more in sensory acquisition and sensorimotor learning during song development than is commonly assumed.
Collapse
Affiliation(s)
- D Margoliash
- Department of Organismal Biology and Anatomy, The University of Chicago, Illinois 60637, USA
| |
Collapse
|
36
|
Li R, Sakaguchi H. Cholinergic innervation of the song control nuclei by the ventral paleostriatum in the zebra finch: a double-labeling study with retrograde fluorescent tracers and choline acetyltransferase immunohistochemistry. Brain Res 1997; 763:239-46. [PMID: 9296565 DOI: 10.1016/s0006-8993(97)00417-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the sensitive period of song learning, the content of acetylcholine and the enzyme activity of choline acetyltransferase (ChAT) increase remarkably in the song control nuclei of a young male zebra finch. Cholinergic fibers innervate the two main song control nuclei of the forebrain: the higher vocal center (HVC) and the robust nucleus of the archistriatum (RA). The present study combines the retrograde tracer, Fluoro-Red (FRe), with ChAT immunohistochemistry. The results indicate that the cholinergic fibers which innervate the RA and HVC originate from the ventral paleostriatum (VP) in the basal forebrain, and that there is an anterior-posterior topography in the location of the cholinergic neurons in the VP that project to the HVC and RA, although there are a few neurons which project to both nuclei. These findings suggest that the VP is homologous to the nucleus basalis of Meynert of the basal forebrain cholinergic system of mammals which is associated with learning and memory processes, and that the cholinergic neurons in the VP play an important role in avian song learning.
Collapse
Affiliation(s)
- R Li
- Department of Physiology, Dokkyo University, School of Medicine, Mibu, Tochigi, Japan
| | | |
Collapse
|
37
|
|
38
|
Hall WS, Cookson KK, Heaton JT, Roberts T, Shea SD, Brauth SE. Audio-vocal learning in budgerigars. Ann N Y Acad Sci 1997; 807:352-67. [PMID: 9071363 DOI: 10.1111/j.1749-6632.1997.tb51932.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- W S Hall
- Department of Psychology, University of Maryland, College Park 20742-4411, USA
| | | | | | | | | | | |
Collapse
|
39
|
Brauth SE, Heaton JT, Shea SD, Durand SE, Hall WS. Functional anatomy of forebrain vocal control pathways in the budgerigar (Melopsittacus undulatus). Ann N Y Acad Sci 1997; 807:368-85. [PMID: 9071364 DOI: 10.1111/j.1749-6632.1997.tb51933.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Budgerigars throughout life are capable of learning to produce many different sounds including those of human speech. Like humans, budgerigars use multiple craniomotor systems and coordinate both orosensory and auditory feedback in specialized forebrain nuclei. Although budgerigar auditory-vocal learning has a different evolutionary origin from that of human speech, both the human and budgerigar systems can control F0 and can alter the distribution of energy in spectral bands by adjusting the filter properties of the vocal tract. This allows budgerigars to produce an extremely diverse array of calls including many broadband and highly complex sounds.
Collapse
Affiliation(s)
- S E Brauth
- Department of Psychology, University of Maryland, College Park 20742, USA
| | | | | | | | | |
Collapse
|
40
|
Durand SE, Heaton JT, Amateau SK, Brauth SE. Vocal control pathways through the anterior forebrain of a parrot (Melopsittacus undulatus). J Comp Neurol 1997; 377:179-206. [PMID: 8986880 DOI: 10.1002/(sici)1096-9861(19970113)377:2<179::aid-cne3>3.0.co;2-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A feature of the telencephalic vocal control system in the budgerigar (Melopsittacus undulatus) that has been hypothesized to represent a profound difference in organization from the oscine vocal system is its reported lack of an inherent circuit through the anterior forebrain. The present study reports anatomical connections that indicate the existence of an anterior forebrain circuit comparable in important ways to the "recursive" pathway of oscine songbirds. Results from anterograde and retrograde tracing experiments with biocytin and fluorescently labeled dextran amines indicate that the central nucleus of the anterior archistriatum (AAc) is the source of ascending projections upon the oval nuclei of the anterior neostriatum and ventral hyperstriatum (NAo and HVo, respectively). Efferent projections from the latter nuclei terminate in the lateral neostriatum afferent to AAc, thereby forming a short recurrent pathway through the pallium. Previously reported projections from HVo and NAo upon the magnocellular nucleus of the lobus parolfactorius (LPOm), and after LPOm onto the magnocellular nucleus of the dorsal thalamus (DMm; G.F. Striedter [1994] J. Comp. Neurol. 343:35-56), are confirmed. A specific projection from DMm onto NAom is also demonstrated; therefore, a recurrent pathway through the basal forebrain also exists in the budgerigar vocal system that is similar to the anterior forebrain circuit of oscine songbirds. Parallels between these circuits and mammalian basal ganglia-thalamo-cortical circuits are discussed. It is hypothesized that vocal control nuclei of the avian anterior neostriatum may perform a function similar to the primate supplemental motor area.
Collapse
Affiliation(s)
- S E Durand
- Department of Psychology, University of Maryland, College Park 20742-4411, USA.
| | | | | | | |
Collapse
|
41
|
Cookson KK, Hall WS, Heaton JT, Brauth SE. Distribution of choline acetyltransferase and acetylcholinesterase in vocal control nuclei of the budgerigar (Melopsittacus undulatus). J Comp Neurol 1996; 369:220-35. [PMID: 8726996 DOI: 10.1002/(sici)1096-9861(19960527)369:2<220::aid-cne4>3.0.co;2-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study used histochemical methods to map the distributions of choline acetyl transferase (ChAT) and acetylcholinesterase (AChE) in the vocal control nuclei of a psittacine, the budgerigar (Melopsittacus undulatus). The distributions of ChAT and AChE in budgerigars appeared similar to that in oscine songbirds despite evidence that these systems have evolved independently. The magnicellular nucleus of the lobus parolfactorius in budgerigars, like the area X in songbirds, contained many ChAT labeled somata, fibers, and varicosities and stained densely for AChE. In contrast, the robust nucleus of the archistriatum (RA) and the supralaminar area of the frontal neostriatum in budgerigars, like the RA and the magnicellular nucleus of the neostriatum (MAN) in songbirds, respectively, contained few or no ChAT labeled somata, fibers, and varicosities and stained lightly for AChE. The central nucleus of the lateral neostriatum in budgerigars, like the higher vocal center (HVC) in songbirds, contained no ChAT labeled somata, moderate densities of ChAT labeled fibers and varicosities, and moderate levels of AChE staining. Two nuclei, the oval nucleus of the hyperstriatum ventrale (HVo) and the oval nucleus of the anterior neostriatum (NAo), contained no ChAT labeled somata, dense ChAT labeled fibers and varicosities, and moderate to high levels of AChE staining. The HVo and the NAo have no counterparts in songbirds but may be important vocal control nuclei in the budgerigar. Cholinergic enzymes are also described in other regions which may be involved in budgerigar vocal behavior, including the basal forebrain, the torus semicircularis, and the hypoglossal nuclei (nXII).
Collapse
Affiliation(s)
- K K Cookson
- Department of Psychology, University of Maryland, College Park 20742, USA
| | | | | | | |
Collapse
|
42
|
Vates GE, Broome BM, Mello CV, Nottebohm F. Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J Comp Neurol 1996; 366:613-42. [PMID: 8833113 DOI: 10.1002/(sici)1096-9861(19960318)366:4<613::aid-cne5>3.0.co;2-7] [Citation(s) in RCA: 434] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Auditory information is critical for vocal imitation and other elements of social life in song birds. In zebra finches, neural centers that are necessary for the acquisition and production of learned vocalizations are known, and they all respond to acoustic stimulation. However, the circuits by which conspecific auditory signals are perceived, processed, and stored in long-term memory have not been well documented. In particular, no evidence exists of direct connections between auditory and vocal motor pathways, and two newly identified centers for auditory processing, caudomedial neostriatum (Ncm) and caudomedial hyperstriatum ventrale (cmHV), have no documented place among known auditory circuits. Our goal was to describe anatomically the auditory pathways in adult zebra finch males and, specifically, to show the projections by which Ncm and vocal motor centers may receive auditory input. By using injections of different kinds of neuroanatomical tracers (biotinylated dextran amines, rhodamine-linked dextran amines, biocytin, fluorogold, and rhodamine-linked latex beads), we have shown that, as in other avian groups, the neostriatal field L complex in caudal telencephalon is the primary forebrain relay for pathways originating in the auditory thalamus, i.e., the nucleus ovoidalis complex (Ov). In addition, Ncm and cmHV also receive input from the Ov complex. Ov has been broken down into two parts, the Ov "core" and "shell," which project in parallel to different targets in the caudal telencephalon. Parts of the field L complex are connected among themselves and to Ncm, cmHV, and caudolateral Hv (clHV) through a complex web of largely reciprocal pathways. In addition, clHV and parts of the field L complex project strongly to the "shelf" of neostriatum underneath the song control nucleus high vocal center (HVC) and to the "cup" of archistriatum rostrodorsal to another song-control nucleus, the robust nucleus of the archistriatum (RA). We have documented two points at which the vocal motor pathway may pick up auditory signals: the HVC-shelf interface and a projection from clHV to the nucleus interfacialis (NIf), which projects to HVC. These data represent the most complete survey to date of auditory pathways in the adult male zebra finch brain, and of their projections to motor stations of the song system.
Collapse
Affiliation(s)
- G E Vates
- Laboratory of Animal Behavior, The Rockefeller University, New York, New York, USA.
| | | | | | | |
Collapse
|